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Abstract 

 

The focus of this thesis project is on the development of applications for use in 

the DESI Online System, or DOS. DOS is the online system used for the control and 

management of the Dark Energy Spectroscopic Instrument (DESI). The DESI project will 

make measurements of the spectra of galaxies and quasars in order to provide data 

illuminating the nature of dark energy. The control system for this instrument is still in 

the development stage and must be finished in time for the start of the survey in 2018. As 

such, this project concerns the creation of the software applications needed to control the 

individual components of DESI, testing these applications through the use of simulators 

both provided by the component teams and developed alongside the applications, and 

finally integrating the applications into the full system. The three primary applications 

whose development is presented in this thesis are the Telescope Control System 

Interface, the Spectrograph Control application, and the Cryostat Reader application. 

These applications, which have been developed primarily in the Python language, will be 

vital to the operation of the DESI survey. 
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Chapter 1:  Introduction and Background 

 

1.1 Scientific Background 

One of the foremost questions in physics research today is that of the nature of the 

universe’s accelerating expansion. Detection of this phenomenon was first published in 

1998 by the High-Z Supernova search team and in 1999 by the Supernova Cosmology 

Project. The expansion was detected through measurements of the redshifts of Ia 

Supernovae, which are also known as “standard candles” due to the expectation that they 

occur with a consistent luminosity [1,2]. There are three leading hypotheses as to the 

cause of this accelerated expansion. The first is that there is a modification required in the 

theory of General Relativity for cosmological scales. The second is that the expansion is 

driven by a hypothetical form of energy that has negative pressure, which would not be 

due to any particles known or otherwise, called dark energy and would constitute about 

68% of the observable Universe’s energy density. The third is a “cosmological constant” 

which would act as a static form of dark energy [3].  

 

1.2 DESI Survey Goals 

 According to its stated plan, the Dark Energy Spectroscopic Instrument (DESI) 

[3] is broadly designed to investigate the composition of the Universe at large as well as 
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the nature of space-time. This investigation will include working to establish which of the 

previously stated hypotheses is most likely responsible for the Universe’s accelerating 

expansion and constraining models of primordial inflation [3]. This will be done by 

constructing a 3D map of the universe from precise measurements of the spectra and 

redshifts from more than 20 million galaxies. This map, unprecedented in volume, will 

allow for the expansion history of the universe to be charted through measurements of 

baryon acoustic oscillations and for the growth of structure to be examined via red-shift 

space distortion measurements [4].  

 DESI’s primary measurement is of baryon acoustic oscillations. Baryon acoustic 

oscillations (BAOs) are acoustic waves that began as small overdensities in the electron-

photon plasma of the early universe that left an imprint on the distribution of matter after 

recombination (when the plasma turned into neutral atoms). This occurred 380,000 years 

after the Big Bang. This pattern has the same source as that of the cosmic microwave 

background (CMB), this connection can be seen in Figure 1. BAOs appear in the 

distribution of all matter in the Universe, and DESI will examine the positions and 

spectra of galaxies in order to measure these oscillations [3]. By examining the pattern 

this leaves behind as a function of the time since the Big Bang, which is determined by 

the redshift of the galaxies within the pattern, information about the expansion history of 

the universe can be deduced [4].  

 DESI will result in independently useful data, but will have the added value of 

complementing the results of other surveys. Cosmological measurements will be made by 

cross-correlating data taken from Planck experiment and future CMB experiments that 
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would not have been possible from the individual data sets [3]. Furthermore, both the 

Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST) have a few 

thousand square degrees of overlap in survey area with DESI. Multiple cosmological 

tests, either using overlapping survey area or techniques independent of it, can be 

performed by examining other data sets alongside DESI’s. Finally, the Euclid mission 

being undertaken by the European Space Agency in 2020 and the planned WFIRST-AFTA 

NASA mission will provide an opportunities for complimentary measurements when 

combined with DESI data, primarily investigations into galaxy-galaxy weak lensing [3]. 

 

1.3 Instrument 

 The DESI instrument was designed to meet the survey’s science and operational 

requirements, which include (but are not limited to) the following [3,6]: 

Figure 1: Cosmic Microwave Background and BAO [5] 
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 The DESI survey must cover at least 9000 square degrees of sky, with a 

maximum practical area of 14,000 square degrees. 

 The survey must reach 30 million cosmological targets. 

 The instrument should fit about 700 fibers to each square degree of sky. 

 The instrument’s field of view should be 7 square degrees or more. 

 The spectral range of the survey is 360-980 nm. 

 The target galaxy density is 2900 per degrees squared with an expected 1800 

successful redshifts per degree squared. 

