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Abstract 

Much research indicates that fractions and proportions are difficult concepts to grasp. Is it 

possible to capitalize on a non-mathematical skill that we already possess to facilitate an 

understanding of difficult math concepts? We tested undergraduate students on their 

mathematical knowledge, including fractions, and followed this with a categorization task in 

which they learned a fraction concept. Our results show that adults easily learned a novel fraction 

rule across a variety of presentation conditions within our categorization task. However, 

accuracy was lower and reaction time was slower in conditions where participants were 

presented with additional and extraneous perceptual features, which presumably distracted them 

from the critical numerical information. This data mirrors that found with children, suggesting 

the critical role of visual attention and task demands rather than a developmental shift per se. By 

inducing adults to think like children with the introduction of challenging task demands, we can 

begin to understand the mechanism underlying children’s learning, which will allow for better 

development of learning materials. Using a well-mastered skill (categorization) to learn a 

difficult math concept (fractions) without the presence of distracting perceptual information 

intruding on learning and transfer is a novel finding and may be a unique strategy for teaching 

other difficult concepts both inside and outside of formal education. 

 

Keywords: Categorization, category learning, fractions  
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Learning mechanism used when categorizing mathematical information surrounded by 

perceptual features 

Introduction 

In most elementary classrooms in the United States, one can find an extensive number of 

colorful, visually appealing posters and learning tools, such as plastic blocks used for basic 

arithmetic or images of sliced pizza to teach fractions, that are used to keep the students’ 

attention and facilitate learning (National Council of Teachers of Mathematics, 2000; Petersen & 

McNeil, 2012; Van de Walle, 2007). In fact, teachers report using perceptually appealing stimuli 

as a method to keep students focused on the task at hand (Petersen & McNeil, 2012). Despite the 

prevalence of these visually interesting education materials, there is a growing body of research 

to suggest that this is not always the best method of teaching (e.g., Petersen and McNeil, 2012). 

As such, it is important to understand the effects of these salient and perceptually rich 

educational materials in classrooms on children’s mathematical learning in order to enhance the 

learning outcomes of this country’s children. This is particularly important given that children in 

the United States do not demonstrate age-appropriate math skills and fall below their peers in 

other countries (National Center for Education Statistics, 2010; Siegler et al., 2012; also see 

Hurst & Cordes, 2016).  Therefore, improving students’ math knowledge and reasoning ability 

about fractions and proportions early in a child’s education is important and understanding what 

instructional format may best lead to both the learning and transfer of difficult math concepts 

should be a fundamental component of instruction and curriculum development.  

Perceptual variability and math learning 

Many studies have revealed that having visually appealing, perceptually rich items to 

keep children’s attention is not universally best for their learning. For example, Kaminski and 
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Sloutsky (2013) studied children’s abilities to read bar graphs in the presence and absence of 

extraneous features in the bars, such as having flowers as shading versus a solid 

(monochromatic) black bar. Their results revealed that the presence of the extraneous features 

hindered children’s ability to read bar graphs (Kaminski & Sloutsky, 2013). They found that 

when the number of objects contained in the bars matched the y-axis value (e.g., five flowers 

corresponding to an answer of five from the y-axis), children could correctly read and interpret 

the graph, but often gave incorrect answers if the number of items in the bars didn’t match the y-

value of the bar (e.g., three flowers corresponding to an answer of five from the y-axis; Kaminski 

& Sloutsky, 2013). Individuals who learned graph reading without extraneous objects were much 

more accurate in their graph reading upon test, thus allowing researchers to conclude the 

presence of extraneous perceptual features hindered learning, with more severe effects on 

children of a younger age (Kaminski & Sloutsky, 2013). This study indicates that when learning 

a new basic mathematical concept, perceptual features inhibit children’s ability to learn the 

appropriate rule, while giving less visually appealing stimuli during training can actually foster 

better learning of the target mathematical skill.  

In another study, Kaminski and Sloutsky (2012) showed that children learning with 

generic instantiations outperform their peers who learn with concrete stimuli. For example, 

children in the Generic condition were presented with the fraction “2/5” in its basic symbolic 

form and shown simple black and white circles to denote the numerator and denominator, while 

children in the Concrete condition were shown colorful flowers along with the “2/5” fraction 

(Kaminski & Sloutsky, 2012). Learning scores for children in the Generic condition were 

significantly higher than those in the Concrete condition (Kaminski & Sloutsky, 2012). When 

generalization of the fraction rules was tested in a transfer task of non-trained proportional 
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reasoning, children in the Generic condition still outperformed their counterparts in the Concrete 

condition immediately after learning (Kaminski & Sloutsky, 2012). This study indicates that the 

concreteness of learning materials hinders the ability of a child to acquire new math knowledge. 

It suggests that the more concrete something is, the more likely a child is to be distracted by the 

extraneous information present in the concrete features that already have meaning on their own. 

In a similar vein, a study by Koedinger, Alibali, and Nathan (2008) presented 

inexperienced and experienced algebra students with mathematical story problems of varying 

complexity and equations that corresponded to the stories. The results revealed that both 

inexperienced and experienced students were more successful on complex problems when using 

a more formal, abstract strategy, but that this also held true for experienced students on the 

simpler story problems, while inexperienced students performed better when using more 

informal, concrete strategies to solve simpler problems (Koedinger et al., 2008). This study 

suggests that, especially for experienced students, abstract, formal strategies are more beneficial 

when solving mathematical story problems than grounded, concrete strategies. 

Developing a strategy to improve math learning 

The ability to abstract the numerical information from a set, independent of its perceptual 

attributes (e.g., color, shape, texture, size…) is critical for a true understanding of number (Posid 

& Cordes, 2014a, for a review). Numerical abstraction has been observed in children as young as 

3-4 years of age. For example, Posid and Cordes (2014a) asked children between the ages of 

three and six years old to determine which of two sets of objects contained a target number (e.g., 

6 or 12), and found that children were more accurate on sets that were homogenous (i.e., all the 

same) in make-up rather than heterogeneous (i.e., all different; also see infancy research: Mix, 

1999, 2008a, 2008b). Therefore, perhaps utilizing this abstraction ability could facilitate 
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knowledge of a more challenging topic; that is, perhaps the use of a broader, yet related, ability – 

that is, categorization – can facilitate an understanding of difficult math concepts, such as 

proportions or fractions, particularly in the face of extraneous perceptual features that might 

otherwise hinder young children’s learning.  

