Controls on gravel composition in a proglacial environment, Kaunertal, Austria

Research Thesis Presented in partial fulfillment of the requirements for graduation with research distinction in Geological Sciences in the undergraduate colleges of The Ohio State University

By

Shannon Maria Hibbard

The Ohio State University

Project Advisor: Dr. Lawrence Krissek, School of Earth Sciences

Approved By:

Famine Kupsele

Lawrence Krissek, Advisor School of Earth Sciences

Table of Contents

Abstractii
Acknowledgements
List of Figures
Introduction1
Study Site2
Methods7
Results15
Discussion25
Conclusions
Suggestions for future work
References
Appendices
Appendix A
Appendix B
Appendix C

Abstract

Proglacial environments, the settings in front of glaciers, are increasingly targeted for study as global climate change affects many of the world's glaciers. This study focuses on a proglacial environment in Kaunertal, Austria, located in the drainage basin of the Gepatschferner Glacier, one of the biggest glaciers in Austria (Baewert and Morche, 2013). Effects of transport in proglacial drainage systems like this one are hypothesized to influence the distribution patterns of different rock types supplied by glacial erosion. The main goals of this project are to: 1) describe the composition of gravel-sized clasts along an \sim 4 km length of the Fagge River, the proglacial stream that drains the Gepatschferner Glacier in order to test the results presented in similar research; and 2) interpret the spatial changes in gravel composition in terms of the distribution of bedrock types in the area and the effects of transport, such as the greater persistence of stronger rock types during transport. Sixteen sites were sampled along the Fagge River, with ~ 50 grains collected at each site. Fifty grains were also taken from each major tributary or moraine. In addition, a sample was collected from each of 20 outcrops, distributed among the 3 lithologies in the study area. The composition of each grain was determined by visual examination with a hand lens and standard rock identification charts. The abundance of each rock type has been examined as a function of sampling location. The most abundant gravel compositions are "Orthogneiss," "Paragneiss" and "Ortho- or Paragneiss." There was a wide variation of abundances in all rock types throughout the length of the drainage basin. Although no significant trends were found, "Orthogneiss," "Amphibolite," and "Other" became somewhat more abundant downstream, while "Paragneiss," "Ortho- or Paragneiss" and "Jointed Gneiss" are still present.

Acknowledgements

I would first like to thank all those who provided me with this incredible undergraduate research experience. Without extensive funding, this opportunity would not have been possible. I want to thank the DAAD Rise fellowship (German Academic Exchange Program – Research Internships in Science and Engineering) and Henning Baewert for offering me a research internship to work on the project, "Sediment Budget and Roughness Parameters on an Alpine Proglacial Environment" at the Martin-Luther-Universität in Halle-Wittenberg. DAAD also provided me with travel funds within Germany, insurance and supported my participation in the RISE conference in Dresden.

I would also like to thank The Ohio State University Office of Diversity and Inclusion and James Moore who provided \$1,500 to cover my travel costs to and from Germany.

Thanks to all who supported various research-related costs within Germany including: PROSA joint project (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps), the German Research Foundation (DFG) and the Austrian Science Fund (FWF); Grant number for subproject 3: MO 2068/3-1 (DFG), and the Tyrolean Hydropower Company (TIWAG, Innsbruck) for granting access to data and rendering valuable logistic support.

The School of Earth Sciences has been so helpful to me throughout my college career in so many ways. It provided support from the Goldthwait Geology fund for living expenses in Germany and transportation to and from the university, and for the shipment of my rock samples from Germany to the United States.

I would like to thank the Ohio State University Office of Diversity and Inclusion, the Ohio State University, and the College of Arts and Sciences Division of Natural and Mathematical Sciences for supporting my undergraduate tuition through the Morrill Prominence Scholarship and the Mayers Scholarship.

I also want to acknowledge my colleagues and friends in Germany: Anne, Matthias, Halil (especially for helping me hammer away at metamorphic rocks!), Lucas, Ramona, Karo, Martin, Basti, Nicholas, and Maria. Thank you to my supervisors in Germany: Dr. David Morche, Henning Baewert, and Professor Schmidt. Thank you for a wonderful experience abroad!

I want to thank my research advisor Dr. Krissek who has been very helpful in the process of forming this project. He is always very clear and thorough which has helped me see important details in my research.

Thank you to Dr. Queenborough, my research advisor for another project, for help with R, analysis of research papers and being a great advisor on a separate research project. Thanks to Patti Dittoe from Orton Geology Library for her help with finding papers and setting up RefWorks.

The School of Earth Sciences has given me so much in order for me to succeed and experience once-in-a-lifetime opportunities in my undergraduate career. The school has given me life-long friendships, and wisdom that will forever help me. I was pushed to limits I did not think possible, gained confidence I did not know I had, and accomplished and experienced things I could never have imagined before joining the major. Thank you to everyone in the School of Earth Sciences for the experiences and skills you have given me.

I would like to personally thank Dr. Lyons and Dr. Carey for creating an atmosphere in the school for success. They do their best to form a networking community of professionals consisting of undergraduates, graduates, researchers and professors. They make it obvious that their actions to

iv

help students are genuine. They have both contributed in my success, professionalism, leadership skills, and networking abilities as an undergraduate. I cannot thank them enough.

I would also like to acknowledge my best friends Abby Crock and Cara Nadler. We were a team throughout our classes and outside of our classes. We each had a unique personality that complemented each other well. We helped each other get through tough times and made great times even better. They are wonderful people and I am so thankful we met.

Also, thank you to Andrew Tenison for helping me whenever I have asked and for being a fun friend to be around.

Lastly, I would like to recognize my boyfriend. He is my best friend and has enriched my undergraduate experience by being a part of it. I love you Zak.

List of Figures

Figure 1	Study Site Location	
Figure 2	Kaunertal Valley	5
Figure 3	Bedrock Geology	6
Figure 4	Fagge River and Sample Sites	
Figure 5	Sample Collection	9
Figure 6	Metamorphic Rock Identification Flow Chart	
Figure 7	Rock Types	
Table 1	Reproducibility Table	
Table 2	Overall Abundance Summary	
Table 3	Interval Abundance Summary	
Figure 8	Rock Type Abundance Plots	
Figure 9	Abundance Summary Plot	
Table A1	Rock Identifications	
Table A2	Rock Groups	
Table B1	Bedrock Samples	
Table B2	Tributary and Moraine Samples	
Table B3	Fagge River Samples	
Table C1	Reproducibility Tests	
Table C2	Trend Analysis	

Introduction

Austria is home to some of the largest temperate glaciers in the world, and recent reduction of these glaciers due to global climate change emphasizes the need for studies regarding the effects global warming may have on the environment to which the glacier belongs. Proglacial environments, the setting in front of a glacier, are increasingly targeted for study as global climate changes. This study focuses on one proglacial setting affected by the melting of a glacier. Kaunertal, Austria is located in the drainage basin of the Gepatschferner Glacier, one of the biggest glaciers in Austria (Baewert and Morche, 2013). Proglacial areas, especially river channels, are highly unstable and contain channels, bars, water discharge and sediment input that can change within a day (Baewert and Morche, 2013; Marren, 2005; Ferguson et al. 1992). This leaves a proglacial basin system especially vulnerable to any increase in glacial meltwater. The Gepatschferner, in particular, is losing significant ice volume each year. The glacier terminus retreated about 450m between 1971 and 1990 (Keutterling and Thomas, 2006). This yields an average retreat of approximately 23m per year.

Gravel transport and gravel distribution patterns in a proglacial setting are affected by many variables. The hydraulic character of the drainage, including its size, gradient, and discharge characteristics, determines transport rate and distance, degree of recycling and weathering in transit, and ultimate survival of various lithologies (Lindsey et al. 2007). This study site is of particular interest because climate change, by affecting the rate at which the Gepatschferner retreats, may initiate or interrupt geomorphic cycles within the drainage basin (Lindsey et al. 2007). Gravel-sized grains were chosen because pebble counts are the method of choice for studying the provenance of coarse clastic deposits, because they yield specific information about source lithology (Lindsey et al. 2007).

1

Similar work has been done in order to find downstream trends in sediment composition. Lindsey et al. (2007) collected gravel samples from tributary fans and terraces of the Santa Cruz River in Arizona as well as from terraces of the Wind River in Wyoming. Pebble counts of lithology and roundness from terraces formed in response to climate change were analyzed in these two contrasting piedmont fluvial systems to see how provenance varies with drainage size (Lindsey et al. 2007). Plumley (1948) collected terrace gravels from three creeks in the Black Hills, Rapid Creek (~48 km), Battle Creek (~27 km), and Bear Butte Creek (~34 km). These studies found gravel composed of hard rocks will not develop obvious trends until 10 km or more downstream.

The main goals of this project are to 1) describe the composition of gravel-sized clasts along an \sim 4 km length of the Fagge River, the proglacial stream that drains the Gepatschferner Glacier in order to test the results presented in similar research; and 2) interpret the spatial changes in gravel composition in terms of the distribution of bedrock types in the area and the effects of transport, such as the greater persistence of stronger rock types during transport.

My working hypotheses are to 1) test the results found in Lindsey et al. (2007) and Plumley (1948) in the gravels in the ~4 km of the Fagge River; 2) see a higher diversity in gravel composition downstream; and 3) find a dominance of paragneiss in the gravel composition since the surrounding bedrock is dominated by gneiss.

