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Abstract

In this work, diffusion Monte Carlo (DMC) methodology was extended to allow

for the calculation of rotationally excited states by expansion into a functional space.

This new methodology was used to study CH+
5 and its deuterated isotopologues.

Previous results regarding the localization of deuterium atoms within the H3 subunit

are corroborated, and new results regarding the lack of change in the wavefunction

upon rotational excitation up to J = 10 are shown. The method was then tested

concurrently with the previously established fixed node DMC method on H2D+

and HD+
2 , to determine its efficacy in capturing rovibrational coupling. This mixed

method was found to produce errors up to 20 cm−1 for states with J = 2 and

νasym = 1. Group theory was then used to analyze the cause of the error, and showed

the exclusion of Coriolis coupling terms to likely be at fault.



1 Introduction

The chemistry that takes place in the interstellar medium is very different from that which

takes place on Earth. Floppy molecules, those that exhibit large amplitude motions even

in their ground state, frequently form in this environment. This class of molecules contains

exotic species such as H2D+ and CH+
5 (pictured in Figure 2). The vibrations and rotations

of these molecules differ greatly from what a simple harmonic oscillator or rigid rotor model

predict.1 Radio astronomical measurements provide evidence for chemical concentrations

and temperatures by comparison to experimentally collected spectra of astrochemical

species.2 As can be seen in Figure 1, the rotationally resolved spectra of floppy molecules

are often quite complex, and can be better understood when theoretical studies are paired

with experiment.3 The infrared spectra of these species provide an excellent opportunity

for deepening the theoretical understanding of rotations and vibrations in astrochemical

species as well as reactive intermediates in the atmosphere.4 This type of spectrum can

give insights into molecular structure, as well as the degree of rotation-vibration coupling,

both of which can impact chemical reactivity. Calculations of ground and excited state

energies can be used to assign a spectrum of this type with specific transitions.

Figure 1: The infrared spectrum of CH+
5 , taken by Oka in 1999,5 is exceptionally rich and

difficult to understand with basic theories; energies are given in cm−1

Figure 2: Three important geometries of CH+
5 ; all of the hydrogen atoms may permute

with one another, and each of these geometries are sampled in the ground state
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Variational calculations are frequently an accurate method of determining transition

energies, but the computational cost grows very quickly with system size, especially

for floppy molecules. For small systems such as H+
3 this is yet feasible, but for larger

floppy systems such as CH+
5 , the calculations are very slow to converge.6 Diffusion Monte

Carlo (DMC), originally a ground state method, has been expanded to allow calculations

of rotationally and vibrationally excited state energies and wavefunctions, providing a

method for determining the transition energies encapsulated in a spectrum. This method

has been used in many different capacities, from studies of electrons on 2-D surfaces, to

quantum dots and bosonic gasses.7–9 In recent history, there have been many applications

of DMC to floppy molecules and systems, including HF dimers, Criegee intermediates,

water clusters, and of course CH+
5 .4,10–13

2 Diffusion Monte Carlo

DMC takes advantage of the similarity between the Fick diffusion equation and the

time-dependent Schrödinger equation and allows one to obtain the ground state energy

and wavefunction of a quantum system. In one dimension:

∂C

∂t
= D

∂2C

∂x2
(1)

−ih̄∂Ψ

∂t
=

h̄2

2m

∂2Ψ

∂x2
− V (x)Ψ (2)

In these equations, C is a concentration gradient, t is time, D is the diffusion coefficient,

x is position, i and h̄ are fundamental constants, Ψ is the wavefunction, m is a particle’s

mass, and V (x) is a potential function. Adding a linear term to the diffusion equation

(kC) and converting the Schrödinger equation to imaginary time (τ = it/h̄) yields:

∂C

∂t
= D

∂2C

∂x2
− kC (3)

∂Ψ

∂τ
=

h̄2

2m

∂2Ψ

∂x2
− V (x)Ψ (4)
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The isomorphism that has been constructed between the equations can be manipulated.

The algorithm for DMC was laid out by Anderson in 1975.14 In this approach, the

wavefunction is expanded in an ensemble of weighted (Wi) 3N-dimensional Dirac delta-

functions called walkers, N being the number of atoms in the system.

〈~R|Ψ(τ)〉 =

Nwalker∑
i

Wi(τ)δ3N
(
~R− ~Ri(τ)

)
(5)

The split operator approximation to the solution of the time-dependent Schrödinger

equation is used to propagate the wavefunction in imaginary time:

|Ψ(τ + δτ)〉 ≈ e−(V̂−Eref(τ))δτe−T̂ δτ |Ψ(τ)〉 (6)

In this ansatz, the kinetic energy operator leads to walker diffusion; each delta-function is

displaced in each of its 3N dimensions by a random value. The random value is determined

by a Gaussian distribution with a standard deviation, σ =
√
δτ/mk, where δτ is the time

step and mk is the mass of the kth atom in the system. The potential energy is obtained

from an applicable potential energy surface. The additional reference energy term, Eref,

becomes the ground state energy while the distribution of walkers approaches the ground

state wavefunction:

Ψ(τ) =
∑
n=0

cnψn exp [−(En − Eref)τ ] (7)

Ψ(τ) = c0ψ0 +
∑
n=1

cnψn exp [−(En − Eref)τ ] (8)

lim
τ→∞

Ψ(τ) = c0ψ0 (9)

The reference energy is calculated using the average potential energy of the walkers, V̄ ,

and a correction based on total weights, Wtotal, with an empirically determined coefficient,

α = (2δτ)−1:

Eref(τ) = V̄ (τ)− αWtotal(τ)−Wtotal(0)

Wtotal(0)
(10)
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The correction term is included to prevent large fluctuations in the total weight of the

walkers.Weights associated with each walker are also updated each time step according to:

Wi(τ + δτ) = exp
[
−
(
Vi(τ + δτ)− Eref(τ)

)
δτ
]
Wi(τ) (11)

In order to maintain a distribution of walkers, walkers with weights below Wthresh are

replaced. This is accomplished by splitting the highest weight walker into two with half of

the weight and removing the low weight walker from the ensemble. In this work, Wthresh is

defined to be 1/Nwalker. In order to estimate expectation values and construct probability

distributions, a technique called descendant weighting is employed.15 In this scheme, the

weight of a walker at a chosen time in the simulation, Wi, as well as the total weight

attributed to that original walker after n time steps, Wi(τ + nδτ) = Di, are used. For an

arbitrary multiplicative operator, Â, the expectation value is determined by:

〈A〉 =

Nwalker∑
i

WiAiDi

Nwalker∑
i

WiDi

(12)

The values of WiDi can also be used to construct a histogram for a given coordinate,

which can be interpreted as a probability distribution.

