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Abstract 

 A literature review of neural development and cell reprogramming gives insight into the 

complexity of the mechanisms that take place during differentiation. Many technologies for 

transfection exist, however each has its own drawbacks. Most commonly, low efficiency rates, 

high cytotoxicity, expensive costs, transient transfections, and high variability are disadvantages 

to traditional methods of transfection. The novel technology of nanochannel electroporation (NEP) 

solves a wide range of these issues with significantly higher efficiency rates and low cell-to-cell 

variability through single cell transfection. NEP done on mouse embryonic fibroblasts (MEFs) 

with transcription factors Brn2, Ascl1, and Myt1l (BAM) found that addition of particular 

patterning genes to BAM-mediated reprogramming increased induced neuron efficiency and 

complexity. Additionally a possible dependence on the cell cycle and a dedifferentiation to a 

progenitor-like stage were demonstrated during neuronal reprogramming. The results reveal a 

stochastic nature to BAM-mediated neuronal reprogramming, allowing for a greater understanding 

of cell reprogramming and its applications in regenerative medicine.  

Keywords: differentiation, transfection, regenerative medicine, induced neurons  
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Chapter 1: Introduction and Literature Review 

Embryonic and Neural Development 

During the development of higher animals, the blastula is reorganized into a gastrula in a 

process called gastrulation. Throughout gastrulation, the embryonic stem cells differentiate into 

three layers of cells including the endoderm, the mesoderm, and the ectoderm. Each germ layer 

then differentiates further into specific tissues and cells. For example, the cells in the ectoderm 

develop into the epidermis and neural cells, those in the mesoderm develop into muscles and the 

cardiovascular system, and those in the endoderm become the gut and the liver (Kimelman, 2011). 

These developmental processes are coordinated by specific gene expression patterns, dictated by 

the nature of the DNA itself as well as by proteins that enhance or repress transcription. 

Morphogens are signaling molecules secreted by cells that influence gene expression and 

differentiation in embryonic development (Wolpert, 1996). According to the gradient morphogen 

hypothesis, morphogens act as positional cues that form a signaling gradient to regulate differential 

gene expression in a concentration dependent manner (Ashe & Briscoe, 2006). Thus the 

morphogens set up concentration gradients that drive the specialization of stem cells into tissues. 

The mechanism behind the gradient morphogen hypothesis has still not been determined, but some 

possibilities are the use of binding site affinity, combinatorial inputs, feed-forward loop, or positive 

feedback. 

The gradient morphogen hypothesis plays a large role in neural development. In 

vertebrates, the hindbrain drives essential basic functions including motor activity, blood 

circulation, and rhythmic breathing (Moens & Prince, 2002). The development and organization 

of the hindbrain is highly conserved evolutionarily, segmented into seven rostro-caudal (RC) 

regions with specific functional roles. These unique segments termed rhombomeres, result from 
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specific patterns of cell proliferation mediated by morphogens. Each rhombomere has 

corresponding progenitor cells with patterning genes expressed in similar patterns as the original 

rhombomeres. In addition to RC patterning, there is also dorso-ventral (DV) patterning. Together 

the RC-DV patterning factors form axes specifying the location of all cells in the hindbrain. 

Cell Reprogramming 

The previous viewpoint supposed once cells had undergone differentiation, they were 

permanently altered from stem cells. However in the 1960’s, scientists established somatic cell 

nuclear transfer (SCNT), injection of a nucleus from a fully differentiated adult cell into an 

enucleated egg resulting in an embryo. Thus scientists comprehended that the nucleus contained 

all the necessary genetic information to form an entire organism and the possibilities of cell 

reprogramming began. In 2006, a landmark study showed that adult mouse fibroblasts could be 

dedifferentiated into induced pluripotent stem (iPS) cells (Takahashi & Yamanaka, 2006). This 

method was strikingly simple, with expression of only four exogenous transcription factors 

needed. Although a significant breakthrough for basic science, cell-based therapies using iPS cells 

would likely require differentiation of iPS cells into the lineage of interest. For this reason, many 

researchers looked into methods to reprogram cells directly without the iPS cell intermediate. 

