
ii

Optimizing Acoustic Array Beamforming to Aid a Speech

Recognition System

A Thesis

Presented in Partial Fulfillment of the Requirements for
Bachelor of Science Degree with Honors Research Distinction in

Electrical and Computer Engineering

By Sergei Preobrazhensky

Electrical and Computer Engineering
The Ohio State University

May 2012

Examination Committee:

Prof. Lee Potter, Adviser
Dr. Josh Ash, Research Scientist

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KnowledgeBank at OSU

https://core.ac.uk/display/159563015?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

Abstract

The iBrutus is a pilot project at the Computer Science and Engineering (CSE)

department at OSU which develops human-computer interaction via spoken dialog. The

goal of the iBrutus project is to design a kiosk with a talking avatar on a screen which

will answer questions at a public event like a football game at a potentially noisy

environment like the Ohio Stadium.

In such an environment, the speech recognition software employed by the system

would be ineffective without prior processing to obtain a cleaner speech signal. As a

rule of thumb, if the iBrutus could correctly interpret 70% or more words, it could

successfully to map the input to a known question/command. To improve the speech

recognition rate the author has chosen to research a beamforming algorithm. Such an

algorithm combines inputs of from a microphone array to minimize the interference

while preserving the desired signal (i.e. speech arriving from a known

direction/location).

The goal of the research has been to develop such an algorithm and a means of testing

to determine which parameters associated with the algorithm – such as the spatial

geometry of the microphone array – will produce the desired speech recognition rate in

minimum processing time. The beamforming algorithm designed by the author in

MATLAB was frequency based wideband Minimum Variance Distortionless Response

(MVDR). Tests showed that at least 70% word recognition rate could be achieved under

certain parameter choices. The processing time of the MATLAB-based algorithm is

currently larger than desired for use with iBrutus, but there is potential for improvement.

iv

Acknowledgements

 I thank my adviser, Prof. Lee Potter for his mentoring and support from June

2011 to May 2012. He was a helpful guide during the year. I would not have made the

commitment to conduct a year-long honors research project if not for him introducing to

me the research opportunities he had for undergraduates.

 I thank Dr. Josh Ash for being on the hearing committee alongside Prof. Potter

during my Honors Thesis oral defense.

I thank Prof. Clymer of the Electrical and Computer Engineering Department at

OSU for guiding me through the official steps of completing Honors Distinction

Research in Electrical and Computer Engineering.

Finally, I thank my undergraduate colleagues in research from January to March

2012 for their collaboration. They are Domenic Belgiovane, David Leonard, Matt Miller,

Nick Blanton, and Jonathan Lane.

The ECE Department at OSU has been generous to provide lab space and

equipment for this research.

v

Table of Contents

Abstract.. iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures .. viii

1. Introduction .. 1

1.1 iBrutus Project .. 1

1.2 Problem Statement ... 2

2. Background .. 4

2.1 Objectives ... 4

2.1.1 Main Goal... 4

2.1.2 Parameters .. 5

2.1.3 Metrics ... 5

2.1.4 Constraints ... 6

2.2 Solution Design .. 8

2.2.1 General MVDR Beamforming Algorithm Description .. 8

2.2.2 Wideband MVDR Implementation ...10

2.2.3 Computing and Applying MVDR weights in Frequency Domain11

2.3 Previous Work and Collaboration ...15

2.3.1 Previous Work by Author ...15

2.3.1 Collaboration with Other OSU Undergraduates ...16

2.4 Legal, Societal and Economic Considerations ...18

2.4.1 Legal Considerations for iBrutus ...18

2.4.2 Societal and Economic Impact of iBrutus ..20

2.5 Standards ..20

vi

3. Experimental Procedure ..22

3.1 General Motivation Behind Tests. ..22

3.2 Overview of Tests. ...24

3.3 First Test: Effect of MVDR Beamforming on Speech Recognition25

3.4 Second Test: Approximating Speech Frequencies with a Non-Speech Signal30

4. Experimental Results ..34

4.1 Speech Recognition Test Results and Discussions ...34

4.2 Non-Speech Test Results and Discussions ...36

4.3 Processing Time Results. ..38

5. Future Work ..40

5.1 Improving Testing Procedure to Find Beamforming Parameters Optimal for Speech

Recognition ...40

5.2 Algorithm Improvements ..42

5.2.1 Performance Improvements ..42

5.2.2. Reducing Beamforming Computation Time: ...43

5.4 Interfacing Beamforming with the iBrutus System ..45

6. Conclusion ...48

References ...49

Appendices ...51

A1. Results Data Plots ...51

A1.1 First Test Results: Effect of MVDR Beamforming on Speech Recognition51

A1.2 Second Test Results: Approximating Speech Frequencies with a Non-Speech Signal

