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Inclusive gluon production in high energy onium-onium scattering
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We calculate the inclusive single-gluon production cross section in high energy onium-onium scattering
including pomeron loop effects. The resulting inclusive cross section is given by the kT-factorization
formula with one of the unintegrated gluon distribution functions depending on the total onium-onium
scattering cross section, which includes all pomeron loops and has to be found independently. We discuss
the limits of applicability of our result and argue that they are given by the limits of applicability of the
pomeron loop resummation approach. Since the obtained kT-factorization formula is infrared divergent
we conclude that, in order to consistently calculate the (infrared-finite) gluon production cross section in
onium-onium scattering, one has to include corrections going beyond the pomeron loop approximation.
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I. INTRODUCTION

Recently there has been a lot of renewed interest in
resummation of the so-called ‘‘pomeron loop’’ diagrams
for high energy scattering [1–8]. These diagrams are par-
ticularly important for the calculation of the cross section
for high energy scattering of two quarkonia. It has been
argued that the growth of the onium-onium total scattering
cross section with energy due to the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) evolution [9] is unitarized (at
fixed impact parameter) by the multiple hard pomeron
exchanges realized by the pomeron loop diagrams [10–
14]. Such unitarization is qualitatively different from the
unitarization of the total scattering cross section in deep
inelastic scattering (DIS) on a nucleus [15–20]: in the
onium-onium scattering case one considers a collision of
two small and dilute objects, whereas in the case of DIS
one of the scatterers is a large and dense nucleus.

The contribution of multiple pomeron exchanges to the
total onium-onium scattering cross section has been
studied within the framework of Mueller’s dipole model
[10] both analytically by Mueller and Patel [11] and
Navelet and Peschanski [13] and numerically by Salam
in [14]. The approach of [11,13,14] has recently been
reformulated in the language of the color glass condensate
by Iancu and Mueller in [1]. The main idea behind the
dipole model approach to onium-onium scattering is re-
viewed in Sec. II. When viewed in the center-of-mass
frame, each of the colliding onia develops a dipole wave
function. The dipoles in the light-cone wave functions of
the onia interact pairwise by two-gluon exchanges [1,11].
This process is equivalent to resumming the pomeron loop
diagrams in the traditional Feynman diagram language and
is illustrated below in Fig. 2.

Our goal in this paper is to calculate the single-gluon
inclusive production cross section in the onium-onium
scattering described in the framework of Mueller’s dipole
model [1,11]. This is an interesting observable one could
ress: yuri@mps.ohio-state.edu
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study in ���� scattering at the future linear colliders. The
calculation turns out to be analogous to the case of gluon
production in DIS considered in [21] and is outlined in
Sec. III. Using the real-virtual cancellations of some of the
final state interactions observed in [22] we arrive at the
expression for the inclusive cross section of the single-
gluon production given by Eq. (23). As one can also see
from a different form of Eq. (23) given by Eq. (29), the
resulting gluon production cross section adheres to
Abramovsky-Gribov-Kancheli (AGK) cutting rules [23]
and is given by the kT-factorization expression [24], simi-
lar to the results of [21,25,26] for DIS and to [27]. The
kT factorization appears here because of the fact that, due
to the nature of the approximation of [1,11], one of the onia
wave functions (the one closer to the produced gluon in
rapidity) appears to be unsaturated, i.e., has no saturation
effects in it and is described simply by the linear BFKL
evolution. This makes the problem effectively identical to
the case of DIS or pA collisions.

The kT-factorization formula for the gluon production
cross section is known to diverge as �1=k2

T in the infrared
[28] (here kT is the transverse momentum of the produced
gluon). This divergence is believed to be curable if one
includes saturation effects in both of the onia wave func-
tions, which would lead to a breakdown of the
kT-factorization expression but would yield an infrared-
finite production cross section (a similar observation ap-
pears to hold for gluon production in nucleus-nucleus
collisions [29–31]). For the onium-onium scattering, satu-
ration in both of the onia wave functions can be included
by resumming all pomeron loop diagrams with the loops
spanning less than a half of the total rapidity interval.
However, as we discuss in Sec. IV, when rapidity is high
enough for such ‘‘small’’ pomeron loops to become im-
portant, other corrections to the pomeron loops approach
become equally important as well. Some of these non-
pomeron loop corrections have been discussed in [6] to
explain the discrepancy between the results of [2,5]. In the
traditional Feynman diagram language these corrections
can be associated with higher order terms in the impact
-1 © 2005 The American Physical Society
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FIG. 1. Onium-onium scattering as considered in the text.
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factors, zero-rapidity size pomeron loops and/or with iter-
ations of next-to-leader order (NLO) and next-to-next-to-
leading order (NNLO) BFKL kernels in the LO BFKL
ladder. Therefore, we arrive at a somewhat unsettling con-
clusion that in order to obtain an infrared-finite gluon
production cross section in onium-onium scattering in a
consistent way one may have to go beyond the pomeron
loop approximation to high energy scattering.

II. ONIUM-ONIUM SCATTERING AT
INTERMEDIATE HIGH ENERGY

Let us consider high energy scattering of two quarkonia
in the approximation put forward in [1,11,12]. The nota-
tions we use are explained in Fig. 1. The onia have trans-
verse sizes x01 � x0 � x1 and x0010 � x00 � x10 with
x0; x1; x00 ; x10 the transverse coordinates of quarks and an-
tiquarks in both onia. The impact parameter of the collision
is B and the rapidity interval between the onia is Y.

