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“Not with a Bang But a Chirp”
Barney Oliver (Bell Labs) 

Memorandum on high-power radar pulses

“This is the way the world ends. Not with a bang but a 
whimper.” –T.S. Eliot
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What is a chirp?

• A chirp is a signal in which the frequency increases or decreases with time
• In this talk, we mostly care about linear chirps:

Time Domain Frequency Domain

Quadratic Phase
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What is Optical Ranging (OR)?

 OR is a fast interferometric technique used to measure distance 
to a target at periodic intervals

 Spectral interferometer: 
— light pulses in target and reference arms interfere 
— chromatic dispersion in the fiber maps spectral information 

into the time domain (real-time dispersive Fourier 
transformation)

— beat waveform is recorded 

 Also known as “Broadband Laser Ranging” (BLR)
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Schematic of current setup

Fiber converts the interference spectrum into the 
time domain via real-time dispersive Fourier 
transformation
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Idealized frequency domain description 
demonstrates the insensitivity to Doppler shift
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Chirped signals

 The chirp is due to Third Order Dispersion (TOD) in fiber
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Calibration before experiment 

 The calibration establishes a correction for dechirping the beat 
waveform, and a relation between beat frequency and distance
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Example calibration files

 It is the beat frequency that we care about...this will 
correspond to a particular distance to target

 We also care about what we call the pulse edge or start time

Near balance point of 
interferometer
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Analysis steps for calibration data

 Collect data at different distances (5 Pulses each at 41 
distances)

 For every pulse,
— Find envelope and subtract
— Estimate the phase
— Dechirp the signal
— Find frequency of dechirped signal

 Do a linear least squares fit of signal beat frequency vs distance 
to get a slope – the correction to be applied to experimental 
data
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Envelope detection

 For a particular distance file
— Find the envelope and subtract from original signal
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Finding the envelope with Loess smoothing

Using 200 point Loess smoothing
Mean pulse width: 64.351 ns ± 96 ps
Pulse to pulse there is variability in the envelope structure…so we find the envelope 
for each pulse
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Before removal of envelope

FFT of a single pulse per distance
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Before removal of envelope: a closer look

Baseband…the envelope 
information

Signals we care about at 4 
different distances
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After removal of the envelope

Envelope removed
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Finding the envelope with a 2nd order 
Butterworth lowpass filter
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After envelope removal

Residual power near dc (imperfect envelope detection)..overlap 
of spectral content near the balance point
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After envelope subtraction…phase estimation

 Estimate the phase  

Methods tried include:
— Zero crossings
— Hilbert Transform
— Local Oscillator

 Fit phase vs time to a quadratic 
function and then linearize

 Resample and interpolate data 
to dechirp

))(sin()( tty ϕ=)(tϕ
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After dechirping

Envelope method: 200 point Loess smoothing
Phase method: Zero crossings
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Before and after dechirping
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Distance to beat frequency calibration slope

Fit frequency to calibration distance to get the slope to use to correct 
future experimental data 
Conversion is .217 GHz/mm or 4.607 mm/GHz

56.3 mm is the 
“balance point” = 
no beat 
frequency
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Spectrogram of calibration measurements
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Another example: Sagebrush calibration 
measurements

Find envelope with Savitzky-Golay 220 point smoothing window
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Sagebrush power spectra

Remove 
envelope

Apply 
dechirping
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Sagebrush: A closer look
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Sagebrush calibration analysis summary

Savitzky-Golay 220 points smoothing 
window
Zero crossing phase estimation
Conversion: 2.271 mm/GHz
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A look at real data: explosive-driven 
aluminum test

Results show 12 cm target tracking with 14 GHz detection bandwidth
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