 ..54

A2. Hardware and Materials Used ...60

A2.1. HP Pavilion DV 4 Entertainment Laptop PC ..60

A2.2 Hardware and Materials used for DAQ only during Jan-Mar 201261

vii

A2. Software Used ...65

A3. Author’s Code ...66

A3.1 MATLAB for First test (Speech Processing) ...66

A3.2 MATLAB Code for Second Test: Non-Speech Signal ..84

A3.3 Prototype Perl Code .. 101

viii

List of Equations

Equation 1 ... 8

Equation 2 ... 8

Equation 3 ... 9

Equation 4 ... 9

Equation 5 ... 9

Equation 6 ... 13

Equation 7 ... 32

Equation 8 ... 46

List of Figures

Figure 1. Frequency-based MVDR Beamforming as Used by Author. 13

Figure 2. The iBrutus Components Directly Related to the Author’s Work. 18

Figure 3. Speech Recognition Test Process. .. 29

Figure 4. Non-speech Signal Simulation Test Process. .. 30

Figure 5. Effect of Sub-band Size on MATLAB Processing Time. 39

Figure 6. Test 1 Results 1. .. 51

Figure 7. Test 1 Results 2. .. 52

Figure 8. Test 1 Results 3. .. 53

Figure 9. Test 2 Results 1. .. 54

Figure 10. Test 2 Results 2. .. 55

Figure 11. Test 2 Results 3. .. 56

Figure 12. Test 2 Results 4. .. 57

Figure 13. Test 2 Results 5. .. 58

Figure 14. Test 2 Results 6. .. 59

Figure 15. HP Pavilion DV 4 Laptop. ... 60

Figure 16. TASCAM Data Sheet. (For more datasheet information: [20]). 61

Figure 17. CUI, Inc. Microphone Data Sheet Page 1. ... 62

Figure 18. CUI, Inc. Microphone Data Sheet Page 2. ... 63

Figure 19. Sample Set Up with Acoustic Foam Board... 64

1

1. Introduction

1.1 iBrutus Project

The iShoe project was originally developed at Purdue University under the name of “e-

Stadium,” where it was then transferred to Ohio State under license. It has since been

developed as a Capstone Computer Science and Engineering project. Through iShoe,

Ohio State fans can enjoy real-time statistics on the game, biographies of the players

and coaches. This is all accessible from any computer or other web enabled device [1].

The short-term goal of the iBrutus project is to provide an alternative front end to

the iShoe and answer event-related questions during football games. The iBrutus will be

set up as a kiosk at the Ohio Stadium (within the inner hallway under the stadium

seats). The kiosk will feature an avatar of The Ohio State University’s mascot Brutus on

a screen. This avatar will interact with human users via spoken dialog, rather than a

touch screen or buttons [2].

 In the long term, a system like the iBrutus could be adapted to other public

venues and events. More generally, a future prospect for interaction between humans

and computers is spoken dialogue and visual cues rather than a keyboard, mouse, or

touch screen. The iBrutus is thus, in addition to its specific purpose, a pilot project for

advancing the field of human-computer communication [2].

2

The iBrutus will be a complex system with multiple components including speech

recognition software, Microsoft Xbox Kinect cameras, and an array of microphones [1].

The mentioned components will have a direct influence on the author’s research as

explained in the next section.

1.2 Problem Statement

The CSE iBrutus research team desires a means to obtain a speech signal clean

enough for the employed speech recognition software to have a word recognition rate of

at least 70%. English speech is redundant enough that at this rate the iBrutus could

successfully map the recognized words to a sentence to which the system can respond

[2].

Without additional processing, the speech recognition software will be ineffective

in acoustically noisy areas such as Ohio Stadium. The author and several other ECE

undergraduates have worked with the CSE department research team working on

iBrutus to design a beamforming algorithm that uses a microphone array that is capable

of minimizing interference.