Study Site

The Kaunertal valley is located in the Central Eastern European Alps of Tyrol, Austria. The study area consists of the catchment area of the Fagge River and its outlet, which is defined where the Fagge River enters the Gepatsch reservoir (at 1765 m a.s.l.) (Figure 1). The reservoir was built in the early 1960s and is operated by the Tiroler Wasserkraft AG (TIWAG) in order to generate power for the towns within the Kaunertal Valley, (Baewert and Morche, 2013). The area is characterized by

high relief, as some of the highest peaks surrounding the area include Glockturm (3353 m), Weißseespitze (3518 m), Fluchtkogel (3497 m), Hochvernagtspitze (3535 m), and Hintere Ölgrubenspitze (3295 m) in the Ötztal Alps and are located within the watershed (Baewert and Morche, 2013; Figure 2). The tree line is located at about 2245 m (Nicolussi et al., 2005) and any land surface above this elevation is mostly covered by a large amount of unconsolidated sediments, suggesting an abundant supply of solid load to the Fagge River (Baewert and Morche, 2013).

The Fagge River extends about 4 km from the terminus of the glacier to the entrance of the reservoir. The bedrock lithology is part of the Austro-Alpine nappes which consists of crystalline rocks formed from various metamorphic events during the Variscan, Permo-Triassic, Cretaceous, and Tertiary. The Ötztal Alps are a part of the Ötztal-Bundschuh Nappe System which consists predominantly of biotite-plagioclase gneisses, mica schists, amphibolites and a wide range of orthogneisses, and occasionally migmatites and ecoglites (McCann, 2008, Figure 3). Paragneiss dominates the study site whereas amphibolite is present in scattered intrusions. The upper portion of the drainage basin is composed of orthogneiss, with an abrupt transition to amphibolites down drainage. Below a zone of alternating amphibolite and paragneiss, paragneiss dominates the bedrock. Paragneiss continues downvalley to a steep gorge which appears to expose another type of orthogneiss.

The valley area is 62.54 km² and contains the Gepatschferner and Weißseeferner glaciers, amounting to about 39% glacial cover (Baewert and Morche, 2013). With an area of about 22 km² the Gepatschferner ranks among the largest glaciers of the Eastern Alps (Keutterling and Thomas, 2006). The southernmost and highest margins of the glacier drain to the south of the central Alpine Ridge (into the southern Tyrol of Italy; Keutterling and Thomas, 2006), but the majority drains to the north into the Fagge River and into the Reservoir. Since 1965, glacier outflow has been collected

3

in the Gepatsch Reservoir, which feeds the hydroelectric power station in Feichten (Keutterling and Thomas, 2006).

Figure 1: The study site is located in Kaunertal, Tyrol, Austria immediately north of the Austrian-Italian border. From: Baewert and Morche, 2013; Keutterling and Thomas, 2006

Figure 2: The Kaunertal Valley is the proglacial area inside the LIA moraines of the Gepatschferner and Weißseeferner glaciers. The LIA maximum and 2006 extent are shown. The shaded relief is from 10 m DEM. From: Heckmann et al. 2012

As with many European Alpine glaciers, the Gepatschferner has been retreating rapidly since the Little Ice Age (LIA) in the 19th century, at rates up to 23 m per year. LIA moraines are present in the proglacial area and contribute sediment to the Fagge River.

Figure 3: The bedrock geology of the study area and its surroundings, generalized into three main lithologies. The black rectangle indicates the study site. From: Lucas Vehling, personal communication

Many research projects are ongoing in this study area. Other projects within the framework of PROSA (High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps) include quantifying fluvial sediment transport in the Fagge River and its main tributary, Riffler Bach (Baewert and Morche, 2013), mapping the surrounding geology, mapping the Pleistocene moraines, determining the sediment budget of the proglacial sediment cascade upstream of the Gepatsch Reservior (Heckmann et al. 2012), surveying short term storage to improve the understanding of coarse sediment dynamics in proglacial fluvial systems, and observing and quantifying the morphological changes of the Fagge River in response to glacial retreat and flood events.

Methods

The data for this study were collected in a small drainage basin system in Feichten Kaunertal, Austria. Gravel samples were collected along the main channel, named the Fagge River, the major tributaries or LIA moraines that supply sediment to the Fagge River, and the surrounding bedrock in the field site along the Fagge River. This type of sampling allows us to see how quickly a change in bedrock is reflected in sediment composition, and whether the contribution from that bedrock stays constant through the area of its outcrop.

Fifty grains were collected at sixteen sampling sites along the Fagge River, spaced $\sim 250-300$ m apart. An additional 50 grains were collected from 6 of the of the 16 sample sites in order to test reproducibility. Fifty grains were also collected from each of four major tributaries and two moraines (Figure 4). This sums to 28 total sample sites where a sample consists of 50 grains (Tables B2 and B3).

Grains of 5–10 cm length were hammered out of 20 outcrops from the surrounding bedrock. At least 1 sample was taken from each side of each contact between two different lithologies in the bedrock. This is to see the variations within the 3 major bedrock lithologies (Table B1).

Samples collected in the Fagge River were labeled FR for Fagge River, followed by the sample site number. FR-1 is the uppermost sample site (at the glacier terminus) and FR-15 is the lowermost sample site (at the entrance to the reservoir). One Fagge River sample is labeled "Gorge," which was collected from the gorge that lies directly before the reservoir entrance. I subdivided the stream into 3 sections based on geology and regularity in the outcrops including: the upper portion (FR-1 through M1), the middle portion (FR-5 through FR-11) and the lower portion (RB through FR-15). Samples from major tributaries were labeled based on the tributary's name and/or sample number. Major tributaries include: BB (Bridge Bach), RB (Rifler Bach), LMT1 and LMT2 (Last Major Tributary). Moraines were labeled by sample site number: M1 and M2 (moraine 1 and moraine 2).

As a result, 1,106 grains were taken from the Fagge River, 304 grains were taken from the major tributaries and moraines, and 40 grains were taken from the surrounding bedrock. A total of 1,450 grains were collected from the study site. See Appendix B for grain counts.

Figure 4: Location of the study area indicated by the black box and shown in detail on the right. Red dots indicate sample sites along the Fagge River (FR-1 at glacier, FR-15 at reservoir). Yellow dots indicate major tributaries and moraines (BB, M1, M2, RB, LMT 1 and 2). Blue ovals indicate 3 separate sections within the Fagge River. From: Lucas Vehling, by personal communication

The distance between sampling sites varied due to accessibility, vegetation cover and eroded bedrock. Pebble-, cobble-, and boulder-sized grains were chosen at random, and were separated into their respective piles characterized by grain size. All clasts were subsampled by the use of a rock hammer and placed into labeled plastic bags stating the site number, date they were taken, and grain size (Figure 5). This made transportation parameters more reasonable.

Figure 5: Collecting and subsampling clasts at each site and separating each grain into different bags depending on its size (Pebble, Cobble, Boulder). Halil, top, assisted me in all field work.

Samples were shipped to The Ohio State University, organized, and analyzed to identify the lithology of each grain in each sample. A metamorphic rock identification flow chart from the British Geological Survey (Schmid et al. 2007, see Figure 6) was used to identify rock types, based on visual examination with a hand lens. The flow chart was mainly used for identifying schists, gneisses, and granofels in order to be able to tell them apart when it was not obvious. The definition of a schist given by Schmid et al. (2007) was used to help with identifications of schists.

Figure 6: Metamorphic rock identification flow-chart. From: Schmid et al. 2007

All samples were identified three times. The first round of identification was very broad, identifying rocks as "Orthogneiss," "Paragneiss," "Amphibolite," or "Other." The second round of identification was very detailed subdividing rocks on the basis of details of their mineralogy, mineral abundances, and individual structures. The third round was intermediate in detail, identifying 15 rock subtypes. These 15 subtypes subsequently were clustered into 6 main groups: "Orthogneiss," "Paragneiss," "Ortho- or Paragneiss," "Jointed Gneiss," "Amphibolite," and "Other." Although time-consuming, this process of repeated classification provided detailed compositional information and a broad overview of the lithologies present. This range of information is important because metamorphic bedrock can show many variations over distances as short as 0.5 km. This method of detailed identification and subsequent clustering is common among these types of studies and was also used in Lindsey et al. (2007) and Plumley (1948).

The 15 rock subtypes were clustered into six major groups based on similarities in mineral assemblages, lineations and weathering pattern. "Orthogneiss" consisted of muscovite-plagioclase orthogneiss (mpo) and muscovite-rich schist (mrs). "Paragneiss" consisted of biotite-rich schist (brs), greenschist (gs), and kyanite-and/or garnet-bearing schist or biotite schist (k&). "Ortho- or Paragneiss" consisted of biotite-quartz schist (bqs) and biotite-quartz granofels (bqg). "Jointed Gneiss" consisted of biotite-quartz gneiss (bqgn) and greengneiss (ggn). "Amphibolite" consisted of hornblende amphibolite and actinolite amphibolites (A). "Other" consisted of kyanite-bearing granofels (kg), porphyrblastic rock (pbr), quartzite and quartz veins (q), ecoglite-bearing granofels (ebg), and muscovite-rich granofels (mg). The detailed rock types and resulting major groups are illustrated in Figure 7, and are listed in Appendix A. Compositional data are available in Appendix B.

11

Orthogneiss

Paragneiss

Ortho- or Paragneiss

Jointed Gneiss

Amphibolite

Other

Figure 7: Metamorphic rock identifications – the 15 subtypes clumped into their "parent" bedrock.

Data were input into the R statistical analysis and plotting software and into Excel. Various bar graphs were constructed to examine the distribution of gravel composition. The plots of Paragneiss, Orthogneiss, Both, and Amphibolite were of particular interest. The abundance of each of these components was plotted across all sample sites which is useful for showing changes in gravel composition along the river.

