

Development of Component Applications for the DESI Online System

UNDERGRADUATE THESIS

Presented in Partial Fulfillment of the Requirements for the Degree Bachelor of Science

in the Undergraduate School of The Ohio State University

By

Lucas Wayne Beaufore

Undergraduate Program in Engineering Physics

The Ohio State University

2016

Project Advisor:

Professor Klaus Honscheid, Department of Physics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/159564587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyrighted by

Lucas Wayne Beaufore

2016

ii

Abstract

The focus of this thesis project is on the development of applications for use in

the DESI Online System, or DOS. DOS is the online system used for the control and

management of the Dark Energy Spectroscopic Instrument (DESI). The DESI project will

make measurements of the spectra of galaxies and quasars in order to provide data

illuminating the nature of dark energy. The control system for this instrument is still in

the development stage and must be finished in time for the start of the survey in 2018. As

such, this project concerns the creation of the software applications needed to control the

individual components of DESI, testing these applications through the use of simulators

both provided by the component teams and developed alongside the applications, and

finally integrating the applications into the full system. The three primary applications

whose development is presented in this thesis are the Telescope Control System

Interface, the Spectrograph Control application, and the Cryostat Reader application.

These applications, which have been developed primarily in the Python language, will be

vital to the operation of the DESI survey.

iii

Acknowledgments

I would like to thank all the teachers, mentors, advisors, friends, and family that

supported me throughout my undergraduate education. Thanks are due in particular to

Professor Klaus Honscheid and Ann Elliott, for the vast amount of help and guidance

they have given me throughout my undergraduate education and during the pursuit of this

thesis project. Thank you to Doug Morgan, Kaeli Hughes, and Garrett Merz for taking

the time to provide feedback on early drafts of this thesis. Thank you as well to the OSU

Department of Physics, OSU Department of Engineering, the Dark Energy Survey

Collaboration, and the Dark Energy Spectroscopic Instrument Collaboration.

iv

Table of Contents

Abstract ... ii

Acknowledgments.. iii

Table of Contents ... iv

List of Figures .. vi

Chapter 1: Introduction and Background ... 1

1.1 Scientific Background ... 1

1.2 DESI Survey Goals ... 1

1.3 Instrument.. 3

1.4 Instrument Control System and DOS .. 5

Chapter 2: Architecture of the DESI Online System .. 7

2.1 Architecture ... 7

2.2 Application Framework... 10

Chapter 3: DOS Applications ... 14

3.1 Telescope Control System Interface ... 14

3.2 Spectrograph Controller .. 19

v

3.3 Cryostat Reader ... 22

3.4 Other DOS Applications ... 26

Chapter 4: Conclusion... 28

4.1 Results/Current State ... 28

4.2 Future Developments .. 29

4.3 Conclusion ... 29

References ... 30

Appendix A: Sample DESI Application – NetSwitch.py ... 32

vi

List of Figures

Figure 1: Cosmic Microwave Background and BAO [5] ... 3

Figure 2: SISPI Schematic View [8] ... 8

Figure 3: DOS Schematic View [8] .. 9

Figure 4: Application Framework Outline [7] .. 11

Figure 5: TCS Block Diagram [9] .. 15

Figure 6: The Mayall Telescope [11].. 17

Figure 7: The TCS Simulator User Interface .. 18

Figure 8: Spectrograph Control System Interface [12] ... 20

Figure 9: Spectrograph Hardware CAD Rendering [3] .. 22

Figure 10: Cryostat Software Block Diagram [13] ... 23

Figure 11: Cryostat Server Box .. 24

Figure 12: UaExpert GUI Client ... 25

file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993943
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993944
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993945
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993946
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993947
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993948
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993949
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993950
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993951
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993952
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993953
file:///C:/Users/Lucas/Documents/Thesis/Lucas_Beaufore_Undergrad_Thesis.docx%23_Toc466993954

1

Chapter 1: Introduction and Background

1.1 Scientific Background

One of the foremost questions in physics research today is that of the nature of the

universe’s accelerating expansion. Detection of this phenomenon was first published in

1998 by the High-Z Supernova search team and in 1999 by the Supernova Cosmology

Project. The expansion was detected through measurements of the redshifts of Ia

Supernovae, which are also known as “standard candles” due to the expectation that they

occur with a consistent luminosity [1,2]. There are three leading hypotheses as to the

cause of this accelerated expansion. The first is that there is a modification required in the

theory of General Relativity for cosmological scales. The second is that the expansion is

driven by a hypothetical form of energy that has negative pressure, which would not be

due to any particles known or otherwise, called dark energy and would constitute about

68% of the observable Universe’s energy density. The third is a “cosmological constant”

which would act as a static form of dark energy [3].

1.2 DESI Survey Goals

 According to its stated plan, the Dark Energy Spectroscopic Instrument (DESI)

[3] is broadly designed to investigate the composition of the Universe at large as well as

2

the nature of space-time. This investigation will include working to establish which of the

previously stated hypotheses is most likely responsible for the Universe’s accelerating

expansion and constraining models of primordial inflation [3]. This will be done by

constructing a 3D map of the universe from precise measurements of the spectra and

redshifts from more than 20 million galaxies. This map, unprecedented in volume, will

allow for the expansion history of the universe to be charted through measurements of

baryon acoustic oscillations and for the growth of structure to be examined via red-shift

space distortion measurements [4].