Using the Microsoft Xbox Kinect, iBrutus will have the capability of isolating faces

of individual people in a crowd in order to determine and focus on the direction from

which a particular speaker’s voice is coming [2]. Knowing this direction, beamforming

can be used take advantage of the phase differences that the desired human speaker’s

signal exhibits across the microphones to “listen” in a particular direction. The algorithm

will attempt to minimize interference coming from other directions. The Kinect has built-

3

in beamforming capability, using its four microphone array. However, the CSE iBrutus

team stated that this array has not sufficiently yielded speech recognition in acoustically

noisy environments [2]. Also, instantaneous beamforming done by the Xbox Kinnect will

overwrite the original signal, and in case the iBrutus chooses the wrong beamforming

direction for the human speaker it will not be able to reprocess the original data.

4

2. Background

2.1 Objectives

2.1.1 Main Goal

The author has made it his goal to develop and test a beamforming algorithm for

iBrutus which can be extended to an arbitrary number of microphones. The author

believes his algorithm would be more likely to exceed the 70% word recognition limit

than using the beamforming capabilities of the Xbox Kinect. This is because the

author’s algorithm allows more microphones, and a more effective array geometry.

Using more microphones is generally beneficial for beamforming as it allows more

degrees of freedom for the weighted summing (explained in the “Solution Design”

section). Certain array geometries will allow for more interference suppression than

others (see “Experimental Procedure” section). Furthermore, the algorithm to be

designed would be able to reprocess the original audio data, if needed, unlike the Xbox

Kinect. These two benefits outweigh the fact that implementing such an algorithm will

inherently cause a processing lag (the lag could still be acceptably small). The

beamforming algorithm that author has developed in MATLAB is known as minimum

variance distortionless response (MVDR). More specifically, the author has chosen a

wideband and frequency-based implementation of MVDR (explained in the “Solution

Design” section).

5

2.1.2 Parameters

The author’s algorithm has several input parameters the values of which can be

chosen as needed. The parameters that have been varied in the tests presented in this

paper (explained in the “Solution Design” and “Experimental Procedure” section) are:

1. spatial placement of the microphones,

2. extent of the frequency spectrum to process (also referred to here as

bandwidth),

3. the width of uniform frequency sub-bands into which the frequency spectrum

of the input signal spectrum would be split for wideband processing,

4. forgetting factor associated with the adaptive nature of MVDR,

5. the ratio of the RMS of the desired component of the test audio signal to the

RMS of the undesired component of the same signal - simulated interference

(this ratio is referred to as the signal to interference ratio or SIR).

2.1.3 Metrics

The effectiveness of the beamforming will ultimately be measured by the speech

recognition software to be used with iBrutus. Currently iBrutus is designed to use

Windows Speech Recognition (WSR) [2]. However, the author has found WSR to be

ineffective for achieving a 70% word recognition rate, given a speech signal processed

with his algorithm. Instead the author has tested Google Speech Recognition (GSR)

with success. The iBrutus is not currently interfaced with GSR, but the author’s

6

successful tests with GSR provide a proof of concept that his algorithm could be made

viable for iBrutus. The word recognition rate that the author has used as a metric was

simply the number of words that GSR recognized correctly. This score is not affected by

extra words incorrectly inserted in the recognized text as the iBrutus will be designed to

find key words to which it can respond in a string of recognized words [2].

The other important metric of the beamforming algorithm is processing time.

Generally, there is a trade-off between processing quality and time. The goal with

beamforming for iBrutus can be fully restated as: process speech with small and

constant delay without compromising 70% word recognition. This could be

accomplished, for example, if the beamforming algorithm can process a second of noisy

audio in under a second. This will allow for continuous, quasi-real-time processing of

consecutive blocks of audio with a small constant lag required to process a single block.

From the tests the author has conducted, there is reason to believe that a fast modern

computer could, in fact, process a second of signal with his MATLAB-based algorithm in

under a second.

The author has also used a less relevant metric, but one that still offers insight on

the beamforming performance. This metric was the percentage is RMS error

improvement when comparing the amount of noise/interference in the input and output.

This will be discussed more detail in the “Non-speech Simulations” section.