Results

Fifty grains were taken from each sample site along the Fagge River. Six of these sites had an additional 50 grains taken in order to test the reproducibility of sampling. Table 1 lists the abundances of the gravel compositions at each of the six sites sampled twice.

					0 1	11.115	. P					
					Reprod	ucibility in S	ampling					
Rock Type	Orthogne	eiss	Paragne	iss	Ortho- or Par	agneiss	Jointed Gr	neiss	Amphibo	lite	Other	
Site	abundance(%)	std (%)	abundance (%)	std (%)	abundance (%)	std (%)	abundance (%)	std (%)	abundance (%)	std (%)	abundance(%)	std (%)
FR-4-1	10%	0.10/	40%	7.0%	44%	12.0%	0%	0.0%	2%	4.50/	4%	4 40/
FR-4-2	10%	0.1%	51%	1.8%	24%	13.8%	0%	0.0%	4%	1.5%	10%	4.4%
FR-6-1	10%	0.1%	28%	7.00	52%	7.0%	0%	0.0%	6%	1 50/	4%	1 40/
FR-6-2	10%	0.1%	39%	7.0%	41%	7.9%	0%	0.0%	8%	1.5%	2%	1.4%
FR-9-1	20%	11.20/	40%	0.0%	40%	1 40/	0%	0.0%	0%	0.5%	0%	4.20/
FR-9-2	4%	11.3%	40%	0.0%	38%	1.4%	0%	0.0%	12%	8.5%	6%	4.2%
FR-11-1	12%	1.50/	34%	4.00/	46%	42.20/	0%	0.0%	2%	0.0%	6%	5.0%
FR-11-2	14%	1.6%	41%	4.8%	29%	12.3%	0%	0.0%	2%	0.0%	14%	5.9%
FR-12-1	6%	7.40/	38%	4.40/	44%	2.0%	0%	0.0%	4%	2.0%	8%	F 70/
FR-12-2	16%	7.1%	36%	1.4%	40%	2.8%	0%	0.0%	8%	2.8%	0%	5.7%
FR-13-1	18%	2.0%	24%	2.40/	44%	2.2%	0%	0.0%	2%	4 40/	12%	0.2%
FR-13-2	14%	3.0%	27%	2.4%	47%	2.2%	0%	0.0%	0%	1.4%	12%	0.2%

Table 1: The 6 samples sites that were sampled twice to test reproducibility.

In order to test the reproducibility for each of these sites, an F-test (two-sample for variance) was performed in Excel to determine the appropriate t-test to follow (Table C1). Assuming the null hypothesis (H₀) is true, that the difference in variance between samples at a given site is statistically insignificant, the F value should be greater than the $F_{critical (one-tail)}$ value. All sites but FR-13 rejected this null hypothesis, prompting the use of a T-test (two samples assuming unequal variance). FR-13 accepted the null hypotheses, encouraging a T-test (two sample assuming equal variance). All sites

accepted the null hypothesis (H_0) of no significant difference in the means of the two samples because the $t_{statistical}$ value was less than the $t_{critical (two-tail)}$ value.

		Overall Summary (out of 28 sa	amples)	
Lithology	average abundance (%)	standard deviation (%)	max abundance (%) (# of occurances)	min abundance (%) (# of occurances)
Orthogneiss	12%	7%	27% (1)	0% (1)
Paragneiss	34%	11%	51% (1)	9% (1)
Ortho- or Paragneiss	41%	13%	66% (1)	10% (1)
Jointing Gneiss	1%	3%	10% (1)	0% (20)
Amphibolite	6%	5%	20% (1)	0% (5)
Other	6%	4%	14% (1)	0% (3)

Table 2: The table above summarizes abundance data for each rock type for the entire study area.

		Interval Summary		
FR - 1 through M1 (out of 7 sa	imples)	interval sammary		
Lithology	average abundance (%)	standard deviation (%)	max abundance (%) (# of occurances)	min abundance (%) (# of occurances)
Orthogneiss	8%	5%	13% (1)	0% (1)
Paragneiss	33%	15%	51% (1)	9% (1)
Ortho- or Paragneiss	46%	15%	66% (1)	24% (1)
Jointing Gneiss	2%	3%	7% (1)	0% (4)
Amphibolite	5%	3%	10% (1)	0% (1)
Other	6%	3%	10% (1)	1% (1)
FR - 5 through FR - 11 (out of	11 samples)	1		· · ·
Orthogneiss	12%	5%	20% (1)	4% (1)
Paragneiss	38%	8%	50% (1)	24% (1)
Ortho- or Paragneiss	38%	9%	52% (1)	18% (1)
Jointing Gneiss	1%	1%	4% (1)	0% (8)
Amphibolite	5%	4%	12% (1)	0% (1)
Other	6%	4%	14% (1)	0% (1)
RB through FR - 15 (out of 10	samples)			
Orthogneiss	14%	8%	27% (1)	2% (1)
Paragneiss	31%	10%	46% (1)	13% (1)
Ortho- or Paragneiss	40%	14%	58% (1)	10% (1)
Jointing Gneiss	1%	3%	10% (1)	0% (8)
Amphibolite	7%	7%	20% (1)	0% (3)
Other	6%	5%	12% (2)	0% (2)

Table 3: The table above summarizes abundance data for each rock type for three portions of the study area: FR-1 though M1, FR-5 through FR-11, and RB through FR-15.

Tables 2 and 3 clearly indicate the gravel composition is dominated by gneiss, "Ortho- or Paragneiss" in particular, which is consistent with the dominance of gneiss in the bedrock of the study site. However, it is impossible to tell whether orthogneiss or paragneiss is more abundant in the gravels within "Ortho- or Paragneiss." The abundance of "Ortho- or Paragneiss" appears to decrease from the upper portion to the middle portion of the stream, and to increase from the middle portion to the lower portion. In general, as seen in Table 3, the other abundant rock types are "Orthogneiss" and "Paragneiss." "Paragneiss" appears to decrease from the upper to middle portion, and increase from the middle to lower portion. "Orthogneiss" appears to increase consistently downstream, "Amphibolote" shows no change from the upper to middle portion, "Other" stays relatively constant, and "Jointed Gneiss" is present irregularly.

In order to examine the spatial distribution of sediment composition, the abundances of each rock type present at each site are plotted as bar graphs and as scatter plots in Figures 8 and 9. These plots illustrate spatial patterns, such as where a particular rock type is present along the Fagge River, and where the abundances of a rock type change. Figure 9 clearly shows gravel compositions are dominated by gneisses including: "Orthogneiss," "Paragneiss," "Ortho- or Paragneiss," as shown in Tables 2 and 3. "Paragneiss" abundances seem to decrease slightly downstream, but this rock type is certainly important along the entire length of the Fagge River. There is a large supply of Paragneiss from the major tributaries, but not the moraines. "Orthogneiss" appears to show a very gradual increase in abundance downstream with a large supply from M2 and both LMT1 and LMT2. In general, downstream variations in the abundances of "Orthogneiss" and "Paragneiss" suggest compositional breaks at sites M1/FR-5 and FR-11/RB. "Ortho- or Paragneiss" appears to show a very gradual decrease in abundance downstream, similar to what is seen in "Paragneiss." "Jointed Gneiss" was identified in only 8 locations along the Fagge River, most of which are before the outcrop correlating with this rock type. "Amphibolite" abundances appear to show a general increase downstream with a major contribution from LMT 2, which is located near an outcrop of Amphibolite. The "Other" category also appear to show a general increase downstream, with a very high abundance at FR-11.

A statistical analysis was done on the "Orthogneiss" and "Paragneiss" scatter plots, which include only the samples from the Fagge River itself, in order to test if the apparent changes discussed above are statistically significant. A T-test was executed assuming the null hypothesis (H_0), that there is no

17

significant trend, is true. If H_0 were to be rejected, where $t_{observation}$ is less than $t_{critical}$, then a T-test would be done on the other rock types. If H_0 were to be accepted, where $t_{observation}$ is greater than $t_{critical}$, then all other trends would be insignificant as these are the two most abundant, and therefore important, rock types and have the steepest slopes. For 15 observations of "Orthogneiss", the null hypothesis was accepted ($t_{observation} = 3.480 > t_{critical} = 2.145$), meaning there is no significant trend. For 15 observations of "Paragneiss", the null hypothesis was accepted ($t_{observation} = 3.097 > t_{critical} = 2.145$), meaning there is no significant trend. No other testing was done to confirm that all other rock types show no significant trends. See Appendix C for statistical summaries.

Orthogneiss

Paragneiss

Ortho- or Paragneiss

Jointed Gneiss

Amphibolite

Other

Figure 8: The percentage of each rock type at each site. There are 28 sample sites represented in the x-axis of the bar plots (in geographical order, with sample FR-1 being at the upstream end of the study area and sample FR-15 at the downstream end). These include the samples taken from moraines and major tributaries. The x-axis of the scatter plots describe distance in meters downstream assuming each study site is 250m apart from each other. The scatter plot only includes samples taken along the Fagge River (samples FR-1 through FR-15, plus the Gorge sample).

Figure 9: The above diagram show the percentage of each rock type present in a site for all rock types.

