Extracting Short Rise-Time Velocity Profiles With Digital Down-Shift Analysis of Optically Up-Converted PDV Data

Abel Diaz, Nathan Riley, Cenobio Gallegos, Matthew Teel, Michael Berninger, Thomas W. Tunnell National Security Technologies, LLC, Los Alamos Operations

Presented to 5th Annual PDV Workshop, Ohio State University

September 8-9, 2010

Related NSTec Site-Directed Research & Development Projects:

•2008: Many-point Velocimetry using Heterodyne Techniques

•2006: Dynamic Shock Source

•2006: Time Frequency Analysis

This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.

Topics

- Principle of Laser Shock Source
- Optical Up-Converted PDV
- Description of Digital Down-Shift (DDS) Analysis
- Analysis Procedure for Laser-Driven Shock Data
- DDS Analysis Results (plus Other Analysis Techniques)
- Future Work
- Conclusion
- Appendix

Principle of Laser Shock Source

Generation of the shock

1 mm diameter

Optical Up-Conversion: Setup

Acquisition of optical up-converted PDV. The up-converted channel is generated by mixing the reflected light with light from a laser that is tuned to produce an apparent positive velocity.

The optical up-shifted signal does not suffer from baseline noise as with the standard PDV.

Optical Up-Conversion: Laser-Driven Shock

- David Holtkamp Challenge: • Can we get timing information from the DDS of optically up converted PDV data?
- Upper plot shows optically up-shifted • PDV data at 3834.28 m/s ~ 5 GHz
- Lower plot shows standard PDV data and digital downshift of optically up-shifted data. Acquired on same shot—note similarity
- Looks like standard PDV data .
- Digital downshift at up-shift baseline • recovers zero velocity at normal shock breakout; enables breakout in optically up-converted data to be observed easily. We will show that we can extract velocities prior to normal shock breakout at DDS velocities just above base line.

Vision • Service • Partnership

Digital Down-Shift Analysis

- Digital down-shift analysis is a novel technique for the analysis of optically up-converted PDV data
- For each selected frequency (velocity), a constant frequency is subtracted from all signals in the PDV data
- When (time) the down-shift velocity equals the combined true velocity and up-converted baseline, an apparent velocity reversal appears
- We call these reversals "Anomalous" when they occur in the mid-range of the data (near 0) rather than at the peak and trough locations. We seek them because they are easier to identify because they are anomalous.
- The result is that dependent and independent variables are reversed from usual practice v(t), rather velocities are selected and corresponding times are extracted, t(v)

Anomalous Reversal

- In order to determine the time at which the specific velocity corresponding to the downshift is observed, an apparent reversal of the reflector velocity is sought
- This reversal occurs when the combined true velocity and up-shifted baseline equals the digitally downshifted velocity
- The velocity reversals may be extracted from the data by finding the corresponding reversal in phase in the breakout region
- Example shown is shot 11A (simulated) at up-shift of 4112.26 m/s corresponding to ~285 m/s
 - phase reversal is visible at 0.3954 µs

Selecting Down-Shift Velocities

- It is desirable to select a down-shift velocity which produces a reversal which is easily distinguished from an ordinary peak or trough in the signal
- (Condition data peak/trough) This is accomplished by selecting a down-shift velocity which produces an integer number of cycles ¼ from the beginning of the data, as shown (X is a nonnegative integer ¼)
- By incrementing X, an array of down-shift velocities is defined whose corresponding time values are subsequently determined

$$V_{DDS}(X) = \frac{X}{(t_b - t_0)} (\frac{\lambda}{2}) + V_0$$

Conditioning the data

- Edit the data to start at a peak produces a positive baseline at the amplitude of the oscillations before breakout.
- Edit the data to start at a trough produces a negative baseline at the amplitude of the oscillations before breakout.
- In general, the phase at which the data set begins determines the value and sign of the DDS.

Localizing the Velocity Reversal

- For each selected down-shift velocity, the velocity reversal must be isolated to determine the corresponding time
- A region of interest is defined in which the reversal appears as the extremum of a unimodal function, which can then be more precisely located with a curve fit
- A peak fit is used for this purpose. One that will accommodate a variety of peak shapes with minimal *a priori* assumptions is preferred

Localizing the Velocity Reversal

Vision • Service • Partnership

- An example is shown here down-shift velocity corresponds to 4050 m/s with a 3800 m/s up-shift baseline
- The region of interest is defined by selecting ¼ cycle of data on each side of the estimated shock breakout according to

$$t_{+,-} = t_b \pm \frac{1}{8f_0} \left(\frac{c}{V_{base} - V_{DDS}(X) + V_{+,-}} \right)$$

A peak fit is applied over this interval, which is then minimized to locate the reversal (also applys to throughs)

Analysis Process – FFT/ADC

- 1. Filter (remove clock noise, harmonics, low frequencies)
- 2. Resample up by 2 / digital up-shift by 12,610m/s (to 20 GHz)
- 3. FFT (100ps window and 20 ps shift) -- Matthew Briggs: Most everyone uses 1024 pt FFTs. What are actually the best choices?
- 4. ADC Omega Filter