Then in 2010, an article demonstrated that three RC-DV transcription factors converted 

adult mouse fibroblasts into induced neuronal cells (Vierbuchen et al., 2010). This differed from 

other cell reprogramming studies, since fibroblasts and neurons are from separate cell lineages, 

mesoderm and ectoderm, respectively. The three exogenous transcription factors used were Brn2, 

Ascl1, and Myt1l (BAM), transforming genes involved in neuronal development or function 

(Figure 1). Additionally, Ascl1 alone was found to reprogram cells with immature neuronal 
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features (Vierbuchen et al., 2010). Additionally, the specific fates of neurons may be able to be 

induced by including additional RC-DV patterning genes through transfection (Hirai et al., 2011) 

Transfection Technologies 

Transfection is the artificial introduction and uptake of exogenous nucleic acids into cells 

(Wang et al., 2010). Transfection can be either transient or stable; in transient transfection the 

nucleic acid only remains present in the cell for a short period of time, never integrating into the 

genome. Transient nucleic acids can be lost after cell divisions or be degraded and do not pass 

from generation to generation. On the other hand, stable transfection allows the nucleic acid, 

usually DNA, to be incorporated into the genome of the cell. When compared to circular DNA, 

linear DNA is more difficult to uptake into cells, but more easily incorporated into the genome. 

With this method, hereditary transfected DNA can be measured by selective markers, such as 

antibiotic resistance. There are many chemical, lipid, physical, and viral technologies for 

transfection, each having its own benefits and drawbacks. 

Chemical methods of transfection have been studied for many years. One of the first 

methods, diethylaminoethyl (DEAE)-dextran, a cationic polymer, provides use for transfection of 

nucleic acids into cultured mammalian cells (Vaheri & Pagano, 1965). DEAE-dextran tightly binds 

to negatively charged nucleic acids, resulting in an overall positive complex, allowing the complex 

to associate with the plasma membrane of the cell and be taken up by endocytosis. Although 

transfection by DEAE-dextran is relatively simple and low cost, it only results in transient 

transfection, not stable transfection, with high cytotoxicity and low transfection efficiency. 

Another chemical method of transfection is calcium phosphate co-precipitation. During 

this process a mixture of the nucleic acid, frequently DNA, and calcium chloride is added to a 

buffered saline-phosphate solution. When the produced precipitate is added to cultured cells, they 
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uptake it with endocytosis or phagocytosis (Graham & van der Eb, 1973). This method can be used 

for both transient and stable transfection. However, a major shortcoming of using calcium 

phosphate co-precipitation results from the high sensitivity to slight alterations in pH, temperature, 

and buffer salt concentration. Additionally, calcium phosphate co-precipitation cannot be used for 

in vivo gene transfer. 

Lipids can also be used for transfection; liposomes are lipid bilayers that naturally form 

micelles in an aqueous medium. Artificial liposomes aid in transfection, made to envelop nucleic 

acids, then fuse with the plasma membrane to deliver the load (Fraley et al., 1980). The next 

advancement has been using artificial cationic lipids. The positively charged head of the lipid 

interacts with the negatively charged phosphate backbone of nucleic acids to form a condensed 

nucleic acid-cationic lipid reagent complex. This highly efficient manner of gene transfer uses 

endocytosis for the uptake of nucleic acids. Some advantages are the ability to transfect a wide 

variety of cell lines, a broad size of nucleic acids, and transient and stable transfections. Cationic 

lipid transfection also functions for in vivo applications. However, the main disadvantage is the 

dependency on the cell type and culture conditions, requiring the optimization for each cell type 

and transfection reagent. 

Physical methods of transfection include direct microinjection into cultured cells. 