Discussion

The geologic map for this region shows that the bedrock in the study site is dominated by gneiss, and by paragneiss in particular (Figure 3). Analysis of the gravel samples shows that the gravel for this region is also dominated by gneiss, which is consistent with the bedrock geology and local derivation of the gravels. There is also a dominance of "Ortho- or Paragneiss" in the gravel composition. This was the group in which it was not possible to determine whether the grains originally were orthogneiss or paragneiss. This type of uncertainty is a common problem in this type of study. Lindsey et al. (2007) and Plumley (1948) both described difficulties differentiating similar rock types and clumped their rock classifications. I would predict that the grains identified to be "Ortho- or Paragneiss" are mostly "Paragneiss" because identifiable paragneiss is much more abundant than identifiable orthogneiss. The alternative would be that orthogneiss weathers more quickly than paragneiss, so that the unidentifiable gneisses would have originally been orthogneiss. It is difficult to say which of these explanations is correct.

As seen in Figure 8, "Orthogneiss," "Amphibolite," and "Other" became somewhat more abundant downstream, while "Paragneiss," "Ortho- or Paragneiss" and "Jointed Gneiss" are still present. This confirms that the gravel population becomes more diverse downstream.

I found that there were no significant trends in the abundances of any gravel lithology along the \sim 4 km long Fagge River. This matches the findings of Lindsey et al. (2007) and Plumley (1948), who demonstrated that transport distances of 10 km or more were needed to develop significant changes in lithologic abundances. This could be for reasons described below.

One reason could be the size of the drainage basin. Lindsey et al. (2007) collected gravel samples from tributary fans and terraces of the Santa Cruz River in Arizona as well as from terraces of the Wind River in Wyoming, of which were formed in response to climate change. Fan and terrace deposits from the Santa Cruz River extended approximately 5-10 km, and pebble lithologies remained uniform downstream. The Wind River terraces extend approximately 120 km downstream, but differences in lithologic proportions downstream are minor. Plumley (1948) collected terrace gravels from three creeks in the Black Hills, and found that hard lithologies show little change in abundance ~16 km downstream or farther. These projects found that changes in the abundances of hard lithologies were not observed until at least 15 km downstream, suggesting that the Fagge River is too short to see effects of transport.

Another reason could be the bedrock diversity and the bedrock distribution within the basin. After creating an overall summary table (Tables 2 and 3), I was able to compare the average abundance, maximum and minimum abundance, and standard deviations of each group. I found there were two groups: 3 important lithologies ("Parageniss," "Orthogneiss" and "Ortho- or Paragneiss") and 3 less important lithologies ("Amphibolite," "Jointed Gneiss" and "Other"). The 3 most important lithologies are the most important bedrock lithologies, which are gneisses. This demonstrates that

the bedrock has low lithologic diversity. The absence of abundance trends may be influenced by the distribution of relatively similar bedrock across the basin since the initial abundance of a lithology within the gravel is directly related to the location of its source (Plumley, 1948). The various lithologies continue to appear downvalley in the bedrock, thus feeding the Fagge River a relatively consistent composition of gravels along its length.

Not only is the bedrock diversity low, but the range of bedrock hardness is limited. Lindsey et al. (2007) and Plumley (1948) worked in areas containing both hard and soft lithologies, for example gneiss vs. sandstone. They both found that soft rocks showed a quicker response to downstream abrasion thus decreasing in abundance downstream at a faster rate than hard rocks. Plumley (1948) clumped his metamorphic rocks together suggesting they had similar hardness values and thus had similar responses to downstream transport. The study area for this project contained only metamorphic rocks, all of which have similar hardness, which could limit the effects of differential abrasion on lithologic abundances downstream.

Lastly, the identification methods used in this study could potentially limit the ability to recognize subtle compositional changes. All samples were identified megascopically with the use of a hand lens, which made it difficult to differentiate gneisses. This difficulty motivated use of the clumped "Ortho- or Paragneiss" group. It is also possible that "Jointed Gneiss" and "Orthogneiss" should have been clumped together. "Jointed Gneiss" was identified in only 8 locations along the Fagge River, most of which are above the outcrop of "Jointed Gneiss." This positioning may indicate that the outcrop of "Jointed Gneiss" was actually another outcrop of orthogneiss that was not glacially polished. Grouping lithologies is one way to approach this issue, and is common among similar studies. Another more accurate method would be to use a petrographic microscope when identifying and differentiating between rock types. Both methods were used by Plumley (1948) who found that sometimes it was necessary to use a petrographic microscope for identification as some grains were impossible to identify with only a hand lens. Microscope petrography would have been useful for distinguishing the gneisses, but the limitations of this study did not allow me to use this method.

Despite these difficulties, gravel composition became more diverse downstream which is consistent with the exposure of new bedrock types downstream and a transport distance that is too short for any grain selection by differential abrasion. The dominance of paragneiss in the gravel compositions is consistent with the dominance of paragneiss in the surrounding bedrock. This study confirms the results and limitations found by Lindsey et al. (2007) and Plumley (1948) when working in a small drainage basin.

Conclusions

- In the study, both the surrounding bedrock and gravels within the Fagge River are dominated by gneisses. After extensive examination of all samples collected, 15 rock subtypes were identified that were subsequently clumped into 6 main groups: "Orthogneiss," "Paragneiss," "Ortho- or Paragneiss," "Jointed Gneiss," "Amphibolite," and "Other".

- The Kaunertal valley is 62.54 km² and the drainage basin is only \sim 4 km in length with a very low bedrock diversity, making this study site too small and the sediment supply is too compositionally uniform to see well-defined changes in gravel composition downstream.

- Results showed that the most abundant gravel compositions are "Orthogneiss," "Paragneiss" and "Ortho- or Paragneiss." Any compositional changes observed are poorly defined downstream and there are no statistically significant trends.

- "Orthogneiss," "Amphibolite," and "Other" became somewhat more abundant downstream, while "Paragneiss," "Ortho- or Paragneiss" and "Jointed Gneiss" are still present. This means that the gravel population becomes more diverse downstream.

Suggestions for future work

Overall, this project was very helpful in developing me as a research assistant. I was given the chance to form my own research project and determine how to collect and analyze my own data. I was made aware of all things that need to be considered when forming a project. For example, for this project it was pertinent that I knew the physical and or logistical constraints on the work I can do and the data I can collect, how large of a drainage basin I was working in, the variety in the surrounding bedrock and how well the bedrock was mapped in the study site.

Physical constraints could be frequent changes in weather and how that may affect the discharge of the stream which affects the accessibility of the stream or the hiking path itself. Logistical constraints could be the amount of people helping in the field, the size of our backpacks, and the amount of weight one can carry, or how rocks are identified. For this project, the composition of each grain was determined by visual examination with a hand lens, using a standard rock identification chart from Schmid et al (2007). The size of the drainage basin is needed to be known in order to figure out how many and how frequently samples should be taken. The bedrock diversity is important to know to get an idea of what you should expect in your samples, how much variation you should expect in your data, and how too much or too little diversity can affect your data. Study sites that are well mapped are very helpful when thinking of the geologic background of the area, locations of lithology changes in the bedrock, locations of major moraines or tributaries to the drainage basin, and so on.

29

Before this project, I was unaware of the steps needed to be taken to form a project as in my previous research experiences, data was already collected and handed to me to analyze. I learned a lot from this project from of taking good field notes to help you with interpretations later in the lab to thinking of all the things you must know before approaching your project in the field or the lab.

References

Baewert, H. and D. Morche (2013), Coarse sediment dynamics in a proglacial fluvial system (Fagge River, Tyrol),(SEDIBUD2012).

Ferguson, R. I., P. E. Ashmore, P. J. Ashworth, C. Paola, and K. L. Prestegaard (1992), Measurements in a braided river chute and lobe; 1, Flow pattern, sediment transport, and channel change, Water Resour. Res., 28(7), 1877-1886, doi:10.1029/92WR00700.

Heckmann, T., F. Haas, D. Morche, K. Schmidt, J. Rohn, M. Moser, M. Leopold, M. Kuhn, C. Briese, N. Pfeifer, and M. Becht (2012), Investigating an alpine proglacial sediment budget using field measurements, airborne and terrestrial LiDAR data, IAHS-AISH Publication, 356, 438-447.

Keutterling, A. and A. Thomas (2006), Monitoring glacier elevation and volume changes with digital photogrammetry and GIS at Gepatschferner glacier, Austria, Int. J. Remote Sens., 27(18-20), 4371-4380, doi:10.1080/01431160600851819.

Lindsey, D. A., W. H. Langer, and B. S. Van Gosen (2007), Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA, Sediment. Geol., 199(3-4), 223-232, doi:10.1016/j.sedgeo.2007.02.006.

Marren, P. M. (2005), Magnitude and frequency in proglacial rivers: a geomorphological and sedimentological perspective, Earth-Sci. Rev., 70(3–4), 203-251, doi:<u>http://dx.doi.org/10.1016/j.earscirev.2004.12.002</u>.

McCann, T. (ed.) (2008), The geology of Central Europe; Volume 2, Mesozoic and Cenozoic: United Kingdom, Geological Society of London, 1141-1232.

Nicolussi, K., M. Kaufmann, G. Patzelt, d. P. van, and A. Thurner (2005), Holocene tree-line variability in the Kauner Valley, central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs, Vegetation History and Archaeobotany, 14(3), 221-234, doi:10.1007/s00334-005-0013-y.

Plumley, W.J. (1948) Black Hills terrace gravels: A study in sediment transport: Journal of Geology, v. 56, p. 526-577.

Schmid, R., D. Fettes, B. Harte, E. Davis, and J. Desmons (2007), Classification and nomenclature scheme; how to name a metamorphic rock, in , edited by Anonymous , pp. 1-15, United Kingdom, University Press Cambridge : Cambridge, United Kingdom.