These requirements necessitate a high throughput spectrograph that will observe 

thousands of target spectra per exposure. As such, the system was designed to maximize 

the throughput from beginning to end. 

 The DESI instrument will be installed on the Mayall 4-m telescope at Kitt Peak 

National Observatory (KPNO) which will provide a 3.2-degree diameter field of view 

[3]. The focal plane will support 5,000 robotically positioned fiber optic cables that will 

transport the photons from the focal plane to the waiting spectrographs. This large 

number of fibers will allow for more measurements per exposure, thereby fitting many 

measurements into a finite survey duration. These robotic positioners will allow for a 

reconfiguring of the focal plane in 120 seconds (with a goal of 60 seconds) to 5 µm RMS 

accuracy. This reconfiguring of the focal plane will run in parallel with the telescope 

slewing to the next target position. The fiber positioners will move to approximate 

positions during the slew, and then correct to exact positions after the telescope is in 

place. In addition to these fiber positioners, ten guide, focus, and alignment (GFA) 
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sensors will be placed in and near the focal plane [3]. These ten sensors will be identical 

CCD cameras. The guide cameras will be placed in focus and are used for tracking 

known stars in order to keep the focal plane aligned with the targets. The focus and 

alignment sensors are placed with dual filters 1.5 mm above and below the focal plane in 

order to extract out of focus images of stars for analysis. Information from the GFA is 

used by the six axis hexapod to position the focal plane and optical corrector barrel [3]. 

The light from the focal plane is transferred to multiple spectrographs via fiber optic 

cables. The spectrographs are read out in parallel with the telescope slew and focal plane 

reconfiguring. 

 

1.4 Instrument Control System and DOS 

 The Instrument Control System (ICS) is responsible for all of the control and 

monitoring functions required to keep the DESI instrument operating. The software 

responsible for these functions has been adapted from the Dark Energy Survey’s (DES) 

readout and control system architecture, SISPI. This is due to similarities in the surveys, 

including the fact that the Mayall telescope being used for DESI is the identical sister 

telescope to the Blanco telescope used for DES. The updated design of the online system 

forms the DESI Online System, or DOS. Components such as the dynamic exposure time 

calculator, the real-time data quality assessment, and complex algorithms to convert on-

sky target coordinates to fiber positions on the focal plane were adapted from the SDSS-

III/BOSS online system [7]. The ICS is designed to meet the survey’s requirements for 

successful operation including being able to accommodate an exposure timetable of less 
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than 120 seconds between exposures and a goal of 60 seconds between exposures (as 

previously mentioned), to be able to withstand the failure of a single computer or drive 

excluding dedicated hardware interfaces, to provide user interfaces, to provide 

communication paths between subcomponents of the system, to facilitate data flow, and 

more [7].  

 This project is concerned with the development of important elements of the 

DESI Online System as part of the overall DESI project. This thesis will provide insight 

into the design and performance of these elements under this project. 
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Chapter 2: Architecture of the DESI Online System 

 

2.1 Architecture 

 The DOS architecture is based on that of the Dark Energy Survey’s online system, 

along with the set requirements for the ICS. DOS is responsible for the management of 

dataflow, the controlling of the instrument, the monitoring of the system, and providing a 

user interface [8]. DOS manages dataflow by reading data out of the spectrographs, 

converting that data to the FITS file format while inserting the necessary DESI keywords, 

and storing those images to a disk archive. DOS is not only responsible for the sequence 

of exposures taken; it also provides the high level software control for the entire 

instrument and its sub-components. DOS oversees the system by continuously 

monitoring operational parameters for the instrument and storing these values in a 

database, by monitoring environmental information from the Mayall telescope’s systems 

and storing these values in a database as well, by providing interfaces to this database, 

and by creating alarms and errors that both alert operators and are archived. Finally, DOS 

provides a Graphical User Interface (GUI) using the Model-View-Controller design 

pattern to give access to the many systems described above [7]. 

 DOS’s architecture is adapted from the architecture of DES’s SISPI online 

system. The schematic diagrams for SISPI and DOS are shown in Figure 2 and Figure 3, 
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respectively. There are notable differences between the two systems including the 

groupings of the focal plane control and the guider, as well as changes in which 

instrument specific systems are included, such as the spectrographs and fiber positioners 

in DESI’s system. However, clear structural similarities such as the central Observation 

Control System (OCS), the modular nature of the control scheme, and the separation of 

the dataflow telemetry and commands are present. 