More generally, a human’s cognitive abilities are enhanced by categorization, the 

“process of grouping distinguishable entities into equivalence classes,” thereby allowing us to 

generalize, communicate, and make inferences about a wide range of topics (Rivera & Sloutsky, 

2015). Like abstraction, the ability to categorize (shapes and other non-numerical features) has 

also been demonstrated in preschool-age children (Deng & Sloutsky, 2015). Research has shown 

that adults are more advanced than children in attention optimization, which is the ability to 

focus on a feature that distinguishes one category from another while ignoring other irrelevant 

features (Hoffman & Rehder, 2010). That being said, children are still able to categorize with a 

certain level of accuracy even compared to proficient adults. Therefore, perhaps categorization – 

a skill that young children already possess – can facilitate an understanding of novel or difficult 

math concepts (in our case, fractions), as both skills rely on the use of abstraction. The current 

study explores that possibility. One point of concern is the fact that young children simply find 

an increasing level of perceptual features to be more distracting while categorizing a novel math 

concept and may be less able to attend to one single feature (Deng & Sloutsky, 2015, 2016; 

Plebanek & Sloutsky, 2017; Rivera & Sloutsky, 2015; Sloutsky, 2010; Sloutsky & Fisher, 2004, 

Sloutsky, Kloos, & Fisher, 2007; Hoffman & Rehder, 2010). The current study explores the 

relative impact of perceptual features on one’s ability to categorize novel math information. 
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Current Study 

Fractions are an integral part of our daily lives, from cooking to monetary calculations, so 

it is imperative to understand the mechanism children use when learning about fractions so that 

their educational curriculum can appropriately meet their needs. The National Mathematics 

Advisory Panel’s 2008 report states that students in the United States perform at a less-

satisfactory level of mathematical proficiency than that of their international peers. This is 

critical to address because competence with fractions is a significant factor in the successful 

learning of algebra, as well as a predictor of mathematical performance in high school, college, 

and careers in science, technology, engineering, and mathematics (STEM; National Mathematics 

Advisory Panel, 2008; Bailey, Hoard, Nugent, & Geary, 2012). In addition, students who aspire 

to enroll in advanced math and science classes in high school and begin to study algebra while in 

middle school have a distinct advantage over those who wait to take algebra until later and 

students who start at a lower level of ability tend to stay behind their peers who start with a 

greater understanding of fractions and math (Department of Education, 1997). Thus, the purpose 

of this study is to capitalize on individuals’ strong abilities to categorize newly learned 

information and apply this ability to learning a fraction concept. 

The goal of this study was to understand how our advanced adult categorization ability 

might aid children’s less advanced understanding (or learning) of difficult math concepts, 

specifically proportions and fractions. We utilized adult participants to explore this question, in 

an effort to inform our work on children’s understanding and learning of this phenomenon. Prior 

studies have found that perceptual features often distract from the deterministic features being 

taught or learned, thereby inhibiting learning (e.g., Kaminski & Sloutsky, 2013; Posid & Cordes, 

2014a; Posid & Sloutsky, 2016). Does this also apply to one’s ability to categorize information 
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that is presented mathematically? I hypothesize that adults will be able to use their advanced 

numerical abstraction ability to make mathematical inferences when presented with novel 

categories that are mathematical in nature. Specifically, I predict that adults will be able to 

categorize mathematical information, while ignoring extraneous perceptual features, in an 

otherwise difficult task, but that the nature of the stimuli used will impact their learning and 

overall accuracy.  

Methods 

Participants 

This study used undergraduate students at The Ohio State University participating in the 

Research Experience Program (REP) who received class credit for their involvement in the 

experiment. As detailed in Table 1, there were 97 participants overall and they were randomly 

assigned to one of four testing conditions. Written informed consent was obtained from all 

participants before they began the study. 

Materials 

Fraction and Math Battery 

 Individuals were first tested in a fraction battery consisting of three fraction-knowledge 

tasks that required participants to make judgements on a variety of symbolic or visual 

information (Hurst & Cordes, 2016; Posid & Sloutsky, 2016, 2017; Figure 1). Three tasks made 

up our Fraction Battery and were selected based on the Common Core’s use of similar materials 

(Figure 1). The first task was an Ordinal Task, which asked participants to determine which of 

two options was numerically larger. There were three blocks, each containing 32 test items. The 

first block had whole number comparisons (1 versus 2). The second block had visual fraction 

pairs (black-and-white circles). The third block utilized symbolic fraction sets (1/5 versus 4/5). 
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The second task was a Matching Task that required participants to match a visual fraction, given 

as part of a shaded circle, to a symbolic fraction, or vice versa. The Matching Task was made up 

of three blocks, each containing 12 trials. The third task was an Addition and Subtraction Task 

where participants were asked to add symbolic and visual fractions (e.g., symbolic: 2/6 + 3/6, 

visual: they would be given two circles with six equal parts, one with two parts shaded and the 

other with three parts shaded). Four multiple choice answers were provided in both the Matching 

and Addition and Subtraction Tasks because of the potential difficulty level and all fractions 

were < 1, using no improper fractions throughout the tasks (per Hurst & Cordes, 2016; Posid & 

Sloutsky, 2016, 2017). Accuracy and reaction times on each of these tasks were combined into a 

Fraction Battery Accuracy score and Fraction Battery Reaction Time score for each individual 

participant, indicating their prior fraction knowledge.  

Additionally, participants were presented with a speeded arithmetic sheet consisting of 

160 basic arithmetic problems and were told to complete as many problems as possible in three 

minutes. Unlike the fraction task, this task was used to assess general math knowledge and 

fluency (as a sum score of correctly answered questions).  

Categorization Task 

Participants were randomly assigned to one of four conditions (see Figure 2): Full Arrays, 

Full Lines, Minimum Arrays, and Minimum Lines. The “full” distinction meant an entire 

character (designated as an “alien”) was shown, including perceptual features (e.g., head, 

antenna, legs…), while the “minimum” condition presented just the “alien’s” stomach and the 

deterministic feature (Figures 2 and 3; the new category rule; in this study, the alien’s belly 

buttons; per Deng & Sloutsky, 2013, 2015; Posid & Sloutsky, 2016). In the Lines condition, the 

deterministic features were presented in organized lines while the Arrays condition had 
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deterministic features randomly placed in an “array,” (see Figure 2). Lines vs. Arrays were 

included in the present study because one could argue that having the to-be-learned ratio of 

buttons in lines could be memorized based on “shape” or “layout” of the buttons (for a review, 

see Cantrell & Smith, 2013; Cordes & Brannon, 2009; Posid & Cordes, 2014a). Thus, the Arrays 

conditions control for approximate area across presentations, discouraging the use of these 

perceptually overlapping features as cues for learning. 

Across conditions, participants were presented with two novel categories and were asked 

to determine which category a specific exemplar should be placed into. The categories were 

presented as two types of “aliens”. The first category was labeled as a “Flurp” (where the 

deterministic features, or the “belly buttons,” were presented as a 1/3 fraction) and the second 

category was labeled as a “Jalet” (“belly buttons” presented as a 1/2 fraction; see Figure 3). 