2.1.4 Constraints

The primary constraint of the author’s research is that findings are to be

presented by the end of the Spring 2012 academic quarter at OSU (which extends from

7

the end of March to the first week of June). This is the deadline by which the author is to

complete this thesis.

Given limited research time, testing was limited to the particular MVDR

beamforming algorithm developed. For the same reason only the algorithm parameters

previously described were varied, although several others can be varied as well.

Additionally, the author has narrowed down the array geometry parameter, to one-

dimensional, uniformly spaced microphone arrays. As the CSE iBrutus team desires

portability of the design, the length of the microphone array was constrained to 1 meter

or less.

The simulations done by the author have thus far been constrained to an array of

eight microphones. The existing data acquisition hardware available to the author

through the ECE department is the TASCAM US-1641. Although this device has sixteen

various channels, it supports a maximum of eight identical microphones (through XLR

channels) [20]. Most of the author’s work has relied on simulating a microphone array in

MATLAB rather than relying on connecting a physical microphone array to the TASCAM

hardware. However, the author would like to leave future researchers with the

opportunity of recording speech in a real noisy environment with the existing TASCAM

hardware. Therefore the testing the author has done was focused on using eight

microphones. Results suggest that eight microphones may be an acceptable number.

However the author’s MATLAB algorithm supports an arbitrary number of microphones,

in case future researchers choose, to acquire DAQ hardware that supports more

microphones. It is not known however whether the increased processing time

8

associated with the larger number of microphones would be worth the possible

improvement in speech recognition.

2.2 Solution Design

2.2.1 General MVDR Beamforming Algorithm Description

The software design of this project will be comprised of the wideband MVDR

beamforming algorithm. The algorithm is adaptive in time. It estimates the average

covariance between each microphone signal over a short time window; it then

continuously updates this estimate over the time windows that follow. A covariance

matrix is thus computed using the block (time window) of signal that is recorded by the

microphones. This is shown in Equations 1 and 2 below.

Equation 1

Equation 2

Here, the X is an array of the input signals with n microphones and k samples,

and R is the covariance matrix. Then the algorithm computes gain and phase delay

weights to be applied to each microphone such as to minimize the overall average

energy of the output. The output will be a weighted sum of microphone inputs. The

weights are chosen such that on the average maximal destructive interference is

achieved by the sum for all the interference components. However, to protect a desired

9

signal coming from a known direction (the human speaker, in the case of iBrutus), the

weights are chosen such that there is unity gain in that direction. Optimal weights are

calculated using Equation 3.

Equation 3

In Equation 3, vs is the steering vector which indicates the delays the desired

signal exhibits across the microphone array. The expression for vs is given by Equation

4 below. In Equation 4, tau is the time delay from the desired source location to each

microphone of the array.

Equation 4

Equation 5 shows how MVDR weights are applied to the data block X to form the output

block.

xout=wHX

Equation 5

Note that the time delays in Equation 4 are calculated via the spherical wave

propagation model from a point-source to the microphones. The steering vector

depends not only on the angle of the desired sound source but also on its distance from

the microphone array. This MVDR implementation method is known as near-field MVDR

as the steering vector will depend more and more on the distance rather than just the

angle as the source is placed nearer to the microphone array. The latter method

10

approximates the steering vector by the plane-wave (rather than spherical) propagation

model which is a good approximation for far away sources. For the case of iBrutus, the

location of the desired human speaker relative to the microphone array is expected to

be close enough that near-field MVDR should show significant improvement in the SIR

when compared to the far-field model implementation [3].

2.2.2 Wideband MVDR Implementation

An MVDR steering vector assumes a fixed operating frequency (denoted by f in

Equation 4). This means that there will be unity gain and no unwanted phase offset for

the sinusoidal signal component of that particular frequency. For frequency components

of the desired source signal which are close to this operating frequency, MVDR will

produce near unity gain and very little phase distortion. Thus MVDR works well for a

narrow-band signal. The frequency range for the main bulk of human speech is 300-

3400 Hz [5].

A previous iBrutus student research team at OSU determined that MVDR

processing over this spectrum will yield much better results when the signal is

decomposed into narrow bands of frequency components [6]. This approach is known

as wideband MVDR. Separate MVDR steering vectors are chosen for multiple operating

frequencies which are uniformly spaced throughout the human speech spectrum.