 DOS’s schematic view shows the OCS at the center of the structure, where it is 

responsible for overseeing all aspects of DESI’s complex exposure sequence. It accepts 

exposure requests from outside the system which include all necessary information such 

Figure 2: SISPI Schematic View [8] 
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as fiber positions and guide stars. The OCS then coordinates with the various subsystems 

to align the instrument, take the exposure, and read out the data. The system implements 

a pipelined architecture that allows data readout to run in parallel with configuring the 

system for the next exposure [7]. Various subsystems can be seen in DOS’s schematic; 

this thesis project concerned those that can be seen under Instrument Control (in blue). 

These are the primary focus of development under this project. 

 DOS’s software is primarily developed in Python 3, updated from SISPI’s use of 

Python 2. DOS is constructed to be modular and application focused, thereby allowing 

for development and testing of subsystems independently. This in turn has the advantage 

of being able to create “instances” of DOS with different configurations of applications, 

Figure 3: DOS Schematic View [8] 
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depending on what is necessary and what is developed at the time. DOS is a distributed 

system, running on many computers and controllers throughout the instrument and its 

surrounding systems. These things are made possible by the Application Framework, the 

software model used by DOS. 

 

2.2 Application Framework 

 The Application Framework is built on the Python Remote Object (PYRO) 

library. The PYRO library allows for communication between Python applications over a 

network connection by allowing objects to be directly accessible even when located in a 

different application, hence “PYthon Remote Object”. DOS wraps the functionality of 

PYRO in two different software layers [7]. The first of these is used for sending 

command and is called Python Messaging Layer, or PML. PML uses a Client-Server 

design pattern to allow one application to make a function call to another, either to 

prompt action or to make a request for information. The second is used for sharing data in 

the form of a Publisher-Subscriber pattern. The data is shared over “Shared Variables”, 

variables in python that can either publish updates or subscribe to them. The data in these 

variables is accessible to any applications in the DOS instance with a connection to the 

Shared Variable Engine, or SVE. The SVE is responsible for keeping track of the Shared 

Variables and distributing updates from publishing variables to the subscribed ones. This 

is used to provide access to telemetry data for all other applications that may need it. 
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 The Application Framework is encapsulated in a Python class that allows for the 

development of a software application within the same basic structure of all DOS 

applications, giving it access to DOS services as well as allowing it to be added to an 

instance of DOS with ease. The model of an application within the DOS Application 

Framework can be seen in Figure 4. 

 Developing applications within the Framework allows for easy configuration of 

the system. The Framework allows a newly starting application to connect to the 

previously running applications in the instance automatically. A startup system called the 

Architect has been developed that allows for a complex instance of DOS to be created 

using command line arguments and configure files of the “.ini” format to specify what 

Figure 4: Application Framework Outline [7] 
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applications should be started as well as configuration parameters to start them with. The 

procedures for shutting down an application are also handled centrally by the Framework. 

This allows an application to exit while allowing the rest of the instance to continue 

running [7]. 

 When a DOS application is built within the Application Framework it first 

inherits the Application class, which provides access to the DOS services that can be seen 

in the bottom row of Figure 4, including those previously mentioned. Within the structure 

laid out by the Application class, the developer then provides the user code that forms the 

primary functionality of the application (top row of Figure 4). First, the developer can 

specify “Defaults”, or default values within the program, that can be overridden at startup 

by either a configuring “.ini” file or command line arguments. Next, the commands that 

will be accessible to others via the online system are specified so that the Framework can 

make them available. If necessary, the developer can override the main function and/or 

shutdown function to control what is done during the run loop to customize the exit 

handlers. All DOS applications should have a configure function to set the application to 

an initial ready state. Finally, individual functions within the class are developed. 

Functions that are accessible across the online system are specified as commands. Those 

commands must accept arguments of arbitrary number and type which are then parsed by 

the dos_parser utility. 

 One of the primary purposes of the Application Framework is to provide the 

online system with a standardized, modular, and accessible interface to the many 

elements of the control system which vary widely in terms of hardware, programming 
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languages, and communication paths. When a DOS application is designed to be a point 

of communication with a subsystem, it is responsible for wrapping the subsystem’s 

functionality within its remotely accessible commands, its Shared Variables, and its 

alarms. By doing so, it takes a complex and diverse set of subsystems and makes them 

easily accessible and configurable to the higher levels of the online system. 
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Chapter 3: DOS Applications 

 The primary purpose of this project was the development of DOS applications for 

use in instrument control. The three most important applications developed were the 

Telescope Control System (TCS) Interface Application, the Spectrograph Controller 

application, and the Cryostat Reader application. The development and testing processes 

for these three applications are presented below. 

 

3.1 Telescope Control System Interface 

 The TCS is responsible for the control of the telescope itself, the calibration 

lamps, and the environmental parameters inside the dome. Therefore, the TCS requires an 

interfacing application to expose this functionality to the online system. This application 

is known as the TCS Interface, and its initial development is the first part of this project.  