Participants were initially explicitly told that Flurps have buttons in a 1/3 ratio (1/3 or 2/6 

fraction), while Jalets have buttons in a 1/2 ratio (1/2 or 3/6 fraction), with no mention of the 

other aspects of appearance associated with each. 

In training, participants saw stimuli from our High Match Trial Type (Figure 4), meaning 

the images they were shown had the fraction-ratio corresponding to the respective category and 

the perceptual features were representative of the character’s appearance (i.e., 4 out of the 6 non-

deterministic perceptual features were representative of the prototypical category; per Deng & 

Sloutsky, 2015). Participants had to correctly categorize nine “aliens” in a row or get nine out of 

ten categories correct before they were permitted to move on to the test phase. If this learning 

criterion was not reached, participants completed up to 60 training trials.  

The test trials contained five trial types, which manipulated either the perceptual (P) or 

deterministic (D) features of the stimuli to be categorized. The five trial types were all modeled 
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after the stimuli used in Deng & Sloutsky, 2013, 2015; Posid & Sloutsky, 2016; see Figure 4. As 

discussed previously, High Match stimuli included perceptual and deterministic features 

following the same rules from training (PFlurp, DFlurp and PJalet, DJalet; e.g., the alien perceptually 

looked like a Flurp and had Flurp deterministic buttons) and were included to determine how 

well participants had learned the two categories and whether they recognized the old items from 

training. Switch trials occurred when the perceptual features for one alien were presented with 

the deterministic features of the other (PFlurp, DJalet and PJalet, DFlurp; e.g., the alien perceptually 

looked like a Jalet but had Flurp deterministic buttons) and allowed us to determine if individuals 

were relying on the perceptual features, or overall similarity of the “aliens,” or the actual rule as 

determined by the “belly buttons,” the deterministic features. All-New-P trials included 

perceptual features that were completely different from those given in training (PNew, DFlurp and 

PNew, DJalet; e.g., the alien perceptually looked brand new, but had Flurp deterministic features) to 

determine if participants can truly perform rule-based categorization, since they had no 

recognizable perceptual features to rely upon. One-New-P trials included one new perceptual 

feature (POneNew, DFlurp and POneNew, DJalet; e.g., the alien looked mostly like a Flurp with a new 

feature, and had Flurp deterministic buttons) and were included to assess categorization abilities 

when a new perceptual feature is introduced, also judging if all perceptual features were encoded 

during training and test (similar to High Match trials). New-D trials gave a new deterministic 

feature not corresponding to a one-half or one-third ratio (PFlurp, DNew and PJalet, DNew; e.g., the 

alien perceptually looked like a Flurp, but had new deterministic buttons not belonging to either 

learned category) and were used to assess how thoroughly participants encoded the deterministic 

rule. That is, if adults were overly focused on the deterministic features, they should respond at-

chance for these questions. However, if adults, like children, distributed their attention during 
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training trials, they should be able to correctly categorize the “alien” by its perceptual features 

(per Deng & Sloutsky, 2015). 

Participants learned about two novel categories: “Flurps” had a one-third ratio of buttons 

and “Jalets” had a one-half ratio of buttons. In training, participants viewed stimuli identified as 

Flurps with arrangements of either 1/3 or 2/6. In test, exemplars in this category could have a 1/3 

or 2/6 ratio of buttons, but they could also have a 3/9 ratio of buttons (called “New Exemplar 

Trials”). Similarly, Jalets were first shown as having arrangements of either 1/2 or 3/6 in 

training, and then in test, an additional ratio of 5/10 was shown in some cases. These New 

Exemplar trials allowed us to make conclusions about individuals’ abilities to generalize the 

fraction rule to novel situations. 

All participants completed a total of 60 test trials (5 trial types X 3 fractions X 2 

categories – repeated twice). Each exemplar was presented for 500 ms and participants clicked 

on one of two boxes (which remained on the screen even after the exemplar disappeared) to 

indicate their answer. 

Procedure 

 Adult participants were tested at The Ohio State University in a quiet room in the 

Cognitive Development Lab. A female experimenter provided a laptop with a 13-inch screen for 

the participant to use. She set up each program for the participant and gave brief instructions for 

each task before allowing the participant to complete the task on their own. 

Fraction and Math Battery 

Each session began with the Fraction Battery, consisting of three fraction tasks to test 

prior fraction knowledge, followed by the categorization task, and finished with a timed math 

sheet. The fraction tasks consisted of an Ordinal Comparison Task, a Matching Task (fractions 
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presented as numbers or black-and-white circles), and an Addition and Subtraction Task 

(symbols or black-and-white circles; per Hurst & Cordes, 2016; Posid and Sloutsky, 2016, 

2017). Participants were given a timed math sheet after the categorization task to give us more 

information on their general math ability. 

Categorization Task  

Following the fraction tasks, the participant completed our critical categorization task. 

There were four versions of the game (2x2 design; see Figure 2): Full Lines, Full Arrays, 

Minimum Lines, and Minimum Arrays. The procedure across each Condition was identical and 

they only differed in perceptual make-up, as described previously.  

In the first half of the task, training trials were given with feedback until a specific 

learning criterion (nine consecutive correct trials or nine out of ten correct trials) was reached; 

otherwise, the participants went through 60 trials before moving on to the test phase (Deng & 

Sloutsky, 2013, 2015; Posid & Sloutsky, 2016). 

Following training, the test phase consisted of 60 trials where participants again had to 

judge whether the creatures presented were “Flurps” or “Jalets,” based on their deterministic 

features, as described in the Materials.  

All programs were run and displayed on a MacBook laptop using RealBasic, which 

recorded participants’ accuracy and reaction time.  

Data Analysis 

 To address our research questions, a series of planned analyses was run. First, a 2x2 

mixed measures ANOVA was run (Condition: Full Arrays, Full Lines, Minimum Arrays, and 

Minimum Lines on Accuracy) to address (a) whether adults can learn a fraction rule in a 

categorization task and (b) under what perceptual and task conditions participants most benefit. 
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Secondary regression analyses were also run in order to examine the predictors of learning and 

retention in the categorization task, measuring the dependent variables of Trials to Learn, 

Categorization Task Accuracy, New Exemplar Accuracy, and Categorization Task Reaction 

Time, described later. 

Results 

Categorization Task 

Adults successfully learned a fraction rule in our categorization task. When comparing 

their average accuracy to chance-level (.50), the mean score was 0.84 for both practice (t(96) = 

24.5, p < 0.001, Cohen’s d = 5.0) and test (t(96) = 30.5, p < 0.001, Cohen’s d = 6.2). This above-

chance performance on overall test accuracy held across the four conditions as well (Full Arrays: 

M = 0.76; t(23) = 8.3, p < 0.001, Cohen’s d = 3.5; Minimum Arrays: M = 0.84; t(23) = 19.3, p < 

0.001, Cohen’s d = 8.0; Full Lines: M = 0.89; t(26) = 22.4, p < 0.001, Cohen’s d = 8.8; Minimum 

Lines: M = 0.88; t(21) = 59.2, p < 0.001, Cohen’s d = 25.8; see Figures 5 and 6). Individual 

differences in effect sizes across the conditions indicated individual and condition variability and 

warranted further analyses. 