The dipole model description of high energy onium-
onium scattering [1,11,12] is illustrated in Fig. 2(a). In
the center-of-mass frame, each of the onia develops a
system of color dipoles in its light-cone wave function
before the collisions. At the time of the collision [denoted
by the dash-dotted line in Fig. 2(a)] the dipoles in both onia
interact with each other pairwise by two-gluon exchanges.
A

Y/2

0

−Y/2

FIG. 2 (color online). Three-pomeron exchange diagram for onium
diagram language. The double lines in (a) denote gluons in the larg
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In Fig. 2(a) we show the case when three pairs of dipoles
interact with each other. This corresponds to a three-
pomeron exchange in the traditional Feynman diagram
language, which is illustrated in Fig. 2(b). In the dipole
model [11,12], the BFKL evolution [9], which is included
in the ladder diagrams in Fig. 2(b), comes in through the
dipole evolution in the light-cone wave functions of the
onia, which leads to a generation of the interacting dipoles.

The dipole wave function of an onium is described by
the generating functional for dipoles Z�x01; b; Y; u�, which
obeys the following evolution equation [10,12]:
Z�x01; b; Y; u� � u�x01; b�e�2�s ln�x01=��Y �
�s
2�

Z Y

0
dye�2�s ln�x01=���Y�y�

�
Z
�
d2x2

x2
01

x2
02x

2
12

Z
�
x02; b�

1

2
x12; y; u

�
Z
�
x12; b�

1

2
x20; y; u

�
; (1)

with

� s 	
�sNc
�

(2)

and u�x01; b� a function describing a dipole of transverse size x01 at impact parameter b [12].
B

-onium scattering in (a) the dipole model and in (b) the Feynman
e-Nc limit. The ovals in (b) denote triple pomeron vertices.
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Using Z�x01; b; Y; u� one can define the density of k
dipoles in the onium wave function by [11]

nk�x01; b; Y; r1; b1; . . . ; rk; bk�

�
1

k!

�kZ�x01; b; Y; u�
�u�r1; b1� 
 
 
�u�rk; bk�

��������u�1
: (3)
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If normalized appropriately, nk would have the meaning of
inclusive probability of finding k dipoles of given sizes ri’s
at impact parameters bi’s along with any number of extra
dipoles. Note that nk, as defined by Eq. (3), is normalized
to give a density of k dipoles rather than probability.

Let us denote the forward amplitude of dipole-dipole
scattering mediated by a two-gluon exchange as
�d�r; r0; b� � �2
s
CF
Nc

ln2

�
jb� �1=2�r� �1=2�r0j jb� �1=2�r� �1=2�r0j
jb� �1=2�r� �1=2�r0j jb� �1=2�r� �1=2�r0j

�
: (4)

Here r and r0 are transverse separations of the two dipoles and b is their impact parameter.
With the aid of the definition from Eq. (4) we can write the forward scattering amplitude for onium-onium scattering,

which includes a small-x evolution, as

�D�x01; x0010 ; B; Y� � �1�
X1
k�1

k!
Z
d2r1d

2b1 
 
 
 d
2rkd

2bkd
2r01d

2b01 
 
 
 d
2r0kd

2b0knk�x01; B; Y=2; r1; b1; 
 
 
 ; rk; bk�

� nk�x0010 ; 0;�Y=2; r01; b
0
1; 
 
 
 ; r0k; b

0
k���1�kd�r1; r

0
1; b1 � b

0
1� 
 
 
 d�rk; r

0
k; bk � b

0
k�; (5)

where we chose the impact parameters of dipoles 01 and 0010 to be B and zero correspondingly. The notations of Eq. (5) are
explained in Fig. 1.

Using Eq. (3) in Eq. (5) we rewrite it as

�D�x01; x0010 ; B; Y� � �1�
X1
k�1

1

k!

Z
d2r1d2b1 
 
 
 d2rkd2bkd2r01d

2b01 
 
 
 d
2r0kd

2b0k
�kZ�x01; B; Y=2; u�

�u�r1; b1� 
 
 
�u�rk; bk�

��������u�1

�
�kZ�x0010 ; 0;�Y=2; v�
�v�r01; b

0
1� 
 
 
�v�r

0
k; b

0
k�

��������v�1
��1�kd�r1; r

0
1; b1 � b

0
1� 
 
 
 d�rk; r

0
k; bk � b

0
k�; (6)

where we relabeled functions u by v for the dipole 0010. If one could solve Eq. (1) for an arbitrary function u, then the
solution could be used in Eq. (6) to construct the forward amplitude of onium-onium scattering. Unfortunately no general
analytical solution of Eq. (1) for an arbitrary function u is known.

Equation (6) can be recast in a more compact form:

D�x01; x0010 ; B; Y� � 1�
�
exp

�
�
Z
d2rd2bd2r0d2b0d�r; r0; b� b0�

�
�2

�u�r; b��v�r0; b0�

�
Z�x01; B; Y=2; u�Z�x0010 ; 0;�Y=2; v�

���������u�1;v�1
: (7)
This is our final expression for the onium-onium forward
scattering amplitude here. One could also try to rewrite
Eq. (7) in terms of a functional integral over functions u
and v: however, such an integral representation appears to
require a non-Gaussian weight functional, which is proba-
bly related to the non-Gaussian noise discussed in [2]
within the context of adding pomeron loop corrections to
Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner evolution equations [19,20].