3 Rotational Basis Diffusion Monte Carlo

The calculation of rotationally excited state energies and wavefunctions can be performed

with DMC by incorporating a rotational state vector associated with each walker:

〈~R|Ψ(τ)〉 =

Nwalker∑
i

Wi(τ)δ3N
(
~R− ~Ri(τ)

)
|Φi,J(τ)〉 (13)
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The state vector |Φi,J〉 utilizes a symmetrized basis of analytic solutions to the symmetric

top rigid rotor problem with appropriate coefficients and parity p = ±1:

|Φi,J(τ)〉 =
∑
K,p

Ci,J,K,p(τ) |J,K〉p (14)

|J,K〉p =
1√

2p(1 + δK,0)
[|J,K〉+ p(−1)K |J,−K〉] (15)

The coefficients are updated according to first order time-dependent perturbation theory:

Ci,J,K,p(τ + δτ) = Ci,J,K,p(τ)− δτ
∑
K′,p

Ci,J,K′,p(τ) 〈J,K|pĥrot
(
~Ri(τ + δτ)

)
|J,K ′〉

p
(16)

The states are then orthogonalized by the Gram-Schmidt process and normalized. In

these equations, J represents the angular momentum of a basis state and K represents

the projection of the angular momentum onto a given axis, the z-axis in this case. The

quantum propagator is modified to include a rotational Hamiltonian:

ĥrot(~R) =
1

2

∑
α,β

ĴαI
−1
α,β(~R)Ĵβ (17)

|Ψ(τ + δτ)〉 ≈ e−(V̂−Eref(τ))δτe−ĥrotδτe−T̂ δτ |Ψ(τ)〉 (18)

The α and β in the rotational Hamiltonian are the x, y, and z Cartesian directions, Ĵα is

an angular momentum operator, and I−1α,β is an element of the inverse moment of inertia

tensor. Using the symmetric top basis allows one to use raising and lowering operators to

determine the couplings between basis states. Rotational energies are then calculated as

expectation values of the rotational Hamiltonian in the Eckart frame:

Erot
(
~Ri(τ)

)
= 〈Φi,J(τ)|ĥrot

(
~Ri(τ)

)
|Φi,J(τ)〉 (19)

The Eckart frame is a body fixed coordinate system which minimizes the rotation-vibration

coupling. This frame requires a reference geometry, which has been chosen to be the

equilibrium geometry. The transformation from the space fixed coordinate system to the
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Eckart frame is outlined elsewhere.16 The resultant rotational energies are added to the

walker potential energies prior to calculating a series of reference energies. The principles

used to calculate the energies and wavefunctions of rotational states corresponding to a

single J value can easily be expanded to include multiple J states in a single calculation.12

Rather than dressing the walkers with a single rotational state vector, they are dressed

with Nstate vectors, each having a unique weight:

〈~R|Ψ(τ)〉 =

Nwalker∑
i=1

δ3N
(
~R− ~Ri(τ)

)


W
(1)
i (τ) |Φ(1)

i,J (τ)〉

W
(2)
i (τ) |Φ(2)

i,J (τ)〉

W
(3)
i (τ) |Φ(3)

i,J (τ)〉
...

W
(Nstate)
i (τ) |Φ(Nstate)

i,J (τ)〉


(20)

The single reference energy is replaced by a vector of length Nstate. The reference energies

and weights are calculated individually as before. This simultaneous calculation of multiple

states is a marked difference from previous DMC calculations performed in the McCoy

group, where a single state was calculated in each simulation.

3.1 Application to CH+
5 and its Deuterated Isotopologues

One advantage of the DMC method is its ability to determine the projection of the

wavefunction along any number of relevant coordinates. In this section, DMC is used

to compare the C-H and H-H bond lengths in CH+
5 and its deuterated isotopologues,

CH4D+, CH3D+
2 , CH2D+

3 , CHD
+
4 , and CD+

5 . Rotationally excited states up to J = 10

were included in the analysis; the calculated energies for CH+
5 are given in Table 1. As

can be seen in the table, as J increases, the amount of parity mixing in the calculation

also increases. Nevertheless, the calculated energies are quite close to rigid rotor energies.

For CH+
5 , The variation between energies of K levels for a single J state is observed to

be quite small, which is characteristic for a spherical top molecule. This changes for the

doubly deuterated isotopologue, which have a greater range of energies. Several of these

are included in Table 2. A full tabulation of calculated rotationally excited energies are
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given in the Appendix in Table 8. For each isotopologue, a single set of calculations

simultaneously produces all of the given energies; this allows correlated sampling to be

used in the analysis to minimize the apparent statistical error.

Table 1: Comparison Between the Multi-State DMC and Rigid-Rotor Energies (in cm−1)
for Representative Rotationally Excited States of CH+

5 with 99% confidence intervals

J Emin,a
DMC 〈p〉b Emax,a

DMC 〈p〉b Eavg,c
DMC Eavg,d

RR

1 7.70± 0.19 1.00 7.77± 0.15 1.00 7.75 7.77
2 23.15± 0.54 −1.00 23.35± 0.47 0.99 23.24 23.24
3 46.35± 1.10 0.97 46.62± 1.04 −0.94 46.46 46.44
4 77.26± 1.77 0.92 77.72± 1.33 0.79 77.41 77.37
5 115.71± 1.97 0.73 116.46± 1.22 −0.67 116.07 116.04
6 161.40± 2.87 −0.58 163.04± 2.62 0.48 162.40 162.45
7 214.36± 4.16 −0.42 217.43± 1.39 0.35 216.41 216.59
8 274.58± 5.61 0.31 279.73± 2.19 −0.22 278.09 278.46
9 342.05± 7.27 −0.25 349.50± 1.02 0.12 347.43 348.07
10 416.77± 9.12 −0.23 427.71± 5.85 −0.18 424.46 425.41
a The largest and smallest energy evaluated for a given value of J using the

multi-state DMC calculations with Jmax = 10.
b The average parity of the DMC state.
c The energy average of the calculated 2J + 1 energies for a given value of J .
d Rigid-rotor energies, ERR, are the eigenvalues of the rotational Hamiltonian

for the equilibrium structur with averaged rotational constants:
〈A〉0 = 3.890 cm−1 〈B〉0 = 3.862 cm−1 〈C〉0 = 3.849 cm−1
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Table 2: Energies of ground and rotationally excited states up to J = 3, where En,method
represents the number of deuterium atoms, n, and the method used (DMC or rigid rotor).
A full tabulation of rotationally excited energies for CH+