Further modifications that need to be made for this approach are as follows: The

covariance matrix paired with each steering vector is chosen to represent only a band of

frequency components which are close to the operating frequency. The previous iBrutus

research team filtered the microphone data (using band-pass) into multiple equal-sized

11

frequency sub-bands. Separate MVDR weights were calculated and applied to each

sub-band, choosing the operating frequency to be at the center of each band. Then the

sub-band output signals are summed to produce the processed signal for the whole

frequency spectrum.

Most of the testing done by the author and previous teams working on the iBrutus

project has stayed within the bounds of 300-3500 Hz [6,3,4]. However, according to [5],

taking a broader spectrum of 150-7000 Hz may be better suited for speech recognition.

Consonant sounds, for example, can be distinguished much better using this extended

spectrum. The author has tested the MVDR algorithm with both the narrower and the

wider spectrum.

2.2.3 Computing and Applying MVDR weights in Frequency Domain

Traditional time-domain MVDR, involves band-pass filtering a time window of

microphone data into multiple time domain signals – one for each frequency sub-band.

Then each of these signals shifted to baseband to produce a complex signal suitable for

MVDR [8]. Following that the filtered signals can be possibly down-sampled to save

computation time without loss to accuracy [9]. After MVDR weights have been applied,

this process would need to be reversed in order to reconstruct the speech spectrum.

The author has decided to bypass band-pass filtering the noisy speech signal

into multiple time domain signals, and instead perform wide-band MVDR directly in the

frequency domain. This can be done by taking the FFT (Fast Fourier Transform) over a

time window of microphone data; then the covariance matrix is formed from discrete

12

frequency bin values which represent a sub-band. MVDR weights are calculated from

this covariance matrix and applied to these bins. The weights are then applied to the

frequency bins of each sub-band. This approach has been outlined in [7], and the

author decided to follow this description closely. With the frequency domain MVDR

algorithm, the time domain MVDR steps could be bypassed likely saving on

computation. Although it is not fully known what trade-offs there may be to each

approach, the article [7] contends that frequency domain MVDR demonstrates better

SIR results than time-domain MVDR methods, especially when it comes to non-

stationary interference sources. The acoustic interference in the case of iBrutus is in

fact expected to be largely non-stationary noise (rather than stationary white noise).

In the frequency domain MVDR algorithm, the FFT is taken for 1024 sample

Hamming-windowed sections of the n-microphone data. Each subsequent 1024-sample

window is advanced in time by 32 samples. After MVDR processing in frequency

domain, the IFFT is taken and all but the 32 central samples of the resulting time

domain signal are discarded. The remaining 32-sample block is appended to the

processed time signal. Figure 1 depicts this process. The article [7] offers that such 32-

sample increments yield in almost half the computational time almost as good a

performance as the 16-sample increments which were at first used by its authors.

13

Figure 1. Frequency-based MVDR Beamforming as Used by Author.

For the DFT of each section, wideband MVDR is applied only to bins which

represent the spectrum of interest. For example the one-sided bandwidth of 300-3400

Hz roughly corresponds to 144 DFT bins. This number of bins can be split into equal

size sub-band numbers such as 18, 24, or 36, (the corresponding sub-band size, s,

would be 8, 6, and 4 bins). The covariance matrix R for a particular sub-band is formed

by the following equation:

Rb,i = λ Rb,i-1 + S SH

Equation 6

14

Here b is the sub-band index, i is the counter of how many 1024-sample blocks of

microphone data have been transformed into frequency domain since processing

began, S is an n by s matrix of frequency bin values, and 0<λ<1 is the forgetting factor.

 The forgetting factor helps make sure that MVDR weights applied to each 1024-

sample DFT change deviate only slightly from the weights of previous blocks. As the

name forgetting factor implies, the recent data is the most heavily weighted, to adapt to

recent interference. The memory introduced to the processing via this factor helps the

waveform reconstructed in the time domain to track the desired source signal [7]. The

forgetting factor generally presents a trade-off between how quickly the algorithm

adapts to changing interference (better as factor approaches zero) versus how

gradually the weights change to aid in tracking the desired signal (better as factor

approaches one). Optimal forgetting factor values therefore depend on the nature of the

desired signal and interference and must be determined experimentally.