The Mayall TCS is a software control program that can be interacted with over an 

Ethernet socket. This is developed independently from the DOS application “TCS 

Interface”, and so the TCS Interface has been programmed to match the existing and 

planned functionality for the TCS. Since the Mayall telescope is the identical sister 

telescope to the Blanco telescope used for the Dark Energy Survey, the TCS Interface 

was adapted from the equivalent application in SISPI. This was done under the 

expectation that the two projects’ Telescope Control Systems would be reasonably 
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similar. The structure of the interaction between the DOS application and the TCS can be 

seen in Figure 5.  

 The protocol library, represented by the inner semicircles in Figure 5, is defined 

in an “Implementation Document” [10]. The control code and ICS framework 

surrounding it represents the TCS Interface application. The communication over the 

Ethernet socket is always initiated by the DOS side of the connection. All communication 

is formatted as ASCII strings containing key-value pairs, for both directions. All 

commands are responded to immediately and all responses include state information 

(“DONE”, “ACTIVE”, or “ERROR”) followed by any values requested. The TCS 

Interface wraps all of this communication in remotely callable commands and Shared 

Variables for use by the rest of the system. 

 The majority of the commands in the TCS Interface are concerned with the 

movement of the telescope. The basic command for this is “move_telescope” which 

Figure 5: TCS Block Diagram [9] 
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accepts coordinates for the telescope position either relative to a location on the sky, to 

the earth, or to the telescope’s current position. Once this command is processed, the TCS 

Interface monitors the telescope’s process, and reports back when the slew is determined 

to be either a success or a failure. Other commands concerning the telescope’s movement 

are the “whitespot” and “zenith” commands which send the telescope to known positions, 

the “stop” and “abort_slew” commands which cease any telescope motion and cancel a 

running slew to a new position respectively, the “track” command which requests that the 

telescope start tracking the movement of the sky, and the “guide_correction” command 

that is responsible for updating a telescope with corrections to its current movement. 

 The TCS Interface supports commands beyond ordering telescope movements, 

namely being responsible for updating the TCS with the current state of the six axis 

hexapod (for use in the TCS’s pointing model) and controlling the calibration lamps. The 

“hexapod_position” command takes six floating point values that describe the x, y, z, tip, 

tilt, and rotation of the hexapod. The “calib” command controls which lamps are on and 

what brightness they are set to. The application also supports “get” and “set” commands 

that provide access to information both from the TCS and from the application itself. 

 Finally, the TCS Interface is responsible for regularly updating Shared Variables 

with information about the state of the TCS and the application. The three primary 

Shared Variables for this purpose are “INFOT”, “INFOE”, and “INFOC” which contain 

telemetry, environmental, and calibration information, respectively. These three Shared 

Variables are updated periodically by independently running update threads that are 
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started when the “configure” command is first run. The information published on these 

Shared Variables is used in another program to update the experiment’s database. 

 To facilitate the development of the TCS Interface, two simulators have been used 

to mimic the TCS’s functionality. The first simulator was created alongside the TCS 

Interface as part of this project. Developed in Python, the simulator contains a Python 

socketserver that communicates through the ASCII protocol defined in the 

Implementation Document [10]. The socketserver has a function that handles requests by 

parsing the incoming ASCII into the requested command and arguments. These values 

are used to interact with a TCS simulator object that mimics a simplified TCS. The 

simulator includes internal time delays to mimic the slewing of the telescope, position 

calculations using the PyEphem astronomy package, slowly drifting environmental data, 

and simple tracking of the hexapod and calibration lamp’s statuses. This simulator was 

Figure 6: The Mayall Telescope [11] 
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used until the official simulator was delivered by the team responsible for the real TCS 

system at a later date. This second simulator uses identical communication to that of the 

first simulator (since both mimic that of the final system), but includes physical details of 

the telescope as well as safety systems that were not accounted for when calculating 

responses in the first simulator. The simulator also includes a graphical interface so that 

the behavior of the TCS can be compared against what is intended by the TCS Interface. 

A subset of this interface can be seen in Figure 7. 

  Previous to the development of the TCS Interface, most applications had been 

spot checked by hand to make sure they functioned as intended. In order to verify that the 

applications work consistently, including in border cases, unit testing was introduced as a 

development tool throughout this project. Unit testing is a way of automatically running a 

Figure 7: The TCS Simulator User Interface 
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series of tests, usually involving a call to a command and an analysis of the response. If 

the command and response behave as expected, the test passes; if not, it fails. By creating 

a battery of unit tests that probe a variety of commands to test for their behavior in both 

common usage and border cases, the integrity of the application can be verified quickly 

after each change. This way, changes in the performance of one part of the application 

can be checked when edits are made to an unrelated section. These tests are implemented 

using Python’s “unittest” library, and can be used to verify that TCS Interface is fully 

operational as development continues.  