 DESI’s primary measurement is of baryon acoustic oscillations. Baryon acoustic

oscillations (BAOs) are acoustic waves that began as small overdensities in the electron-

photon plasma of the early universe that left an imprint on the distribution of matter after

recombination (when the plasma turned into neutral atoms). This occurred 380,000 years

after the Big Bang. This pattern has the same source as that of the cosmic microwave

background (CMB), this connection can be seen in Figure 1. BAOs appear in the

distribution of all matter in the Universe, and DESI will examine the positions and

spectra of galaxies in order to measure these oscillations [3]. By examining the pattern

this leaves behind as a function of the time since the Big Bang, which is determined by

the redshift of the galaxies within the pattern, information about the expansion history of

the universe can be deduced [4].

 DESI will result in independently useful data, but will have the added value of

complementing the results of other surveys. Cosmological measurements will be made by

cross-correlating data taken from Planck experiment and future CMB experiments that

3

would not have been possible from the individual data sets [3]. Furthermore, both the

Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST) have a few

thousand square degrees of overlap in survey area with DESI. Multiple cosmological

tests, either using overlapping survey area or techniques independent of it, can be

performed by examining other data sets alongside DESI’s. Finally, the Euclid mission

being undertaken by the European Space Agency in 2020 and the planned WFIRST-AFTA

NASA mission will provide an opportunities for complimentary measurements when

combined with DESI data, primarily investigations into galaxy-galaxy weak lensing [3].

1.3 Instrument

 The DESI instrument was designed to meet the survey’s science and operational

requirements, which include (but are not limited to) the following [3,6]:

Figure 1: Cosmic Microwave Background and BAO [5]

4

 The DESI survey must cover at least 9000 square degrees of sky, with a

maximum practical area of 14,000 square degrees.

 The survey must reach 30 million cosmological targets.

 The instrument should fit about 700 fibers to each square degree of sky.

 The instrument’s field of view should be 7 square degrees or more.

 The spectral range of the survey is 360-980 nm.

 The target galaxy density is 2900 per degrees squared with an expected 1800

successful redshifts per degree squared.

These requirements necessitate a high throughput spectrograph that will observe

thousands of target spectra per exposure. As such, the system was designed to maximize

the throughput from beginning to end.

 The DESI instrument will be installed on the Mayall 4-m telescope at Kitt Peak

National Observatory (KPNO) which will provide a 3.2-degree diameter field of view

[3]. The focal plane will support 5,000 robotically positioned fiber optic cables that will

transport the photons from the focal plane to the waiting spectrographs. This large

number of fibers will allow for more measurements per exposure, thereby fitting many

measurements into a finite survey duration. These robotic positioners will allow for a

reconfiguring of the focal plane in 120 seconds (with a goal of 60 seconds) to 5 µm RMS

accuracy. This reconfiguring of the focal plane will run in parallel with the telescope

slewing to the next target position. The fiber positioners will move to approximate

positions during the slew, and then correct to exact positions after the telescope is in

place. In addition to these fiber positioners, ten guide, focus, and alignment (GFA)

5

sensors will be placed in and near the focal plane [3]. These ten sensors will be identical

CCD cameras. The guide cameras will be placed in focus and are used for tracking

known stars in order to keep the focal plane aligned with the targets. The focus and

alignment sensors are placed with dual filters 1.5 mm above and below the focal plane in

order to extract out of focus images of stars for analysis. Information from the GFA is

used by the six axis hexapod to position the focal plane and optical corrector barrel [3].

The light from the focal plane is transferred to multiple spectrographs via fiber optic

cables. The spectrographs are read out in parallel with the telescope slew and focal plane

reconfiguring.

1.4 Instrument Control System and DOS

 The Instrument Control System (ICS) is responsible for all of the control and

monitoring functions required to keep the DESI instrument operating. The software

responsible for these functions has been adapted from the Dark Energy Survey’s (DES)

readout and control system architecture, SISPI. This is due to similarities in the surveys,

including the fact that the Mayall telescope being used for DESI is the identical sister

telescope to the Blanco telescope used for DES. The updated design of the online system

forms the DESI Online System, or DOS. Components such as the dynamic exposure time

calculator, the real-time data quality assessment, and complex algorithms to convert on-

sky target coordinates to fiber positions on the focal plane were adapted from the SDSS-

III/BOSS online system [7]. The ICS is designed to meet the survey’s requirements for

successful operation including being able to accommodate an exposure timetable of less

6

than 120 seconds between exposures and a goal of 60 seconds between exposures (as

previously mentioned), to be able to withstand the failure of a single computer or drive

excluding dedicated hardware interfaces, to provide user interfaces, to provide

communication paths between subcomponents of the system, to facilitate data flow, and

more [7].

 This project is concerned with the development of important elements of the

DESI Online System as part of the overall DESI project. This thesis will provide insight

into the design and performance of these elements under this project.