It must be noted that to avoid the issue of singularity when inverting the

covariance matrix to compute MVDR weights, the diagonal of the covariance matrix is

multiplied by the conditioning factor of 1.03 – the value cited in [7].

Once MVDR weights are computed for each sub-band they are applied to the

bins corresponding to the positive frequencies in the DFT. The conjugate of each set of

weights is applied to the corresponding negative frequency DFT bins due to frequency

domain conjugate symmetry of a real time-domain signal (refer to Equation 5).

It must be noted that the steering vector in the algorithm implemented was

designed to assign zero phase to the steering vector element corresponding to the

microphone closest to the desired source. This way, MVDR beamforming would strive

15

to have the processed signal aligned in time with the desired component of the signal in

the closest microphone. Thus MVDR performance could be derived via direct

subtraction of the processed signal from the reference clean signal from the closest

microphone – without having to correct for a phase offset. Of course, this is only useful

in experiments as the ones described further where the waveform of the desired signal

with no interference is known.

2.3 Previous Work and Collaboration

2.3.1 Previous Work by Author

The author began researching MVDR beamforming in the Autumn 2011

academic quarter at OSU (Sep-Dec 2011). During that time, several preliminary

simulation tests have been developed with qualitative and quantitative metrics for the

performance of different combinations of MVDR parameters. The near-field model for

MVDR has been shown to be superior for the purposes of iBrutus to the classic far-field

MVDR model mentioned in the “Design Solution” section. Preliminary simulations have

been run to acquire insight on how placement of microphones affects performance.

These tests have suggested that for a speech signal band-pass filtered from 300 to

3400 Hz, an array length somewhere between 0.5 m and 1 m produces the best

improvement in signal to noise ratio (if eight microphones are used) [3]. The tests done

16

in the autumn of 2011 were not as sophisticated as the tests developed by the author in

2012. The experience and basic insights acquired from September to December of

2011 have nevertheless been useful.

From January to March of 2012, (Winter 2012 academic quarter at OSU), the

author developed a wideband and frequency-based implementation of MVDR. Some

tests for the mentioned word recognition percentage and error RMS improvement metric

under various parameter choices have been carried out [4]. These tests have been

improved (bugs fixed and testing procedure modified) from March to May of 2012 and

new results have been obtained.

2.3.1 Collaboration with Other OSU Undergraduates

From January to March of 2012, the author has also collaborated with the ECE

undergraduate students mentioned in the “Acknowledgements” section. These students

have researched data acquisition possibilities to serve as the input to the beamforming

algorithm. More specifically, the team was seeking audio hardware that supports

continuous quasi-real time audio recording that iBrutus would require. The team also

considered a software interface from the hardware to the algorithm developed in

MATLAB by the author (see Figure 2). The team has not been able to design a working

quasi-real time implementation of beamforming but has nevertheless laid groundwork

for future research.

The team has not found a way for the TASCAM US-1641 unit to support

continuous streaming for quasi-real-time beamforming. Using the TASCAM unit, the

team has only been able to record audio blocks with short gaps in time which would be

17

detrimental to speech recognition. Only one PC process at a time can access the ASIO

driver for the TASCAM, and gaps would result when a recording process exports a

block of audio data to a beamforming process [4]. Again, quasi-real-time processing for

iBrutus would require continuous and exporting of data for processing without

interrupting the recording. Some possibilities for accomplishing this have been

presented in the “Future Work” section. The team has also purchased Analog Devices

ADAU1361 which was believed to support streaming quasi-real-time DAQ. Due to poor

online documentation for this device, it was only discovered after delivery that this

device automatically mixes the input microphone channels into one, voiding the

possibility of beamforming [4].

 In the end, the team has presented functioning freeware MATLAB code (also

available in C++) that could at least automate recording a single block of predetermined

duration using an ASIO compatible device such as the TASCAM unit [4]. This code

could be useful to future researchers for automating recording in a real environment

using any ASIO compatible device. The author has successfully tested this code with

his beamforming algorithm during February and March of 2012.

18

Figure 2. The iBrutus Components Directly Related to the Author’s Work.