The question of whether D�x01; x0010 ; B; Y� gives a uni-
tary total onium-onium scattering cross section has been
addressed numerically by Salam in [14]. It was demon-
strated by Monte Carlo simulations in [14] that
D�x01; x0010 ; B; Y� is unitary at a fixed impact parameter b.
To simplify the analysis of D�x01; x0010 ; B; Y� in Eq. (7) it
would be very useful to find an integral/differential equa-
tion governing the high energy evolution of
D�x01; x0010 ; B; Y�, similar to the case of DIS considered
in [17,18]. However, despite many attempts, no such equa-
tion for D�x01; x0010 ; B; Y� has been found at this time.

We illustrate the onset of unitarity in D from Eq. (7) by
using a simple toy model, originally proposed by Mueller
in [12]. Suppressing the transverse coordinate dependence
we write the toy model analog of Eq. (1) as [12]

dZ
dY
� �sZ2 � �sZ (8)

with the initial condition given by

Z�Y � 0; u� � u: (9)

The solution of the toy evolution equation (8) satisfying the
initial condition (9) is [12]

Z�Y; u� �
u

u� �1� u�e�sY
: (10)

The toy model analog of Eq. (7) is
-3
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D�Y��1�
�
exp

�
�d

�2

�u�v

�
Z�Y=2;u�Z�Y=2;v�

���������u�1;v�1
;

(11)

where d is some positive small number, 0< d< 1, and we
put Y=2 instead of �Y=2 in the argument of Z�Y=2; v� to
underline the fact that it is the absolute value of the rapidity
interval, and not the rapidity itself, which matters there.
Substituting Z from Eq. (10) into Eq. (11), expanding the
exponential, and performing the differentiations with re-
spect to u and v yields

D�Y� � �
X1
n�1

n!��1�ndne�sY�1� e�sY=2�2n�2: (12)

The series in Eq. (12) is divergent; however, since d > 0, it
is Borel summable. At large rapidities we can approximate
1� e�sY=2 � �e�sY=2 rewriting Eq. (12) as

D�Y� � �
X1
n�1

n!��1�ndnen�sY (13)

which after Borel resummation yields

D�Y� � 1�
1

de�sY
exp

�
1

de�sY

�
�
�
0;

1

de�sY

�
: (14)

The amplitude D�Y� from Eq. (14) is shown in Fig. 3 as a
function of �sY. One can see that at very large Y the black
disk limit (D � 1) is reached and is never exceeded, i.e.,
the amplitude is unitary.

It is interesting to note that if one does not make the 1�
e�sY=2 � �e�sY=2 approximation and Borel resums the full
series in Eq. (12), the resulting amplitude would violate
unitarity: as one increases rapidity it would grow, becom-
ing greater than 1 at some large rapidity Y, and, after
reaching a maximum it would slowly decrease, approach-
ing 1 from above at asymptotically high rapidities. Indeed
the pomeron loop approximation of [1,11] consistently
resums only the leading terms at high energy, and has no
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FIG. 3. Onium-onium scattering amplitude D�Y� from the toy
model result in Eq. (14) plotted as a function of �sY for d �
0:01 (thick line). The thin horizontal line denotes the black disk
limit.
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control over the subleading terms, such as 1 that we
neglected compared to e�sY=2. Therefore, such pathological
behavior of D�Y� is probably due to the fact that the toy
model at hand, along with the approximation of [1,11],
does not consistently resum the subleading terms.
However, it may also indicate the importance of subleading
corrections for onium-onium scattering at very high rap-
idities. After all, the same toy model would always give a
unitary cross section for DIS, where the dipole-nucleus
forward scattering amplitude is given by N � 1� Z
[17,18]. We will return to this discussion in Sec. IV.

III. INCLUSIVE GLUON PRODUCTION

To calculate a single-gluon production cross section in
the approximation to onium-onium scattering developed in
[1,11] we start with the lowest order contribution. One of
the corresponding diagrams is shown in Fig. 4. The pro-
duced gluon is denoted by the cross. The disconnected
s-channel (horizontal) gluon line in Fig. 4 indicates that
the gluon can be emitted off either the quark or the anti-
quark lines in the onium 01. The disconnected t-channel
(vertical) gluon line denotes the sum of the gluon inter-
actions with the emitted gluon, quark, and antiquark in
dipole 01 at one end, and with the quark and the antiquark
in dipole 0010 at the other end.

The dipole model approach to onium-onium scattering
[11] was developed in the Coulomb gauge, which is
equivalent to the light-cone A� � 0 gauge for the wave
function of the onium moving in the light-cone ‘‘�’’
direction and to the A� � 0 gauge for the wave function
of the onium moving in the light-cone ‘‘�’’ direction. In
analyzing the lowest order diagram from Fig. 4 we will
work in the A� � 0 light-cone gauge, where the 01 onium
is taken to be going in the ‘‘�’’ direction and the 0010

onium is taken to be going in the ‘‘�’’ direction.
The lowest order gluon production cross section is well

known [32–34]. Following [21,35] we can write it as (for a
review of similar derivations see [36])
x

x

x

x

z

0’

1’

0

1

FIG. 4. Lowest order gluon production in onium-onium scat-
tering.
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d�LO�x01; x0010 �

d2kdyd2B
�
�sCF
�2

1

�2��2
Z
d2z1d2z2e

�ik
�z1�z2�
X1

i;j�0

��1�i�j
z1 � xi
jz1 � xij

2 

z2 � xj
jz2 � xjj

2

�
dGq

�
z1 � xj; x0010 ;