Microinjection utilizes a thin needle, an effective but extremely time-consuming and laborious 

technique of gene transfer (Cappechi, 1980). Another physical method of transfection is 

electroporation, also called electropermeabilization (Wong & Neumann, 1982). During 

electroporation, a pulse of high voltage applied to cells for a short period of time increases 

transmembrane potential. Consequently formed nanopores of varying sizes allow nucleic acids to 

enter the cell. The nanopores may be temporary or irreversible, depending on the electrical 
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conditions and the cell type (Shigekawa & Dower, 1988) Electroporation was traditionally bulk 

electroporation (BEP), where a homogenous electric field applied to a solution containing cells 

and nucleic acids induced nanopores. For electroporation, optimal conditions for transfection must 

first be determined, including voltage, time of pulse, and concentrations in the solution. However, 

once the conditions have been established, electroporation is simple, cost-effective, fast, and can 

transfect a large number of cells at one time. Drawbacks of electroporation include the large 

amount of cell death that occurs and the damage to the cell membrane. A novel combination of 

various techniques is called nucleofection, an electroporation-based transfection method that 

enables the DNA to directly enter the nucleus (Gresch et al., 2004). 

For cell types that do not uptake nucleic acids by the previously mentioned methods, 

another gene delivery technique is the use of viruses. This alternate method often uses adenoviral 

and retroviral vectors to infect cells with nucleic acids. Viral gene delivery can be used on cultured 

cells and in vivo, can result in stable transfection, and have high efficiency rates. (Vorburger & 

Hunt, 2002). However, some drawbacks of viral gene delivery techniques are the high costs, 

complex protocols, cytotoxicity, and safely concerns. Another novel method of transfection, the 

microfluidic platform, does not rely on viral vectors or electric fields. With this approach, cells 

undergo a large amount of shear stress and compression as they pass through a constriction device 

resulting in transient nanopores forming. Then molecules in the surrounding buffer can enter the 

cell (Shin, 2009). This method is being further investigated to be able to understand and utilize it. 

Epigenetics 

Gene expression during differentiation is not only dependent on the string of nucleotides 

that constitute the genomic DNA sequence. The field of epigenetics studies mechanisms that alter 

gene expression without changing the DNA sequence. Epigenetics are the mechanisms that alter 
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gene expression without changing the DNA sequence (Bird, 2007). However, epigenetic changes 

can be heritable between cells and sometimes from parent to offspring, essential for many cell 

functions, including X chromosome inactivation in some animals, but especially organismal 

development and cell differentiation (Eccleston et al., 2007). Epigenetics involves both 

intracellular and environmental influences on gene expression. Some examples of epigenetic 

changes are DNA methylation, histone modifications, nucleosome positioning, non-coding RNA-

mediated gene-silencing, and ATP-dependent chromatin remodeling (Baylin & Schuebel, 2007). 

During DNA methylation, a methyl group is added to a cytosine, creating 5-methylcytosine 

(Auclair & Weber, 2012). The enzyme DNA methyltransferase catalyzes this reaction, most 

commonly occurring at CG dinucleotides. Cytosine methylation mainly occurs as a DNA 

transcription inhibitor. Preventing binding of transcription factors and recruiting methylbinding 

proteins (MBPs), which change the chromatin environment, repress transcriptional initiation. 

Specific patterns in methylation are required for normal development and cell differentiation; 

many diseases have alterations in cytosine methylation. For example, many cancers have 

hypomethylation occurring in oncogenes and hypermethylation occurring in tumor suppressors 

(Esteller, 2007). 

Another method of gene regulation is by modifying histones. Histones are alkaline proteins 

used for packaging DNA into a smaller structure. Negatively charged DNA wraps around the 

histone to form nucleosomes. These nucleosomes, connected by linker DNA, wind together to 

form condensed chromatin (Figure 2). Histones modification also occurs through methylation, 

acylation, deacetylation, and more (Schones & Zhao, 2008). Acylation consists of adding an acyl 

group (-COCH3) to a lysine. This adds a negative charge to the positive amino acid, thus reducing 

the attraction between the histone and the DNA sequence. Therefore, acetylation results in a less 
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tightly packed nucleosome and increases ability for active transcription (Vidali, Gershey, & 

Allfrey, 1968). On the other hand, deacylation results in more intermolecular forces between the 

negative DNA sequence and the positive lysine of the histone, resulting in a tighter structure. 

