
The Agile Organization

What we can learn from software development
snapp.6@osu.edu | Ohio State University Libraries

The Agile Organization...What we can learn from software development.

The outline for today’s presentation:

1. What exactly is agile software development?

2. By extension, how does it help us define organizational agility?

3. Then I will turn it over to Terry [Reese] to talk about what makes

Discovery an agile project.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KnowledgeBank at OSU

https://core.ac.uk/display/159565504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

What does Agile
mean to you?

A bit of background:

● Not many people know that I have a masters degree in sociology in
addition to a degree in computer science and the two of them together
has led me to be very interested in culture, structures, and
methodologies.

● I stumbled upon Agile in 2007 when I was in [the College of] Arts and
Sciences, and we started practicing Scrum--an Agile framework--on my
team soon after.

● It was really successful, and agile software development became my
area of expertise.

Now in the Libraries, we’ve been talking recently about being Lean and being
Agile.

● We’ve just taken Yellow Belt training and learned about Lean Six
Sigma, a framework of Lean, and agile software development has been
heavily influenced by Lean Thinking.

● Secondly, we’re engaged in the most agile project to date: the
discovery project.

● And we’ve completed our Strategic Directions with Agile planning and
operations as a focus area.

When we talk about agile management or agile planning or the agile
organization today, we can trace its history directly back to a group of
software developers in 2001.

When we first started practicing agile in [the College of] Arts & Sciences,
it was a bit niche, and now it's become best practice in the majority of
software development shops in the private sector.

● There is still a lot of misunderstanding about what it means,
especially in the last few years as it has become a mainstream concept
in business in general, and has become a bit diluted.

● But most people would be able to say that agile development is
iterative development.

Being Agile or Doing Agile?

Yes, Agile is iterative and
incremental

But, not all iterative and
incremental development is
Agile.

Images: https://jpattonassociates.com/dont_know_what_i_want/

Increments = chunks

Iterations = drafts

I think that it’s important to differentiate between practices and values.

● Yes, agile developers deliver products iteratively and incrementally.
But not all iterative development is Agile.

● Iterations and increments (and there is a difference) are two desired
and fundamental practices of agile software development.

Doing Agile

Images: https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

And there are a whole lot of practices, as you can see on this map.

● The arrow points to increments and iterations.

Doing Agile

Chart: VersionOne 11th Annual State of Agile Report

Why so many practices?

● There are actually different agile frameworks or methodologies, such
as Extreme Programming, Kanban, and Scrum and various hybrids.

● Scrum, by far, is the most popular. And that’s the framework that we
follow in AD&S [Applications Development & Support].

Agile: Scrum

Image: http://www.scrumguides.org/scrum-guide.html

This is what Scrum looks like.

● Scrum is quite prescriptive and rule-based.

There are ROLES, ARTIFACTS, and EVENTS that are repeated in a time-boxed
cycle.

● We have 2 week SPRINTS.

● We have the ROLE of the Scrum Master (also known as agile project
managers) and the Product Owner--someone who provides us with subject
matter expertise and represents the stakeholders and users when
prioritizing features.

○ For the Discovery project, that’s Terry [Reese]. For the website
redesign, that’s Robyn [Ness].

In terms of EVENTS:

● EVERY OTHER Friday, we all get together for a sprint review which is
an opportunity for the developer to demonstrate what he or she has
accomplished to the PO during the previous 2 weeks.

● Previous to the Friday, Scrum Masters have met with the product owners
to review the PRODUCT BACKLOG of stories and select stories for the
next sprint--called the SPRINT BACKLOG.

○ USER STORIES are very small chunks of requested functionality in
non-technical language.

● In the sprint review meeting, Russell [Schelby] will review the
objectives of the next sprint for each project.

● Every day, we have a daily standup to answer 3 questions: 1) what did
I do yesterday? 2) what am I going to do today? 3) are there any
impediments or blockers?

But we don’t follow all of the RULES.

● For example, we don’t estimate stories and derive tasks in a separate
SPRINT PLANNING meeting or use burn down charts.

● We don’t ship an INCREMENT every 2 weeks.

● Our own invention: Maintenance Fridays to get caught up on non-project
tickets.

It may look like chaos from the outside looking in--which probably means
we’re doing it right--but a point I would like to make is agile frameworks
are quite disciplined.

And Scrum is not just for software development:

● Russell [Schelby] and Cate [Putirskis] presented on how SCDA is using
Scrum to manage their workflows.

Not-Agile Big
Upfront
Planning

Big Bang
Launch

Image: http://www.umsl.edu/~hugheyd/is6840/waterfall.html

It's time for application leaders to recognize what the facts tell
us: All other things being equal, traditional waterfall approaches
are less reliable and more risky than a more duration-constrained
approach. Gartner

Now compare Scrum to the model of traditional project management--also called
waterfall.