1

2
�z1 � xj�

�

� dGq

�
z2 � xi; x0010 ;

1

2
�z2 � xi�

�
� dGq

�
z1 � z2; x0010 ;

1

2
�z1 � z2�

�
� dGq

�
xi � xj; x0010 ;

1

2
�xi � xj�

��
;

(15)

where

dGq�r; r
0; b� �

Nc
CF

d�r; r0; b� � �2
s ln2

�
jb� �1=2�r� �1=2�r0j jb� �1=2�r� �1=2�r0j
jb� �1=2�r� �1=2�r0j jb� �1=2�r� �1=2�r0j

�
(16)
is the forward amplitude for the scattering of an adjoint
(gluon) dipole of size r on a fundamental (quark) dipole of
size r0 separated by the impact parameter b and mediated
by a two-gluon exchange. Again we assume that the impact
parameter of the onium 0010 is zero. In Eq. (15), k and y are
the transverse momentum and rapidity of the produced
gluon, while z1 and z2 are its transverse coordinates, which
are different on both sides of the cut [21,29,35,36].

The task now is to include the effects of the small-x
evolution taking place in both of the onia’s wave functions
in Eq. (15). In our approach we will be closely following
the case of gluon production in DIS considered previously
in [21]. Just like in Fig. 2 we will consider onium-onium
scattering in the center-of-mass frame, and, like in [11] we
will be working in the Coulomb gauge. We will consider
the case in which the produced gluon has rapidity y such
that 0< y< Y=2, i.e., the gluon is emitted closer to onium
01 than to 0010 in the rapidity interval. The rapidity-
dependent gluon emissions of Fig. 2 generating small-x
evolution can be divided into three categories: (i) emission
of ‘‘harder’’ gluons, with rapidity ~y such that y < ~y < Y=2;
(ii) emission of ‘‘softer’’ gluons in the same onium’s (01)
wave function, i.e., emissions in the rapidity interval 0<
~y < y; (iii) emissions in the wave function of onium 0010, in
the rapidity interval �Y=2< ~y < 0.

The analysis of category (i) and (ii) emissions is identi-
cal to that for gluon production in DIS carried out in
Secs. III A and III B of [21] correspondingly and heavily
relies on the real-virtual cancellations of the final state
interactions discussed in [22]. In [21] the onium develops
a dipole wave function which later interacts with the target
nucleus. If the onium is moving along the light-cone ‘‘�’’
direction, the interval of the light-cone time x� over which
it interacts with the nucleus is negligibly short compared to
the time it takes for the dipole wave function to develop
[10,35,36]. This is very similar to onium-onium scattering:
the light-cone interaction time between the two onia’s
wave functions is negligible compared to the time required
to develop each of these wave functions. Thus, from the
standpoint of one of these wave functions (the one in
onium 01), the interaction is instantaneous, happening at,
say, light-cone time x� � 0. Then, emissions of harder
gluons [type (i)] may happen either before or after the
094009
interaction, at x� < 0 and x� > 0 correspondingly. They
may be real (the gluon is present in the x� � �1 final
state) or virtual (the gluon is absent in the final state), given
by Figs. 2 and 4 in [21] correspondingly. Because of the
real-virtual cancellations of [22], the final state emissions/
absorptions of such gluons cancel, leaving only initial state
radiation. The overall effect of type (i) emissions is to
develop a dipole cascade before the collision which would
lead to the creation of the ‘‘last’’ dipole in which the
measured gluon is produced. In other words, instead of
being emitted by the quark and antiquark in the original
onium 01 , as shown in Fig. 4 leading to Eq. (15), the
measured gluon would not be emitted in some dipole 23,
generated by the dipole evolution.

The dipole number density at rapidity y in the onium 01
is described by the quantity n1�x01; B; Y=2�
y; x23; �1=2��x2 � x3�� from Eq. (3) with k � 1. Using
Eq. (1) we see that it obeys the following differential
equation [11,12], which is actually equivalent to the
BFKL equation [9]:

@n1�x01; B; y; x23; b�
@y

�
�sNc
2�2

Z
d2x2

x2
01

x2
20x

2
21

�

�
n1

�
x02; B�

1

2
x21; y; x23; b

�

� n1

�
x12; B�

1

2
x20; y; x23; b

�

� n1�x01; B; y; x23; b�
�

(17)

with the initial condition

n1�x01; B; y � 0; x23; b� � �2�x01 � x23��
2�B� b�: (18)

To include the effects of type (i) emissions one has to
modify the cross section in Eq. (15) by [21,36]

d�LO�x01; x0010 �

d2kdyd2B
!