2.4 Legal, Societal and Economic Considerations

2.4.1 Legal Considerations for iBrutus

Ohio Revised Code 2933.52 states: “No person purposely shall intercept, attempt

to intercept, or attempt to use an interception device to intercept or attempt to intercept

a wire, oral, or electronic communication”. Oral communication is defined in Ohio

Revised Code 2933.51 Section A. This section states: “an oral communication uttered

19

by a person exhibiting an expectation that the communication is not subject to

interception under circumstances justifying that expectation”. The definition of an

“Interception device,” is also discussed in detail in Ohio Revised Code 2933.51 Section

D, with many clauses [13].

Avoiding potential charges pressed against those who are in charge of iBrutus

could be done via a disclaimer. A message could be placed either on a ticket to the

Ohio Stadium or at the iBrutus kiosk to let people know that they are being recorded,

but that iBrutus will not store the recording longer than needed for processing.

 A lawyer will need to be consulted before iBrutus is put to use to determine what

the exact legal concerns and solutions are. Future researchers may want to record a

realistic noisy acoustic environment on the day of an event at the Ohio Stadium. They

are advised to seek a legal permission from OSU officials, perhaps on the premise that

the recorded audio may only be used for research purposes and not for intercepting oral

communication of bystanders.

There is another potential legal issue to consider. A user may ask iBrutus a

question (e.g. directions) and receive a wrong and potentially unsafe answer. As an

example, there has been a court case in the U.S.: Rosenberg-v-Harwood-Google.

Rosenberg, a woman in the state of Utah, sued Google after receiving bad directions

from Google Maps which led to a car accident. Google happened to win the case. The

court declared Google owed nothing to Rosenberg due to the fact that Google didn’t

have any direct legal relationship with Rosenberg [14]. To avoid such issues with

iBrutus, again a disclaimer should be put on the device stating that iBrutus’ responses

may not always be accurate. Like in the first case, a lawyer would need to be consulted

20

on this particular issue. Some legal solutions should already exist, as there are many

similar devices, such as Apple’s Siri.

2.4.2 Societal and Economic Impact of iBrutus

A system like iBrutus is part of the effort to develop technology that can

communicate with human users with buttons or a touch screen. The CSE iBrutus team

has also stated that they are working on utilizing the capabilities of the Xbox Kinnect

cameras to detect gestures and read a speaker’s lips to augment communication [2].

Such advancements present a paradigm shift in human-computer communication.

Society and the economic market of the future will likely be impacted more and more by

the presence of systems similar to iBrutus.

2.5 Standards

The first standard that will be used in this project is that of the IEEE standard for a

universal serial bus (USB). This method of communication between hardware and the

main CPU is very well defined and the rules will simply be followed in accordance with

the existing standards.

Another standard that must be acknowledged is that of the Audio Stream

Input/Output (ASIO) protocol. The protocol allows for connection directly to a sound

card by bypassing several layers of Microsoft software. This allows for increased speed

21

in processing and allows for a much more streamlined process. The protocol allows for

up to 24 bit samples and as many channels as the computer will allow.

 All hardware connections are using XLR and ¼ inch connectors. These are

standard audio cable connectors.

22

3. Experimental Procedure

3.1 General Motivation Behind Tests.

Tests of the author’s MVDR algorithm have been carried out to observe how

varying five parameters mentioned in the “Objectives” section affects noise/interference

suppression and word recognition rate.

It was discussed in the author’s progress report from December 2011 how

frequency content of a signal processed with wideband MVDR influences what uniform

array lengths accomplish the most interference suppression [3]. To summarize this

discussion, consider the higher frequency sub-band of a wideband signal. The peak

point of interference suppression for this sub-band is when a relatively short array

length is used (closer microphone spacing). The array length for peak suppression

grows as the average frequency within a sub-band lowers. The peak suppression length

for the entire bandwidth of the signal will thus be an average of peak suppression points

for all the sub-bands within the bandwidth. Better interference suppression roughly

translates to higher word recognition rate. The beamforming algorithm, however, can

introduce distortion of its own in addition to suppressing interference, especially when

not enough interference is present. This has been verified during January-March 2012

[4]. The array length parameter was varied in the tests performed to seek an optimal

length for interference suppression and for speech recognition.

23

To have an accurate measure of what effects array length and other parameters

have on speech recognition, a representation of the average frequency content of

human speech would need to be known. For example, a speaker with a lower voice

would probably be recognized better when beamforming with a longer array, but the

goal is to find an array length which works well for a broad extent vocal ranges. The

words that a human speaker utters may themselves have varying frequency content.