5 and its deuterated isotopologues
up to J = 10 is included in the Appendix in Table 8

J E0,DMC E0,RR E2,DMC E2,RR E3,DMC E3,RR

0 10920 ± 7 — 9699 ± 8 — 9097 ± 10 —
1 7.70 ± 0.19 7.71 5.42 ± 0.09 5.49 4.87 ± 0.05 4.88
1 7.77 ± 0.11 7.76 5.64 ± 0.10 5.74 4.89 ± 0.07 4.94
1 7.77 ± 0.15 7.90 5.88 ± 0.12 6.46 5.00 ± 0.02 5.11
2 23.15 ± 0.54 23.12 16.15 ± 0.21 16.45 14.50 ± 0.16 14.53
2 23.19 ± 0.39 23.12 16.33 ± 0.28 16.51 14.75 ± 0.21 14.58
2 23.20 ± 0.43 23.23 17.17 ± 0.25 16.94 14.83 ± 0.16 14.87
2 23.30 ± 0.42 23.33 17.38 ± 0.30 17.48 14.83 ± 0.14 14.94
2 23.35 ± 0.47 23.56 17.69 ± 0.39 18.65 14.89 ± 0.15 15.17
3 46.35 ± 1.10 46.18 31.73 ± 0.44 32.72 29.03 ± 0.36 28.95
3 46.36 ± 1.07 46.19 31.82 ± 0.53 32.77 29.22 ± 0.24 28.97
3 46.38 ± 0.34 46.40 34.23 ± 0.39 33.61 29.40 ± 0.20 29.52
3 46.42 ± 0.85 46.44 34.39 ± 0.64 33.93 29.57 ± 0.36 29.59
3 46.54 ± 0.79 46.51 34.65 ± 0.56 34.18 29.60 ± 0.42 29.85
3 46.59 ± 0.44 46.69 34.86 ± 0.52 35.18 29.91 ± 0.36 29.93
3 46.62 ± 1.04 47.02 35.46 ± 0.86 36.82 29.91 ± 0.36 30.22

As part of the analysis, positions of the hydrogen atoms were assigned to letters, as shown

in Figure 2. Positions A and B are given to the two hydrogen atoms that are closest

together; these two atoms compose what can be considered an H2 subunit. Positions B

and C are defined by having the next shortest H-H bond length. Positions D and E are

given to the remaining hydrogen atoms. An H3 subunit is composed of the C, D, and E

hydrogen atoms; the C-H bonds of these atoms are shorter than those of the H2 subunit,

shown in Figure 3.
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Figure 3: Using the position labels, the hydrogen atoms can be grouped into H2 and H3

subunits which have different C-H bond lengths

The analysis of hydrogens based on them being contained in well-defined subunits can also

be justified with the probability distribution of the H-H bond lengths. Figure 4b shows

the H-H bond lengths in CH+
5 , with a significant shoulder at r = 1.0 Å for the H2 subunit.

Figure 4: The C-H bond lengths of CH+
5 nearly compose a normal distribution while the

H-H bond lengths have a significant shoulder at shorter bond lengths, representing the H2

subunit. Analysis of rotationally excited states up to J = 10 using DMC shows negligible
change in the probability distribution with respect to rotational excitation.

Intuitively, the deuterium atoms tend to localize in the H3 subunit, as can be seen in

Table 3 and in Figure 5. For example, CH4D+ was found to have its deuterium atom
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in the A or B positions only 7% of the time, while CHD+
4 had its hydrogen atom in A

or B 89% of the time. This would be predicted by a simple harmonic oscillator model,

due to the heightened mass of the deuterium atom lending itself to a shorter C-H bond

length. These results are very similar to previously established results.13 With rotational

excitation up to J = 10 in this model, no significant difference was observed.

ABC % CH4D+ % CH3D+
2 % CH2D+

3 % CHD+
4

HHH 75 42 — —
HHD 18 39 64 —
HDH 2 4 < 1 —
DHH 5 12 24 —
HDD — 1 09 35
DHD — < 1 < 1 54
DDH — < 1 1 8
DDD — — < 1 3

Table 3: ABC positions occupied by hydrogen or deuterium atoms; deuterium atoms tend
to localize to the C, D, and E positions

Figure 5: The probability distribution of the C-H/D bonds can be deconstructed for
CH3D+

2 to show that deuterium atoms localize closer to the central carbon atom

Using the position labels, two additional coordinates may be defined, φ and q. The

coordinate q is determined by the bond lengths between HA, HB, HC:
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q = rBC − rAB (21)

φ is determined by first defining the vector connecting the carbon atom to the center of

mass of the H3 subunit to lie along the z-axis. The x-axis is then defined by ~rAB lying in

the xz plane. φ is then given by the angle between xz plane and the planes containing

HC, HD, or HE and the z-axis. Depictions of these two coordinates are given in Figure 6,

along with probability distributions for J = 0 and J = 10. These probability distributions

show the hallmark of CH+
5 : all of the hydrogen atoms can permute positions with one

another as there is significant probability where q = 0 and for all values of φ. Again, it is

seen that rotational excitation of CH+
5 within the framework of DMC has negligible effect

on the probability distribution. This is not completely unforeseen, as the coupling effects

are not explicitly included in the DMC model.