Z
d2x23d2bn1�x01; B; Y=2� y; x23; b�

�
d�LO�x23; x0010 �

d2kdyd2b
; (19)

where we are using the notations of [36], which are slightly
different from those of [21].
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The emissions of softer [type (ii)] gluons can again be
analyzed similar to the DIS case of [21]. Analogous to how
it was done in Sec. III B of [21], one can show that the
effect of type (ii) emissions is to convert dGq in Eq. (15)
into the gluon dipole/quark dipole (0010) forward scattering
amplitude with a fully evolved wave function of the
(upper) gluon dipole. However, to complete the picture
one has to understand what happens to the wave function
of the (lower) onium 0010, i.e., one has to analyze type (iii)
emissions. This is rather straightforward: the lower onium
0010 develops a dipole wave function before the collision.
In its light-cone time x� the collision is, again, instanta-
neous, happening at x� � 0, after which it can again emit
more gluons. However, none of the gluons emitted in this
lower onium wave function is tagged upon, i.e., none of
them is required to be present in the final state. Therefore,
the rules for developing the lower onium wave functions
are the same as for the calculation of the total onium-onium
scattering cross sections: all final state emissions cancel
[22], leaving only the initial state emissions shown in
Fig. 2(a) and described by the generating functional Z
from Eq. (1). [We note also that there is no ‘‘cross talk’’
094009
(s-channel mergers) between emissions in the upper and
lower onia in the leading logarithmic approximation con-
sidered here.] Combining what we know now about
types (ii) and (iii) gluon emissions we conclude that they
modify dGq in Eq. (15) into the gluon dipole/quark dipole
forward scattering amplitude with fully evolved wave
functions of both gluon and quark dipoles. To include
types (ii) and (iii) gluon emissions into Eq. (15) we thus
have to replace

dGq�r; r0; b� ! DGq

�
r; r0; b; y�

Y
2

�
(20)

in it. The quantity DGq can be defined by the analogy with
D from Eq. (7) by noting that, in the large-Nc limit, the
gluon dipole is equivalent to two quark dipoles, such that
the corresponding generating functional is just a square of
the generating functional for the quark dipole,

ZG�x01; B; Y=2; u� � �Z�x01; B; Y=2; u�2; (21)

so that
DGq�x01; x0010 ; B; Y� � 1�
�
exp

�
�
Z
d2rd2bd2r0d2b0d�r; r0; b� b0�

�
�2

�u�r; b��v�r0; b0�

�
Z�x01; B; Y=2; u�Z�x01; B; Y=2; u�Z�x0010 ; 0;�Y=2; v�

���������u�1;v�1
: (22)

Combining Eqs. (19) and (20) we finally write for the inclusive gluon production cross section in onium-onium
collisions

d��x01; x0010 �

d2kdyd2B
�
Z
d2x2d2x3n1

�
x01; B;

Y
2
� y; x23;

1

2
�x2 � x3�

�
�sCF
�2

1

�2��2
Z
d2z1d2z2e

�ik
�z1�z2�
X3

i;j�2

��1�i�j
z1 � xi
jz1 � xij

2

�
z2 � xj
jz2 � xjj

2

�
DGq

�
z1 � xj; x0010 ;

1

2
�z1 � xj�; y�

Y
2

�
�DGq

�
z2 � xi; x0010 ;

1

2
�z2 � xi�; y�

Y
2

�

�DGq

�
z1 � z2; x0010 ;

1

2
�z1 � z2�; y�

Y
2

�
�DGq

�
xi � xj; x0010 ;

1

2
�xi � xj�; y�

Y
2

��
: (23)
This is our main result. The above formula is valid for 0<
y< Y=2, and can be easily modified to give the production
cross section for �Y=2< y< 0 by switching

y$ �y; x01 $ x0010 : (24)

If y � 0 (the gluon is produced at midrapidity) Eq. (23)
becomes symmetric, since Dgq should contain only the
linear BFKL evolution, due to the fact that the approxima-
tion to onium-onium scattering employed here [1,11] does
not consistently resum pomeron loops with a rapidity ex-
tent less or equal to Y=2 (see Fig. 5 below). While formally
Eq. (23) with y � 0 sums up some pomeron loops of
rapidity size Y=2 and smaller in DGq, as given by
Eq. (22), such loops were not consistently summed over
in arriving at Eq. (23). Therefore, all but the linear BFKL
pomeron terms in DGq should be neglected in Eq. (23) at
y � 0.

It is interesting to notice that the evolution between the
produced gluon and the closest onium [onium 01 in
Eq. (23)] is given by the linear BFKL equation. This result
is in accordance with the AGK cutting rules [23]. This is
indeed surprising, particularly due to the fact that AGK
violations have been found recently in the inclusive pro-
duction of q �q pairs [37] and in inclusive two-gluon pro-
duction [38] in DIS and pA collisions (see [26] for a
relevant discussion). However, the reason our result (23)
adheres to AGK rules is the same as for the single inclusive
gluon production cross section in DIS: due to the nature of
the approximation to the onium-onium scattering which we
employed here following [1,11], there is no difference
between the wave function of the onium closest to the
-6
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produced gluon in rapidity and the dipole wave function of
the q �q pair in DIS, considered in [21]. Both wave functions
include only pomeron splittings. This leads to the similar-
ity between Eq. (23) and Eq. (30) in [21] and to the fact that
both cross sections adhere to AGK cutting rules. While we
cannot explain why some inclusive cross sections [21]
adhere to AGK rules and some other cross sections
[37,38] violate them, it is clear that the reason AGK rules
work for onium-onium scattering as well as for DIS is due
to moderately high energy approximations applied with the
nonlinear saturation effects being included only in one of
the scatterers wave functions.