 We further explored participants’ accuracy through a repeated measures ANOVA. We 

examined whether accuracy in the Categorization Task interacted with testing condition. A 

repeated measures ANOVA was run without including the New-D1 type [4 (Trial Type) X 2 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 We first ran a 5 (Trial Type) X 2 (Full vs. Minimum) X 2 (Lines vs. Arrays) repeated measures 
ANOVA, with all values shown in Table 2. This first analysis revealed a main effect of Trial 
Type (F(4, 372) = 272.6, p < 0.001, 𝜂"# = 0.746), with equal performance across High Match, 
One-New-P, All-New-P, and Switch trials (all p’s < 0.001, Cohen’s d > 5.0). Accuracy was at-
chance for New-D (M = 0.41, t(96) = -4.3, p < 0.001, Cohen’s d = 0.89). Prior studies have 
indicated that an at-chance performance on New-D trials means that participants are not actually 
relying on perceptual features during this task and are instead fully relying on deterministic 
features, which makes sense because we directed participants’ attention to the deterministic 
features during training (Deng & Sloutsky, 2016). Therefore, if adults were looking at perceptual 
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(Full vs. Minimum) X 2 (Lines vs. Arrays)]. There was no main effect of Trial Type (p > 0.80). 

Critically, results revealed a main effect of Full vs. Minimum (F(1,93) = 6.2, p = 0.015,  𝜂"# = 

0.062), such that adults were more accurate on Minimum trials (M = 0.94) than Full trials (M = 

0.88; see Figures 5 and 6). Unsurprisingly, there was also a main effect of Lines vs. Arrays 

(F(1,93) = 15.6, p < 0.001, 𝜂"# = 0.144), such that participants were more accurate on Lines (M = 

0.96) than Arrays (M = 0.86; see Figures 5 and 6). There was a marginal interaction between Full 

vs. Minimum and Lines vs. Arrays (p = 0.06; see Table 3), indicating an advantage for accuracy 

in the Minimum over Full conditions more so in the Arrays condition (Figure 5). There were no 

other main effects or interactions (all p’s > 0.20).  

We also examined participants’ accuracy on our New Exemplar trials, that is, those ratios 

(3/9 or 5/10) that participants did not explicitly learn in training but were presented with during 

test trials. A 2 (Full vs. Minimum) X 2 (Lines vs. Arrays) univariate ANOVA with New Ratio 

Accuracy as the dependent variable was run and revealed no interaction (p > 0.1) between Full 

vs. Minimum and Lines vs. Arrays. However, there was a significant main effect of Full vs. 

Minimum (F(1, 93) = 4.5, p = 0.036,  𝜂"# = 0.046) and a significant main effect of Lines vs. 

Arrays (F(1, 93) = 13.4, p < 0.001,  𝜂"# = 0.126). Following the pattern that seems to have 

emerged with general accuracy, participants were better at Minimum (M = 0.90) than Full (M = 

0.83) and better at Lines (M = 0.93) than Arrays (M = 0.80). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
features – as children often do – adults in the present study should be responding above chance 
because the perceptual features correspond to the appropriate category (that is, you could use the 
perceptual OR deterministic features on all other trial types). Thus, we can conclude that adults 
used deterministic features and accurately learned the fraction rule in our task, and were simply 
answering at random when the deterministic features did not follow the learned rule (Deng & 
Sloutsky, 2016). As such, these results don’t require any further analyses because they offer no 
new information. The repeated measures ANOVA also revealed an interaction between Full vs. 
Minimum and Trial Type (F(4, 372) = 7.3, p < 0.001, 𝜂"# = 0.073), although this likely also had 
to do with the inclusion of New-D trials in our analyses. 
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 Because adults performed so accurately in the categorization task, participants’ reaction 

times were also assessed on the Categorization Task.2 A 4 (Trial Type) X 2 (Full vs. Minimum) 

X 2 (Lines vs. Arrays) repeated measures ANOVA was run examining participants’ average 

reaction time during test. A significant main effect of Trial Type (F(3, 276) = 3.0, p = 0.032,  𝜂"# 

= 0.031) emerged even without the inclusion of New-D trials. This was largely due to the fact 

that participants were inexplicably slower on One-New-P trials (p’s < 0.07) than on other trial 

types. There was a significant main effect of Lines vs. Arrays (F(1, 92) = 42.7, p < 0.001,  𝜂"# = 

0.317) that arose because, unsurprisingly, participants were faster at Lines (M = 0.83 s) than 

Arrays (M = 1.2 s). Critically, there was a significant interaction between Full vs. Minimum and 

Lines vs. Arrays (F(1, 92) = 5.4, p = 0.022,  𝜂"# = 0.056). It appears that participants were slower 

at identifying the correct option with Arrays (Full M = 1.1 s; Minimum M = 1.3 s) than with 

Lines (Full M = 0.85 s; Minimum M = 0.81 s), such that the magnitude of the difference between 

Lines and Arrays in the Full Condition was larger than the magnitude of the difference between 

Lines and Arrays in the Minimal Condition. 

Results also revealed an interaction between Trial Type and Lines vs. Arrays (F(3, 276) = 

3.4, p = 0.019,  𝜂"# = 0.035). Participants were slower when viewing Arrays across all four trial 

types (M = 1.2 s for all trial types) compared to Lines (Maverage = 0.83 s; All-New-P: M = 0.76 s; 

High Match: M = 0.87 s; One-New-P: M = 0.89 s; Switch: M = 0.81 s); however, there was much 

more variability in reaction time across the Lines conditions than there was in the Arrays 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Reaction time is used as a dependent variable here because it shows “the speed at which 
perceptual information is processed,” which is often used in developmental research because “a 
systematic increase in processing speed has been proposed to underlie cognitive development” 
(Duan, Shi, & Zhou, 2010, Ferguson & Bowey, 2005, Hale, 1990, Kail, 2000). This variable 
allows us to understand more about adults' thought processes, rather than just the observed skills 
and knowledge associated with reported accuracy. For instance, a slower reaction time would 
indicate less confidence in answering in that condition than in others, potentially hesitating to 
break a rule or the like (Posid & Sloutsky, 2016). 
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conditions. A 3-way interaction between Trial Type, Minimum vs. Full, and Lines vs. Arrays 

was also found (F(3, 276) = 3.0, p = 0.031,  𝜂"# = 0.032; see Table 5). These results suggest that, 

because adults have been found to pay attention to deterministic features over perceptual 

features, they were likely using some sort of strategy (e.g., counting; see Polinsky, Posid, & 

Sloutsky, under revision; Posid & Cordes, 2017) to figure out the ratio of buttons, which was not 

necessary in the Lines conditions.  