7

Chapter 2: Architecture of the DESI Online System

2.1 Architecture

 The DOS architecture is based on that of the Dark Energy Survey’s online system,

along with the set requirements for the ICS. DOS is responsible for the management of

dataflow, the controlling of the instrument, the monitoring of the system, and providing a

user interface [8]. DOS manages dataflow by reading data out of the spectrographs,

converting that data to the FITS file format while inserting the necessary DESI keywords,

and storing those images to a disk archive. DOS is not only responsible for the sequence

of exposures taken; it also provides the high level software control for the entire

instrument and its sub-components. DOS oversees the system by continuously

monitoring operational parameters for the instrument and storing these values in a

database, by monitoring environmental information from the Mayall telescope’s systems

and storing these values in a database as well, by providing interfaces to this database,

and by creating alarms and errors that both alert operators and are archived. Finally, DOS

provides a Graphical User Interface (GUI) using the Model-View-Controller design

pattern to give access to the many systems described above [7].

 DOS’s architecture is adapted from the architecture of DES’s SISPI online

system. The schematic diagrams for SISPI and DOS are shown in Figure 2 and Figure 3,

8

respectively. There are notable differences between the two systems including the

groupings of the focal plane control and the guider, as well as changes in which

instrument specific systems are included, such as the spectrographs and fiber positioners

in DESI’s system. However, clear structural similarities such as the central Observation

Control System (OCS), the modular nature of the control scheme, and the separation of

the dataflow telemetry and commands are present.

 DOS’s schematic view shows the OCS at the center of the structure, where it is

responsible for overseeing all aspects of DESI’s complex exposure sequence. It accepts

exposure requests from outside the system which include all necessary information such

Figure 2: SISPI Schematic View [8]

9

as fiber positions and guide stars. The OCS then coordinates with the various subsystems

to align the instrument, take the exposure, and read out the data. The system implements

a pipelined architecture that allows data readout to run in parallel with configuring the

system for the next exposure [7]. Various subsystems can be seen in DOS’s schematic;

this thesis project concerned those that can be seen under Instrument Control (in blue).

These are the primary focus of development under this project.

 DOS’s software is primarily developed in Python 3, updated from SISPI’s use of

Python 2. DOS is constructed to be modular and application focused, thereby allowing

for development and testing of subsystems independently. This in turn has the advantage

of being able to create “instances” of DOS with different configurations of applications,

Figure 3: DOS Schematic View [8]

10

depending on what is necessary and what is developed at the time. DOS is a distributed

system, running on many computers and controllers throughout the instrument and its

surrounding systems. These things are made possible by the Application Framework, the

software model used by DOS.

2.2 Application Framework

 The Application Framework is built on the Python Remote Object (PYRO)

library. The PYRO library allows for communication between Python applications over a

network connection by allowing objects to be directly accessible even when located in a

different application, hence “PYthon Remote Object”. DOS wraps the functionality of

PYRO in two different software layers [7]. The first of these is used for sending

command and is called Python Messaging Layer, or PML. PML uses a Client-Server

design pattern to allow one application to make a function call to another, either to

prompt action or to make a request for information. The second is used for sharing data in

the form of a Publisher-Subscriber pattern. The data is shared over “Shared Variables”,

variables in python that can either publish updates or subscribe to them. The data in these

variables is accessible to any applications in the DOS instance with a connection to the

Shared Variable Engine, or SVE. The SVE is responsible for keeping track of the Shared

Variables and distributing updates from publishing variables to the subscribed ones. This

is used to provide access to telemetry data for all other applications that may need it.

11

 The Application Framework is encapsulated in a Python class that allows for the

development of a software application within the same basic structure of all DOS

applications, giving it access to DOS services as well as allowing it to be added to an

instance of DOS with ease. The model of an application within the DOS Application

Framework can be seen in Figure 4.

 Developing applications within the Framework allows for easy configuration of

the system. The Framework allows a newly starting application to connect to the

previously running applications in the instance automatically. A startup system called the

Architect has been developed that allows for a complex instance of DOS to be created

using command line arguments and configure files of the “.ini” format to specify what

Figure 4: Application Framework Outline [7]

12

applications should be started as well as configuration parameters to start them with. The

procedures for shutting down an application are also handled centrally by the Framework.

This allows an application to exit while allowing the rest of the instance to continue

running [7].

 When a DOS application is built within the Application Framework it first

inherits the Application class, which provides access to the DOS services that can be seen

in the bottom row of Figure 4, including those previously mentioned. Within the structure

laid out by the Application class, the developer then provides the user code that forms the

primary functionality of the application (top row of Figure 4). First, the developer can

specify “Defaults”, or default values within the program, that can be overridden at startup

by either a configuring “.ini” file or command line arguments. Next, the commands that

will be accessible to others via the online system are specified so that the Framework can

make them available. If necessary, the developer can override the main function and/or

shutdown function to control what is done during the run loop to customize the exit

handlers. All DOS applications should have a configure function to set the application to

an initial ready state. Finally, individual functions within the class are developed.

Functions that are accessible across the online system are specified as commands. Those

commands must accept arguments of arbitrary number and type which are then parsed by

the dos_parser utility.