 

3.2 Spectrograph Controller 

 The primary measurement device of DESI is the spectrograph array fed by the 

fiber optics transporting light from the focal plane of the instrument. There will be 10 

spectrographs in DESI, each with a red, blue, and near infrared CCD camera for taking 

data. These spectrographs are equipped with network-enabled controllers that interface 

with the hardware and control the operation of the spectrographs. Each network-enabled 

controller includes a Python software library that allows for external control of the 

individual components of the spectrograph while protecting from any incorrect or illegal 

commands. The DOS application will run on the network-enabled controller and 

communicate over the network with the rest of the system. This structure is replicated for 

each spectrograph, as can be seen in Figure 8. The creation of the DOS application for 

this system is the second portion of this thesis project. 
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 The DOS application for this subsystem, SpectroControl, is responsible for 

integrating the spectrograph control library into DOS. SpectroControl, in addition to the 

common commands present in DOS application such as “configure”, “get”, and “set”, 

provides commands that allow the observation control system to access direct control of 

the components. These commands include changing the power settings for the shutters 

and the Hartmann doors in the spectrograph, opening and closing these shutters and 

doors, and inflating and deflating the shutters’ pneumatic seals. There are also commands 

that prepare the spectrograph for an exposure or for illumination, either through use of a 

given preparation command in the library or by setting the components to their required 

states. The DOS application includes functions for illuminating and exposing the 

spectrograph, including the ability to pause and resume an exposure. Finally, the 

application monitors the sensors for the spectrograph hardware, recording the 

Figure 8: Spectrograph Control System Interface [12] 
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measurements in Shared Variables and raising alarms if any of the values leave a safe 

range. 

 Like the TCS Interface, the SpectroControl application requires a simulator in 

order to test the functionality of the DOS application prior to deploying the code on a 

physical system. However, unlike the TCS, the spectrograph library has no official 

simulator provided by the group developing it. Therefore a more complete simulator for 

the spectrograph hardware was developed as a part of this project. 

 Since the spectrograph control library is a Python module, the simulator was 

developed as a Python module as well. It contains a SpectroController class that has 

functions used for retrieving data and sending commands, identical to the true module. 

The SpectroController class stores the state of the system in a series of dictionaries which 

are updated to reflect any changes. The sensor data values for the spectrograph are given 

initial values which are updated periodically in an independent thread. These updates take 

the form of a random value added to the current one, with the final range restricted to 

within believable physical limits. The ability to set these values and to lock them into 

place is also provided to allow for testing of specific border cases. This is implemented as 

PML accessible commands so that the test bench can change the values independently 

from the SpectroControl application. 

 Each simulation function in the library checks the state of the system before 

running and throws a runtime error if such a call would result in an illegal or unphysical 

action, such as moving an unpowered shutter. If no such error occurs, the function then 

waits for a time mimicking the physical delay time of the action before updating the 
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simulator state and returning. If the simulator is called to begin an exposure or an 

illumination, a new thread is started that is responsible for updating the state of the 

simulator, replicating the exposure/illumination process until either the time expires or it 

receives a stop command. 

 Due to the necessity of separating errors in the DOS application from errors in the 

simulator, a series of unit tests have been developed to verify the correct behavior of the 

simulator. These tests show that the simulator works as expected for both normal use and 

border cases, and so any errors arising in testing the ongoing development of the 

SpectroController application will be due to errors in the application itself. 

 

3.3 Cryostat Reader 

 Each of the spectrographs is equipped with three cryostats, devices designed to 

maintain a constant low temperature, one for each camera. This setup can be observed in 

Figure 9: Spectrograph Hardware CAD Rendering [3] 
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Figure 9. Although a DOS application will not be dedicated to controlling the cryostats, 

there is an application dedicated to monitoring environmental and state information 

published by the cryostats. This application is the CryostatReader, and its creation is the 

third part of this project. Unlike the prior two applications, which involved controlling 

hardware through a simple path of communication, the CryostatReader navigates a read-

only OPC server containing the state information about each cryostat in leaf nodes and 

publishes that information on Shared Variables. The data is then directed to eleven 

different tables (one per spectrograph and one general table) in the telemetry database 

which store the information. The CryostatReader is also responsible for raising alarms in 

DOS in response to changes in the cryostats. The relationship between the cryostat’s OPC 

server and the DOS application CryostatReader is shown in Figure 10. The optional OPC 

Interface is unused. 