The modifications of certain nucleotides and amino acids are not the only epigenetic 

changes that affect gene expression. The highly complex structure of the chromatin allows for 

DNA to be packaged into a cell, prevents DNA damage, aids in DNA replication, and results in 

higher or lower rates of transcription in certain areas. Chromatin tightly bound in complex forms 

is referred to as heterochromatin. Therefore, the DNA sequence becomes less accessible, and the 

binding proteins and transcription factors are less likely to bind to the sequence for initiating 

transcription (Schones & Zhao, 2008). Thus the DNA in heterochromatin is generally inactive with 

reduced gene expression. On the other hand, less densely packed euchromatin has more accessible 

genes being actively transcribed. Euchromatin contains the majority of coding genes in the 

genome. Heterochromatin and euchromatin can be differentiated with staining, heterochromatin 

stains more intensely and darker and has been found to be at the extremes of the nucleus and 

chromosomes (Mello, 1983). Evidently, there are many mechanisms of epigenetic modifications 

including cytosine methylation, histone acylation, chromatin structure modifications, and more, 

that need to be taken into account when doing molecular biology.  
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Chapter 2:  Methodology 

Nanochannel Electroporation 

In the literature review, various methods of transfection were discussed, all having some  

advantages and some disadvantages. A novel technology for transfection has been created using 

electroporation of cultured cells through a 3D array of nanochannels in a modified Transwell insert 

(Figure 4). Nanochannel electroporation (NEP) allows for the transfection of many single cells 

simultaneously by applying a high electric field to a small portion of the cell membrane (Boukany 

et al., 2011). NEP conditions can be adjusted to control the amount of molecules delivered at the 

single cell level, with high transfection efficiencies and low cell-to-cell variability. Therefore, NEP 

is an optimal gene delivery technology capable of introducing complex combinations of DNA into 

a large number of individual cells without the need for a needle. 

Plasmid Preparation 

The unique features of the NEP technology allow us to reprogram cells by delivering DNA 

expression plasmids into cells. The plasmids need to be equipped with hindbrain genes as depicted 

by the RC-DV patterning. The strategy began with cloning the transcription factors into plasmids 

of DNA containing mammalian promotors and antibiotic resistance. Restriction enzymes proteins 

cleave DNA at specific nucleotide sequences and DNA ligase connects two strands of DNA 

together by forming new phospodiester bonds (Roberts, 1976). Thus, to clone the transcription 

factors into the vectors, restriction enzymes cleaved both the vector and the transcription factor 

and ligated them together. The final plasmid constructs then had to be amplified and purified. A 

standard transformation protocol transfered the plasmids into NEB 5-alpha competent E. coli cells. 

The cells proliferated on ampicillin media, since the cells that received the plasmid successfully 

acquired antibiotic resistance. Single colonies were harvested and allowed to grow in 250 mL of 
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SOC (super optimal broth) media with ampicillin. A maxi-prep isolated the DNA plasmids for 

each transcription factor to, and then lastly each sample was purified. Then Daniel Gallego-Perez 

at The Ohio State University College of Engineering used the plasmids for BAM-mediated cell 

reprogramming of MEFs (mouse embryonic fibroblasts) into neurons via NEP. 

Immunohistochemistry 

Antibodies, or immunoglobulin molecules, are proteins created by the immune system for 

binding to a specific portion of a protein, called an antigen. Generally, antibodies recognize foreign 

substances and tag them for degradation (Buchwallow & Bocker, 2010). However, antibodies can 

also be generated for antigens within the body, or self-antigens. Immunohistochemistry (IHC) 

utilizes antibodies to detect antigens and specific proteins in biological tissues (Coons et al., 1941). 

The procedure used for IHC begins with preparation of the tissue. MEFs were isolated from 

embryos around the developmental stages of E12 were plated directly on the Transwell for NEP.  