Appendices

Appendix A: Rock Identifications

	Rock Types
Abbrev.	Name
А	Amphibolite
bqg	biotite-quartz granofels
bqgn	biotite-quartz gneiss
bqs	biotite-quartz schist
brs	biotite-rich schist
ebg	ecoglite?-biotite granofels
ggn	green gneiss
gs	green schist
k&	kyanite-bearing-biotite, garnet-bearing-biotite or biotite schist
kg	kyanite-bearing granofels
mg	muscovite-rich granofels
mpo	muscovite-plagioclase orthogneiss
mrs	muscovite-rich schist
pbr	porphyroblastic rock
q	quartzite or quartz veins

Table A1: The table above lists the 15 subtypes of rocks in the field site.

Rock Groups:

		Ortho- or	Jointed		
Orthogneiss	Paragneiss	Paragneiss	Gneiss	Amphibolite	Other
тро	brs	bqs	bqgn	А	kg
mrs	gs	bqg	ggn	-	pbr
-	k&	-	-	-	q
-	-	-	-	-	ebg
-	-	-	-	-	mg

Table A2: The table above shows how the 15 subtypes were subdivided into their "parent" rock type.

Appendix B: Bedrock, Fagge River, Major Tributary and Moraine Sample Site Data Collection

Bedrock Samples:

Tributary and Moraine Samples:

Be	drock	
general	site	type
	FR6	brs
	FR7	brs
	FR8	bqg
Red Decompiles 1	FR9	bqs
Neu Paragneiss 1	FR10	bqs
	FR11	bqs
	FR13	brs
	FR15	gs
	PG1	brs
Red Paragneiss 2	PG2	brs
	PG3	brs
Pod Daragnoise 2	PG-G11-1	brs
Gorge	PG-G11-2	brs
Golge	PG-G11-3	brs
Red Paragneiss 4 Riflerbach	RB1	bqs/gs
	OG1	mpo
	OG2	brs
Orthogneiss 1	OG3	mpo
Orthogneiss 1	OG4	brs
	OG5	mpo
	OG1	mrs
Orthogneiss 2	OG2	mrs
	OG3	mrs
Amphibolite	Amp2	Α
Contact 1	C1-1	mpo
Contact 1	C1-2	brs-q-A
	C2-1	brs
Contact 2	C2-2	bqs
	C2-3	bqs-gs-A
	C3-1	A-brs
Contact 3	C3-2	gs
	C3-3	A-gs
	C4-1	A-brs
Contact 4	C4-2	Α
	C4-3	A-q
Contact 5	C5-1	brs-k&
Gneiss	G1	bqgn
0110133	G2	ggn

	T	ributary and	d Moraine			
Site		-	Samples			
	Group	Туре	Pebble	Cobble	Boulder	Totals
	Orthogneiss	mpo	1	2	2	
		brs	4	6	1	11
	Paragneiss	gs	1	1	0	2
		k&	0	0	0	0
	Ortho- or Paragneirs	bqs	8	6	5	19
	Ortilo- Of Paragnetiss	bqg	2	5	0	7
BB	Jointing Gneiss	bqgn	0	0	0	0
00	Jointing Griess	ggn	0	0	0	0
	Amphibolite	A	2	1	0	3
		kg	0	0	0	0
		pbr	0	0	0	0
	Other	q	2	0	0	2
		eog	0	0	1	1
		TOTAL	20	21	0	50
		TUTAL	20	21	9	50
	Orthogneiss	mpo	0	2	0	2
		brs	0	1	2	3
	Paragneiss	RS	1	0	1	2
	-	k&	0	0	0	0
		bqs	11	10	3	24
	Ortho- or Paragneiss	bqg	3	5	3	11
	Interface Constant	bqgn	0	1	2	3
Moraine 1	Jointing Gneiss	ggn	0	0	0	0
	Amphibolite	A	2	1	0	3
		kg	0	0	0	0
		pbr	0	0	0	0
	Other	q	1	3	0	4
		ebg	1	0	0	1
		mg	0	0	0	0
		TOTAL	19	23	11	53
	Orthogneiss	mpo	2	3	0	5
		mrs	0	3	0	3
		brs	1	4	6	11
	Paragneiss	gs	0	1	0	1
		kök	0	0	0	0
	Ortho- or Paragneiss	bag	12	4	3	19
		ham	0	1	1	1
Moraine 2	Jointing Gneiss	ago D481	0	1	0	
	Amphibolite	55 ¹¹	2	1	0	3
		ke	0	0	0	0
		pbr	0	0	0	0
	Other	q	1	0	0	1
		ebg	0	2	0	2
		mg	2	0	0	2
		TOTAL	20	20	10	50
	Orthogneiss	mpo	0	1	0	1
		mrs	0	0	0	0
		brs	4	5	2	11
	Paragneiss	gs	5	0	2	/
		kox	0	11	1	20
	Ortho- or Paragneiss	hog	0	1	3	20
		ham	0	0	0	
RB	Jointing Gneiss	een	0	0	0	0
	Amphibolite	A	3	0	0	3
		kg	0	0	0	0
		pbr	1	0	0	1
	Other	q	1	0	0	1
		ebg	0	1	0	1
		mg	0	0	0	0
		TOTAL	22	19	8	49
	Orthogneiss	mpo	2	3	2	7
	orthogness	mrs	0	0	0	0
		brs	5	10	0	15
	Paragneiss	gs	0	4	1	5
		k&	0	0	0	0
	Ortho- or Paragneiss	bqs	4	13	4	21
		bqg	0	3	0	3
LMT 1	Jointing Gneiss	odgn	0	0	0	0
		I RRN	0	0	0	0
	Analyzer	4	-	-		
	Amphibolite	A	0	0	0	0
	Amphibolite	A kg	0	0	0	0
	Amphibolite	A kg pbr	0	0	0	0
	Amphibolite Other	A kg pbr q eha	0 0 0 0 0	000000000000000000000000000000000000000	0	0
	Amphibolite	A kg pbr q ebg mg	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0 0 0 0	0
	Amphibolite Other	A kg pbr q ebg mg TOTAI	000000000000000000000000000000000000000	0 0 1 0 34	000000000000000000000000000000000000000	000000000000000000000000000000000000000
	Amphibolite Other	A kg pbr q ebg mg TOTAL mpo	0 0 0 0 0 0 11	0 0 1 0 0 34 34	0 0 0 0 0 0 7 3	000000000000000000000000000000000000000
	Amphibolite Other Orthogneiss	A kg pbr q ebg mg TOTAL mpo mrs	0 0 0 0 0 0 111 3 0	0 0 1 0 0 34 3 0	0 0 0 0 7 3	000000000000000000000000000000000000000
	Amphibolite Other Orthogneiss	A kg pbr q ebg mg TOTAL mpo mrs brs	0 0 0 0 0 11 3 0 4	0 0 1 0 34 3 0 2	0 0 0 0 7 3 0 2	0 0 0 1 0 0 0 52 9 0 0 8
	Amphibolite Other Orthogneiss Paragneiss	A kg pbr q ebg mg TOTAL mpo mrs brs gs	0 0 0 0 0 11 3 0 0 4	0 0 1 0 34 3 0 2 8	0 0 0 0 7 3 0 2 1	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Amphibolite Other Orthogneiss Paragneiss	A kg pbr q ebg mg TOTAL mpo mrs brs gs k&	0 0 0 0 11 3 0 0 4 4 0 0 0 0	0 0 1 0 34 3 0 2 8 8 0	0 0 0 0 7 3 0 2 1 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Amphibolite Other Orthogneiss Paragneiss	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqs	0 0 0 0 0 0 0 0 0 111 3 3 0 0 4 4 0 0 0 0 1	0 0 0 1 0 0 34 3 3 0 0 2 2 8 8 0 0 0 0	0 0 0 0 0 0 7 7 3 0 0 2 1 1 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8 8 9 0 0 0 1 1
	Amphibolite Other Othogneiss Paragneiss Otho- or Paragneiss	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqs bqg	0 0 0 0 0 0 0 0 0 111 3 3 0 0 4 4 0 0 0 0 1 1	0 0 0 1 0 0 34 3 3 0 0 2 2 8 8 0 0 0 2 2	0 0 0 0 0 0 7 3 3 0 0 2 1 1 0 0 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 9 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Amphibolite Other Othogneiss Paragneiss Ortho- or Paragneiss Industrie Conference	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqs bqg bqgn	0 0 0 0 0 0 0 0 111 3 0 0 4 0 0 0 0 1 1 1 1 0	0 0 0 1 0 0 34 3 3 0 0 2 2 8 8 0 0 0 2 2 0 0	0 0 0 0 7 3 3 0 2 1 0 0 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMT 2	Amphibolite Other Orthogneiss Paragneiss Ortho- or Paragneiss Jointing Gneiss	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqs bqg bqgn ggn	0 0 0 0 0 0 11 3 3 0 0 4 0 0 0 1 1 1 1 1 0 5	0 0 0 1 0 0 34 3 3 0 0 2 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 7 3 3 0 0 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMT 2	Amphibolite Other Orthogneiss Paragneiss Ortho- or Paragneiss Jointing Gneiss Amphibolite	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqs bqg bqgn ggn A	0 0 0 0 0 0 11 3 0 0 4 4 0 0 0 1 1 1 1 0 0 5 5	0 0 0 0 0 34 3 3 0 0 2 8 8 0 0 0 2 0 0 0 0 4	0 0 0 0 0 7 7 3 3 0 0 2 1 1 0 0 1 1 0 0 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMT 2	Amphibolite Other Orthogneiss Paragneiss Ortho- or Paragneiss Jointing Gneiss Amphibolite	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqg bqg bqgn ggn A kg	0 0 0 0 0 0 1 1 1 3 0 0 0 0 0 1 1 1 0 0 5 5 4 4 0	0 0 0 0 0 0 34 3 0 0 2 8 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 7 7 3 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 52 9 9 0 0 8 8 9 9 0 0 1 1 4 4 0 5 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMT 2	Amphibolite Other Orthogneiss Paragneiss Ortho- or Paragneiss Jointing Gneiss Amphibolite	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqs bqg bqg k& kg pbr	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 34 3 3 0 0 2 8 8 0 0 0 2 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 7 3 0 0 2 1 1 0 0 0 1 1 0 0 0 0 2 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LMT 2	Amphibolite Other Orthogneiss Paragneiss Ortho- or Paragneiss Jointing Gneiss Amphibolite Other	A kg pbr q ebg mg TOTAL mpo mrs brs gs k& bqg bqg bqg kg pbr q q q q q q q q q q q q q	0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 5 5 4 4 0 0 0 2 2	0 0 0 0 0 0 34 3 3 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 7 3 0 0 2 1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

mg TO

Tables B1 and B2: The tables above list the bedrock, major tributary and moraine sample sites and rock classifications.