Figure 6: The coordinates q and φ are shown above with their respective probability
distributions at J = 0 (black) and J = 10 (dashed red)

Similar plots can be made with respect to deuteration; C-H and H-H bond length

distributions, as well as distributions of q and φ can be seen below for the doubly and

triply deuterated isotopologues in Figures 7 through 10. The presented isotopologues

were chosen as they differ the greatest in structure from CH+
5 due to deuteron/mass

localization. As can be seen, the C-H/D and H/D-H/D bond distributions become slightly

more localized around 1.1 and 1.9 Å, respectively, with more deuteration. The q coordinate

appears to have negligible differences with deuteration, while the φ coordinate seems to

differ in a complex fashion.
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Figure 7: With increasing number of deuterons, the C-H bond length probability distribu-
tion tends to localize around 1.1 Å

Figure 8: With increasing number of deuterons, the H-H bond length probability distribu-
tion tends to localize around 1.9 Å
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Figure 9: Very little change is observed in q as CH+
5 is deuterated

Figure 10: The φ coordinate changes in a complex manner as CH+
5 is deuterated
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4 Fixed Node DMC

Vibrations may be incorporated into the DMC calculation by placing a node in the

wavefunction.17, 18 In cases with high symmetry, such as the asymmetric stretch of H2D+

or HD+
2 , the node may be known analytically. In other cases, the node may be moved

adiabatically along a carefully selected coordinate. When the energy is minimized and

equal on both sides of the node, the location of the node is optimal.19 The node is

implemented by reducing the weight of a walker to zero if it crosses the node.

Figure 11: The wavefunction is split into two parts where the amplitude of the wavefunction
is zero, such as the equilibrium bond length for the first excited state of a harmonic
oscillator

4.1 Recrossing Correction

Due to the finite time step used, there is a nonzero probability that a walker will diffuse

across the node and back within a single step. This can largely be overcome by introducing

a recrossing correction, as shown by Anderson.20 The probability that the walker has

recrossed the node, Precross as shown in Equation 22, is compared to a random real number,

r, in the range (0,1). The walker has its weight set to zero if Precross is greater than r.

Precross = exp
[
− meffd(τ)d(τ + δτ)

δτ

]
(22)

1

meff
=

√
G

(s)
k,k(τ)G

(s)
k,k(τ + δτ) (23)
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In these equations, meff is the effective mass for a specific vibrational mode, while d(τ)

is the distance to that node at time τ . The definition of the effective mass requires the

use of the diagonal elements of the G-matrix expressed in terms of the nodal coordinates,

the background of which is given elsewhere.21,22 For the asymmetric stretch of H2D+, the

distance to the node and the effective mass are defined below; the coordinates r1, r2, and

θHDH are given in Figure 12.

d(τ) =
1√
2

(
r1(τ)− r2(τ)

)
(24)

meff =
mDmH√(

mD +mH
(
1− cos θHDH(τ)

))(
mD +mH

(
1− cos θHDH(τ + δτ)

)) (25)

5 Rovibrational Excitation in H2D+

H2D+ provides a highly symmetric test case to determine whether ro-vibrational excitation

can be calculated by combining the previously described DMC approaches. The rovibra-

tional state energies have been well characterized by Tennyson et al.23 The asymmetric

stretch of H2D+, corresponding to the nuclear motions in Figure 12, has an analytically

known node when the two H-D bond lengths are equal in length. Using the rotational

basis and fixed node methods synchronously provides the sets of energies for the H2D+

rovibrational energies given in Table 4. Just like the CH+
5 calculations earlier, all energies

are found simultaneously in a single set of calculations, allowing one to use correlated

sampling to reduce the statistical error. It should be noted here that the DMC method

was altered to “symmetrize” the walkers. The walkers are given weights for both the

ground and vibrationally excited state. The geometry of walkers was flipped if they crossed

the asymmetric stretch node, therefore forcing a constant sign of the I−1xy (JxJy + JyJx)

coupling term. This term coupled the ground and vibrationally excited states in the

rotational Hamiltonian. As can be seen in the table, the νasym = 0 energies are quite

accurate, while the rotationally excited νasym = 1 energies differ by up to 20 cm−1. An

identical trend is seen in Table 5 for the analogous HD+
2 ion.
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Figure 12: H2D+ is shown with arrows representing the asymmetric stretch, as well as the
definitions for the axes

Table 4: H2D+ Rovibrational Energies

Rot. State ν = 0 DMC ν = 0 Var. ν = 1 DMC ν = 1 Var.
|J,K〉p − ZPE Energy (cm−1) Energy (cm−1)23 Energy (cm−1) Energy (cm−1)23

|0, 0〉 3978 ± 9 — 2333 ± 6 2335.0
|1, 1〉+ 45.6 ± 0.3 45.7 43.2 ± 0.4 48.5
|1, 1〉− 59.8 ± 0.2 60.0 61.6 ± 0.7 67.4
|1, 0〉+ 72.5 ± 0.2 72.4 73.9 ± 0.7 73.9
|2, 2〉+ 131.2 ± 1.1 131.6 125.1 ± 0.9 142.3
|2, 2〉− 138.1 ± 0.5 138.8 135.8 ± 1.2 155.6
|2, 1〉+ 176.1 ± 1.1 175.9 172.6 ± 1.5 177.0
|2, 1〉− 218.5 ± 0.7 218.6 227.8 ± 2.4 233.0
|2, 0〉+ 223.9 ± 0.9 223.8 232.1 ± 2.7 234.1

Table 5: HD+
2 Rovibrational Energies

Rot. State ν = 0 DMC ν = 0 Var. ν = 1 DMC ν = 1 Var.
|J,K〉p − ZPE Energy (cm−1) Energy (cm−1)23 Energy (cm−1) Energy (cm−1)23

|0, 0〉 3563 ± 6 — 2081 ± 8 2079.2
|1, 1〉+ 34.7 ± 0.2 34.9 35.3 ± 0.3 40.1
|1, 1〉− 49.1 ± 0.3 49.2 47.3 ± 0.9 50.2
|1, 0〉+ 57.9 ± 0.3 58.0 57.7 ± 0.8 57.8
|2, 2〉+ 101.8 ± 0.8 101.7 102.2 ± 1.2 115.4
|2, 2〉− 109.6 ± 0.5 110.2 107.7 ± 1.1 124.1
|2, 1〉+ 136.2 ± 0.6 136.3 138.8 ± 1.3 146.5
|2, 1〉− 179.1 ± 1.1 179.1 174.6 ± 3.2 176.2
|2, 0〉+ 181.5 ± 1.0 182.0 178.3 ± 3.3 179.1
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5.1 Group Theoretical Analysis

Using group theory, one can gain an understanding of the failure of the calculation. The

mixing of states of the same symmetry, namely Coriolis coupling, is not explicitly included

in the DMC calculation, and the resultant energies therefore differ. Coriolis coupling terms

require nontrivial calculation and do not present an obvious extension to the current DMC

method. Rotational excitation is determined by rotations of the space fixed coordinate

frame into the body fixed Eckart frame by Euler angles. As stated before, the Eckart frame

is used as it has been shown to minimize the coupling between rotations and vibrations.

