PDV/MPDV APPs

Modeling Tools to Predict System Performance for Design and Experimentation

Ed Daykin, NSTec PDV Workshop 2016 Livermore, CA June 6 - 9

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy and supported by the Site-Directed Research and Development Program.

Nevada National Security Site Managed and Operated by National Security Technologies, LLC

Purpose: To predict system performance

What do we mean by system performance?

- Sensitivity ... Do we have enough optical (return) signal to see anything on the spectrogram (i.e., are we above the noise floor?)?
- Signal-to-noise ratio ... How far above the noise floor is the anticipated optical signal?

What can we apply this to?

- 2. Design. Design an MPDV system to your needs.

Architecture – progression of PDV to MPDV

Basic geometry and components that determine performance

Architecture – progression of PDV to MPDV

Basic geometry and components that determine performance

Architecture – progression of PDV to MPDV

Basic geometry and components that determine performance

Dynamic Range: Scope

PSD = Power Spectral Density (dBm/Hz)

Nevada National Security Site Managed and Operated by National Security Technologies, LLC

Dynamic Range: Scope & Photodetector

Dynamic Range: Scope, Detector & EDFA

Dynamic Range: Scope, Detector, EDFA & Multiplexing

Today let's look at Sensitivity: the Pmin APP

What is the minimum optical power (Pmin) necessary to detect a signal, that is SNR = 1 ?

PDV APPS: PDV Workshop 2016, Livermore, CA, 6-9 June 2016

Let's define Sensitivity and Visibility

FFT Amplitude vs. Frequency

Inputs for Pmin APP

Pmin = minimum optical power reflected from the target surface (returning to the PDV/MPDV) necessary for SNR = 1. THIS IS WHAT IS CALCULATED!

<u>INPUTS</u>

Detector & Digitizer: noise floor PSDs, range responsivity, bandwidths, and sample rate

Inputs for Pmin APP

CALCULATE: Pmin = minimum optical power for SNR = 1

Inputs for Pmin APP

CALCULATE: Pmin = minimum optical power for SNR = 1

What does the APP look like?

Pmin SHOT APP

What does the APP look like?

Pmin DESIGN APP

Pmin Design

Pmin = f(IL, Gain, PD Responsivity): Minimum Optical Power Necessary for SNR = 1. variables: system insertion loss (following EDFA), EDFA gain, & Photo-diode Responsivity

OPTICAL SYSTEM INPUTS				
Optical Signal Power,	Psig =	N/A	dBm	
LocOsc Power (at PD)	P(LO) =	0.0	dBm	
System Insertion Loss*	IL(Sig) =	20.0	dB	
Bandwidth (optical filter),	B ₀ =	1.00E+11	Hz	
EDFA Gain	G =	30.0	dB	
EDFA Noise Figure	F =	4.5	dB	
Fiber-optic combiner	ε(f/o) =	0.5	ratio	
* Insertion Loss is after EDFA, Not including f/o combiner				
Calculation approximation: St	rong Local Oscillator	P(LocOsc) >>	P(signal)	

r	Filoto-aloue Responsivity			
	PHOTO-DIODE & DIGITIZER INPUTS			
	Scope Range, V(max) =	1.00	Volt Full Scale	
	Scope Sample Rate	20	(Gs/s)	
	P-D Responsivity, R =	1800	V/W	
	Photo-diode noise, PSD=	-135	(dBm/Hz)	
	Scope noise, PSD =	-135	(dBm/Hz)	
	Bandwidth (elec), $B_e =$	2.00E+10	Hz	
ľ				
ANALYSIS INPUT				

idiri) - i		pes -
N(FFT) =	1024	pts

SENSITIVITY (SNR = 1)		
PDV	MPDV	
Pmin	Pmin	
7.63E-09	3.58E-11	w
-51.2	-74.5	dB
Sensitivity == minimum optical signal		

Feb - April 2016

E.D.

necessary for SNR = 1 (mean of noise floor)

VISIBILITY (Min. Detectable Optical Signal)		
PDV	MPDV	
Pmin	Pmin	
-40.2	-63.5	dBm
Visibility Factor =	11	dB

Let's try it (time permitting)... Audience interactive session

