OH DETECTION USING OFF-AXIS INTEGRATED CAVITY OUTPUT SPECTROSCOPY (OA-ICOS)

C. Lengignon¹, W. Chen^{1,*}, E. Fertein¹, C. Coeur¹, D. Petitprez²

¹Université du Littoral Côte d'Opale, LPCA, 189A Av. Maurice Schumann-59140 Dunkerque, France (* chen@univ-littoral.fr) ²Université des Sciences et Technologies de Lille, PC2A, 59655 Villeneuve d'Ascq Cedex

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

- ICOS
- ICOS expr
- Coupling

Exp. Details

- Setup Calibration Normalisation
- Calibration
- Validation
- Amp. Stabilization
- Results
- OA-ICOS perf.
- Conclusion & Perspectives
- Thanks

Why detect OH?

OH plays a critical role in atmospheric chemistry due to its high reactivity with chemical species such as volatile organic compounds (VOCs) and greenhouse gases (GHGs):

- Air quality impact
- Climate changes investigation

Need an adapted system that allows :

- $\bullet\,$ Real time measurement (short OH life time $\leq 1\,\text{sec})$
- High selectivity (interference-free from atmospheric H_2O , CO_2)
- ullet High sensitivity (low OH concentration $10^6 \sim 10^8 ext{OH.cm}^{-3}$)
- High spatial resolution (compact setup for in field measurements)

Outline

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

- ICOS
- ICOS expr.

Exp. Details

- Setup
- Calibration
- Normalisation
- ASE
- Calibratio
- Validation
- Amp. Stabilizatio

Results

- NEAS
- Conclusion & Perspectives
- Thanks

Introduction

- Integrated Cavity Output Spectroscopy
- ICOS expression
- Off-Axis coupling to ICOS

2 Experiment details

- Setup design
- Calibration
 - Normalisation
 - ASE
 - Calibration
 - Validation
- Improvement : Laser Amplitude Stabilization

Results and Outlook

- Noise Equivalent Absorption Sensitivity
- OA-ICOS system performances

Introduction

Integrated Cavity Output Spectroscopy

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS

ICOS expr.

Coupling

Exp. Details

Setup Calibratio

Normalisatio

ASE

Calibration

Validation

Amp. Stabilization

Results

NEAS OA-ICOS per

Conclusion & Perspectives

Thanks

In a typical Fabry-Perot cavity, the transmitted intensity, I_T , is calculated as the sum of the leaking radiations from Beer-Lambert law [1,2]. As Mie and Rayleigh scattering don't occur in our case : $\Rightarrow I = I_0 \times e^{-N\sigma(\lambda) \times L}$

A. O'Keefe, J. J. Scherer, J. B. Paul, Chem. Phys. Lett. 307, 343-349 (1999)
A. O'Keefe, Chem. Phys. Lett. 293, 331-336 (1998)

In a high finesse optical cavity, the light trapped inside can make a great number of round-trips between the cavity mirrors.

Introduction

Integrated Cavity Output Spectroscopy expression

- Motivations
- Outline of talk
- Introduction
- ICOS expr.
- Exp. Details
- Setup
- Calibration
- Normalisation
- ASE
- Calibration
- Validation
- Amp. Stabilization
- Results
- NEAS
- OA-ICOS perf
- Conclusion & Perspectives
- Thanks

Intensity at cavity output is an infinite sum (integration) of leaking radiations intensity at each round-trip : $\Rightarrow I_T(\sigma(\nu)) = \sum_i I_i(\sigma(\nu))$

Integrated Cavity Output Spectroscopy expression :

Introduction Off-Axis coupling to ICOS

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS

ICOS expr.

Coupling

Exp. Details

Setup Calibration Normalisation ASE Calibration

Validation

Amp. Stabilization

Results NEAS

OA-ICOS per

Conclusion & Perspectives

Thanks

Off-Axis ICOS

An on-axis light injection will excite the fundamental $TEM_{(0,0)}$ modes, while high orders $TEM_{(m,n)}$ modes will be excited in the case of off-axis injection [3].