 One of the primary purposes of the Application Framework is to provide the

online system with a standardized, modular, and accessible interface to the many

elements of the control system which vary widely in terms of hardware, programming

13

languages, and communication paths. When a DOS application is designed to be a point

of communication with a subsystem, it is responsible for wrapping the subsystem’s

functionality within its remotely accessible commands, its Shared Variables, and its

alarms. By doing so, it takes a complex and diverse set of subsystems and makes them

easily accessible and configurable to the higher levels of the online system.

14

Chapter 3: DOS Applications

 The primary purpose of this project was the development of DOS applications for

use in instrument control. The three most important applications developed were the

Telescope Control System (TCS) Interface Application, the Spectrograph Controller

application, and the Cryostat Reader application. The development and testing processes

for these three applications are presented below.

3.1 Telescope Control System Interface

 The TCS is responsible for the control of the telescope itself, the calibration

lamps, and the environmental parameters inside the dome. Therefore, the TCS requires an

interfacing application to expose this functionality to the online system. This application

is known as the TCS Interface, and its initial development is the first part of this project.

The Mayall TCS is a software control program that can be interacted with over an

Ethernet socket. This is developed independently from the DOS application “TCS

Interface”, and so the TCS Interface has been programmed to match the existing and

planned functionality for the TCS. Since the Mayall telescope is the identical sister

telescope to the Blanco telescope used for the Dark Energy Survey, the TCS Interface

was adapted from the equivalent application in SISPI. This was done under the

expectation that the two projects’ Telescope Control Systems would be reasonably

15

similar. The structure of the interaction between the DOS application and the TCS can be

seen in Figure 5.

 The protocol library, represented by the inner semicircles in Figure 5, is defined

in an “Implementation Document” [10]. The control code and ICS framework

surrounding it represents the TCS Interface application. The communication over the

Ethernet socket is always initiated by the DOS side of the connection. All communication

is formatted as ASCII strings containing key-value pairs, for both directions. All

commands are responded to immediately and all responses include state information

(“DONE”, “ACTIVE”, or “ERROR”) followed by any values requested. The TCS

Interface wraps all of this communication in remotely callable commands and Shared

Variables for use by the rest of the system.

 The majority of the commands in the TCS Interface are concerned with the

movement of the telescope. The basic command for this is “move_telescope” which

Figure 5: TCS Block Diagram [9]

16

accepts coordinates for the telescope position either relative to a location on the sky, to

the earth, or to the telescope’s current position. Once this command is processed, the TCS

Interface monitors the telescope’s process, and reports back when the slew is determined

to be either a success or a failure. Other commands concerning the telescope’s movement

are the “whitespot” and “zenith” commands which send the telescope to known positions,

the “stop” and “abort_slew” commands which cease any telescope motion and cancel a

running slew to a new position respectively, the “track” command which requests that the

telescope start tracking the movement of the sky, and the “guide_correction” command

that is responsible for updating a telescope with corrections to its current movement.

 The TCS Interface supports commands beyond ordering telescope movements,

namely being responsible for updating the TCS with the current state of the six axis

hexapod (for use in the TCS’s pointing model) and controlling the calibration lamps. The

“hexapod_position” command takes six floating point values that describe the x, y, z, tip,

tilt, and rotation of the hexapod. The “calib” command controls which lamps are on and

what brightness they are set to. The application also supports “get” and “set” commands

that provide access to information both from the TCS and from the application itself.

 Finally, the TCS Interface is responsible for regularly updating Shared Variables

with information about the state of the TCS and the application. The three primary

Shared Variables for this purpose are “INFOT”, “INFOE”, and “INFOC” which contain

telemetry, environmental, and calibration information, respectively. These three Shared

Variables are updated periodically by independently running update threads that are

17

started when the “configure” command is first run. The information published on these

Shared Variables is used in another program to update the experiment’s database.

 To facilitate the development of the TCS Interface, two simulators have been used

to mimic the TCS’s functionality. The first simulator was created alongside the TCS

Interface as part of this project. Developed in Python, the simulator contains a Python

socketserver that communicates through the ASCII protocol defined in the

Implementation Document [10]. The socketserver has a function that handles requests by

parsing the incoming ASCII into the requested command and arguments. These values

are used to interact with a TCS simulator object that mimics a simplified TCS. The

simulator includes internal time delays to mimic the slewing of the telescope, position

calculations using the PyEphem astronomy package, slowly drifting environmental data,

and simple tracking of the hexapod and calibration lamp’s statuses. This simulator was

Figure 6: The Mayall Telescope [11]

18

used until the official simulator was delivered by the team responsible for the real TCS

system at a later date. This second simulator uses identical communication to that of the

first simulator (since both mimic that of the final system), but includes physical details of

the telescope as well as safety systems that were not accounted for when calculating

responses in the first simulator. The simulator also includes a graphical interface so that

the behavior of the TCS can be compared against what is intended by the TCS Interface.

A subset of this interface can be seen in Figure 7.