Similar to the result of [21], Eq. (23) can be recast in the
kT-factorization form [24]. First we note that, as long as
094009
impact parameters are concerned, n1�x; B; Y; r; b� depends
only on B� b. Therefore,

Z
d2Bn1

�
x01; B;

Y
2
� y; x23;

1

2
�x2 � x3�

�

	 n1

�
x01;

Y
2
� y; x23

�
(25)

in Eq. (23) depends on x23 � x2 � x3, but does not depend
on x2 � x3. Using this fact we can recast Eq. (23) into the
following form, similar to how it was done for Eq. (30) in
[21] (note that now we do not assume that the amplitude
DGq is independent of the impact parameter, as we did in
[21]):
d��x01;x0010 �

d2kdy
�
�sCF
�2��3

1

k2

Z
d2z

�
r2
z

Z
d2bDGq

�
z;x0010 ;b;y�

Y
2

��
e�ik
z

�
r2
z

X3

i;j�2

��1�i�j
Z
d2x23�z�xij�

2

� ln
�

1

jz�xijj�

�
n1

�
x01;

Y
2
�y;x23

��
: (26)
For the derivation of Eq. (26) see the Appendix. Defining
the unintegrated gluon distribution functions in the onia by

�01�k; y� �
CF

�s�2��
3

Z
d2ze�ik
zr2

z

�
��2

s

X3

i;j�2

��1�i�j

�
Z
d2x23�z� xij�2 ln

�
1

jz� xijj�

�

� n1�x01; y; x23�

�
(27)

and

�0010 �k; y� �
CF

�s�2��
3

Z
d2zd2be�ik
zr2

zDGq�z; x0010 ; b; y�;

(28)

we can rewrite Eq. (26) in the familiar kT-factorized form
[21,24,25]

d��x01; x0010 �

d2kdy
�

2�s
CF

1

k2

Z
d2q�01

�
q;
Y
2
� y

�

��0010

�
k� q; y�

Y
2

�
: (29)

We have thus shown that the inclusive gluon production
cross section in onium-onium scattering analyzed in the
approximation of [1,11] is given by the kT-factorization
formula (29).

IV. LIMITS OF APPLICABILITY OF THE
POMERON LOOP RESUMMATION

Equation (29) presents a problem. As long as �01 and
�0010 are positive definite, the inclusive cross section in
Eq. (29) diverges as �1=k2 in the infrared (at low kT �
jkj). This is a well-known problem of perturbative gluon
production [32–34] resulting in the infinite total number of
gluons produced. The divergence is usually �1=k4

T at the
lowest order (for pp collisions) [32–34] shown in Fig. 4. It
reduces to�1=k2

T for pA collisions and DIS [35], when the
saturation effects are included in the target nucleus. There
is a strong belief in the community that including satura-
tion effects both in the target and in the projectile wave
functions would eliminate the power-law divergence com-
pletely. (Elimination of divergence would indeed require
the kT-factorization formula to break down, since no mat-
ter what the gluon distributions are it would always lead to
�1=k2

T singularity in the IR.) The belief is confirmed by
numerical [30,31] and analytic [29] analyses of gluon
production in AA collisions. Therefore, one would expect
that a complete description of onium-onium scattering
should also lead to an infrared-regular gluon production
cross section. The fact that our result (29) does not give
such a cross section indicates that the approach to onium-
onium collisions from [1,11] applied here is incomplete.
(Indeed the same problem is present in DIS and pA colli-
sions in the approach used in [17,21,35].)

To see what is missing in the approach of [1,11] let us
perform a few parametric estimates. First of all, a single
BFKL pomeron exchange over rapidity interval Y is, para-
metrically, of the order of

�2
se��P�1�Y; (30)

where

�P � 1 �
4�sNc
�

ln2 (31)

is the intercept of the BFKL pomeron [9]. The exponent in
Eq. (30) comes from a ladder rungs resummation with the
factor of �2

s in the traditional Feynman diagram language
coming from the coupling of the ladder to the onia (impact
-7
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factors). In the dipole model the factor �2
s comes from the

two-gluon exchange interaction between the two dipoles at
the ends of the dipole evolutions in both onia [Eq. (4)].

Pomeron loops become important in onium-onium scat-
tering at rapidity YU at which the correction (30) brought in
by an extra ladder becomes of the order of 1, i.e., when

�2
se
��P�1�YU � 1; (32)

leading to [12,17]

YU �
1

�P � 1
ln

1

�2
s
: (33)

Therefore, for rapidities Y * YU pomeron loops become
important and have to be resummed.

The types of pomeron loops included in the approach
proposed in [1,11] are shown in Fig. 5(a). There the thick
lines denote BFKL ladders (hard pomerons). The approach
of [1,11] allows only for pomeron splittings at positive
rapidities (above the dashed line) and only for pomeron
mergers at negative rapidities (below the dashed line).
Obviously this approximation consistently resums all pom-
eron loops stretching over a rapidity interval greater than
Y=2, where Y is the total rapidity interval. However, some
of the ‘‘smaller’’ pomeron loops, namely, the loops stretch-
ing over rapidity intervals less than Y=2, are not included
consistently. An example of pomeron loops which are not
included is shown in Fig. 5(b), where the pomeron ladder
both splits and merges at positive and at negative rapidities.
One may argue that small pomeron loops are always sub-
leading at high energies and can be safely neglected com-
pared to larger loops. Still, the small loops of Fig. 5(b)
become order 1 corrections at rapidity defined by

�2
se
��P�1� ~YU=2 � 1; (34)

which gives

~Y U � 2YU: (35)

Therefore, we conclude that large pomeron loops of [1,11]
are a good approximation to the high energy onium-onium
scattering cross section only in the rapidity interval