Fagge River Samples:

Table B3: The table above lists the Fagge River sample sites, and the grain sizes and rock classifications of the grains collected.

Appendix C: Statistical Analysis

FB-4		
F-Test Two-Sample for Varian	ces	
	Variable I	Variable 2
Mean	0.1666667	0.1666667
Variance	0.0397867	0.0352214
Observations	6	6
df	5	5
	1.1296151	
P[F<=F] one-tail	0.4484334	
F Uritical one-tail	5.0503291	
F <forit =="" difference="" in="" td="" the="" v<=""><td>variance is sta</td><td>atistically</td></forit>	variance is sta	atistically
significant -> use ttest two sa	imple assumi	ng unegual
t-Test: Two-Sample Assuming	Unequal Vari	ances
	Variable f	Variable 2
Mean	0.1666667	0.1666667
Variance	0.0397867	0.0352214
Ubservations	6	6
Hypothesized Mean Difference	0	
dł	10	
t Stat	0	
P[T<=t] one-tail	0.5	
t Critical one-tail	1.8124611	
P[T<=t] two-tail	1	
t Critical two-tail	2.2281388	
tstatktorit2tail = the means are	e not statistic	ally different
= reprodu	cable	
FR-11		
FR-11 F-Test Two-Sample for Varian	ces	
FR-11 F-Test Two-Sample for Varian	ces	
FR-11 F-Test Two-Sample for Varian	ces Variable I	Variable 2
FR-11 F-Test Two-Sample for Varian Mean	ces <i>Variable /</i> 0.16666667	Variable 2 0.1666667
FR-11 F-Test Two-Sample for Varian Mean Variance	ces Variable / 0.1666667 0.0357867	Variable 2 0.1666667 0.0245592
FR-11 F-Test Two-Sample for Varian Mean Variance Observations	ces <i>Variable 1</i> 0.1666667 0.0357867 6	Variable 2 0.1666667 0.0245592 6
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df	ces Variable / 0.1666667 0.0357867 6 5	<i>Variable 2</i> 0.1666667 0.0245592 6 5
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F	ces Variable / 0.1666667 0.0357867 6 5 1.4571586	Variable 2 0.1666667 0.0245592 6 5
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F <= f) one-tail P (C <= f) one-tail	ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447934	Variable 2 0.1666667 0.0245592 6 5
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail	ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291	Variable 2 0.1666667 0.0245592 6 5
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical one-tail	ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 Variance is sta	<i>Variable 2</i> 0.1666667 0.0245592 6 5 5
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail	ces <i>Variative 1</i> 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 variance is sta mple assuming	<i>Variable 2</i> 0.1666667 0.0245592 6 5 5 atistically ng unegual
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F (F(=f) one-tail F (F(=f) one-tail F (Ficial one-tail F (Ficial one-tail F (Ficial one-tail) F (Ficial one-tail) F (Ficial one-tail) F (Ficial one-tail) F (Ficial one-tail)	ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 yariance is sta mple assumi Unequal Vari	Variable 2 0.1666667 0.0245592 6 5 stistically ng unegual ances
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical et the difference in v significant -> use thest two sa t-Test: Two-Sample Assuming	ces <i>Variable 1</i> 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 variance is sta mple assumi Unequal Vari	Variable 2 0.1666667 0.0245592 6 5 atistically ng unegual ances
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F <forit =="" difference="" in="" the="" v<br="">significant → use ttest two sa t-Test: Two-Sample Assuming</forit>	ces Variatve / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 variance is sta mple assumi Unequal Vari Variatve / Associated	Variable 2 0.1666667 0.0245592 6 5 5 atistically ng unegual ances Variable 2
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F F(F <f) one-tail<br="">F (Frict) one-tail F (Frict) one-</f)>	Ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 variance is sta ample assumi Unequal Vari Variable / 0.1666667	Variative 2 0.1666667 0.0245532 6 5 atistically ng unequal ances Variative 2 0.0666667
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F (F <f) one-tail<br="">F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail Mean Variance Observations</f)>	vers Variable / 0.166667 0.0357867 6 5.1.4571586 0.3447934 5.0503291 variance is sta mple assumi Unequal Vari Variable / 0.1666667 0.0357867	Variak/e_2 0.166667 0.0245532 6 5 4tistically ng unequal ances Variak/e_2 0.1666667 0.0245532
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F <forit =="" difference="" in="" the="" v<br="">significant → use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Use the difference Difference Use the difference of the sample Assuming Mean Variance Observations</forit>	Ces Variatvie / 0.1666667 0.0357867 6 5.14571586 0.3447934 5.0503291 variance is sta mple assumi Unequal Vari Variatvie / 0.1666667 0.057867 0.057867 0.057867	Vaviatve 2 0.1666667 0.0245592 6 5 5 4tistically ng unequal ances Vaviatve 2 0.1666667 0.0245592 6
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail Mean Variance Observations Hypothesized Mean Difference	Ces Variable / 0.1666667 0.0357867 6 5.0503291 variance is sta mple assumi Unequal Vari Variable / 0.1666667 0.0357867 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable 2 0.1666667 0.0245532 6 5 atistically Inq unequal ances Variable 2 0.1666667 0.1666667
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F <f) -="" ccritical="" difference="" fcritical="" in="" one-tail="" significant="" the="" tr=""> use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df LCtail</f)>	Ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 5.0503291 variance is sta mple assumi Unequal Vari Variable / 0.1666667 0.0357867 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Variat/ve_2 0.1666667 0.0245592 6 5 atistically ng unequal ances Pariat/de_2 0.1666667 0.0245592
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F <forit =="" difference="" in="" the="" transference<br="">significant -> use ttest two sattest two</forit>	Ces Variative / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 0.3447934 5.0503291 Variance is sta mple assumi Unequal Vari Variative / 0.1666667 0.0357867 6 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Variakle 2 0.1666657 0.0245532 6 5 3 4tistically ng unequal ances Variakle 2 0.1666657 0.0245532 6
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F <forit -="" =="" difference="" in="" significant="" the="" v=""> use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail C-thisted to the same</forit>	Ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.3447334 5.0503291 variance is sta mple assumi Unequal Vari Variable / 0.1666667 0.0357867 0.0357867 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Variative 2 0.1666667 0.0245592 6 5 atistically nq unequal ances Variative 2 0.1666667 0.0245592 6
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F Critical one-tail F <forit= assuming="" c(t<="t)" df="" difference="" f(t<="t)" hypothesized="" in="" mean="" observations="" one-tail="" one-tail<="" sa="" significant="" stat="" t="" t-test:="" tcritical="" td="" the="" tr="" ttest="" two="" two-sample="" use="" variance="" →=""><td>Ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.347934 5.0503291 variance is sta mple assumi Unequal Vari Variable / 0.1666667 0.0357867 6 0 0 10 10 10 10 10 10 10 10</td><td>Variakve 2 0.1666667 0.0245592 6 5 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></forit=>	Ces Variable / 0.1666667 0.0357867 6 5 1.4571586 0.347934 5.0503291 variance is sta mple assumi Unequal Vari Variable / 0.1666667 0.0357867 6 0 0 10 10 10 10 10 10 10 10	Variakve 2 0.1666667 0.0245592 6 5 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail Comparison Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail P(T<=t) one-tail	Ces Variative / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 0.3447934 5.0503291 Variance is stample assumin Unequal Vari Variative / 0.1666667 0.0357867 6 0 0.10	Variak/e 2 0.1666667 0.0245532 6 5 5 4 15 10 10 1666667 0.0245592 6
FR-11 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F <critical one-tail<br="">F<forit =="" difference="" in="" the="" to<br="">significant → use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail P(T<=t) use-tail t Critical one-tail P(T<=t) two-tail</forit></critical>	Ces Variatvie / 0.1666667 0.0357867 6 5 1.4571586 0.3447934 0.347934 0.3503291 variance is sta mple assumi Unequal Vari Variatvie / 0.1666667 0.0357867 6 0 0 10 0 0.55 1.8124611 1 2.2281388	Vaviatve 2 0.1666667 0.0245592 6 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FR-6		
F-Test Two-Sample for Varian	ces	
	Variable I	Variable 2
Mean	0.1666667	0.1666667
Variance	0.0394667	0.0335555
Observations	6	6
df	5	5
F	1.1761622	
P(F<=f) one-tail	0.4315117	