● It is sequential, phased, with upfront planning and a big launch at
the end.

● There are handoffs to different groups at each phase--requirements
from the business analysts to developers as specifications, into code
to the testers.

● And because of the upfront planning and the handoffs, there tends to
be a lot of documentation--maybe even more documentation than code.

Since we had been trained that this is the right way to do software
development and project management, if we look at agile software development
in retrospect, it has been a PARADIGM SHIFTER.

Being Agile

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

https://agilemanifesto.org (2001)

Our highest priority is to satisfy the customer
through early and continuous delivery of

valuable software.

And it started with the Agile Manifesto of 2001 with 4 value statements and
12 principles--which defines what it means to BE AGILE--the Agile Mindset.

● This was a reaction against the heavy process of waterfall development
which they believed was getting in the way of getting things done.

● They proposed that we start valuing people, working software, customer
collaboration, and adapting to change more than tools, documentation,
contracts, plans.

The first PRINCIPLE guides everything we do: early and continuous delivery of
valuable software.

● “Early and continuous” explains iterations and increments as
fundamental practices.

Early & Continuous Value

Image: Essays in agile software development (http://theburndown.com)

Why is early & continuous value given such a high priority?

● It makes more sense to deliver something early rather than waiting
months or years to get something in front of the users.

● Delivering value to the business should be continuous, not a single
point-in-time event.

● You can also reduce a lot of the riskiness of waterfall because we
learn about potential problems earlier in the process.

Triangle of Constraints

● Fixed date
● Fixed resources
● Variable scope

Plan Driven Value Driven

Image: https://www.atlassian.com/agile/agile-iron-triangle

What if we found ourselves building something that nobody wanted? In
that case what did it matter if we did it on time and on budget?
Eric Ries

That’s the ESSENCE of the difference between waterfall and agile.

● Agile is VALUE-driven, not PLAN-driven.

● In terms of the TRIANGLE of constraints: scope, cost, time.

In TRADITIONAL project management, the requirements for functionality are
fixed in advance.

● We ask you tell us everything you can possibly think of that you want
this system to do.

● Then we project from that list of requirements, how long it’s going to
take and how many developers are going to be needed.

● This model can work well when you are working on something that has
been done before, but when it’s knowledge work with a high degree of
uncertainty--like software development--it’s very difficult to make
accurate projections.

● Predictions inevitably are wrong and the project ends up being late
and goes over budget--the stereotype of a software development
project.

Agile flips the model UPSIDE-DOWN.

● We fix our resources and we fix the target date but scope (features)
is not fixed.

● We continuously prune and reprioritize features as we get feedback and

● learn new things.

● We deliver not because the plan said so, but because we have
determined that the selected features, based on all of the information
we have collected up to that point, will provide the most value to the
organization.

Another way to look at it is that waterfall is predictive. Agile is
empirical.

Post-Agile is Lean

10 deploys per day (Flickr 2009)
23,000 per day (Amazon 2012)

Image & Flickr Stats: https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr/76
Amazon Stats: IT Revolution DevOps Guide v1.pdf (https://dl.orangedox.com/devops-guide-v1)

● DevOps
● Continuous Delivery
● Lean Startup
● Lean UX

2001 was a long time ago in internet time. How has agile changed since then?

● In 2009 an engineer from Flickr gave a presentation that became highly
influential.

● Flickr was doing 10 deploys (code pushes to production) in per day. At
the time, that was crazy fast.

● The argument was made that that agile thing was great for developers
but they forgot about the people who actually supported their code in
production.

● The only way to pull off that kind of speed was going to be
cooperation between developers and operations.

● Ironically, Agile attempted to eliminate handoffs but didn’t question
that last handoff to production support.

The result has been what is called: DevOps--an extension of Agile--and it is
gaining a lot of traction right now in the industry.

● It treats software development as a delivery pipeline owned by the
entire project team including operations.

● It’s about culture and engineering practices, such as automation.

Other important influences are CONTINUOUS DELIVERY and LEAN STARTUP.

● Lean UX--similar to DevOps--which is working to integrate UX into the
software development lifecycle.

What can we
learn?

1. Scope varies

2. Nimble teams

3. Adapt to change

4. Prioritize by value

5. Plan continuously

6. Lean is fundamental

7. Experiment to learn

Now that we have some historical context and know what it means to be agile
in software development, what can we learn as an organization.

● I’ve boiled down to 7 core characteristics.