Euler angles, as shown in Figure 13, can have many different conventions, but generally, a

rotation from one coordinate frame to another in 3-dimensional space requires 3 angles,

χ, θ, and φ. The functions used to describe rotational excitation, and their irreducible

representations, are given below in Table 6.

Figure 13: Rotational excitation is defined by functions of the Euler angles depicted here
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C2v E C2 σxz σyz Γ
A1 1 1 1 1 –
A2 1 1 -1 -1 –
B1 1 -1 1 -1 –
B2 1 -1 -1 1 –
θ θ π − θ θ π − θ –
χ χ −χ −χ χ –

|1, 1〉+ ∝ sin θ cosχ 1 1 1 1 A1

|1, 1〉− ∝ sin θ sinχ 1 -1 -1 1 B2

|1, 0〉+ ∝ cos θ 1 -1 1 -1 B1

|2, 2〉+ ∝ sin2 θ cos 2χ 1 1 1 1 A1

|2, 2〉− ∝ sin2 θ sin 2χ 1 -1 -1 1 B2

|2, 1〉+ ∝ sin θ cos θ cosχ 1 -1 1 -1 B1

|2, 1〉− ∝ sin θ cos θ sinχ 1 1 -1 -1 A2

|2, 0〉+ ∝ 3 cos2 θ − 1 1 1 1 1 A1

Table 6: Character table for the C2v point group, in which H2D+ belongs, including the
symmetrized rotational basis functions.

Taking the direct product of irreducible representations of rotationally excited states with

that of vibrationally excited states gives a final irreducible representation of calculated

states. These can then be compared between states that have one quantum of excitation

in the asymmetric stretch versus those that have one in the bend vibration, the nearest

set of energy levels. The final irreducible representations, as well as state energies, are

given below for J = 0, 1, 2 and ν = 1 in the bend and asymmetric stretch in Table 7.

State Bend Bend Rovib. Asym. Str. DMC Asym. Str. Var.-DMC Rovib.
|J,K〉p Irr. Rep. Energy (cm−1) Irr. Rep. Energy (cm−1) Energy (cm−1)
|0, 0〉 A1 2206.244 B2 2333.4 1.6
|1, 1〉+ A1 2247.018 B2 2376.6 5.4
|1, 1〉− B2 2259.132 A1 2395.0 5.7
|1, 0〉+ B1 2278.765 A2 2407.3 -0.1
|2, 2〉+ A1 2318.616 B2 2458.5 17.2
|2, 2〉− B2 2322.992 A1 2469.2 19.8
|2, 1〉+ B1 2379.618 A2 2506.0 4.4
|2, 1〉− A2 2415.760 B1 2561.2 5.3
|2, 0〉+ A1 2427.370 B2 2565.5 2.0

Table 7: Listing of irreducible representations of rovibrational states of H2D+, as well
as comparison of DMC to variationally calculated literature values and the energy gaps
between states of the same symmetry

Using the energy gaps and irreducible representation labels, an energy level diagram can

be constructed showing the mixing that is occuring versus what is being calculated. This
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has been done for the J = 1 states below, showing that if mixing between bend excited

and asymmetric stretch excited states was included, the energy levels of the asymmetric

stretch states would be pushed upward.

Figure 14: The following energy level diagram shows how the mixing of excluded states
from the DMC calculation likely lead to the error in the calculation

Lit. Bend

|1, 1〉+

|1, 1〉−

|1, 0〉+

Lit. Asym. Str.

|1, 1〉+

|1, 1〉−

|1, 0〉+

DMC Asym. Str.

|1, 1〉+

|1, 1〉−

|1, 0〉+

E

6 Conclusion

In this work, we have provided an advancement in diffusion Monte Carlo methodology,

allowing quick application to rotationally excited states of small molecules. This was

used to show that rotational excitation of CH+
5 and its deuterated isotopologues has little

effect on the overall wavefunction. It was also used to increase the body of evidence that

hydrogen and deuterium atoms will tend to localize in a predictable manner around the

central carbon atom in these molecules. The methodology was then tested with fixed

node diffusion Monte Carlo, to determine the efficacy of combining the approaches for
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rovibrational effects. The combined method had significantly larger errors, which was

shown to likely occur from the exclusion of Coriolis coupling terms. These terms present

a nontrivial addition to diffusion Monte Carlo methodology for further testing.
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8 Appendix

Table 8: Tabulation of rotationally excited energies in cm−1 with 99% confidence intervals for CH+
5 and

its deuterated isotopologues, calculated by rotational basis DMC; the given J = 0 energies correspond
to calculated zero point energies