 Previous to the development of the TCS Interface, most applications had been

spot checked by hand to make sure they functioned as intended. In order to verify that the

applications work consistently, including in border cases, unit testing was introduced as a

development tool throughout this project. Unit testing is a way of automatically running a

Figure 7: The TCS Simulator User Interface

19

series of tests, usually involving a call to a command and an analysis of the response. If

the command and response behave as expected, the test passes; if not, it fails. By creating

a battery of unit tests that probe a variety of commands to test for their behavior in both

common usage and border cases, the integrity of the application can be verified quickly

after each change. This way, changes in the performance of one part of the application

can be checked when edits are made to an unrelated section. These tests are implemented

using Python’s “unittest” library, and can be used to verify that TCS Interface is fully

operational as development continues.

3.2 Spectrograph Controller

 The primary measurement device of DESI is the spectrograph array fed by the

fiber optics transporting light from the focal plane of the instrument. There will be 10

spectrographs in DESI, each with a red, blue, and near infrared CCD camera for taking

data. These spectrographs are equipped with network-enabled controllers that interface

with the hardware and control the operation of the spectrographs. Each network-enabled

controller includes a Python software library that allows for external control of the

individual components of the spectrograph while protecting from any incorrect or illegal

commands. The DOS application will run on the network-enabled controller and

communicate over the network with the rest of the system. This structure is replicated for

each spectrograph, as can be seen in Figure 8. The creation of the DOS application for

this system is the second portion of this thesis project.

20

 The DOS application for this subsystem, SpectroControl, is responsible for

integrating the spectrograph control library into DOS. SpectroControl, in addition to the

common commands present in DOS application such as “configure”, “get”, and “set”,

provides commands that allow the observation control system to access direct control of

the components. These commands include changing the power settings for the shutters

and the Hartmann doors in the spectrograph, opening and closing these shutters and

doors, and inflating and deflating the shutters’ pneumatic seals. There are also commands

that prepare the spectrograph for an exposure or for illumination, either through use of a

given preparation command in the library or by setting the components to their required

states. The DOS application includes functions for illuminating and exposing the

spectrograph, including the ability to pause and resume an exposure. Finally, the

application monitors the sensors for the spectrograph hardware, recording the

Figure 8: Spectrograph Control System Interface [12]

21

measurements in Shared Variables and raising alarms if any of the values leave a safe

range.

 Like the TCS Interface, the SpectroControl application requires a simulator in

order to test the functionality of the DOS application prior to deploying the code on a

physical system. However, unlike the TCS, the spectrograph library has no official

simulator provided by the group developing it. Therefore a more complete simulator for

the spectrograph hardware was developed as a part of this project.

 Since the spectrograph control library is a Python module, the simulator was

developed as a Python module as well. It contains a SpectroController class that has

functions used for retrieving data and sending commands, identical to the true module.

The SpectroController class stores the state of the system in a series of dictionaries which

are updated to reflect any changes. The sensor data values for the spectrograph are given

initial values which are updated periodically in an independent thread. These updates take

the form of a random value added to the current one, with the final range restricted to

within believable physical limits. The ability to set these values and to lock them into

place is also provided to allow for testing of specific border cases. This is implemented as

PML accessible commands so that the test bench can change the values independently

from the SpectroControl application.

 Each simulation function in the library checks the state of the system before

running and throws a runtime error if such a call would result in an illegal or unphysical

action, such as moving an unpowered shutter. If no such error occurs, the function then

waits for a time mimicking the physical delay time of the action before updating the

22

simulator state and returning. If the simulator is called to begin an exposure or an

illumination, a new thread is started that is responsible for updating the state of the

simulator, replicating the exposure/illumination process until either the time expires or it

receives a stop command.

 Due to the necessity of separating errors in the DOS application from errors in the

simulator, a series of unit tests have been developed to verify the correct behavior of the

simulator. These tests show that the simulator works as expected for both normal use and

border cases, and so any errors arising in testing the ongoing development of the

SpectroController application will be due to errors in the application itself.

3.3 Cryostat Reader

 Each of the spectrographs is equipped with three cryostats, devices designed to

maintain a constant low temperature, one for each camera. This setup can be observed in

Figure 9: Spectrograph Hardware CAD Rendering [3]

23

Figure 9. Although a DOS application will not be dedicated to controlling the cryostats,

there is an application dedicated to monitoring environmental and state information

published by the cryostats. This application is the CryostatReader, and its creation is the

third part of this project. Unlike the prior two applications, which involved controlling

hardware through a simple path of communication, the CryostatReader navigates a read-

only OPC server containing the state information about each cryostat in leaf nodes and

publishes that information on Shared Variables. The data is then directed to eleven

different tables (one per spectrograph and one general table) in the telemetry database

which store the information. The CryostatReader is also responsible for raising alarms in

DOS in response to changes in the cryostats. The relationship between the cryostat’s OPC

server and the DOS application CryostatReader is shown in Figure 10. The optional OPC

Interface is unused.

 The box containing the Cryostat monitoring hardware was shipped to OSU to aid

in the development of the DOS interface. It contained the power system, which had to be

converted from French to American electrical standards, and the computer containing the

server. The French team responsible for the hardware had configured the server to

Figure 10: Cryostat Software Block Diagram [13]

24

contain the data fields that would be present in the final version of the system, and to fill

these fields with changing values for the purpose of testing. This box can be seen in

Figure 11. The first step was of creating the CryostatReader was to uncover the server file

structure as well as the names and data types of recorded values within the system. This

was done by using the UaExpert GUI client provided by Unified Automation (Figure 12).