1. Scope varies

● Deadlines are important
(if they’re less than one
month away)

● Sprints = Timeboxes

● Every 2 weeks, we decide what
is most important now

It’s not that the schedule is overrun, it’s that we are finding more
things that need to be done. Documentary, The Shelbourne Hotel

Image: Source unknown

We’ve learned that agile flips the iron triangle of constraints upside down.

● Deadlines are fixed and resources are fixed which is typical in higher
ed.

● Scope (features) is what varies.

In an agile organization, we need to set and stick to deadlines, not as a
punitive measure, but to force decisions about what’s really important.

● In Scrum, checkpoints are built in every sprint as the opportunity for
the product owner to reprioritize the backlog.

● Sprints are less than one month.

● Anything longer and time boxes lose their power as decision-making
tools or a motivators.

2. Nimble teams

● Generalizing specialists

● Self-organization

● POs on the team

● Reduce handoffs

● Face-to-face is best

● Servant leadership

[O]rganizations which design systems ... are constrained to produce
designs which are copies of the communication structures of these
organizations (Conway’s Law)

Image: https://www.flickr.com/photos/arizona_shona/305302247/

This principle is all about People and agile culture--individuals and
interactions over processes and tools.

● Agile culture places a priority on self-organizing, autonomous teams.

● It is not command-and-control but rather, managers and ScrumMasters
are servant leaders who protect and buffer the team and remove
impediments to high performance.

● We also seek cross-functional teams of generalizing specialists:
people who can play multiple roles--and we include a business
representative on the team.

The idea is that the most successful projects and organizations will have
nimble teams.

3. Adapt to change

● Why short increments are important

● Originators|conservers|pragmatists

The preference of an Originator is to challenge existing rules,
politics and structures, resulting in fast, fundamentally different,
even disruptive changes. Discovery Learning Inc.

Image: https://plus.google.com/+LauraGibbs/posts/NnDRGYbRSfV

Software developers, and IT in general, are in the change business, so it’s
no surprise that embracing change is a core value.

● Many practices of agile frameworks are designed to account for change
but also provide discipline.

● Working within time-boxed increments is an example: we can change
course in a couple weeks if we really need to which is less costly
than staying on path that is no longer valuable.

What can we do as an organization to adapt to change?

● If you remember the change style indicator assessment we completed in
a training session--remember that we lined up in a row.

● The Originators in the crowd are the change agents in our
organization.

● If organizational change is a goal, it would behoove us to look to
Originators to lead by example in their approach to change.

4. Prioritize by value

● Limited capacity is an
opportunity

● Carefully choose what is most
important

[T]he enemy of Agility and Leanness is not scope creep, but feature
bloat ... An Agile team adds business value by not doing the stories
that represent bloat. Mark Schwartz

Image: https://www.flickr.com/photos/baggis/4967298714

We can’t do everything and we’ll never have enough people but what if we
treated limited capacity as an opportunity, not necessarily a problem.

● If there is a limit to how many people we can hire, we will want to
make sure to pick the work that is the most important and also
eliminate any non value adding distractions.

So really, there is never too much work to do.

● It’s all about making good decisions about priorities--brutal
prioritization.

5. Plan continuously

● Big upfront planning supports the
“illusion of control”

● Agile = more time planning

● Adaptation, not fortune-telling

● Just in time vs just in case

No sense in being precise when you don’t even know what you’re
talking about. Von Neumann

Image: https://www.flickr.com/photos/jrladia/7245527662

The big upfront planning of traditional project management tricks us into
thinking that we are in control of the project.

● We believe that the more we plan, the more successful our project will
be.

● That is not always true.

But that doesn’t mean we don’t plan at all.

● It’s a common stereotype of agile software developers that they don’t
plan which we saw from the Dilbert cartoon.

● Actually, there was a study that tracked different types of projects
and the total number of hours engaged in planning was actually higher
for agile projects--the key difference was when the planning was
happening.

● It was happening continuously throughout the project.

As an organization, if we begin with the assumption that we aren’t good
fortune-tellers, we will want to plan just-in-time, making adjustments on the
fly as we go to reach our target.

6. Lean is fundamental

1. Eliminate waste

2. Amplify learning

3. Decide as late as possible

4. Deliver as fast as possible

5. Empower the team

6. Build integrity in

7. See the whole

It does not matter how fast we can build. It does not matter how
fast we can measure. What matters is how fast we can get through the
entire loop. Eric Ries

Image: JP Trostle, Waterworks game, Parker Brothers
Poppendieck, Mary, and Tom Poppendieck, Leading Lean Software Development: Results are Not the Point, 2009

To really understand what it means to be agile, we need to understand Lean.

● And we have learned what that means in our trainings: finding the
bottlenecks in our workflows, eliminating waste in our processes,
shortening feedback cycles.