Results From Laser-Driven Shock Data

- Time scale shown is ~1 ns
- The DDS analysis was able to extract a rise time of ~200 ps
- The lowest velocity resolved by • the DDS analysis is ~1 m/s-well before normal shock breakout; velocities are extracted over 3 orders of magnitude
- Time resolution is limited by digitizer—20 ps in this case
- Analysis extracts a range of velocities for each time value
- FFT uncertainties consistent with Dan Dolan's estimate

Shot1Det1Up001F

Results From Laser-Driven Shock Data

- Time scale shown is ~1 ns
- DDS analysis extracts less than 200 ps rise time—FFT and ADC are similar
- The lowest velocity extracted is ~40 cm/s
- Analysis of additional datasets from same source can be found in the appendix; results shown are typical

DDS Can Recover Motion Prior to First Fringe Peak, Prior to Normal Breakout

Future work

- Very good fit for the multiplexed data
- Use DDS to extract peak velocity from data
- Track migration in zero-crossings using digital down-shift and digital up-shift to determine average velocities between the zero-crossings
- Combine DDS analysis with FFT analysis for input to ADC filtering

Conclusions

- We have presented an entirely new technique for sub-nanosecond velocimetry from single-channel data.
- An apparent velocity reversal appears when the down-shift velocity equals the combined true velocity and up-converted baseline.
- The reversals occur at times corresponding to down-shift velocities.
- The DDS velocity profile is constructed by repeating down-shift velocities and extracting corresponding times. This is in contrast to traditional methods.

Conclusions (cntd)

- DDS can recover motion prior to "breakout".
- DDS is a very good fit for analyzing the multiplexed PDV data
- 20 ps or better time resolution allows examination of very short rise times of ~200 ps
- Resampling and up-shift permits use of the very short FFTs.

Appendix: Adaptive Down Conversion (ADC)

1. Start with a first order estimate for velocity, $v^{(t)}$, such as that which might be obtained from FFT analysis.

2. Convert first order velocity to frequency, $f^{\bullet}(t) = \frac{v^{\bullet}(t)}{(t)^2}$.

- 3. Integrate frequency to generate phase, $\phi^{\Phi}(t) = 2\pi \int f^{\Phi}(t')dt'$.
- 4. Generate mixing functions, $\cos(\phi^{(1)}(t))$ and $\sin(\phi^{(1)}(t))$.
- 5. Multiply the data, D(t), by the mixing functions:

$$PC(t) = \cos(\phi^{(\uparrow)}(t)) \times D(t) = \frac{A(t)}{2} \{\cos(\phi(t) - \phi^{(\uparrow)}(t)) + \cos(\phi(t) + \phi^{(\uparrow)}(t))\},$$
$$PS(t) = \sin(\phi^{(\uparrow)}(t)) \times D(t) = \frac{A(t)}{2} \{\sin(\phi(t) - \phi^{(\uparrow)}(t)) + \sin(\phi(t) + \phi^{(\uparrow)}(t))\}.$$

National Security Technologies

Appendix: ADC (cont'd)

6. Low-pass-filter these products to produce residual functions:

$$LC(\phi(t) - \phi^{\bullet}(t)) = \frac{A(t)}{2}\cos(\phi(t) - \phi^{\bullet}(t))$$
$$LS(\phi(t) - \phi^{\bullet}(t)) = \frac{A(t)}{2}\sin(\phi(t) - \phi^{\bullet}(t))$$

- 7. Generate I as $I(t) = 2 \times LC(\phi(t) - \phi^{(1)}(t)) \times \cos(\phi^{(1)}(t)) - LS(\phi(t) - \phi^{(1)}(t)) \times \sin(\phi^{(1)}(t))$
- 8. Generate Q as $Q(t) = 2 \times IS(\phi(t) - \phi^{(1)}(t)) \times \cos(\phi^{(1)}(t)) + LC(\phi(t) - \phi^{(1)}(t)) \times \sin(\phi^{(1)}(t)).$
- 9. Unfold continuous phase (i.e., accounting for 2π jumps in phase)

$$\phi(t) = \tan^{-1}\left(\frac{-Q(t)}{I(t)}\right).$$

National Security Technologies

Appendix: ω Filter

Computing time derivative with Fourier Transform: ω Filter

In-phase signal: $I(t) = A(t)\cos(\phi(t))$

Out-of-phase signal: $Q(t) = -A(t)\sin(\phi(t))$

$$\frac{d}{dt}I(t) = FFT^{-1}\left[\left(\frac{2\pi k}{N}i\right)FFT\right](t)$$

$$v(t) = \left(\frac{\lambda}{4\pi}\right) \frac{Q(t)\frac{d}{dt}I(t) - I(t)\frac{d}{dt}Q(t)}{\sqrt{I^2(t) + Q^2(t)}}$$