With the server structure established, the next step was to create the DOS application to

interface with it.

 In order to navigate the OPC server a suitable OPC client Python library had to be

found. Locating such a library proved to be more challenging than expected. Libraries

tried included the OpenOPC, PyUAF, and open62451 libraries. All either proved to be

unable to connect to the server or did not integrate well with the existing structure.

Figure 11: Cryostat Server Box

25

Finally, the opcua library from FreeOpcUa was used to access the server and the

CryostatReader application was developed around this library.

 The CryostatReader first navigates to the directory containing all the data nodes

for the system. It then examines all the node names to determine how many

spectrographs are represented in the server at that time, and sorts the data by

spectrograph, including a section for non-spectrograph specific data. It then begins an

update cycle of polling all the nodes for their current values, recording the values into a

Python dictionary that corresponds to the destination table, and then publishing those

dictionaries to a Shared Variable.

The CryostatReader includes an internal simulator that can be used when no

actual server is present. Because of this, the application can still be run as part of a test

system even if no cryostat or monitoring server is present. The Cryostat reader also

Figure 12: UaExpert GUI Client

26

includes the ability to respond to alarm nodes set by the server by raising corresponding

alarms in DOS.

 Unlike other DOS applications that are fundamentally part of a network of

applications in DOS (an “instance” of DOS), the CryostatReader was originally designed

to function on its own by not extending the Application Framework. This would allow it

to continue to monitor the device without being reliant on any outside influence, and

would keep running even when no instance was up. Data was inserted into the database

through the use of the psycopg2 library. The most recent revision of the CryostatReader

has relaxed this requirement, and the CryostatReader now implements the Application

Framework. However, it keeps its ability to run independently of a DOS instance by

running in “device mode”. This mode allows for a DOS application to run without a

PYRO connection to the rest of the system. However, since the data is now published in

Shared Variables rather than being inserted in the database directly using psycopg2, a

connection to the database updating program must be established, else the data will be

lost.

3.4 Other DOS Applications

 Although the TCS Interface, the SpectroControl application, and the

CryostatReader formed the focus of this thesis, other DOS applications were developed

under this project as well. One such application is the NetSwitch application, which is

capable of controlling a network-enabled power switch. This would be used to remotely

control what instruments were powered from within the online system. The PLC

27

application was developed under this project to be used by another team within the

collaboration. It is capable of controlling a Programmable Logic Controller from within

DOS. This can be used to control a hardware test bench for the equipment from the same

instance of DOS running the system itself. This included both the application itself and a

simulator for development. Finally, an application for interfacing with a sbig CCD

camera for use as a Fiber Photometry Camera (FPC) was developed under this project.

The application used the python sbig module to control the state of and extract images

from the camera. The images were then stored in the FITS file format, and a header was

attached. In addition to the application itself, a series of unit tests were developed to

verify functionality.

28

Chapter 4: Conclusion

4.1 Results/Current State

 All three applications developed as a part of this thesis project are currently

functioning as intended, and are being updated as the software and hardware surrounding

them evolves. DOS is still under development, and development will likely continue past

the beginning of the survey in 2018. The TCS Interface has been used to control the

Mayall Telescope itself during a test run this year, and was found to be fully functional.

Since then, updates have been made to keep the application current with the development

being done by the team responsible for the TCS. The SpectroControl application was

found to work correctly with the simulator at the end of its development under this

project, and has since been updated by other members of the collaboration as part of

DOS’s ongoing development. It is currently being used to control the spectrograph test

stand at Winlight, in France. The CryostatReader has been continuously updated in

response to changes made by the team responsible for the cryostat, and has functioned

correctly at the end of each of these development cycles. The data reported by the

CryostatReader has been verified in the telemetry database, and the alarm functionality

was developed and verified as the most recent update under this project. It is also being

used to monitor the physical test bench at Winlight. The NetSwitch application is fully

29

functioning, the FPC application was able to correctly control and extract images from

the camera, but much more development is needed before production. Finally, the PLC

application was verified to work against the simulator, but the team it was developed for

has yet to report its usage or performance.

4.2 Future Developments

 The future developments of this project are straightforward: to continue to update

the existing applications to match developments both in DOS and in other parts of the

collaboration. In addition, the remaining applications must be developed and tested

before the survey begins in 2018. The next application expected to be developed as a

continuation of this work is the Active Optics System application.

4.3 Conclusion

Under this project, multiple DOS applications essential to the Dark Energy Spectroscopic

Instrument survey have been developed and tested. These applications will continue to be

updated, and will be used over the course of the DESI survey, which will begin in 2018.

The DESI survey will then provide measurements that will help to illuminate the nature

of Dark Energy.

30

References

[1] RIESS A. et al. (1998) Observational evidence from supernovae for an accelerating

universe and a cosmological constant. Astron. J. 116, p.1009-1038.

[2] PERLMUTTER S. et al. (The Supernova Cosmology Project) (1999). Measurements

of Omega and Lambda from 42 high redshift supernovae. Astrophysical Journal 517 (2).

p.565–86.