7. Experiment to learn

● Get something real in front of real
users: build-measure-learn

● Hypothesis-driven: are we building the
right thing?

● Psychological safety is prerequisite

Psychological safety is a belief that one will not be punished or
humiliated for speaking up with ideas, questions, concerns, or
mistakes. Amy Edmundson

Image: http://theleanstartup.com/principles

And finally, experimenting to learn.

Lean Startup by Eric Ries is a book that has been highly influential in
business and in software development--hypothesis driven product
development--build measure learn.

● The unit of value in this case is not features but learning.

We talk about the learning organization: the agile organization is
fundamentally a learning organization.

● There is a bias toward doing--building minimum viable products,
getting them in front of real people to collect feedback and deciding
whether to persevere or pivot.

The implication for an organization is that we need to be ok with less than
perfect and less than complete.

● Sometimes things need to be perfect for safety or compliance reasons
(air traffic control systems).

● Many times things don’t need to be perfect.

● We need to be able to discern the difference.

And that requires a culture of psychological safety--safety to experiment.

Being Agile

❏ Scope varies

❏ Nimble teams

❏ Adapt to change

❏ Prioritize by value

❏ Plan continuously

❏ Lean is fundamental

❏ Experiment to learn
as an organization

To summarize, I think that being agile as an organization means being able to
DISCERN:

● Discern when good enough, is good enough

● Discern what is most strategically important, and what is not

● Discern When planning crosses over into diminishing returns

● Discern When it’s time to change, and when to stay the course

So how agile are we?

● I have put together an non-scientific organizational agility
thermometer based on the 7 principles.

● I’m curious about how you all feel.
● And I’ll send out a Qualtrics survey later and report back on the

results.

Being Agile

❏ Scope varies

❏ Nimble teams

❏ Adapt to change

❏ Prioritize by value

❏ Plan continuously

❏ Lean is fundamental

❏ Experiment to learn
as a project

References & Influences

● Anderson, David J., Kanban: Successful Evolutionary Change for Your Technology Business, 2010
● Beck, Kent, and Cynthia Andres, Extreme Programming Explained: Embrace Change, 2004
● Brooks, Frederick, The Mythical Man-Month, 1995
● Cohn, Mike, Agile Estimating and Planning, 2005
● Duhigg, Charles, What Google Learned from the Quest to Build the Perfect Team, The New York Times, 2016

https://www.nytimes.com/2016/02/28/magazine/what-google-learned-from-its-quest-to-build-the-perfect-team.html
● Edmundson, Amy, Building a psychologically safe workplace, TEDxHGSE, 2014
● Griffiths, Mike, PMI-ACP Exam Prep, Updated Second Edition: A Course in a Book for Passing the PMI Agile Certified

Practitioner, 2015
● Hotle, Matthew and Nathan Wilson, The End of Waterfall as We Know It, Gartner, 2016
● Jeremiah, John, Survey: Is agile the new norm? https://techbeacon.com/survey-agile-new-norm
● Kim, Gene, Kevin Behr, George Spafford, The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win, 2013
● Kim, Gene, Patrick Debois, John Willis, Jez Humble, The DevOps Handbook: How to Create World-Class Agility, Reliability, and

Security in Technology Organizations, 2016
● Kniberg, Henrik, Scrum and XP from the Trenches, 2007
● Maurya, Ash, Expose Your Constraints Before Chasing Resources, 2016

https://blog.leanstack.com/expose-your-constraints-before-chasing-additional-resources-cc17929cfac4
● Poppendieck, Mary, and Tom Poppendieck, Leading Lean Software Development: Results are Not the Point, 2009
● Prince, Suzie, The Product Managers’ Guide to Continuous Delivery and DevOps, 2016
● https://www.mindtheproduct.com/2016/02/what-the-hell-are-ci-cd-and-devops-a-cheatsheet-for-the-rest-of-us/
● Rework with Google, https://rework.withgoogle.com/print/guides/5721312655835136/
● Ries, Eric, The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses,

2011
● Rigby, Darrell K., Jeff Sutherland, Hirotaka Takeuchi, Embracing Agile, Harvard Business Review, 2016

https://hbr.org/2016/05/embracing-agile
● Royce, Winston, "Managing the Development of Large Software Systems", Proceedings of the 9th International Conference on

Software Engineering, 1987
● Schwartz, Mark, A Seat at the Table: IT Leadership in the Age of Agility, 2017
● Vivian, Anthony, The Lean UX Manifesto: Principle-Driven Design,

https://www.smashingmagazine.com/2014/01/lean-ux-manifesto-principle-driven-design/