YU � Y < 2YU: (36)
00

+Y/2

−Y/2

+Y/2

−Y/2

A B

FIG. 5. The pomeron loop diagrams included (a) and not
included (b) in the approach to onium-onium scattering of
[1,11]. Thick lines denote BFKL ladders.
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But what happens at higher rapidities, for Y � 2YU?
Would resummation of smaller pomeron loops of
Fig. 5(b) be sufficient to consistently calculate the total
onium-onium scattering cross section? Our answer is
‘‘no.’’ The reason for this conclusion is that other (non-
pomeron loop) higher order corrections also become im-
portant at Y � 2YU. For instance, NLO corrections to the
pomeron impact factor lead to a contribution of the order of
[39]

�3
se
��P�1�Y (37)

coming from the whole ladder. One may also speculate that
inserting one rung of the NLO BFKL kernel [40] into the
LO BFKL ladder [41] would generate the contribution of
the same order as shown in Eq. (37). The corrections from
Eq. (37) would become of order 1 at rapidity �3=2�YU. This
would lead to an even smaller upper bound in Eq. (36),
which would become �3=2�YU instead of 2YU. The result-
ing applicability window for large pomeron loops is then
limited to

YU � Y < 3
2YU: (38)

Indeed, since YU � 1 when �s � 1, the rapidity window
in Eq. (38) would still be very large for asymptotically
small coupling. Note that, for the values of the strong
coupling constant accessible in the current accelerators,
NLO BFKL corrections are numerically large and would
modify our above conclusions.

At rapidity Y � 2YU other corrections will become im-
portant as well. In performing the integration over rapid-
ities of a leading order pomeron loop the lower limit of
integration gives a loop stretching over the zero-rapidity
interval [13,17]. Such a diagram would still have a single
pomeron exchange, giving e��P�1�Y , and the zero size loop,
giving �4

s due to two pairs of dipoles interacting, overall
contributing a factor of

�4
se
��P�1�Y: (39)

A correction like the one shown in Eq. (39) may also result
from inserting the NLO BFKL kernel [40] twice in the LO
BFKL ladder [41], or from inserting the NNLO kernel once
in the LO BFKL ladder.

The corrections in Eq. (39) become of order 1 when Y �
2YU. In other words, these terms become comparable to
small pomeron loops stretching over the YU rapidity inter-
val. This is natural since the resummation parameter for
these higher order corrections is easily expressed in terms
of the small pomeron loops resummation parameter

�4
se��P�1�Y � ��2

se��P�1�Y=22; (40)

so that both become comparable to 1 simultaneously.
We can conclude that pomeron loop approximation is

valid only in the rapidity region specified by Eq. (38). To
go beyond that rapidity interval one has to include a scope
of other subleading nonpomeron loop effects listed above.
-8
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The corrections of Eq. (39) were recently discussed in [6]
to account for the apparent discrepancy between the results
of [2,5], indicating that such corrections cannot be consis-
tently resummed within the current pomeron loop resum-
mation formalisms.

Now let us return to the question of gluon production in
onium-onium scattering. A typical diagram contributing to
the above result (23) is shown in Fig. 6(a). There, the
produced gluons are denoted by outgoing double arrows
and the BFKL ladders are again denoted by thick lines. The
graph in Fig. 6(a) has a linear BFKL evolution (single
ladder) on one side of the produced gluon (in rapidity),
with all the nonlinear pomeron loop effects being on the
other side of the produced gluon, just like we have obtained
in deriving Eq. (23). The resulting cross section is IR
divergent as �1=k2

T and is valid in the rapidity window
given by Eq. (38). Therefore, the �1=k2

T divergence per-
sists as long as the pomeron loop approximation is valid.

Small pomeron loop corrections of Fig. 5(b) become
important at rapidities Y � 2YU. They may lead to gluon
production diagrams like the one shown in Fig. 6(b). Such
graphs include nonlinear saturation effects in the wave
functions of both onia. However, they do not violate
kT factorization, as can be seen in the graph of Fig. 6(b),
which has no cross talk between the onia wave functions
other then the interaction leading to gluon production.
Therefore, diagrams like the one shown in Fig. 6(b) would
still lead to �1=k2

T divergence in the infrared.
However, one may also imagine small pomeron loop

corrections which would violate kT factorization, as shown
in Fig. 6(c). As we discussed in Sec. III, in the large
pomeron loop approximation of [1,11] such corrections
would cancel due to real-virtual cancellations of [22],
making the final result for the inclusive cross section
adhere to AGK cutting rules. Once the small pomeron
loops of Fig. 6(b) are included in both of the onia wave
functions, such real-virtual cancellations may stop being
valid. This would lead to diagrams in Fig. 6(c) contributing
to a gluon production cross section, and, possibly, regulat-
ing the�1=k2

T divergence. However, such regularization of
the divergence would be due to small pomeron loops,
0

+Y/2

−Y/2

A

0

+Y/2

−Y/2

FIG. 6. Gluon production diagrams for onium-onium scattering: (a
smaller pomeron loops still giving an IR-singular gluon production
may lead to IR-regular gluon production cross section. Again thick l
gluons.
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which become important at rapidities Y � 2YU, when the
pomeron loop approximation breaks down. Thus it may
happen that regularization of �1=k2

T divergence would
have to also include effects going beyond the pomeron
loop approximation, alongside the purely pomeron loop
diagrams of Fig. 6(c).