After NEP, once the cells were ready for IHC staining, the tissue incubated in 0.1% 100x 

Triton in PBS 1x buffer for 5 minutes for permeabilization. Meanwhile a blocking solution was 

made, containing 0.1% 100x Triton and 5.0% goat serum in PBS 1x buffer. The goat serum acts 

as a blocking agent for nonspecific sites. The tissues incubated in the blocking solution for half an 

hour, while preparing the primary antibody solution. The primary antibody binds directly to the 

antigens in the tissue sections (Hewitt et al., 2011), with a dilution between 1:1000 and 1:200 in 

blocking solution. After overnight incubation, the primary antibody solution was rinsed off, and 

the cells incubated in a 1:1000 dilution of the secondary antibodies and DAPI (4',6-diamidino-2-

phenylindole) for one hour. The DAPI stains nuclei blue, while the secondary antibodies bind to 

the corresponding primary antibodies to amplify the signal (Figure 5), (Odell & Cook, 2013). The 
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secondary antibody can be either green (488), red (594), or far red (647); therefore, up to three 

proteins could be stained for at one time.  

Confocal Fluorescence Microscopy 

Confocal fluorescence microscopy techniques were used to visualize the experimental 

results. Fluorescent microscopes in particular utilize the fluorescence given off by certain 

compounds when they absorb light or another form of electromagnetic radiation and emit another 

wavelength of light (Harlow & Lane, 1999). During fluorescence, a molecule absorbs a high 

energy light and then emits a photon with less energy, since some energy is lost internally. 

Molecules that fluoresce, or fluorophores, emit light of a specific wavelength or color. 

Immunofluorescence staining (IF) utilizes antibodies labelled with fluorophores to be able to 

visualize the proteins (Odell & Cook, 2013). Then fluorescent microscopes shine on the stained 

tissue samples with light of a particular wavelength, and the emission of the fluorophores on the 

labelled secondary antibodies can be recorded. Confocal microscopes are an imaging technique 

allowing the proteins to be visualized at a higher optical resolution. In a confocal microscope, light 

reflects off mirrors and passed through a pinhole at the confocal plane of a lens. The pinhole 

eliminates out-of-focus light and visualizes one point at a time (Minsky, 1988). Thus scanning 

mirrors allow for a 3-dimensional (3D) image to be viewed on an attached computer. Therefore, 

using a confocal fluorescent microscope allows for high resolution images of fluorescent 

secondary antibodies. 
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Chapter 3: Results 

Addition of PHOX2B, PHOX2A, and RUNX3 to BAM-Mediated Neuronal Reprogramming 

Increases Induced Neuron Efficiency and Complexity  

Additional DV-RC patterning genes added to nuclear reprogramming transcription factors 

may induce a specific type of neuron (Hirai et al., 2011) In particular, transcription factors 

PHOX2B, RUNX3, and PHOX2A (PRP) are all involved in the DV-RC patterning of autonomic 

hindbrain neurons (Levanon et al., 2001, Brunet & Pattyn, 2002). Therefore, we added PRP 

plasmids with BAM to the NEP cocktail for E12.5 MEFs and measured the relative efficiency of 

neuronal reprogramming by staining for TUJ1, a neuronal marker. The efficiency of BAM-

mediated NEP with added PRP was significantly higher than the control condition (Figure 

6A,B,C). However, even more notable was the difference in neuronal complexity of the cells in 

the BAM-PRP condition. Using Neurolucida computer software for a Sholl analysis and 

calculating the dendrite complexity index verified that the induced neurons with the PRP added to 

the NEP cocktail were significantly more complex (Figure 6D,E). Therefore, it can be concluded 

that neuronal reprogramming efficiency and complexity can be significantly increased by adding 

additional DV-RC transcription factors to the NEP cocktail.   