[3] H. Kogelnik, T. Li, Proceedings of the IEEE Vol. 54, N 10, 1312-1329 (1966)

Setup design

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS

Coupling

Exp. Details

Setup Calibratio

Normalisation

ASE

Calibration

Validation

Amp. Stabilization

Results

NEAS

OA-ICOS perf

Conclusion & Perspectives

Thanks

Importance of offset level determination

The laser frequency is scanned at a rate of 10 Hz with a peak-to-peak amplitude of 1.00 V, allowing a scan over 1 cm⁻¹ around 6965.1939 cm⁻¹ to cross the OH transition line Q(2,5f) and the H₂O lines^a near 6965.7 cm⁻¹.

 a The $9_{46} \leftarrow 10_{37}$ transition of the $2\nu 1$ band of H_2O at 6965.58 cm $^{-1}$ The $5_{41} \leftarrow 5_{32}$ transition of the $n1 + 2\nu 2$ band of H_2O at 6965.80 cm $^{-1}$.

Normalised spectrum

$$\Rightarrow I_N = (\frac{I_0 - I_{Off}}{I - I_{Off}} - 1)/L$$

Amplified Spontaneous Emission (ASE)

ASE may pass through cavity adding an additional background offset in cavity output intensity

Motivations

Outline of talk

Introduction

ICOS exe

Coupling

Exp. Details

Setup Calibration Normalisatio

Calibration

Validation

Amp. Stabilization

Results

NEAS

Conclusion & Perspectives

Thanks

Calibration : Interaction pathlength determination $(L_{eff} = \frac{L}{1-R})$

The effective reflectivity is calculated from Voigt profile fit area : $\Rightarrow R = 1 - \frac{N_{H_2O}.S_{H_2O}}{A}$

Normalized direct absorption signal of pure H_2O vapor at different pressure

Calibration : Validation

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS

ICOS expr

Coupling

Exp. Details

Setup

Normalisati

ASE

Calibratio

Validation

Amp. Stabilization

Results

NEAS

Conclusion & Perspectives

Thanks

Calibration result : *I*_{off} choice validation

Effective interaction pathlength from calibration : $L_{eff} = 1263m$ Corresponding mirrors reflectivity : R = 99.96% (compared to manufacturer's $R \ge 99.98\%$)

OA-ICOS absorption spectrum $(1 - I/I_0)$ of pure H₂O vapor at 0.75 mbar (black). A simulation spectrum based on the Beer-lambert law is shown in red for comparison with a $L_{eff} = 1200m$.

Further improvement : Laser Amplitude Stabilization

Further improvement : Laser Amplitude Stabilization

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS ex

Coupling

Exp. Details

Setup Calibration Normalisa ASE

Calibration

Validation

Amp. Stabilization

Results NEAS OA-ICOS per

Conclusion & Perspectives

Thanks

Fluctuation in probe light limits the sensitivity. Intensity fluctuations (temperature, current) : technical noise. The DFB laser power stabilization is implemented for reduction of laser excess noise.

Results of the use of laser amplitude stabilization. Spectra recorded without (black) and with (red) power stabilization.

Allan variance curves : laser amplitude stabilization \Rightarrow optimal averaging time \geq 200 s (red) , compared to 100 s without (black). Noise equivalent sensitivity enhanced by a factor of \sim 5.

Results and Outlook

Noise Equivalent Absorption Sensitivity (NEAS)

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS

ICOS exp

Coupling

Exp. Details

Setup

Normalisatio

ASE

Calibration

Validation

Amp. Stabilization

Results

NEAS

OA-ICOS per

Conclusion & Perspectives

Thanks

MDA (Minimum Detectable Absorption) per scan (MDA_{ps}) or per point (MDA_{pp}) & NEAS are deduced from data acquisition rate and SNR [4]:

$$\Rightarrow MDA_{ps} = \left(\frac{\Delta P}{P}\right)_n \sqrt{n} \sqrt{T_{scan}}$$

$$\Rightarrow \textit{NEAS} = \frac{\textit{MDA}_{\textit{ps}}}{\textit{L}_{eff}\sqrt{\textit{N}_{pts}}} ~\&~ \textit{MDA}_{pp} = \frac{\textit{MDA}_{ps}}{\sqrt{\textit{N}_{pts}}}$$

[4] E.J. Moyer et al., Appl. Phys. B 92, 467–474 (2008)

Where *n* is the number of scans averaged, T_{scan} the time of a scan, L_{eff} the effective interaction pathlength and N_{pts} the number of points per scan.