J CH+
5 CH4D+ CH3D+

2 CH2D+
3 CHD+

4 CD+
5

0 10920 ± 7 10303 ± 4 9699 ± 8 9097 ± 10 8567 ± 7 8042 ± 5
1 7.70 ± 0.19 6.23 ± 0.06 5.42 ± 0.09 4.87 ± 0.05 4.34 ± 0.07 3.90 ± 0.07
1 7.77 ± 0.11 6.76 ± 0.08 5.64 ± 0.10 4.89 ± 0.07 4.34 ± 0.08 3.94 ± 0.05
1 7.77 ± 0.15 6.77 ± 0.10 5.88 ± 0.12 5.00 ± 0.02 4.37 ± 0.08 3.95 ± 0.10
2 23.15 ± 0.54 18.70 ± 0.17 16.15 ± 0.21 14.50 ± 0.16 12.97 ± 0.19 11.73 ± 0.26
2 23.19 ± 0.39 19.16 ± 0.10 16.33 ± 0.28 14.75 ± 0.21 12.99 ± 0.22 11.74 ± 0.18
2 23.20 ± 0.43 19.17 ± 0.22 17.17 ± 0.25 14.83 ± 0.16 13.09 ± 0.22 11.75 ± 0.24
2 23.30 ± 0.42 20.89 ± 0.38 17.38 ± 0.30 14.83 ± 0.14 13.09 ± 0.29 11.81 ± 0.28
2 23.35 ± 0.47 20.89 ± 0.38 17.69 ± 0.39 14.89 ± 0.15 13.11 ± 0.28 11.88 ± 0.22
3 46.35 ± 1.10 37.39 ± 0.33 31.73 ± 0.44 29.03 ± 0.36 25.89 ± 0.50 23.46 ± 0.61
3 46.36 ± 1.07 37.75 ± 0.48 31.82 ± 0.53 29.22 ± 0.24 25.90 ± 0.50 23.46 ± 0.61
3 46.38 ± 0.34 37.77 ± 0.32 34.23 ± 0.39 29.40 ± 0.20 26.09 ± 0.11 23.48 ± 0.46
3 46.42 ± 0.85 39.43 ± 0.24 34.39 ± 0.64 29.57 ± 0.36 26.14 ± 0.40 23.54 ± 0.54
3 46.54 ± 0.79 39.45 ± 0.25 34.65 ± 0.56 29.60 ± 0.42 26.19 ± 0.41 23.58 ± 0.22
3 46.59 ± 0.44 42.42 ± 0.90 34.86 ± 0.52 29.91 ± 0.36 26.23 ± 0.72 23.68 ± 0.26
3 46.62 ± 1.04 42.42 ± 0.90 35.46 ± 0.86 29.91 ± 0.36 26.24 ± 0.71 23.75 ± 0.51
4 77.26 ± 1.77 62.30 ± 0.57 52.28 ± 0.73 48.44 ± 0.49 43.07 ± 0.93 39.07 ± 0.86
4 77.26 ± 1.75 62.49 ± 0.82 52.30 ± 0.80 48.56 ± 0.65 43.07 ± 0.93 39.08 ± 1.10
4 77.29 ± 0.56 62.61 ± 0.65 55.59 ± 0.54 48.64 ± 0.45 43.40 ± 0.39 39.08 ± 1.11
4 77.37 ± 1.39 64.13 ± 0.20 55.72 ± 0.94 49.19 ± 0.67 43.45 ± 0.50 39.11 ± 0.92
4 77.38 ± 1.30 64.20 ± 0.47 57.93 ± 0.95 49.20 ± 0.35 43.59 ± 0.36 39.31 ± 0.46
4 77.44 ± 0.55 67.15 ± 0.68 58.15 ± 1.26 49.23 ± 0.33 43.63 ± 0.80 39.34 ± 0.48
4 77.47 ± 1.67 67.15 ± 0.68 58.53 ± 0.86 49.34 ± 0.69 43.65 ± 0.58 39.34 ± 0.45
4 77.53 ± 0.48 71.35 ± 1.63 58.69 ± 0.91 50.08 ± 0.64 43.76 ± 1.38 39.52 ± 0.86
4 77.72 ± 1.33 71.35 ± 1.63 58.74 ± 1.48 50.08 ± 0.64 43.76 ± 1.38 39.56 ± 0.67
5 115.71 ± 1.97 93.38 ± 0.97 77.80 ± 1.02 72.59 ± 0.81 64.49 ± 1.49 58.52 ± 1.41
5 115.77 ± 2.31 93.38 ± 1.18 77.81 ± 1.07 72.62 ± 0.82 64.49 ± 1.49 58.54 ± 1.44
5 115.87 ± 1.15 93.72 ± 1.09 81.94 ± 0.86 73.16 ± 0.97 64.98 ± 0.78 58.62 ± 1.71
5 115.89 ± 2.31 95.00 ± 0.42 81.98 ± 1.28 73.22 ± 0.50 65.00 ± 0.79 58.62 ± 1.72
5 115.89 ± 2.31 95.10 ± 1.01 85.44 ± 1.64 73.27 ± 0.58 65.27 ± 0.54 58.92 ± 0.87
5 115.98 ± 1.84 98.04 ± 0.54 85.74 ± 1.12 73.64 ± 1.09 65.36 ± 1.02 58.93 ± 0.89
5 116.21 ± 0.59 98.05 ± 0.56 87.06 ± 2.19 73.84 ± 1.04 65.43 ± 1.19 58.96 ± 0.87
5 116.23 ± 0.93 102.25 ± 1.35 87.59 ± 1.56 74.30 ± 0.54 65.48 ± 0.89 59.09 ± 0.64
5 116.25 ± 0.96 102.25 ± 1.35 87.94 ± 1.83 74.30 ± 0.54 65.48 ± 0.82 59.10 ± 1.23
5 116.46 ± 2.20 107.67 ± 2.57 88.18 ± 1.38 75.37 ± 1.00 65.68 ± 2.25 59.19 ± 0.67
5 116.46 ± 1.22 107.67 ± 2.57 89.18 ± 1.25 75.37 ± 1.00 65.68 ± 2.25 59.35 ± 1.17
6 161.40 ± 2.87 130.42 ± 1.62 108.30 ± 1.34 101.49 ± 1.36 90.13 ± 2.19 81.81 ± 2.11
Continued on next page
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Table 8 – continued from previous page
J CH+