 We were also interested in participants’ reaction time on New Exemplar trials, that is, on 

trials in which the ratio was the same as the practiced examples but that had not been seen during 

training. A univariate ANOVA revealed a main effect of Full vs. Minimum (F(1, 92) = 8.8, p = 

0.004,  𝜂"# = 0.087), with individuals being faster with Full (M = 1.0 s) than they were with 

Minimum (M = 1.3 s) presentations. There was also a main effect of Lines vs. Arrays (F(1, 92) = 

46.7, p < 0.001,  𝜂"# = 0.337) that, consistent with the other Reaction Time findings, shows adults 

are faster when deterministic features are displayed as Lines (M = 0.86 s) compared to Arrays (M 

= 1.5 s). Last, there was a significant interaction between Full vs. Minimum and Lines vs. Arrays 

(F(1, 92) = 5.1, p = 0.026,  𝜂"# = 0.053) that shows participants are generally slowest with 

Minimum Arrays (M = 1.7 s) when compared to the other three conditions: Minimum Lines (M = 

0.90 s), Full Arrays (M = 1.2 s), and Full Lines (M = 0.83 s). Although the Minimum stimuli 

were overall more helpful for adults in our study, when they were presented with the difficult 

arrays, they responded more quickly with the Full stimuli presumably because they were trying 

to use the perceptual features to answer efficiently in the more difficult task. 

Predictors of Learning 

 In addition to examining participants’ performance on the Categorization Task, we also 

examined what factors accounted for the individual variability observed in this task. We ran a 
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series of linear regressions to examine the effects of demographic variables, fraction and math 

battery performance, and condition on our dependent variables of interest (Trials to Learn, 

Categorization Task Accuracy, New Exemplar Accuracy, Categorization Task Reaction Time; 

see Figures 7-10).  

The first regression included Trials to Learn as the dependent variable and the predictors 

were Year in School, Age, Gender, Full vs. Minimum, Lines vs. Arrays, Fraction Battery 

Accuracy, Math Accuracy, and Fraction Battery Reaction Time. The significant predictors of 

Trials to Learn were Age (𝛽 = 0.289, p = 0.004), Lines vs. Arrays (𝛽 = -0.393, p < 0.001; with 

faster learning in Lines than Arrays), and Fraction Battery Accuracy (𝛽 = -0.301, p = 0.003), 

while all others had p > 0.1; Model: R2 = 0.469, p < 0.001), as shown in Figure 7. A secondary 

linear regression model included the accuracies of the three individual Fraction Battery tasks as 

predictors, rather than the Fraction Battery as a composite score. Ordinal Task Accuracy (𝛽 = -

0.282, p = 0.004) was a significant predictor of Trials to Learn, as was Addition and Subtraction 

Task Accuracy (𝛽 = -0.187, p = 0.031; Age and Lines vs. Arrays remained significant: p’s < 

0.001). It is possible that adults are more adept at recognizing whether one-half or one-third is 

larger in the categorization task, which helps them distinguish between the two categories. If this 

is true, recalling a rote fact is beneficial for learning in the categorization task, indicated by the 

significance of the Ordinal Task, while ability in the Addition and Subtraction Task is an 

indicator of general fraction ability that helps participants better learn the fraction rule in fewer 

trials. The other predictors that were measured had p > 0.1 (Model: R2 = 0.499, p < 0.001). 

Additionally, we ran a hierarchical regression (Model 1: Lines vs. Arrays; Model 2: Lines vs. 

Arrays, Fraction Battery Accuracy; Model 3: Lines vs. Arrays, Fraction Battery Accuracy, Age) 

to examine the relative contribution of each of our significant variables on our outcome variable. 
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Lines vs. Arrays alone accounted for 22.8% of the variance in our model (p < 0.001). The 

inclusion of Fraction Battery Accuracy accounted for an additional 10.4% of the variance in our 

model (both p’s < 0.001). Finally, the inclusion of Age accounted for an additional 9.0% of the 

variance in our model, above and beyond that of Fraction Battery Accuracy (all p’s < 0.001). 

This suggests that, although math ability and age tend to be correlated in other studies examining 

these variables, they uniquely and individually contributed to the variance observed in our 

outcome variable.  

 Accuracy on the test trials of our categorization task was significantly predicted by Age 

(𝛽 = -0.341, p = 0.003), Lines vs. Arrays (𝛽 = 0.290, p = 0.003), and Fraction Battery Accuracy 

(𝛽 = 0.320, p = 0.005), depicted in Figure 8. All other predictors had p > 0.1 (Model: R2 = 0.336, 

p < 0.001). Since Fraction Battery Accuracy was a significant predictor of Test Accuracy, we ran 

a second linear regression and replaced Fraction Battery Accuracy with Ordinal Task Accuracy, 

Matching Task Accuracy, and Addition and Subtraction Task Accuracy as predictors. With the 

inclusion of the individual fraction tasks, we found that Math Accuracy (𝛽 = -0.189, p = 0.093, 

marginal) and the Addition and Subtraction Task (𝛽 = 0.259, p = 0.009) significantly predicted 

performance in the Categorization Task (Model: R2 = 0.344, p < 0.001). It is possible that once 

the adults learned the fraction rule with assistance from rote fact recall, as mentioned for Trials 

to Learn, their ability to perform mental arithmetic quickly and with high accuracy helped them 

categorize the creatures more efficiently and with more accuracy. Again, Age (𝛽 = -0.270, p = 

0.015) and Lines vs. Arrays (𝛽 = 0.326, p = 0.001) remained significant in this model (all other 

p’s > 0.1). Also, we ran a hierarchical regression (Model 1: Lines vs. Arrays; Model 2: Lines vs. 

Arrays, Fraction Battery Accuracy; Model 3: Lines vs. Arrays, Fraction Battery Accuracy, Age) 

to examine the relative contribution of each of our significant variables on our outcome variable. 
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Lines vs. Arrays alone accounted for 14.4% of the variance in our model (p < 0.001). The 

inclusion of Fraction Battery Accuracy accounted for an additional 5.5% of the variance in our 

model (both p’s < 0.001). Finally, the inclusion of Age accounted for an additional 5.3% of the 

variance in our model, above and beyond that of Fraction Battery Accuracy (all p’s < 0.001). 

This suggests that, although math ability and age tend to be correlated in other studies examining 

these variables, they uniquely and individually contributed to the variance observed in our 

outcome variable. We additionally ran linear regressions for each trial type’s accuracy with the 

predictors Age, Condition, Fraction Battery Accuracy, Fraction Battery Reaction Time, and 

Math Accuracy, which can be found in Table 6. 