System	(1-R) (ppm)	Pathlength (m)	NEAS (cm $^{-1}$ ×Hz $^{-1/2}$)	
With	725	689	1.1×10 ⁻⁸	
Without	725	689	6.7×10^{-8}	

Results and Outlook

OA-ICOS system performances

OA-ICOS applied to OH detection

Motivations

Outline of talk

- Introduction
- ICOS
- ICOS expr
- Coupling

Exp. Details

- Setup Calibration
- Normalisati
- C III .
- Calibration
- validation
- Desults
- NEAS
- OA-ICOS perf.

Conclusion & Perspectives

Thanks

Performances

- OH detection using an OA-ICOS setup with high sensitivity $(1 \times 10^{-10} \text{ cm}^{-1}/\text{Hz}^{1/2})$ with an effective absorption path length of $L_{eff} \simeq 1.2 \text{km}$.
- 1 σ detection limit of 2.1×10¹¹ OH.cm⁻³ achieved (signal-tonoise ratio (SNR) of 345)
- Laser amplitude stabilization implementation \Rightarrow improvement of the laser instrument stabilization time, and of the NEAS by a factor of \sim 6.

Results and Outlook

Typical performances of OA-ICOS in NIR

OA-ICOS								
applied to OH detection	Ref.	λ	(1-R)	Pathlength	NEAS	MDA _{pp}		
Motivations			(ppm)	(m)	$(cm^{-1} \times Hz^{-1/2})$	$(Hz^{-1/2})$		
Outline of talk	[5]	1565	40	27500	2.7×10 ⁻¹²	7.4 ×10 ⁻⁶		
ICOS ICOS expr. Coupling	[6]	1565	165	4200	3.1×10^{-11}	1.3×10^{-5}		
Exp. Details Setup	٢	1435	396	1263	1.0×10^{-10}	1.3 ×10 ⁻⁵		
Calibration Normalisation	[8]	1573	4400	68	5.0×10 ⁻⁹	3.4 ×10 ⁻⁵		
ASE Calibration Validation	[7]	1605	160	1400	3.9×10^{-10}	5.5×10^{-5}		
Amp. Stabilization								
NEAS OA-ICOS perf.	[5] G.S. Engel et al., Appl. Opt. 45, 9221 (2006)							
Conclusion & Perspectives	[7] V.L. Kasyutich et al., Appl. Phys. B 85, 413 (2006) [8] W. Zhao et al., Appl.Phys. B 86, 353 (2007)							
Thanks								

OA-ICOS applied to OH detection

- Motivations
- Outline of talk
- Introduction
- ICOS
- ICOS exp
- Coupling

Exp. Details

- Setup
- Calibration
- Normalisation
- ASE
- Calibration
- Validation
- Amp. Stabilization
- Results
- NEAS
- Conclusion & Perspectives
- Thanks

• Implementation of frequency modulation in OA-ICOS \Rightarrow enhance sensitivity by up to 2 orders of magnitude.

- Using OA-ICOS for laboratory experiments to study the reactivity of atmospheric pollutants (OH measurement)
 - Simulation chamber (200 L) \Rightarrow determination of OH yields formed during the ozonolysis of VOCs.
 - Determination of OH rate constants

OA-ICOS applied to OH detection

Motivations

Outline of talk

Introduction

ICOS

ICOS exp

Coupling

Exp. Details

Setup

Normalisation

ASE

Calibration

Validation

Amp. Stabilization

Results

NEAS

Conclusion & Perspectives

Thanks

This work is supported by IRENI (Institute of Research in Industrial ENvironnement) program :