5 CH4D+ CH3D+
2 CH2D+

3 CHD+
4 CD+

5

6 161.42 ± 3.07 130.58 ± 1.57 108.30 ± 1.31 101.67 ± 0.79 90.13 ± 2.19 81.81 ± 2.13
6 162.08 ± 2.04 131.10 ± 1.62 113.32 ± 1.28 102.00 ± 1.24 90.81 ± 1.31 82.09 ± 2.45
6 162.17 ± 2.20 132.07 ± 0.80 113.35 ± 1.63 102.26 ± 0.96 90.81 ± 1.31 82.09 ± 2.44
6 162.27 ± 2.59 132.14 ± 1.68 117.48 ± 2.01 102.53 ± 1.24 91.25 ± 0.91 82.40 ± 1.36
6 162.28 ± 2.55 135.09 ± 0.62 117.72 ± 1.15 102.81 ± 1.62 91.31 ± 1.07 82.45 ± 1.44
6 162.58 ± 0.86 135.13 ± 0.79 120.71 ± 2.77 102.90 ± 1.51 91.53 ± 0.92 82.46 ± 1.46
6 162.64 ± 2.96 139.32 ± 1.11 120.99 ± 2.82 103.28 ± 0.63 91.56 ± 1.75 82.50 ± 1.64
6 162.71 ± 1.37 139.32 ± 1.11 121.97 ± 1.68 103.34 ± 0.67 91.57 ± 1.45 82.71 ± 0.92
6 162.76 ± 1.30 144.74 ± 2.23 123.83 ± 2.27 104.52 ± 0.83 91.71 ± 1.46 82.74 ± 0.93
6 162.94 ± 0.52 144.74 ± 2.23 123.84 ± 2.27 104.52 ± 0.82 91.75 ± 1.47 82.76 ± 1.03
6 162.97 ± 1.44 151.38 ± 3.75 124.05 ± 2.50 105.77 ± 1.45 91.98 ± 3.32 82.97 ± 1.67
6 163.04 ± 2.62 151.38 ± 3.75 124.87 ± 1.68 105.77 ± 1.45 91.99 ± 3.32 82.98 ± 1.19
7 214.36 ± 4.16 173.58 ± 2.21 143.76 ± 1.66 134.58 ± 1.17 119.98 ± 3.01 108.93 ± 3.01
7 214.37 ± 4.09 173.84 ± 2.35 143.76 ± 1.64 135.64 ± 2.05 119.98 ± 3.01 108.93 ± 3.00
7 215.80 ± 2.67 174.76 ± 2.19 149.73 ± 1.73 136.24 ± 1.56 120.86 ± 1.99 109.52 ± 3.33
7 215.86 ± 3.11 175.32 ± 2.26 149.75 ± 1.99 136.38 ± 2.18 120.86 ± 1.99 109.52 ± 3.34
7 216.18 ± 3.86 175.40 ± 1.38 154.72 ± 2.41 136.39 ± 1.47 121.48 ± 1.32 109.67 ± 1.96
7 216.48 ± 1.31 178.28 ± 0.84 154.77 ± 1.40 136.49 ± 2.27 121.49 ± 1.34 109.71 ± 2.17
7 216.49 ± 2.59 178.34 ± 1.46 158.66 ± 3.19 136.54 ± 1.46 121.87 ± 1.40 109.91 ± 2.12
7 216.49 ± 2.58 182.55 ± 1.07 160.26 ± 2.48 136.87 ± 0.92 121.93 ± 1.92 109.92 ± 2.13
7 216.91 ± 1.59 182.56 ± 1.06 160.32 ± 4.58 137.26 ± 1.00 122.01 ± 2.42 110.21 ± 1.39
7 216.98 ± 1.47 187.97 ± 1.92 162.26 ± 2.71 138.48 ± 0.82 122.08 ± 1.66 110.24 ± 1.48
7 217.03 ± 4.20 187.97 ± 1.92 162.69 ± 2.40 138.53 ± 0.83 122.17 ± 1.43 110.24 ± 1.47
7 217.23 ± 1.16 194.61 ± 3.33 165.74 ± 3.28 139.86 ± 1.19 122.34 ± 2.26 110.38 ± 2.17
7 217.25 ± 2.43 194.61 ± 3.33 166.12 ± 2.98 139.86 ± 1.19 122.41 ± 2.34 110.40 ± 1.28
7 217.32 ± 1.15 202.46 ± 5.16 166.18 ± 2.70 141.28 ± 1.98 122.67 ± 4.55 110.48 ± 1.27
7 217.43 ± 1.39 202.46 ± 5.16 166.21 ± 3.69 141.28 ± 1.98 122.68 ± 4.56 110.64 ± 1.77
8 274.58 ± 5.61 222.85 ± 2.99 184.20 ± 2.06 173.16 ± 2.18 154.02 ± 3.99 139.90 ± 4.12
8 274.60 ± 5.62 223.13 ± 3.26 184.20 ± 2.05 174.21 ± 3.11 154.02 ± 3.99 139.90 ± 4.10
8 276.74 ± 3.64 224.59 ± 2.92 191.12 ± 2.19 174.28 ± 2.13 155.12 ± 2.81 140.75 ± 2.85
8 277.02 ± 5.03 224.64 ± 2.81 191.14 ± 2.36 174.43 ± 3.05 155.12 ± 2.81 140.76 ± 2.69
8 277.16 ± 4.22 225.06 ± 2.19 197.03 ± 2.86 174.74 ± 1.36 155.93 ± 1.92 140.95 ± 4.45
8 277.93 ± 1.99 227.63 ± 1.05 197.03 ± 1.96 174.86 ± 1.33 155.93 ± 1.92 140.95 ± 4.45
8 278.23 ± 5.51 227.65 ± 2.56 201.91 ± 3.55 174.88 ± 2.59 156.50 ± 1.77 141.32 ± 2.86
8 278.67 ± 2.91 231.93 ± 1.39 202.77 ± 2.55 176.03 ± 2.13 156.51 ± 1.90 141.34 ± 2.91
8 278.70 ± 2.87 231.96 ± 1.33 204.53 ± 5.45 176.19 ± 1.47 156.77 ± 3.04 141.50 ± 1.99
8 278.83 ± 3.37 237.36 ± 1.76 207.32 ± 2.99 177.19 ± 1.02 156.78 ± 2.85 141.55 ± 2.68
8 278.88 ± 1.47 237.37 ± 1.75 207.41 ± 3.22 177.46 ± 1.09 156.88 ± 2.14 141.65 ± 2.08
8 278.93 ± 1.37 244.00 ± 2.95 209.09 ± 4.20 178.80 ± 1.08 157.01 ± 2.04 141.69 ± 2.18
8 279.20 ± 2.23 244.00 ± 2.95 209.47 ± 3.63 178.81 ± 1.09 157.21 ± 2.14 141.88 ± 1.56
8 279.31 ± 1.11 251.86 ± 4.67 213.46 ± 4.35 180.30 ± 1.64 157.36 ± 3.26 141.94 ± 1.75
8 279.44 ± 1.24 251.86 ± 4.67 213.51 ± 4.18 180.31 ± 1.64 157.43 ± 3.38 141.95 ± 1.72
Continued on next page
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Table 8 – continued from previous page
J CH+