[3] DESI COLLABORATION. (2014) DESI Conceptual Design Report. [Online]

Available from: http://desi.lbl.gov/wp-

content/uploads/2014/04/DESI_CDR_20140827_1135.pdf. [Accessed: 22nd December,

2014]

[4] LEVI M. et al. “The DESI Experiment, a whitepaper for Snowmass 2013”. In: ArXiv

e-prints (Aug. 2013). arXiv: 1308.0847 [astro-ph.CO].

[5] Ruler-CMB-Today [Digital image]. (n.d.). Retrieved Nov 15, 2016, from

http://newscenter.lbl.gov/wp-content/uploads/sites/2/2009/10/ruler-cmb-today.jpg

[6] DESI. DESI Level 1 through Level 3 Requirements, Science Objectives, Survey Data

Set, Instrument Technical Requirements. DESI-doc-318. Nov. 2013.

[7] DESI COLLABORATION. “The DESI Experiment Part II: Instrument Design”. In:

ArXiv e-prints (Oct. 2016). arXiv: 1611.00037 [astro-ph.IM].

31

[8] HONSCHEID K. (2015) MS DOS An Introduction to the DESI Online System

[PDF]. Retrieved from https://desi.lbl.gov/DocDB/cgi-

bin/private/RetrieveFile?docid=997;filename=wbs1.7-dos-overview.pdf;version=3

[9] HONSCHEID K. et al. (2016). The DESI instrument control system. Proc. SPIE

9913, Software and Cyberinfrastructure for Astronomy IV, 99130P

doi:10.1117/12.2229835.

[10] HONSCHEID K. et al. (2015) ICS – Mayall TCS API [PDF]. Retrieved from

https://desi.lbl.gov/DocDB/cgi-bin/private/RetrieveFile?docid=1132;filename=DESI-

1132-v1-TCS-DOS-API.pdf;version=2

[11] Mayall 4-m telescope [Digital image]. (n.d.). Retrieved November 12, 2016, from

http://www.weasner.com/observatories/Kitt_Peak_2010/Kitt_Peak_10_Oct_29_24.jpg

[12] HONSCHEID K. et al. (2015) ICS – Spectrograph Controller ICD [PDF]. Retrieved

from https://desi.lbl.gov/DocDB/cgi-bin/private/RetrieveFile?docid=556;filename=DESI-

0556-v6-Spectro-ICS-ICD.pdf;version=6

[13] HONSCHEID K. et al. (2015) ICS – Cryostat Control System ICD [PDF]. Retrieved

from https://desi.lbl.gov/DocDB/cgi-bin/private/RetrieveFile?docid=558;filename=DESI-

0558-v4-Cryo-ICS-ICD.pdf;version=4

32

Appendix A: Sample DESI Application – NetSwitch.py

This code is provided as an example of the format of a DOS application. It is the shortest

application developed under this project, used for controlling a network enabled power

strip. The other applications, especially the three most discussed ones in this thesis (TCS

Interface, SpectroControl, and CryostatReader), are much larger and are omitted for the

sake of space.

#!/usr/bin/env python

from DOSlib.application import Application
import DOSlib.discovery as discovery
from DOSlib.monitor import Monitor
import DOSlib.multicom as multicom
import DOSlib.interlock as Interlock
import dlipower
import pycurl
import time
import os
import NetSwitch_module

Parameters
ns_version = '1.0.0'

Default constants in case database is not availible
ns_constants = {'outlet_1' : 'device_1',
 'outlet_2' : 'device_2',
 'outlet_3' : 'device_3',
 'outlet_4' : 'device_4',
 'outlet_5' : 'device_5',
 'outlet_6' : 'device_6',
 'outlet_7' : 'device_7',
 'outlet_8' : 'device_8'
 }

class NetSwitch(Application):

33

 """A class that communicates with the network controlled (power) switch

 Attributes:
 address (str): The address of the network controlled switch

 """
 commands = ['configure', 'run_script', 'control_outlet',
'control_device', 'get_device', 'get_outlet', 'add_outlet_mapping',
'get_state']
 defaults = {
 "switch_address" : "desipower.mps.ohio-state.edu",
 "delay_time" : 0.5
 }

 def init(self):
 """ The init function for MulticomServer.

 Args:
 switch_address (str, optional): The address of the
network controlled switch
 uname (str, optional): The username to use
with the network controlled switch
 userpassword (str, optional): The password to use
with the network controlled switch
 devices (dict, optional): A dictionary where the
keys are the outlet number, and the value is the name of the device

 """

 self.uname = os.getenv('NETSWITCH_USER', 'admin')
 self.password = os.getenv('NETSWITCH_PASS', '1234')
 self.addr = self.config['switch_address']
 self.delay_time = self.config['delay_time']
 self.switch = NetSwitch_module.NetPowerSwitch(self.addr,
self.uname, self.password)
 self.device_map = {}
 self.constants_version = 'DEFAULT'
 self.constants = {}
 self._setup_initial_constants()
 c = self.get_constants('net_power_switch')
 if c is not None:
 self.constants['net_power_switch'] = c
 else:
 return "FAILED: Can't load required constants: %s" % const
 self.outlet_svs = {}
 self.last_measurement = {}
 for i in range(8):
 self.outlet_svs[i+1] = self.shared_variable("OUTLET%i"%(i+1))
 self.outlet_svs[i+1].publish()
 self.last_measurement[i+1] = None
 for i in list(self.outlet_svs.keys()):
 val = self.switch.get_state(i)

34

 self.outlet_svs[i].write(val)
 self.last_measurement[i] = val
 self.updating = False

 def configure(self, *args, **kwargs):
 """ Restores the system to a known state. This includes the
constants specified, and uses the
 default set if none are specified. The default state for the
spectrograph itself is that
 set by the underlying systems "initialize" command.