 The box containing the Cryostat monitoring hardware was shipped to OSU to aid 

in the development of the DOS interface. It contained the power system, which had to be 

converted from French to American electrical standards, and the computer containing the 

server. The French team responsible for the hardware had configured the server to 

Figure 10: Cryostat Software Block Diagram [13] 
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contain the data fields that would be present in the final version of the system, and to fill 

these fields with changing values for the purpose of testing. This box can be seen in 

Figure 11. The first step was of creating the CryostatReader was to uncover the server file 

structure as well as the names and data types of recorded values within the system. This 

was done by using the UaExpert GUI client provided by Unified Automation (Figure 12). 

With the server structure established, the next step was to create the DOS application to 

interface with it.  

 In order to navigate the OPC server a suitable OPC client Python library had to be 

found. Locating such a library proved to be more challenging than expected. Libraries 

tried included the OpenOPC, PyUAF, and open62451 libraries. All either proved to be 

unable to connect to the server or did not integrate well with the existing structure. 

Figure 11: Cryostat Server Box 
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Finally, the opcua library from FreeOpcUa was used to access the server and the 

CryostatReader application was developed around this library. 

 The CryostatReader first navigates to the directory containing all the data nodes 

for the system. It then examines all the node names to determine how many 

spectrographs are represented in the server at that time, and sorts the data by 

spectrograph, including a section for non-spectrograph specific data. It then begins an 

update cycle of polling all the nodes for their current values, recording the values into a 

Python dictionary that corresponds to the destination table, and then publishing those 

dictionaries to a Shared Variable.  

The CryostatReader includes an internal simulator that can be used when no 

actual server is present. Because of this, the application can still be run as part of a test 

system even if no cryostat or monitoring server is present. The Cryostat reader also 

Figure 12: UaExpert GUI Client 
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includes the ability to respond to alarm nodes set by the server by raising corresponding 

alarms in DOS.  

 Unlike other DOS applications that are fundamentally part of a network of 

applications in DOS (an “instance” of DOS), the CryostatReader was originally designed 

to function on its own by not extending the Application Framework. This would allow it 

to continue to monitor the device without being reliant on any outside influence, and 

would keep running even when no instance was up. Data was inserted into the database 

through the use of the psycopg2 library. The most recent revision of the CryostatReader 

has relaxed this requirement, and the CryostatReader now implements the Application 

Framework. However, it keeps its ability to run independently of a DOS instance by 

running in “device mode”. This mode allows for a DOS application to run without a 

PYRO connection to the rest of the system. However, since the data is now published in 

Shared Variables rather than being inserted in the database directly using psycopg2, a 

connection to the database updating program must be established, else the data will be 

lost. 

 

3.4 Other DOS Applications 

 Although the TCS Interface, the SpectroControl application, and the 

CryostatReader formed the focus of this thesis, other DOS applications were developed 

under this project as well. One such application is the NetSwitch application, which is 

capable of controlling a network-enabled power switch. This would be used to remotely 

control what instruments were powered from within the online system. The PLC 
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application was developed under this project to be used by another team within the 

collaboration. It is capable of controlling a Programmable Logic Controller from within 

DOS. This can be used to control a hardware test bench for the equipment from the same 

instance of DOS running the system itself. This included both the application itself and a 

simulator for development. Finally, an application for interfacing with a sbig CCD 

camera for use as a Fiber Photometry Camera (FPC) was developed under this project. 

The application used the python sbig module to control the state of and extract images 

from the camera. The images were then stored in the FITS file format, and a header was 

attached. In addition to the application itself, a series of unit tests were developed to 

verify functionality. 
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Chapter 4: Conclusion 

 

4.1 Results/Current State 

 All three applications developed as a part of this thesis project are currently 

functioning as intended, and are being updated as the software and hardware surrounding 

them evolves. DOS is still under development, and development will likely continue past 

the beginning of the survey in 2018. The TCS Interface has been used to control the 

Mayall Telescope itself during a test run this year, and was found to be fully functional. 

Since then, updates have been made to keep the application current with the development 

being done by the team responsible for the TCS. The SpectroControl application was 

found to work correctly with the simulator at the end of its development under this 

project, and has since been updated by other members of the collaboration as part of 

DOS’s ongoing development. It is currently being used to control the spectrograph test 

stand at Winlight, in France. The CryostatReader has been continuously updated in 

response to changes made by the team responsible for the cryostat, and has functioned 

correctly at the end of each of these development cycles. The data reported by the 

CryostatReader has been verified in the telemetry database, and the alarm functionality 

was developed and verified as the most recent update under this project. It is also being 

used to monitor the physical test bench at Winlight. The NetSwitch application is fully 
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functioning, the FPC application was able to correctly control and extract images from 

the camera, but much more development is needed before production. Finally, the PLC 

application was verified to work against the simulator, but the team it was developed for 

has yet to report its usage or performance. 