Early CCNA2 Deletion Decreases Induced Neurons 

Cyclins regulate the cell cycle by activating cyclin-dependent kinases. Cyclin A2, from the 

gene CCNA2, promotes DNA replication, particularly for the onset of the S-phase (Girard et al., 

1991). Research has shown that CCNA2 function is essential for cell cycle progression of 

hematopoietic and embryonic stem cells (Kalaszczynska et al., 2009), yet the role of the cell cycle 

in neuronal reprogramming is unknown. Deletion of the gene CCNA2 will aid in determining the 

role of cyclin A2 in BAM-mediated neuronal reprogramming. To ablate CCNA2, we acquired 
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CCNA2fl/fl MEFs from pups with the CCNA2 allele flanked by lox (floxed), which results in 

removal of the gene after cre-mediated recombination. Therefore the MEFs underwent NEP with 

BAM and cre-GFP and 14 days later were assayed for neuronal reprogramming by staining for 

TUJ1. Wild type MEFs underwent reprogramming, by staining positive for TUJ1, but CCNA2fl/fl 

MEFs expressing cre-recombinase were negative for TUJ1 (Figure 7D,E). In separate 

experiments, MEFs were infected with adenovirus cre-GFP 6 hours after the onset of the NEP, so 

that the MEFs would have at least 6 hours of time from exposure to BAM mRNA to cre-mediated 

recombination. BAM-treated MEFS infected with adenovirus 6 hours post-NEP stained positive 

for TUJ1 (Figure 7F)). We conclude that early deletion of CCNA2 reduced BAM-mediated nuclear 

reprogramming, so onset of S-phase or other CCNA2 functions are required for neuronal 

reprograming.  

A Subset of Induced Neurons Undergo a Nestin-Positive Stage 

Since cyclin A2, essential in S-phase, was found to be necessary for BAM-mediated 

neuronal reprogramming, the cells may be undergoing S-phase during the reprogramming. 

However, mature neurons rarely undergo S-phase, so it is possible that the somatic fibroblasts first 

undergo dedifferentiation and then pass through a neural stem cell phase. Then this neuronal 

progenitor phase may be followed sequentially by differentiation to the induced neurons. If this 

occurs, then there is a stochastic nature to the differentiation of cells, since progenitor cells can 

also differentiate to astrocytes. Furthermore, such a finding would indicate that that BAM-

mediated induced neuron formation does not represent direct conversion from fibroblasts into 

neurons.  With this in mind, we stained MEFs that had undergone BAM-mediated NEP and found 

that many cells stained positive for GFAP, a marker for astrocytes, but not for GFP, a marker for 

Ascl1. The GFP-positive/GFAP-negative cells showed morphology consistent with neurons, 
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indicating that Ascl1 expressing cells at this stage had not differentiated into astrocytes (Figure 

8A,B). To test the possibility that the MEFs undergo a neural progenitor cell stage, we stained 

cells after NEP for nestin, an intermediate filament expressed in neural stem cells, and found many 

cells stained positive for nestin and GFP (Figure 8C). Then we evaluated mRNA expression of 

nestin in cells that had undergone BAM-mediated neuronal reprogramming by quantitative rt-

PCR. There was a significant increase in nestin expression 24h post-NEP, indicating that BAM 

transfection directly or indirectly induces nestin expression. Additionally, Ascl1 expression 

positively correlated with nestin expression and increasing NEP pulse number increased nestin 

expression (Figure 8D). Next MEFs were made with two specific loci, nestin-cre-ER and 

RosamTdTomato/mGFP. Alone these MEFs will express TdTomato, but in the prescence of cre, deletion 

of TdTomato and expression of GFP occurs. Cre recombinase will only function in nestin-positive 

cells that have been treated with 1 μM 4-OH (tamoxifen), due to the fusion of cre to an estrogen 

receptor (ER). This experiment resulted in a significant increase of cells staining positive for GFP 

(Figure 8E,F,G,H), demonstrating that a subset of cells pass through a nestin-positive stage.  