F Critical one-tail	5.0503291	
F <forit =="" difference="" in="" th="" the="" v<=""><th>variance is sta</th><th>atistically</th></forit>	variance is sta	atistically
significant -> use ttest two sa	imple assumii	ng unegual
t-Test: Two-Sample Assuming	Unequal Vari-	ances
	•	
	Variable I	Variable 2
Mean	0.1666667	0.1666667
Variance	0.0394667	0.0335555
Observations	6	6
Hypothesized Mean Difference	0	
df	10	
t Stat	0	
P(T<=t) one-tail	0.5	
t Critical one-tail	1.8124611	
P(T<=t) two-tail	1	
t Critical two-tail	2,2281388	
hetet desitivation alle services and	and at statistic	In different
tstatetontztail= the means are	and statistic.	ally dimerence
= reprodu	cable	
ED 19		
FR-12 F Test Two Sample (or Varian		
FR-12 F-Test Two-Sample for Varian	ces	
FR-12 F-Test Two-Sample for Varian	ces Variable (literiatula 2
FR-12 F-Test Two-Sample for Varian	ces Variable 1	Variable 2
FR-12 F-Test Two-Sample for Varian Mean	ces Variable / 0.1666667	<i>Variable 2</i> 0.1666667
FR-12 F-Test Two-Sample for Varian Mean Variance	ces Variable / 0.1666667 0.0365867	Variable 2 0.1666667 0.0309867
FR-12 F-Test Two-Sample for Varian Mean Variance Observations	ces <i>Variable 1</i> 0.1666667 0.0365867 6	<i>Variatile_2</i> 0.1666667 0.0309867 6
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df	ces Variable / 0.1666667 0.0365867 6 5	<i>Variable_2</i> 0.1666667 0.0309867 6 5
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4200000	<i>Variable 2</i> 0.1666667 0.0309867 6 5
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df f F(F(=f) one-tail Continue tail	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5 050200	Variable 2 0.1666667 0.0309867 6 5
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F F F (F <f) one-tail<br="">F Critical one-tail</f)>	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291	Variable 2 0.1666667 0.0309867 6 5
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical in the difference in the differen	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 Variance is sta	<i>Variatile 2</i> 0.1666667 0.0303867 6 5 5
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F <f critical="" one-tail<br="">F<forit =="" difference="" in="" the="" v<br="">significant → use ttest two sa</forit></f>	ces <i>Variable 1</i> 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 variance is sta mple assumi	<i>Variative 2</i> 0.1666667 0.0309867 6 5 5 stistically ng unegual
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical value the difference in to significant -> use ttest two sa t-Test: Two-Sample Assuming	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4238966 5.0503291 variance is sta mple assumi Unequal Vari	<i>Variable 2</i> 0.1666667 0.0309867 6 5 5 stistically ng unegual ances
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F(F<=f) one-tail F Critical one-tail	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 variance is sta mple assumi Unequal Vari	Variable 2 0.1666667 0.0309867 6 5 stistically ng unegual ances
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Critical one-tail F <forit =="" difference="" in="" the="" v<br="">significant > use ttest two sa t-Test: Two-Sample Assuming</forit>	ces Variatvie / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 variance is sta mple assumin Unequal Variance / Variatvie /	Variable 2 0.1666667 0.0309867 6 5 stistically ng unegual ances Variable 2
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<≠f) one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail T CForit = the difference in v significant → use ttest two sa t-Test: Two-Sample Assuming Mean	ces Variable / 0.1666667 0.0365867 6 5 1.1807229 0.4238966 5.0503291 variance is sta mple assumi Unequal Variable / 0.1666667	Variable 2 0.1666667 0.0309867 6 5 xtistically ng unequal ances Variable 2 0.1666667
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F(F<=f) one-tail F significant > use ttest two sa t-Test: Two-Sample Assuming Mean Variance	Ces Variatve / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 Variance is sta mple assumi Unequal Vari Variatve / 0.1666667 0.0365867	Variatvle 2 0.1666667 0.0309867 6 5 4tistically ng unequal ances Variatvle 2 0.1666667 0.0309867
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F <front =="" difference="" in="" the="" v<br="">significant -> use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations</front>	ces Variatvie / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 variance is sta mple assumin Unequal Vari Variatvie / 0.1666667 0.0365867 6	Variatve 2 0.1666667 0.0309867 6 5 stistically ng unequal ances Variatve 2 0.1666667 0.309867
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F <forit =="" difference="" in="" the="" to<br="">significant -> use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference</forit>	Ces Variatvle / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5 0.4298966 5 5 1.1807229 0.4298966 5 0.503291 variance is sta mple assumi Unequal Vari Variatvle / 0.1666667 0.0365867 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Variable 2 0.1666667 0.309867 6 5 atistically ng unequal ances Variable 2 0.1666667 0.1666667 0.1666667 0.1666667 0.309867 6
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F(F<=f) one-tail F Critical one-tail	Ces Variatve / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 Variance is sta mple assumi Unequal Vari 0.1666667 0.0365867 6 0.0365867 10 10 10 10 10 10 10 10 10 10	Variatvle 2 0.1666667 0.0309867 6 5 stistically ng unequal ances Variatvle 2 0.1666667 0.0309867 6
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F (F<=f) one-tail F (F (F)) one-tail	Ces Variatvie / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 variance is sta mple assumin Unequal Vari Variatvie / 0.1666667 0.0365867 6 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Variatvie /2 0.1666667 0.0309867 6 5 stistically ng unequal ances Variatvie /2 0.1666667 0.0309867
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F <forit =="" difference="" in="" the="" v<br="">significant -> use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail</forit>	Ces Variatvie / 0.1666667 0.0365867 6 5 1.1807229 0.4238366 5.0503291 variance is sta mple assumi Unequal Vari Variatvie / 0.1666667 0.0365867 6 0 0 0 0 0 0 0 0 0 0 0 0 0	Pariable 2 0.1666667 0.0309867 6 5 witstically Inquequal ances Pariable 2 0.1666667 0.309867 6
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F F(F<=f) one-tail F Critical one-tail F Critical one-tail F Critical one-tail F Critical one-tail C Critical one-tail C Critical one-tail Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail	Ces Variatve / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 Variance is stample assumi Unequal Vari 0.1666667 0.0365867 6 0 0.0365867 6 0 0.0365867 10 0.161 10 0.1656667 0.0365867 0.161 10 0.1656667 0.0365867 10 0.161 10 0.161 10 0.161 10 0.161 10 10 10 10 10 10 10 10 10 1	Variatvie 2 0.1666667 0.0309867 6 5 5 4 5 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F(F<=f) one-tail F <forit =="" difference="" in="" the="" to<br="">significant → use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail P(T<=t) two-tail</forit>	Ces Variatvie / 0.1666667 0.0365867 6 5 1.1807229 0.4293966 5.0503291 variance is sta mple assumin Unequal Vari Variatvie / 0.1666667 0.0365867 6 0 0 0 0 0 1.8124611 1 1	Variatvie /2 0.1666667 0.0309867 6 5 attistically ng unequal ances Variatvie /2 0.1666667 0.0309867 6
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F <forit =="" difference="" in="" significant="" the="" v=""> use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df tStat P(T<=t) one-tail tCritical one-tail tCritical two-tail t Critical two-tail t Critical two-tail</forit>	Ces Variatvie / 0.1666667 0.0365867 6 5 1.1807229 0.428366 5.0503291 variance is sta mple assumi Unequal Vari Variatvie / 0.1666667 0.0365867 0.0365867 0.0365867 0.0365867 0.0 10 0 0 0 10 0 10 0 10 10 10	Pariable 2 0.1666667 0.0309867 6 5 atistically Inquequal ances Variable 2 0.1666667 0.309867 6
FR-12 F-Test Two-Sample for Varian Mean Variance Observations df F F F(F<=f) one-tail F significant → use ttest two sa t-Test: Two-Sample Assuming Mean Variance Observations Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) one-tail t Critical one-tail P(T<=t) wo-tail t Critical two-tail t Critical two-tail	Variative / 0.1666667 0.0365867 6 5 1.1807229 0.4298966 5.0503291 variance is stample assumi Unequal Vari Unequal Vari 0.1666667 0.0365867 0.1666667 0.0365867 10 0.1551 1.8124611 1 2.2281388 and statistic.	Variatvle 2 0.1666667 0.0309867 6 5 xtistically ng unequal ances 20.1666667 0.0309887 6 5 0.1666667 0.0309887 6 3000000000000000000000000000000000000