 Args:
 constants (str, optional): The set of constants to use.

 """
 args, kwargs = util.dos_parser(*args, **kwargs)
 if(len(args)>0):
 constants = args[0]
 if constants is not None and constants != '':
 if constants.lower() == 'default' or constants.lower() ==
'none':
 self.constants_version = 'DEFAULT'
 elif constants.find(':') == -1:
 return 'FAILED: Invalid constants version %s' %
repr(constants)
 else:
 self.constants_version = constants
 if self.constants_version == 'DEFAULT':
 self._setup_initial_constants()
 self.info('Configuring using default constants...')
 else:
 snapshot, sep, version = self.constants_version.partition(':')

 # Load Constants
 try:
 v = int(version)
 ret_code = self.load_constants(snapshot = snapshot,
snapshot_version = v)
 except:
 v = version
 ret_code = self.load_constants(snapshot = snapshot, tag = v)
 if ret_code == self.FAILED:
 return "FAILED: NetSwitch can't load constants %s" %
self.constants_version
 self.info('Configuring using constants snapshot %s (version/tag
%s)' % (snapshot, str(v)))
 self.constants_version = self.get_constants_version()

 # Get Constants
 for const in ['net_power_switch']:
 c = self.get_constants(const)

35

 if c is not None:
 self.constants[const] = c
 else:
 return "FAILED: Can't load required constants: %s" % const
 self.dev_map = {}
 for i in range (1,9):
 dev_map[i] = self.constants['outlet_%i'%i]
 self.device_map = dev_map

 def _setup_initial_constants(self, *args, **kwargs):
 """ Sets up the initial set of constants for the controller. """
 args, kwargs = util.dos_parser(*args, **kwargs)
 self.set_constants('net_power_switch', ns_constants)
 self.constants_version = 'DEFAULT'

 def run_script(self, args, kwargs = util.dos_parser(*args, **kwargs)):
 """Run the BASIC script that begins at line <line> in the switch.
"""
 args, kwargs = util.dos_parser(*args, **kwargs)
 if (len(args)>0):
 line = args[0]
 else:
 line = 1
 return self.switch.run_script(int(line))

 def control_outlet(self, *args, **kwargs):
 """Run perform an action on the outlet(s) at <outlet_num>. """
 args, kwargs = util.dos_parser(*args, **kwargs)
 self.updating = True
 outlet_num = []
 for i in range(len(args)-1):
 outlet_num.append args[i]
 command = args[-1]
 temp = []
 for item in outlet_num:
 temp.append(int(item))
 outlet_num = temp
 ret_val = self.switch.control_outlet(outlet_num, command)
 if ret_val == 'DONE':
 for item in outlet_num:
 self.last_measurement[int(item)] = command
 self.updating = False
 return ret_val

 def control_device(self, *args, **kwargs):
 """Run perform an action on the outlet attached to the listed
device(s). """
 args, kwargs = util.dos_parser(*args, **kwargs)
 device = []
 for i in range(len(args)-1):
 device.append args[i]
 command = args[-1]

36

 self.updating = True
 ret_val = self.switch.control_device(device, command)
 if ret_val == 'DONE':
 for item in device:
 self.last_measurement[int(self.get_outlet(item))] = command
 self.updating = False
 return ret_val

 def get_device(self, *args, **kwargs):
 """Get the device attached to given outlet number."""
 args, kwargs = util.dos_parser(*args, **kwargs)
 return self.switch.get_device(int(args[0]))

 def get_outlet(self, *args, **kwargs):
 """Get the outlet number of attached device. """
 args, kwargs = util.dos_parser(*args, **kwargs)
 return self.switch.get_outlet(args[0])

 def add_outlet_mapping(self, *args, **kwargs):
 """Add outlet-device pairing. List the outlet first as an integer.
"""
 args, kwargs = util.dos_parser(*args, **kwargs)
 outlet = args[0]
 device = args[1]
 return self.switch.add_outlet_mapping(int(outlet), device)

 def get_state(self, *args, **kwargs):
 """Get the state for a given outlet. """
 return self.switch.get_state(int(args[0]))

 def main(self):
 while not self.shutdown_event.isSet():
 if not self.updating:
 for i in list(self.outlet_svs.keys()):
 val = self.get_state(i)
 if val != self.last_measurement[i]:
 self.alarm_warning('Power for outlet %i has been
switched to %s'%(i, val))
 self.outlet_svs[i].write(val)
 self.last_measurement[i] = val
 self.sleep(self.delay_time)

if __name__ == "__main__":
 MyApp = NetSwitch()
 MyApp.run()