5 CH4D+ CH3D+
2 CH2D+

3 CHD+
4 CD+

5

8 279.50 ± 2.18 260.89 ± 6.78 213.79 ± 4.54 181.91 ± 2.59 157.72 ± 5.95 142.10 ± 2.31
8 279.73 ± 2.19 260.89 ± 6.78 213.92 ± 2.94 181.91 ± 2.59 157.72 ± 5.94 142.10 ± 1.77
9 342.05 ± 7.27 278.21 ± 3.99 229.64 ± 2.59 216.38 ± 4.21 192.24 ± 5.12 174.70 ± 5.48
9 342.06 ± 7.31 278.42 ± 4.27 229.64 ± 2.59 216.50 ± 4.01 192.24 ± 5.12 174.70 ± 5.47
9 344.93 ± 5.38 279.98 ± 3.87 237.48 ± 2.69 216.67 ± 1.69 193.57 ± 3.77 175.63 ± 3.73
9 345.13 ± 6.44 280.67 ± 3.54 237.50 ± 2.80 217.04 ± 3.06 193.57 ± 3.77 175.65 ± 3.60
9 345.88 ± 5.23 281.05 ± 3.08 244.32 ± 2.61 217.61 ± 2.71 194.60 ± 2.71 176.41 ± 5.82
9 346.63 ± 6.31 283.14 ± 3.11 244.36 ± 3.31 217.63 ± 2.31 194.60 ± 2.70 176.42 ± 5.82
9 347.00 ± 2.97 283.17 ± 1.34 250.10 ± 3.97 218.55 ± 2.97 195.33 ± 2.17 176.49 ± 3.26
9 347.66 ± 3.80 287.43 ± 1.95 250.54 ± 2.44 220.38 ± 2.09 195.36 ± 2.17 176.55 ± 2.61
9 348.36 ± 3.36 287.51 ± 1.98 254.63 ± 5.75 220.39 ± 1.34 195.75 ± 3.11 176.73 ± 3.74
9 348.64 ± 1.45 292.90 ± 1.92 256.01 ± 3.34 220.51 ± 1.95 195.79 ± 4.03 176.73 ± 3.77
9 348.81 ± 0.98 292.91 ± 1.88 256.18 ± 3.87 221.41 ± 1.58 195.88 ± 2.70 177.04 ± 2.91
9 348.84 ± 1.47 299.53 ± 2.69 259.76 ± 5.07 222.59 ± 1.19 195.95 ± 3.14 177.11 ± 3.05
9 349.04 ± 4.07 299.54 ± 2.69 260.70 ± 5.13 222.67 ± 1.22 196.30 ± 2.96 177.27 ± 2.14
9 349.05 ± 4.04 307.40 ± 4.20 261.90 ± 5.01 224.21 ± 1.44 196.38 ± 2.76 177.29 ± 2.11
9 349.35 ± 3.66 307.40 ± 4.20 262.17 ± 3.79 224.21 ± 1.44 196.61 ± 3.09 177.31 ± 2.73
9 349.36 ± 2.03 316.46 ± 6.22 266.19 ± 5.01 225.86 ± 2.18 196.76 ± 4.44 177.36 ± 2.43
9 349.38 ± 2.38 316.46 ± 6.22 266.65 ± 5.60 225.86 ± 2.18 196.80 ± 4.53 177.42 ± 1.88
9 349.44 ± 2.41 326.63 ± 8.54 267.16 ± 4.49 227.64 ± 3.30 197.11 ± 7.48 177.55 ± 2.21
9 349.50 ± 1.02 326.63 ± 8.54 267.19 ± 5.74 227.64 ± 3.30 197.11 ± 7.48 177.58 ± 2.33
10 416.77 ± 9.12 339.63 ± 5.20 280.07 ± 3.27 262.78 ± 5.21 234.64 ± 6.41 213.35 ± 7.15
10 416.77 ± 9.07 339.72 ± 5.39 280.07 ± 3.26 262.87 ± 5.32 234.64 ± 6.41 213.35 ± 7.14
10 420.34 ± 7.74 341.65 ± 4.93 288.84 ± 3.28 263.49 ± 2.40 236.20 ± 4.88 214.33 ± 4.85
10 420.47 ± 7.97 342.61 ± 4.39 288.85 ± 3.34 264.80 ± 4.38 236.20 ± 4.88 214.36 ± 4.72
10 421.81 ± 6.19 343.34 ± 4.17 296.62 ± 3.29 266.04 ± 3.50 237.47 ± 3.65 215.22 ± 3.98
10 422.37 ± 6.69 344.58 ± 3.60 296.67 ± 3.80 266.28 ± 2.67 237.47 ± 3.65 215.36 ± 3.39
10 423.60 ± 4.63 345.06 ± 2.13 303.38 ± 4.45 267.33 ± 2.12 238.40 ± 2.81 215.93 ± 7.42
10 424.32 ± 3.41 349.06 ± 2.41 303.51 ± 2.75 267.62 ± 3.71 238.42 ± 2.80 215.93 ± 7.43
10 424.72 ± 4.74 349.10 ± 3.53 309.03 ± 6.01 267.63 ± 1.70 238.96 ± 3.04 216.13 ± 4.76
10 425.64 ± 1.99 354.56 ± 2.50 310.74 ± 6.69 270.20 ± 2.90 239.07 ± 4.61 216.20 ± 4.84
10 425.86 ± 4.96 354.62 ± 2.33 310.94 ± 3.37 270.52 ± 2.24 239.12 ± 2.98 216.26 ± 3.03
10 426.50 ± 1.51 361.21 ± 2.73 313.87 ± 6.14 271.14 ± 1.47 239.20 ± 4.67 216.35 ± 2.41
10 426.59 ± 1.53 361.21 ± 2.74 315.20 ± 4.79 271.51 ± 1.61 239.58 ± 3.57 216.46 ± 3.92
10 426.72 ± 2.98 369.07 ± 3.87 318.46 ± 5.51 272.98 ± 1.44 239.65 ± 3.95 216.49 ± 4.05
10 427.00 ± 1.16 369.07 ± 3.87 318.56 ± 6.03 273.02 ± 1.44 240.07 ± 3.78 216.59 ± 3.01
10 427.05 ± 2.48 378.16 ± 5.69 320.47 ± 3.58 274.71 ± 1.89 240.21 ± 3.95 216.72 ± 3.26
10 427.07 ± 2.19 378.16 ± 5.69 321.04 ± 5.27 274.71 ± 1.89 240.34 ± 4.24 216.76 ± 2.22
10 427.15 ± 2.38 388.40 ± 7.93 324.70 ± 7.06 276.53 ± 2.82 240.51 ± 5.80 216.82 ± 2.33
10 427.42 ± 3.72 388.40 ± 7.93 325.21 ± 6.17 276.53 ± 2.82 240.54 ± 5.82 216.86 ± 2.89
10 427.71 ± 5.98 399.62 ± 10.38 325.58 ± 6.28 278.47 ± 4.10 240.84 ± 9.18 216.93 ± 2.81
10 427.71 ± 5.85 399.62 ± 10.38 325.90 ± 7.16 278.47 ± 4.10 240.85 ± 9.18 216.99 ± 2.80
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