 

4.2 Future Developments 

 The future developments of this project are straightforward: to continue to update 

the existing applications to match developments both in DOS and in other parts of the 

collaboration. In addition, the remaining applications must be developed and tested 

before the survey begins in 2018. The next application expected to be developed as a 

continuation of this work is the Active Optics System application. 

 

4.3 Conclusion 

Under this project, multiple DOS applications essential to the Dark Energy Spectroscopic 

Instrument survey have been developed and tested. These applications will continue to be 

updated, and will be used over the course of the DESI survey, which will begin in 2018. 

The DESI survey will then provide measurements that will help to illuminate the nature 

of Dark Energy. 
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Appendix A: Sample DESI Application – NetSwitch.py 

This code is provided as an example of the format of a DOS application. It is the shortest 

application developed under this project, used for controlling a network enabled power 

strip. The other applications, especially the three most discussed ones in this thesis (TCS 

Interface, SpectroControl, and CryostatReader), are much larger and are omitted for the 

sake of space. 

 

#!/usr/bin/env python 
 
from DOSlib.application import Application 
import DOSlib.discovery as discovery 
from DOSlib.monitor import Monitor 
import DOSlib.multicom as multicom 
import DOSlib.interlock as Interlock 
import dlipower 
import pycurl 
import time 
import os 
import NetSwitch_module 
 
# Parameters 
ns_version = '1.0.0' 
 
# Default constants in case database is not availible 
ns_constants = {'outlet_1'  :   'device_1', 
                'outlet_2'  :   'device_2', 
                'outlet_3'  :   'device_3', 
                'outlet_4'  :   'device_4', 
                'outlet_5'  :   'device_5', 
                'outlet_6'  :   'device_6', 
                'outlet_7'  :   'device_7', 
                'outlet_8'  :   'device_8' 
                } 
 
class NetSwitch(Application): 
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    """A class that communicates with the network controlled (power) switch 
 
    Attributes: 
        address (str): The address of the network controlled switch  
         
    """ 
    commands = ['configure', 'run_script', 'control_outlet', 
'control_device', 'get_device', 'get_outlet', 'add_outlet_mapping', 
'get_state'] 
    defaults = { 
    "switch_address"    :   "desipower.mps.ohio-state.edu", 
    "delay_time"        :   0.5 
    } 
 
    def init(self): 
        """ The init function for MulticomServer. 
             
        Args: 
            switch_address  (str, optional):        The address of the 
network controlled switch 
            uname           (str, optional):        The username to use 
with the network controlled switch 
            userpassword    (str, optional):        The password to use 
with the network controlled switch 
            devices         (dict, optional):       A dictionary where the 
keys are the outlet number, and the value is the name of the device 
 
        """ 
         
        self.uname = os.getenv('NETSWITCH_USER', 'admin') 
        self.password = os.getenv('NETSWITCH_PASS', '1234') 
        self.addr = self.config['switch_address'] 
        self.delay_time = self.config['delay_time'] 
        self.switch = NetSwitch_module.NetPowerSwitch(self.addr, 
self.uname, self.password) 
        self.device_map = {} 
        self.constants_version = 'DEFAULT' 
        self.constants = {} 
        self._setup_initial_constants() 
        c = self.get_constants('net_power_switch') 
        if c is not None: 
            self.constants['net_power_switch'] = c 
        else: 
            return "FAILED: Can't load required constants: %s" % const 
        self.outlet_svs = {} 
        self.last_measurement = {} 
        for i in range(8): 
            self.outlet_svs[i+1] = self.shared_variable("OUTLET%i"%(i+1)) 
            self.outlet_svs[i+1].publish() 
            self.last_measurement[i+1] = None 
        for i in list(self.outlet_svs.keys()): 
            val = self.switch.get_state(i) 
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            self.outlet_svs[i].write(val) 
            self.last_measurement[i] = val         
        self.updating = False 
 
 
    def configure(self,  *args, **kwargs): 
        """ Restores the system to a known state. This includes the 
constants specified, and uses the  
            default set if none are specified. The default state for the 
spectrograph itself is that  
            set by the underlying systems "initialize" command. 
     
            Args: 
                constants (str, optional):  The set of constants to use. 
 