 Pictured in Figure 9, we examined New Exemplar Accuracy as the dependent variable in 

another linear regression with the predictors Year in School, Age, Gender, Full vs. Minimum, 

Lines vs. Arrays, Math Accuracy, Fraction Battery Accuracy, and Fraction Battery Reaction 

Time. Age (𝛽 = -0.317, p = 0.007) and Lines vs. Arrays (𝛽 = 0.339, p = 0.001) were significant 

predictors of New Exemplar Accuracy (all others p > 0.1; Model: R2 = 0.269, p = 0.001). 

Fraction Battery Accuracy was not run with its three individual task accuracies in a secondary 

regression because it was not found to be significant as a composite score. 

Finally, a linear regression with Reaction Time on the Test Trials of our categorization 

task as the dependent variable was run. The predictors included in this model were Year in 

School, Age, Gender, Full vs. Minimum, Lines vs. Arrays, Math Sheet Accuracy, Fraction 

Battery Accuracy, and Fraction Battery Reaction Time. Reaction time on the Categorization task 

was significantly predicted by Lines vs. Arrays (𝛽 = -0.444, p < 0.001) and Fraction Battery 

Reaction Time (𝛽	
  = 0.329, p = 0.005), shown in Figure 10. Fraction Battery Accuracy was not a 
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significant predictor (p > 0.1; Model: R2 = 0.313, p < 0.001), so a secondary linear regression 

was not necessary.  

 From these regressions, we generally learned that age, condition, particularly Lines vs. 

Arrays, and prior math and fraction knowledge mattered most when learning the fraction rule 

during training and in participants’ accuracy during the test trials of the categorization task. As 

discussed earlier, the Fraction Battery was broken down into the individual tasks and it was 

discovered that the task predictors varied with the outcome variable. As such, the Ordinal Task 

was more important when learning the rule initially, with some significance found with the 

Addition and Subtraction Task, while the latter and the Math Sheet score (speeded arithmetic) 

were significant predictors of accuracy in the categorization task, revealing prior math 

knowledge and mental arithmetic as important for these tasks. Further implications are discussed 

next. 

Discussion 

The Ohio Department of Education has found that students are not performing at an age-

appropriate level on standardized math tests, despite changes to the Core Curriculum. Much 

research reveals that individuals in the United States are significantly behind their peers in other 

countries in mathematics skills, affecting success in school and STEM fields (National 

Mathematics Advisory Panel, 2008; Bailey et al., 2012). Thus, the National Mathematics 

Advisory Panel (2008) has emphasized a need to gather additional research on general 

mathematics learning by providing insight into the learning mechanisms of students in the 

United States. Education and the development of a successful curriculum is based on the 

principle of adding new content to foundational knowledge and using previously acquired skills 

to ease the learning process during the acquisition of new knowledge, so it is imperative we 
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understand the basics of children’s learning so we can build upon it with more advanced 

knowledge. The present study capitalized on this concept and examined how adult participants 

might use a skill like categorization to learn novel fraction concepts. Our goals for this study 

were to (1) identify whether adults can learn and generalize a fraction rule using a categorization 

task and (2) understand the effects of perceptual features on learning and generalization. 

 Results from this study demonstrate several important findings. First, data replicate the 

finding that adults can learn a novel non-numerical category (e.g. shape, Deng & Sloutsky, 2015, 

2016) when it’s presented in the form of a categorization task (also see Posid & Sloutsky, 2016; 

Posid, Mills, & Sloutsky, in preparation). Even when participants aren’t directly taught a fraction 

concept, something like a categorization task can help them learn, demonstrated by at-ceiling 

performance on all but New-D Trial Types. Although unsurprising that adults could learn a 

fraction rule quickly and reliably, these data provide further evidence that a categorization task 

may be an avenue by which individuals can learn about difficult concepts like fractions. By 

directing adults’ attention to the deterministic features (belly buttons) in the task, adults were 

able to use this ability to categorize in order to learn novel fraction information, rather than via a 

more traditional measure as would be used in the classroom. Thus, while Deng & Sloutsky 

(2015, 2016) explored categorization with simple shapes, our study has extended these findings 

to demonstrate the benefit of categorization with numerical stimuli. 

Results also indicate that Condition significantly affected both participants’ learning and 

accuracy in the categorization task. Unsurprisingly, participants learned fastest when presented 

with Lines rather than Arrays. In line with previous research suggesting cumulative perceptual 

cues may lead to better discrimination, we found this to be true in our categorization task as well 

(Cordes & Brannon, 2009; Posid & Cordes, 2014a). In addition, adults may have been using an 
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effortful strategy to figure out the ratio presented in the Arrays, which was not necessary in the 

Lines conditions. For example, some research suggests that increased reaction time (and/or 

increased fixations, as per eye-tracking studies) indicates the use of an effortful strategy, such as 

counting (e.g., Polinsky et. al., under revision; also see: Lipton & Spelke, 2005; Posid & Cordes, 

2014b, 2017; Wylie, Jordan, & Mulhern, 2012). Thus, adults are usually skilled at directing their 

attention to relevant information quickly while ignoring irrelevant features, but they are best at 

doing so when the deterministic feature is presented in an organized, more easily understood 

format. 

Importantly, participants performed most accurately in the Minimum condition compared 

to the Full Condition. These findings align with previous research demonstrating that extraneous 

information that is irrelevant to a distinguishing rule is distracting when individuals are trying to 

learn novel and/or task-relevant information. For instance, Kaminski and Sloutsky (2013) found 

that bar graphs filled with objects, like flowers, inhibited appropriation of the skill of graph 

reading when compared to that using solid black bars. Additionally, a study that used concrete 

stimuli, meaning objects that already have meaning like flowers, and generic stimuli, numeric 

symbols in this case, to teach fractions found better learning scores both initially and after a 

delay in children who learned with generic features instead of concrete ones (Kaminski & 

Sloutsky, 2012). Thus, the less prior meaning learning materials already contain and more 

visually simple they are, the less likely individuals are to be distracted in the learning process, 

resulting in better, more generalizable learning overall.  

This “less is more” finding holds across development. As part of a larger study, the data 

presented here was compared with data using the same general methods with child participants to 

help us understand similarities in learning across development (Posid, et al., in preparation). 
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Generally, adults tend to do well with and without perceptual features because they are better at 

selectively attending to the deterministic features. However, in this experiment and in one part of 

the larger study using child participants, the stimuli viewed and categorized were shown briefly 

enough (500 ms) that task demands increased and forced adults to perform the task much like 

children might do, who would naturally find this type of task quite difficult, as compared to 

stimuli shown for 10 seconds in other portions where adults performed better than children. We 

believe the short exposure time increased the overall task difficulty and led adults to attempt to 

rely on both the perceptual and deterministic features (distributed attention) when making their 

decisions (Best et al., 2013; Deng & Sloutsky, 2016; Hoffman & Rehder, 2010, Sloutsky & 

Fisher, 2004; Sloutsky et al., 2007). These findings expand on the current literature to suggest 

that not only does the type of stimuli matter (full vs. minimum), but that task difficulty (i.e., task 

demands) rather than a developmental shift in one’s ability to categorize and selectively attend to 

relevant information per se is important.  