Furthermore, we identified several TUJ1-positive neurons that were also GFP positive, indicating 

that these neurons had passed through a nestin-positive stage. 
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Chapter 4: Discussion 

Stochastic Barriers of BAM-Mediated Neuronal Reprogramming 

 Various implications arise from the results presented in this project; firstly we 

demonstrated that adding plasmids of PHOX2B, RUNX3, and PHOX2A to BAM increased the 

neuronal reprogramming efficiency significantly. However, the increase in induced neurons was 

relatively small. Therefore, we conclude that there are other factors that regulate induced neuron 

efficiency downstream of exogenous plasmid delivery. Even then, since the BAM-PRP condition 

contained neurons with significantly more complexity, we have shown that the dorso-ventral and 

rostro-caudal patterning axes are important in neuronal reprogramming. Since early deletion of 

CCNA2 resulted in a decrease of induced neurons, cyclin A2 must be necessary for BAM-mediated 

neuronal reprogramming. However, cells do not have cyclin A2 present at all times, only before 

the onset of the S cycle. Therefore, perhaps only MEFs that contain cyclin A2 and are in S phase 

at the time of NEP can undergo directed differentiation. This adds another barrier with a random 

nature to neuronal reprogramming. Lastly, the results using MEFs with the loci nestin-cre-ER and 

RosamTdTomato/mGFP show that some MEFs undergoing BAM-mediated NEP pass through a nestin-

positive neuronal progenitor-like stage. This implies that cells first undergo dedifferentiation and 

then re-differentiation with different pathways they may follow, such as to neurons or astrocytes. 

Again, this is another stochastic barrier to neuronal reprogramming 

Significance and Future Direction 

 This project has advanced the field of neuronal reprogramming by helping to comprehend 

the stochastic nature of current transfection approaches. By understanding this phenomena, 

measures can be taken during neuronal reprogramming to reduce the random nature of directed 

differentiation. One possibility for improving the reprogramming efficiency is to create a more 
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complex plasmid cocktail. The use of NEP has allowed for the specific experiments done, doing 

single cell transfections with low variability. NEP has many uses outside of neuronal 

reprogramming; any charged molecule utilized in reprogramming such as RNA (Warren et al., 

2010), miRNA, and drugs (Guo et al., 2013) has applications with NEP. Improving the NEP 

platform is a future goal, to control even more precisely the DNA intake of cells. Cell 

reprogramming has many implications for use in regenerative medicine and clinical applications 

using these techniques. 
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Figures and Tables 

 

Figure 1: Routes to Cell-Lineage Reprogramming (Nicholas & Kriegstein, 2010) 

 
 

Figure 2: Genomic Architecture (Baylin & Schuebel, 2007) 

 
 

 



19 

 

Figure 3: Molecular Pattern of Hindbrain in Embryo (Otero, 2014) 

 
 

 

Figure 4: Transwell Modification Steps with SEM of the Microwell Array (Boukany et al., 2011) 

                     

Patterned Resist

Coating

Photoresist

Coating on 

Apical/

Basal Surface

-6

-4

-2

0
2

4

6

8

10

12

14

0 1284
0

50

100

150

200

250  V

X (mm)

Y
 (

m
m

)

NEP

Modified Transwell

Plasmid Reservoir

Bottom Electrode

Y (mm)

E
 (

V
/m

m
)

0
0-2 2 4 6 8 10

10

5

15

20

25

Nanochannel

Microwell/Nanochannel

Interface

Nanoporating array circuit diagram

A: 3D NEP DESIGN

b

Gene/Drug

Side view

Nanochannel

e

c

Cell

d

Gene/Drug

100 m

a

DNA nanostrands

PDMS

DNA/Water

Glass

Gold coating

Imprinting

Prepolymer resin

Nanochannel

Microchannel

Etching

Trapped

cell

bb

Gene/Drug

Side view

Nanochannel

e

c

Cell

d

Gene/Drug

100 m

a

DNA nanostrands

PDMS

DNA/Water

Glass

Gold coating

Imprinting

Prepolymer resin

Nanochannel

Microchannel

Etching

Trapped

cell



20 

 

 

Figure 5: Antibody Interactions (Odell & Cook, 2013)  

 
 

Figure 6: BAM versus BAM-PRP NEP results in increased neuronal reprogramming efficiency 

and complexity 
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Figure 6 continued: 

 
 

 

 

 

 

 

Figure 7: Early ablation of CCNA2 decreases neuronal reprogramming 
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Figure 8: A subset of induced neurons undergo a nestin-positive stage 
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