F-Test Two-Sample for Varian	ces	
	Mariakia (Karlahla 2
Mean	0.1666667	0.166666
Variance	0.0386667	0.0314663
Observations	0.0300007	0.031400
dí	5	
F	12288136	
P(Ez=0 ope-tail	0.4133166	
E Critical operail	5.0503291	
F <forit =="" difference="" in="" td="" the="" v<=""><td>variance is sta</td><td>tisticallu</td></forit>	variance is sta	tisticallu
significant -> use ttest two sa	mple assumir	ng unequal
t-Test: Two-Sample Assuming	Unequal Varia	ances
	li'ariahla I	b'ariable ?
Mean	0.1666667	0.166666
Variance	0.0296667	0.0214661
Observations	0.0300007	0.031400
Hupothogized Mean Difference	0	
Action and the second	10	
t Stat	10	
Cotat D(Tkat) one toil	0.5	
F (rk=t) one-tail	1.0124.011	
D(Tzat) two toil	1.0124011	
F (i Ket) two-tail	0.0001000	
FR-13	cable	
FR-13 F-Test Two-Sample for Varian	cable ces	
FR-13 F-Test Two-Sample for Varian	cable ces Variable I	Variable 2
FR-13 F-Test Two-Sample for Varian Mean	ces <i>Variable 1</i> 0.1666667	Variable 2 0.166666
FR-13 F-Test Two-Sample for Varian Mean Variance	cable ces <i>Variable 1</i> 0.1666667 0.0263467	Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Varian Mean Variance Observations	cable ces <i>Variable 1</i> 0.1666667 0.0263467 6	<i>Variable 2</i> 0.166666 0.032564
FR-13 F-Test Two-Sample for Varian Mean Variance Observations df	ces Variable / 0.1666667 0.0263467 6 5	<i>Variable 2</i> 0.166666 0.032564
FR-13 F-Test Two-Sample for Varian Mean Variance Observations df F	ces Variable / 0.1666667 0.0263467 6 5 0.8090635	<i>Variable 2</i> 0.166666 0.032564
FR-13 F-Test Two-Sample for Varian Mean Variance Observations df F F FF(<=f) one-tail	cable Variable / 0.1666667 0.0263467 6 5 0.8090635 0.4109093	<i>Variable 2</i> 0.166666 0.032564
FR-13 F-Test Two-Sample for Varian Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail	cable Variable / 0.1666667 0.0263467 6 5 0.8090635 0.41090933 0.1980069	Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Varian Mean Variance Observations df F F(F<=f) one-tail F >Fcritical one-tail F>Fcritical in the difference in v	variadole / 0.1666667 0.0263467 6 5 0.8090635 0.4109093 0.1980069 variance is sta	Variable 2 0.166666 0.032564 1 1 1 1 1 1 1 1 1
FR-13 F-Test Two-Sample for Varian Variance Observations df F F(F <f) one-tail<br="">F Critical one-tail F>Forit = the difference in v insignificant → use ttest two.</f)>	<i>Variable 1</i> 0.1666667 0.0263467 6 5 0.8090635 0.4109093 0.1980069 variance is sta sample assur	Variable 2 0.166666 0.032564 1 1 tistically ning equal
FR-13 F-Test Two-Sample for Varian Variance Observations df F P(F<=f) one-tail F>Foriteal one-tail F>Forit = the difference in v insignificant → use ttest two- t-Test: Two-Sample Assuming	22010 Variatvie / 0.1666667 0.0263467 6 5 0.8090635 0.4109093 0.1980069 variance is sta sample assur Equal Variance	Variable 2 0.166666 0.032564 1 tistically ning equal ces
FR-13 F-Test Two-Sample for Variano Mean Variance Observations df F F(F(=f) one-tail F Critical one-tail F S-Forit = the difference in v insignificant -> use ttest two t-Test: Two-Sample Assuming	Variatvie / 0.1666667 0.0263467 6 5 0.8090635 0.4190033 0.1980069 variance is sta sample assur Equal Variatvie /	Variable 2 0.166666 0.032564 tistically ning equal ces Variable 2
FR-13 F-Test Two-Sample for Variano Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail FSFcrit = the difference in v insignificant -> use ttest two- t-Test: Two-Sample Assuming Mean	Variable / 0.1666667 0.0263467 6 5 0.8090635 0.4109093 0.1980069 variance is stat sance is stat statione assure Equal Variant Variable / 0.1666667	Variatvie 2 0.166666 0.032564 tistically ning equal ces Variatvie 2 0.166666
FR-13 F-Test Two-Sample for Variand Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail FSForit = the difference in v insignificant -> use ttest two t-Test: Two-Sample Assuming Mean Variance	22010 2000 22010 2000 20	Variable 2 0.166666 0.032564 1 tistically ning equal periable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variano Mean Variance Observations df F F(f<=f) one-tail F Critical one-tail F S-Forit = the difference in v insignificant -> use ttest two t-Test: Two-Sample Assuming Mean Variance Observations	22016 22016 22016 201666667 0.0263467 6 5 0.8090635 0.4900635 0.490063 0.1980069 variance is sta <u>sample assur</u> Equal Variative / 0.1666667 0.0263467 6	Pariatvle 2 0.166666 0.032564 tistically ning equal tes Variatvle 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variand Mean Variance Observations df F P(F<=f) one-tail F > Forit = the difference in v insignificant -> use ttest two. t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance	22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 20100 20	Variable 2 0.166666 0.032564 Nistically ning egual pes Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variance Variance Observations df F P(F<=f) one-tail F SForit = the difference in v insignificant -> use ttest two t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference	22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 22010 20100 20	Variable 2 0.166666 0.032564 tistically ning equal pes Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variance Variance Observations df F F(F<=f) one-tail F>Forit= the difference in w insignificant -> use ttest two- t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df	22010 2000 2	Variable 2 0.166666 0.032564 tistically ning equal ces Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variance Mean Variance Observations df F P(F<=f) one-tail F Critical one-tail F Serit = the difference in v insignificant -> use ttest two t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat	2able Variable / 0.1666667 0.0263467 6 0.8090635 0.4109093 0.1980063 0.1980063 tariance is sta Sample assur Equal Variable / 0.1666667 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.0263455 0.026345555 0.026345555 0.02655555555555555555555555555555555555	Variable 2 0,166666 0.032564 tistically ning equal ces Variable 2 0,166666 0.032564
FR-13 F-Test Two-Sample for Variand Mean Variance Observations df F P(F<=f) one-tail F Secit = the difference in v insignificant -> use ttest two- t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail P(T<=t) one-tail	Viariadve / 0.1666667 0.0263467 0.3000635 0.4109033 0.19800639 variance is sta sample assur Piavidve / 0.0263467 6 0.300035 variance is sta sample assur Viariadve / 0.16666667 0.02934555 0 0 0 0.0294555 0 0.05	Variable 2 0.166666 0.032564 ining equal pes Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variance Wean Observations df F Critical one-tail FS-Forit = the difference in v insignificant -> use ttest two- t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail t Critical one-tail t Critical one-tail	22010 20010 20	Variable 2 0.166666 0.032564 tistically ning equal bes Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variance Mean Variance Observations df F P(F<=f) one-tail F>Forit = the difference in v insignificant -> use ttest two- it-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail P(T<=t) two-tail P(T<=t) two-tail	2able Variative / 0.1666667 0.0263467 6 5 0.8090635 0.4109093 0.1980069 variance is sta sample assur Equal Variative / 0.1666667 0.0263467 6 0.0294555 0 10 0 0.5 1.8124611 1	Pariate 2 0.166666 0.032564 tistically ning equal ces Variate 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variance Variance Observations df F P(F<=f) one-tail F>Forit= the difference in v insignificant >- use ttest two- t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one-tail P(T<=t) two-tail t Critical two-tail t Critical two-tail	Vianiatve / 0.1666667 0.0263467 6 0.3000635 6 5 0.0300635 0.19800639 0.19800639 0.19800639 0.19800649 0.16666667 0.02634677 6 0.022945555 0.022945555 0.022945555 0.18124611 0 0 0.5 1.8124611 1 2.22281388 1 0 1 0.5 1.8124611 1 1 1 2.22281388 1	Variable 2 0.166666 0.032564 tistically ning equal ses Variable 2 0.166666 0.032564
FR-13 F-Test Two-Sample for Variand Mean Variance Observations df F F P(F<=f) one-tail F > Foritical one-tail F > Foritical one-tail F > Forities the difference in v insignificant -> use ttest two t-Test: Two-Sample Assuming Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat t Critical one-tail P(T<=t) one-tail t Critical two-tail t Critical two-tail t Critical two-tail	Variable / Variable / 0.1666667 0.263467 0.8090635 0.4109093 0.1380069 variance is sta sample assur Pariable / 0.023467 0.1666667 0.1666667 0.1666667 0.0234545 0.0234567 0.023467 0 0.0234555 0 10 0.5 1.8124611 1 2.2281388 pot statistice	Pariable 2 0.166666 0.032564 tistically ning equal pes <i>Variable 2</i> 0.166666 0.032564

Table C1: The F-test and T-test output and steps for testing table 1 reproducibility.

SUMMARY OUTPUT	: Orthogneiss						
		H₀ is that t	here is no trer	nd in the prope	ortion		
Regression Statistics		of orthogneiss downstream.					
Multiple R	0.694962588	For 15 obse	For 15 observations, t-critical=2.145 t-obs =3.48> t-crit Accept null hypothesis of no trend				
R Square	0.482972999	t-obs =3.					
Adjusted R Square	0.443201691	Accept null					
Standard Error	5.166203983						
Observations	15						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	324.1127	324.1127	12.1438	0.0040		
Residual	13	346.9656	26.6897				
Total	14	671.0784					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Unner 95%	
Intercent	5 3188	2 5307	2 0943	0.0564	-0 1679	10 8054	
Slope	0.0043	0.0012	3 4848	0.0040	0.0016	0.0070	
Slope	0.0040	0.0012	5.4040	0.0040	0.0010	0.0070	
SUMMART OUTPUT	: Paragneiss						
Degrappion Statistics		H_0 is that the	H_0 is that there is no trend in the proportion				
Regression Statistics		of paragnel	of paragnelss downstream.				
Multiple K	0.052		For 15 observations, t-critical=2.145				
K Square	0.424	Accont pull	Accept pull hypothesis of no trond				
Aujusteu R Square	0.300						
Observations	0.279						
Observations	15						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	1	657.289	657.289	9.589	0.009		
Residual	13	891.144	68.550				
Total	14	1548.433					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	45,992	4,070	11.300	0.000	37,199	54,785	
Slope	-0.006	0.002	-3.097	0.009	-0.010	-0.002	

Table C2: The T-test output for orthogneiss and paragneiss (scatter plots in Figure 8).