Although findings from this study generally support a “less is more” notion for 

categorization of novel math concepts, some work does indicate that this is not always the case. 

For example, a study by Posid and Sloutsky (2017) suggests that “less” is not always “more” 

when trying to teach children new mathematical concepts. In training first and second grade 

children on unlearned fraction concepts, the authors ran children in one of three training 

conditions: (1) Visual (Picture) Only, (2) Symbols Only, and (3) Visual + Symbols, across 

several fraction teaching sessions (Posid & Sloutsky, 2017). In general, the authors found that 

children performed least accurately following training in the Visual (Picture) Only condition, 

with highest success following training in the Visual + Symbols condition (Posid & Sloutsky, 

2017). Thus, these findings led to the conclusion that children benefit from redundant perceptual 
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information, such as when visual fractions were paired with the fraction symbols (Posid & 

Sloutsky, 2017). These results seem to concur with the findings in Petersen and McNeil (2012) 

that also found the presence of perceptual features can be beneficial for learning in certain cases. 

These results provide further support for the role of task demands in mathematical tasks, and 

attention should be paid to this when investigating the role of perceptual attributes on learning 

and attention. 

The present study also investigated what variables may predict participants’ learning and 

accuracy in our categorization task. When the predictors of learning were examined, there was a 

significant effect of age, which was potentially surprising given that children as young as 4 years 

of age can categorize proficiently. The effect of age likely arose from difference in experience 

between participants, such that individuals who have taken more math courses or who have more 

math-centered majors may be more fluent in their use of math concepts. Additionally, the 

prefrontal cortex, a brain region responsible for higher level thinking, is not fully mature in most 

individuals until 25 years of age, so the fact most of our participants were younger than this 

means the effect of age could have been explained by varied development in prefrontal cortex 

maturity. We suspect that, for example, given a sample of older adults (e.g., 40-45 years of age), 

these age effects would not be seen.  

The significance of Condition also emerged above and beyond our other mathematic and 

demographic variables, as discussed above. However, there was a significant impact of prior 

math and fraction knowledge. This is interesting given that adults in our task should have been 

proficient in these basic fraction concepts. However, we also know that fractions and 

proportions, unlike other mathematics concepts, are notoriously difficult. For example, DeWolf, 

Bassok, and Holyoak (2015) found that in a complex analogical reasoning task, fraction notation 
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had a disadvantage compared to decimal notation. An automatic response was not observed 

when comparing fractions, especially in cases where the larger denominator was part of the 

smaller fraction, because these values required more cognitive work than those where the larger 

denominator indicated the larger fraction (DeWolf et al., 2015). As the deterministic features 

(belly buttons) in our study are distinct entities and easy to divide into visual numerators and 

denominators, this allowed a more automatic response to take place because the buttons facilitate 

adults’ innate preference for one-to-one mapping between number components and visual stimuli 

(DeWolf et al., 2015). 

The finding that prior math knowledge does impact accuracy on our novel fraction task is 

interesting given that adults do have a well-developed and abstract concept of fractions. Reaction 

time and accuracy on the Fraction Battery were significant predictors of learning and 

generalization, indicating that the more familiarity and speed participants had with math and 

fractions benefitted their performance in a novel task. This is consistent with a finding from the 

Department of Education in 1997 that shows individuals who start with more capabilities stay 

ahead of their peers who begin with fewer skills in basic math (also see Kloosterman, 2010; 

Stigler, Givven, & Thompson, 2009; Stayflidou & Vosniadou, 2004).  

 The present study speaks more broadly to the possible mechanisms between the 

individual- and condition-based variability observed in our categorization task, even amongst 

advanced adults. This study – along with related work from our lab (Deng & Sloutsky, 2015; 

Plebanek & Sloutsky, 2017; Polinsky, et al., under revision; Posid & Sloutsky, 2016; Posid et al., 

in preparation) – suggests the role of attention optimization and selective attention (also see: 

Best, Yim, & Sloutsky, 2013; Posner & Rothbart, 2007; Rueda, Posner, & Rothbart, 2005). In 

Posid et al. (in preparation), this current experiment was compared to one in which stimuli were 
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shown to adults for more than just a few seconds in test. Adults performed markedly better when 

there was not a time limit but performed more like children when the stimuli were shown only 

briefly (i.e., making the task more difficult; Posid et al., in preparation). In this sense, it is 

feasible that selective attention does develop with age, but that this cannot make up for the 

effects of challenging task demands. Thus, when adults’ mental functioning is taxed to a high 

extent, as seen in this study with timed stimuli presentations, they categorize differently in the 

context of a math task than they would when the load on their working memory isn’t as heavy. 

These effects of the timed stimuli on adults may mimic the effects of novel learning in children 

such that we can interpret the results to reveal the ultimate learning mechanism in a similar 

manner. 

 In sum, this study has yielded many of the results predicted at the outset. Specifically, we 

found that perceptual features are a hindrance to the learning of novel fraction information in our 

categorization task. This work expands on current work in our laboratory (Posid et al., in 

preparation) such that more difficult task demands led to the emergence of Condition differences, 

similar to Condition effects observed in children. From this, we can conclude that in situations 

with additional task difficulty, adults perform like children when learning fractions and our 

findings can be used to better strengthen current math curriculums to aid children in learning this 

crucial skill more efficiently. 
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 Full Arrays Minimum Arrays Full Lines Minimum Lines 

Total Number N = 24 N = 24 N = 27 N = 22 

Gender 10 females, 
14 males 

13 females, 
11 males 

14 females 
13 males 

6 females 
16 males 

Age M = 19.3 yrs, 
SD = 3.3 yrs 

M = 20.4 yrs, 
SD = 5.0 yrs 

M = 19.2 yrs, 
SD = 1.1 yrs 

M = 19.3 yrs, 
SD = 1.0 yrs 

Years in College M = 1.42 M = 1.42 M = 1.46 M = 1.64 
 
Table 1. Distribution of participants in each condition of the categorization task, including the 
number of participants, their self-identified genders, age in years, and number of years in college. 
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 High Match One-New-P All-New-P Switch New-D 