If, instead of going to higher energies/rapidities, we fix
the rapidity Y and decrease kT , ‘‘higher twist’’ effects
would become progressively more important. Our conclu-
sion above implies that, while higher twist terms due to
large pomeron loops of [1,11] do not regularize the�1=k2

T
divergence of the inclusive gluon production cross section,
the higher twist terms associated with small pomeron
loops, not included in the approximation of [1,11], which
may regulate the �1=k2

T singularity, come in at the same
time as the higher twist terms associated with other (non-
pomeron loop) kinds of corrections.
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APPENDIX

Starting with the first term in the square brackets of
Eq. (23) (integrated over B) we note that the z2 integral
can be carried out using

Z
d2zeik
z

z

z2 � 2�i
k

k2 (A1)

yielding

Z
d2x2d2x3n1

�
x01;

Y
2
� y; x23

�

�
�sCF
2�3 i

Z
d2z1e

�ik
�z1�xj�
X3

i;j�2

��1�i�j
z1 � xi
jz1 � xij

2



k

k2 DGq

�
z1 � xj; x0010 ;

1

2
�z1 � xj�; y�

Y
2

�
: (A2)

Defining z � z1 � xj and rewriting d2x2d2x3 � d2x23d2b,
0

+Y/2

−Y/2

CB

) a typical diagram contributing to Eq. (23); (b) contributions of
cross section; (c) contributions of smaller pomeron loops which
ines denote BFKL ladders and outgoing arrows denote produced
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where b � xj � �1=2�z we can transform Eq. (A2) into

Z
d2x23n1

�
x01;

Y
2
� y; x23

�

�
�sCF
2�3 i

Z
d2ze�ik
z

X3

i;j�2

��1�i�j
z� xij
jz� xijj2



k

k2

�
Z
d2bDGq

�
z; x0010 ; b; y�

Y
2

�
: (A3)

The second term in the square brackets of Eq. (23) gives an
identical contribution.

The third term in the square brackets of Eq. (23) is
different. Defining ~z1 � z1 � xi and ~z2 � z2 � xj we write
it as

�
Z
d2x2d

2x3n1

�
x01;

Y
2
�y;x23

�
�sCF
�2��2�2

�
Z
d2~z1d

2~z2
~z1

~z2
1



~z2

~z2
2

X3

i;j�2

��1�i�je�ik
�~z1�~z2�xij�

�DGq

�
~z1�~z2�xij;x0010 ;

1

2
�~z1�~z2�

�
1

2
�xi�xj�;y�

Y
2

�
: (A4)

Dropping tildes over z1 and z2, rewriting d2x2d
2x3 �

d2x23d
2b with

b � 1
2�xi � xj� �

1
2�~z1 � ~z2�

we recast Eq. (A4) into

�
Z
d2x23n1

�
x01;

Y
2
� y; x23

�
�sCF
�2��2�2

Z
d2z1d

2z2
z1

z2
1



z2

z2
2

�
X3

i;j�2

��1�i�je�ik
�z1�z2�xij�

�
Z
d2bDGq

�
z1 � z2 � xij; x0010 ; b; y�

Y
2

�
: (A5)

Defining z � z1 � z2 � xij and integrating over y �
�1=2��z1 � z2� using

Z
d2y

y

y2 

y� z

jy� zj2
� 2� ln

1

jzj�
(A6)

with � some infrared cutoff yields

�
Z
d2x23n1

�
x01;

Y
2
� y; x23

�
�sCF
�2���2

�
Z
d2z

X3

i;j�2

��1�i�je�ik
z ln
�

1

jz� xijj�

�

�
Z
d2bDGq

�
z; x0010 ; b; y�

Y
2

�
: (A7)
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Finally, similar to the above, the last term in the square
brackets of Eq. (23) can be written as

�
Z
d2x23n1

�
x01;

Y
2
� y; x23

�
�sCF
�2

1

k2

�
Z
d2z

X3

i;j�2

��1�i�je�ik
z�2�z� xij�

�
Z
d2bDGq

�
z; x0010 ; b; y�

Y
2

�
: (A8)

Combining Eqs. (A3) (twice), (A7) and (A8) yield

d��x01; x0010 �

d2kdy
�
Z
d2x23n1

�
x01;

Y
2
� y; x23

�
�sCF
2�3

1

k2

�
Z
d2z

X3

i;j�2

��1�i�je�ik
z

�
Z
d2bDGq

�
z; x0010 ; b; y�

Y
2

�

�

�
2ik 


z� xij
jz� xijj

2 � k
2 ln

�
1

jz� xijj�

�

� 2��2�z� xij�
�
; (A9)

which can be rewritten as

d��x01; x0010 �

d2kdy
�
Z
d2x23n1

�
x01;

Y
2
� y; x23

�
�sCF
2�3

1

k2

�
Z
d2zd2bDGq

�
z; x0010 ; b; y�

Y
2

�

�
X3

i;j�2

��1�i�jr2
z

�
e�ik
z ln

�
1

jz� xijj�

��
;

(A10)

where r2
z is the transverse coordinate (2D) gradient

squared. Integrating by parts yields

d��x01;x0010 �

d2kdy
�
�sCF
2�3

1

k2

Z
d2z

�

�
r2
z

Z
d2bDGq

�
z;x0010 ;b;y�

Y
2

��

�e�ik
z
X3

i;j�2

��1�i�j
Z
d2x23

�n1

�
x01;

Y
2
�y;x23

�
ln
�

1

jz�xijj�

�
(A11)

and, remembering that

r2
z

�
z2 ln

1

jzj�

�
� 4 ln

1

jzj�
(A12)

reduces Eq. (A11) to Eq. (26) as desired.
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