#### **Optical Ranging Overview and Analysis of Calibration Data**

PDV Workshop 2016

Natalie Kostinski (LLNL), Brandon La Lone (NSTec), Corey Bennett (LLNL), Marylesa Howard (NSTec), Adam Lodes (LLNL), Bruce Marshall (NSTec)

June 9, 2016



LLNL-PRES-694059

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

### "Not with a Bang But a Chirp"

Barney Oliver (Bell Labs) Memorandum on high-power radar pulses

"This is the way the world ends. Not with a bang but a whimper." -T.S. Eliot



#### What is a chirp?

- A chirp is a signal in which the frequency increases or decreases with time
- In this talk, we mostly care about *linear chirps*:





#### What is Optical Ranging (OR)?

- OR is a fast interferometric technique used to measure distance to a target at periodic intervals
- Spectral interferometer:
  - light pulses in target and reference arms interfere
  - chromatic dispersion in the fiber maps spectral information into the time domain (*real-time dispersive Fourier transformation*)
  - beat waveform is recorded
- Also known as "Broadband Laser Ranging" (BLR)



**Optical Frequency (or time)** 



#### **Schematic of current setup**



Fiber converts the interference spectrum into the time domain via *real-time dispersive Fourier transformation* 

Optical Frequency (or time)

**Farget Position** 



#### Idealized frequency domain description demonstrates the insensitivity to Doppler shift



```
Time Delay = Beat freq/(dF/dt)
Position = c*Time Delay/2
```



#### **Chirped signals**

The chirp is due to Third Order Dispersion (TOD) in fiber



#### **Calibration before experiment**

 The calibration establishes a correction for *dechirping* the beat waveform, and a relation between beat frequency and distance





#### **Example calibration files**

- It is the beat frequency that we care about...this will correspond to a particular distance to target
- We also care about what we call the pulse edge or start time





#### Analysis steps for calibration data

- Collect data at different distances (5 Pulses each at 41 distances)
- For every pulse,
  - Find envelope and subtract
  - Estimate the phase
  - Dechirp the signal
  - Find frequency of dechirped signal
- Do a linear least squares fit of signal beat frequency vs distance to get a slope – the *correction to be applied to experimental data*



#### **Envelope detection**

- For a particular distance file
  - Find the envelope and subtract from original signal





#### Finding the envelope with Loess smoothing



Using 200 point Loess smoothing

Mean pulse width:  $64.351 \text{ ns} \pm 96 \text{ ps}$ Pulse to pulse there is variability in the envelope structure...so we find the envelope for each pulse



#### **Before removal of envelope**



FFT of a single pulse per distance



#### Before removal of envelope: a closer look







#### After removal of the envelope





#### Finding the envelope with a 2<sup>nd</sup> order Butterworth lowpass filter





#### After envelope removal





#### After envelope subtraction...phase estimation

- Estimate the phase  $\varphi(t)$
- Methods tried include:
  - Zero crossings
  - Hilbert Transform
  - Local Oscillator
- Fit phase vs time to a quadratic function and then linearize
- Resample and interpolate data to dechirp

$$f(t) = \sin(\varphi(t))$$
  

$$\phi = k_0 + k_1 t + k_2 t^2$$
  

$$\phi = k_0 + k_1 t'$$
  

$$t' = t + \frac{k_2}{k_1} t^2$$
  
Let  $a = \frac{k_2}{k_1}$ 

V(





#### After dechirping



Envelope method: 200 point Loess smoothing Phase method: Zero crossings



#### **Before and after dechirping**







#### **Distance to beat frequency calibration slope**



Fit frequency to calibration distance to get the slope to use to correct future experimental data Conversion is .217 GHz/mm or 4.607 mm/GHz



#### **Spectrogram of calibration measurements**





## Another example: Sagebrush calibration measurements



Find envelope with Savitzky-Golay 220 point smoothing window





#### Sagebrush power spectra



Lawrence Livermore National Laboratory

```
nol Nuclear Security Administration
```

#### Sagebrush: A closer look





#### Sagebrush calibration analysis summary





Savitzky-Golay 220 points smoothing window

Zero crossing phase estimation Conversion: 2.271 mm/GHz



# A look at real data: explosive-driven aluminum test