Full Arrays 
p < 0.001; 

d = 3.7 

p < 0.001; 

d = 3.2 

p < 0.001; 

d = 2.8 

p < 0.001; 

d = 2.4 

p = 0.144; 

d = 0.63 

Minimum 
Arrays 

p < 0.001; 

d = 7.7 

p < 0.001; 

d = 5.0 

p < 0.001; 

d = 5.5 

p < 0.001; 

d = 8.7 

p < 0.001; 

d = 1.8 

Full Lines 
p < 0.001; 

d = 8.9 

p < 0.001; 

d = 8.8 

p < 0.001; 

d = 6.9 

p < 0.001; 

d = 6.9 

p = 0.646; 

d = 0.18 

Minimum Lines 
p < 0.001; 

d = 23.2 

p < 0.001; 

d = 11.5 

p < 0.001; 

d = 16.7 

p < 0.001; 

d = 16.8 

p = 0.42; 

d = 1.1 
 
Table 2. Significance and effect size (Cohen’s d) for accuracy vs. chance across each trial type 
and condition in the test phase of the categorization task. 
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 High Match One-New-P All-New-P Switch New-D 

Full vs. 
Minimum 

p = 0.058; 
𝜂"# = 0.038 

p > 0.1 
𝜂"# = 0.024 

p = 0.024; 
𝜂"# = 0.053 

p = 0.007; 
𝜂"# = 0.075 

p = 0.013; 
𝜂"# = 0.065 

Lines vs. 
Arrays 

p = 0.006; 
𝜂"# = 0.079 

p < 0.001; 
𝜂"# = 0.135 

p = 0.002; 
𝜂"# = 0.098 

p < 0.001; 
𝜂"# = 0.126 

p = 0.032; 
𝜂"# = 0.048 

 
Table 3. Significance and effect size (𝜂"#) for accuracy across Conditions (Full vs. Minimum or 
Lines vs. Arrays) of trial types in the categorization task. P-value indicates a difference between 
the Full vs. Minimum condition or a difference between the Lines vs. Arrays conditions within 
that particular trial type. 
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 High Match One-New-P All-New-P Switch New-D 
Full vs. 

Minimum 
p > 0.2 

𝜂"# = 0.015 
p > 0.3 
𝜂"# = 0.01 

p > 0.2 
𝜂"# = 0.016 

p = 0.052; 
𝜂"# = 0.04 

p > 0.1 
𝜂"# = 0.029 

Lines vs. 
Arrays 

p < 0.001; 
𝜂"# = 0.262 

p < 0.001; 
𝜂"# = 0.224 

p < 0.001; 
𝜂"# = 0.29 

p < 0.001; 
𝜂"# = 0.273 

p > 0.2 
𝜂"# = 0.014 

 
Table 4. Significance and effect size (𝜂"#) for reaction time (seconds) across Conditions (Full vs. 
Minimum or Lines vs. Arrays) of trial types in the categorization task. P-value indicates a 
difference between the Full vs. Minimum condition or a difference between the Lines vs. Arrays 
conditions within that particular trial type. 
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 High Match One-New-P All-New-P Switch 

Minimum Arrays 1.2 1.3 1.3 1.4 

Minimum Lines 0.85 0.88 0.74 0.76 

Full Arrays 1.1 1.2 1.1 1.0 

Full Lines 0.89 0.89 0.77 0.85 

 
Table 5. Reaction times (in seconds) for each trial type (excluding New-D) across the four 
conditions, demonstrating a 3-way interaction between Trial Type, Full vs. Minimum, and Lines 
vs. Arrays in the categorization task. 
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 Age Condition Math Sheet 
Fraction 
Battery 

Accuracy 

Fraction 
Battery 

Reaction Time 

High Match p < 0.001 
𝛽 = -0.381 

p = 0.006 
𝛽 = 0.264 

p=0.810 
𝛽 = -0.029 

p = 0.005 
𝛽 = 0.303 

p = 0.041 
𝛽 = 0.232 

One-New-P p < 0.001; 
𝛽 = -0.370 

p < 0.001; 
𝛽 = 0.366 

p = 0.946 
𝛽 = -0.008 

p = 0.092; 
𝛽 = 0.174 

p = 0.490 
𝛽 0.076 

All-New-P p = 0.027; 
𝛽 = -0.228 

p < 0.001; 
𝛽 = 0.363 

p =0.662 
𝛽 = 0.054 

p = 0.071; 
𝛽 = 0.196 

p = 0.024; 
𝛽 = 0.265 

Switch p = 0.279 
𝛽 = -0.113 

p < 0.001; 
𝛽 = 0.411 

p = 0.759 
𝛽 = -0.039 

p = 0.382 
𝛽 = 0.097 

p = 0.297 
𝛽 = 0.124 

New-D p = 0.044; 
𝛽 = 0.225 

p = 0.288 
𝛽 = 0.111 

p = 0.336 
𝛽 = -0.130 

p = 0.439 
𝛽  = 0.091 

p = 0.043; 
𝛽 = -0.257 

 
Table 6. Significance and probability of Type II error (𝛽) for each trial type (dependent variable; 
accuracy) in the categorization task by predictors of learning. 
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Figure 1. Examples of problem sets in the fraction battery. 
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Figure 2. Example of stimuli used across the four conditions in our categorization task. 

  

Full$Condition Minimum$Condition

Arrays$Condition

Lines$Condition
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Flurp (1/3*ratio) Jalet (1/2*ratio)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Stimuli examples of a Flurp, with buttons shown in a 1/3 ratio, and a Jalet, with 
buttons in a 1/2 ratio. 
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Figure 4. Examples of five trial types used in our categorization task. 
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Figure 5. Results of a 5 (Trial Type) x 2 (Full vs. Minimum) x 2 (Lines vs. Arrays) ANOVA 
demonstrating a main effect of Full vs. Minimum within the Arrays condition, indicating adults 
were more accurate within the Minimum condition compared to the Full condition. 
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Figure 6. Results of a 5 (Trial Type) x 2 (Full vs. Minimum) x 2 (Lines vs. Arrays) ANOVA 
demonstrating accuracy in the Lines condition was at-ceiling and a significant main effect of Full 
vs. Minimum was not discovered. 
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Figure 7. Predictors of learning for Trials to Learn within the training phase of the categorization 
task. Dotted lines indicate the predictor was nonsignificant; p > 0.1; Model: R2 = 0.469, p < 
0.001. 
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Figure 8. Predictors of learning for Test Trial Accuracy within the categorization task. Dotted 
lines indicate the predictor was nonsignificant; p > 0.1; Model: R2 = 0.336, p < 0.001.  
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Figure 9. Predictors of learning for New Exemplar (3/9 or 5/10) Accuracy within the 
categorization task. Dotted lines indicate the predictor was nonsignificant; p > 0.1; Model: R2 = 
0.269, p = 0.001. 
  



LEARNING MECHANISM USED WHEN CATEGORIZING 48 

 

Figure 10. Predictors of learning for Test Trial Reaction Time within the categorization task. 
Dotted lines indicate the predictor was nonsignificant; p > 0.1; Model: R2 = 0.313, p < 0.001. 