        """ 
        args, kwargs = util.dos_parser(*args, **kwargs)  
        if(len(args)>0): 
            constants = args[0] 
        if constants is not None  and constants != '': 
            if constants.lower() == 'default' or constants.lower() == 
'none': 
                self.constants_version = 'DEFAULT' 
            elif constants.find(':') == -1: 
                return 'FAILED: Invalid constants version %s' % 
repr(constants) 
            else: 
                self.constants_version = constants 
        if self.constants_version == 'DEFAULT': 
            self._setup_initial_constants() 
            self.info('Configuring using default constants...') 
        else: 
            snapshot, sep, version = self.constants_version.partition(':') 
 
        # Load Constants 
        try: 
            v = int(version) 
            ret_code = self.load_constants(snapshot = snapshot, 
snapshot_version = v) 
        except: 
            v = version 
            ret_code = self.load_constants(snapshot = snapshot, tag = v) 
        if ret_code == self.FAILED: 
            return "FAILED: NetSwitch can't load constants %s" % 
self.constants_version 
        self.info('Configuring using constants snapshot %s (version/tag 
%s)' % (snapshot, str(v))) 
        self.constants_version = self.get_constants_version() 
 
        # Get Constants 
        for const in ['net_power_switch']: 
            c = self.get_constants(const) 
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            if c is not None: 
                self.constants[const] = c 
            else: 
                return "FAILED: Can't load required constants: %s" % const 
        self.dev_map = {} 
        for i in range (1,9): 
            dev_map[i] = self.constants['outlet_%i'%i] 
        self.device_map = dev_map 
 
    def _setup_initial_constants(self, *args, **kwargs): 
        """ Sets up the initial set of constants for the controller. """ 
        args, kwargs = util.dos_parser(*args, **kwargs)  
        self.set_constants('net_power_switch', ns_constants) 
        self.constants_version = 'DEFAULT' 
 
    def run_script(self, args, kwargs = util.dos_parser(*args, **kwargs) ): 
        """Run the BASIC script that begins at line <line> in the switch. 
""" 
        args, kwargs = util.dos_parser(*args, **kwargs) 
        if (len(args)>0): 
            line = args[0] 
        else: 
            line = 1 
        return self.switch.run_script(int(line)) 
 
    def control_outlet(self, *args, **kwargs): 
        """Run perform an action on the outlet(s) at <outlet_num>. """ 
        args, kwargs = util.dos_parser(*args, **kwargs)  
        self.updating = True 
        outlet_num = [] 
        for i in range(len(args)-1): 
            outlet_num.append args[i] 
        command = args[-1] 
        temp = [] 
        for item in outlet_num: 
            temp.append(int(item)) 
        outlet_num = temp 
        ret_val = self.switch.control_outlet(outlet_num, command) 
        if ret_val == 'DONE': 
            for item in outlet_num: 
                self.last_measurement[int(item)] = command 
        self.updating = False 
        return ret_val 
 
    def control_device(self, *args, **kwargs): 
        """Run perform an action on the outlet attached to the listed 
device(s). """ 
        args, kwargs = util.dos_parser(*args, **kwargs)  
        device = [] 
        for i in range(len(args)-1): 
            device.append args[i] 
        command = args[-1] 
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        self.updating = True 
        ret_val = self.switch.control_device(device, command) 
        if ret_val == 'DONE': 
            for item in device: 
                self.last_measurement[int(self.get_outlet(item))] = command 
        self.updating = False 
        return ret_val 
 
    def get_device(self, *args, **kwargs): 
        """Get the device attached to given outlet number.""" 
        args, kwargs = util.dos_parser(*args, **kwargs)  
        return self.switch.get_device(int(args[0])) 
 
    def get_outlet(self, *args, **kwargs): 
        """Get the outlet number of attached device. """ 
        args, kwargs = util.dos_parser(*args, **kwargs)  
        return self.switch.get_outlet(args[0]) 
 
    def add_outlet_mapping(self, *args, **kwargs): 
        """Add outlet-device pairing. List the outlet first as an integer. 
""" 
        args, kwargs = util.dos_parser(*args, **kwargs) 
        outlet = args[0] 
        device = args[1]  
        return self.switch.add_outlet_mapping(int(outlet), device) 
 
    def get_state(self, *args, **kwargs): 
        """Get the state for a given outlet. """ 
        return self.switch.get_state(int(args[0])) 
 
    def main(self): 
        while not self.shutdown_event.isSet(): 
            if not self.updating: 
                for i in list(self.outlet_svs.keys()): 
                    val = self.get_state(i) 
                    if val != self.last_measurement[i]: 
                        self.alarm_warning('Power for outlet %i has been 
switched to %s'%(i, val)) 
                    self.outlet_svs[i].write(val) 
                    self.last_measurement[i] = val 
                self.sleep(self.delay_time) 
 
 
if __name__ == "__main__": 
    MyApp = NetSwitch() 
    MyApp.run() 

 

 


