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An accurate and general treatment of
these highly fluxional systems requires
either a global PES or a grid-based
sampling of configuration space

Large basis set expansions required to
fully capture the anharmoncity of
these systems
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‘ Use importance sampling Monte Carlo ‘

Normalized probability distribution that is peaked,
ideally, where the function of interest, f, is peaked.
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‘ Define an active space: ‘ Eigenstates used to
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Effective size of basis grows each iteration

Basis functions shown prior to orthonormalization
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Moving on to 2D

2D PES and G matrix elements
constructed by S. Horvath
from a bicubic spline
interpolation of a grid of points
on which MP2/aug-cc-pVTZ
calculations were performed.

Highly anharmonic system with
a strong coupling observed
between 7oy and 7.

Our goal is to accurately
capture all states with up to 3
total quanta of excitation.

Horvath et al. J. Phys. Chem. A
2008, 112,12337-12344,
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The Problem of Assighment

|Identity of problem states dependent on parameters of
algorithm AND exact distribution of Monte Carlo sampling points

Ilteration 2 Iteration 3
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Compare moments of the
two sets of wavefunctions:




The Hunt for an Effective Metric
1

Gruebele et al. Int. Rev. Phys. Chem 1998, 17, 91-145.
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Conclusions and Future Work

Developed a methodology that uses importance sampling
Monte Carlo and and evolving basis to intelligently sample
configuration space and minimize size of basis required

The method has been shown to be able to
accurately describe a highly anharmonic Morse oscillator

Promising developments in tackling the problem of multi-
dimensional eigenstate assigment

Complete the optimization of the multi-dimensional
algorithm’s treatment of spurious resonances

Further multi-dimensional benchmarking

Couple algorithm with ab initio
electronic structure calculations
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Basis functions change each iteration

‘ Phase factors ‘

Will be made orthogonal to all previously
built states and normalized
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