Other factors like intonation and voice effort level (normal vs. raised voice) would have

an effect on frequency content and therefore the optimal array length for interference

suppression and speech recognition. Thus many words spoken by many human voices

ought to be tested. However, such a wide range of speech was not tested, due to

research time constraint and limited automation in testing. Instead tests that aimed to

simulate and approximate such testing were carried out as described further.

 Other algorithm-related parameters such as the width (number of frequency bins)

of frequency sub-bands, forgetting factor, and the environment-related strength of

interference parameter have been varied as well to observe effects on interference

suppression and speech recognition. Some interesting results have been obtained

across these parameters.

24

3.2 Overview of Tests.

Two types of tests were conducted each of which had advantages and

limitations:

1. A test with a speech signal was performed. The advantage of this test was the

fact that it used the word recognition rate metric which is a direct measure of

success for iBrutus development. The limitation of this test was that only the

author’s voice saying certain words was recorded. Even when a few choices for

were made for each parameter, due many combinations and thus many

processed wave files resulted. Due to lack of automation for the code, playing of

the audio files, invoking the Speech Recognizer Application in Google Chrome,

and counting word recognition rate was done manually. To avoid long

monotonous labour, a limited, but reasonable set of parameters was tested; only

the author’s voice has been used. However, automated means invoking speech

recognition on processed audio can be conveniently programmed with a scripting

language such as Perl, for instance. The author has learned Perl recently and

written prototype code which could be used for automated computation of word

error rate. Refer to the “Future Work” section.

2. Testing was also done with a non-speech signal – audio recording of a busy day

environment at the Ohio Stadium. The advantage of this test was that such a

signal would contain the non-stationary properties of a speech signal but would

be a closer representation of the average human speech spectrum than the

author’s voice used in the first test. In other words, having such a non-speech

25

signal was used in lieu of a many of speakers saying many words. A limitation of

such a test was that no direct measure of speech recognition could be used, only

a measure of signal error improvement after processing (which was believed to

correlate with the speech recognition rate). Another limitation of this test was that

the entire frequency spectrum was weighted equally as it has not been

researched how the frequencies over the average speech spectrum can be

weighted in terms of importance for speech recognition.

More sophisticated testing procedures could be performed given more research

time and more automation of testing. These will be discussed in the “Future Work”

section. The two types of tests that were carried out by the author are described in more

detail in the following two sections.

3.3 First Test: Effect of MVDR Beamforming on Speech Recognition

Simulation tests with non-speech signals which were conducted by the author

from September 2011 to March 2012. From the end of February 2012 to March 2012,

actual speech was successfully processed by the algorithm. Qualitative listening tests

indicated that the algorithm works as the processed signal contained intelligible speech

whereas the speech was too obscure in the noisy input signal. However, successful

speech recognition has not been achieved until April of 2012. The GSR engine was

attempted at that point in time and showed acceptable word recognition rates, whereas

the previously used WSR was largely ineffective for a processed signal.

26

 A 13 second utterance was spoken by the author: “Activate computer.

Disengage. Stop Listening. Tell us about yourself. What are you? Show commands.

Brutus, shut down. Yes. No. Be quiet.” For the sake of relevance to iBrutus, this

utterance was a compilation of some phrases to which the system currently responds.

The recording was done in a quiet room via the built in microphone array of an HP

Pavilion dv4 laptop PC (See the “Hardware Used” section in the Appendix). These

microphones were set up to perform weak instantaneous beamforming and reverb

cancellation and were thus less sensitive to distant noise [19]. The mono output of the

recording was verified with GSR and returned 100% for speech recognition; the quality

of the speech sounded crisp and undistorted.

 For convenience, the speech and interference was delayed across virtually

spaced microphone channels. The speaker’s voice was delayed as if he stood 1 m

away from the microphone array center on the line which was the perpendicular bisector

of the microphone array (0°). Only this location was used for the human speaker

throughout tests for the following reason. Generally, the iBrutus will be able to use the

Xbox Kinect to determine the location of any speaker standing 0.8 to 4 m from the

Kinect cameras [2]. However, to simplify testing the location mentioned was used as it

will yield the best MVDR beamforming performance as it is close to the array and at 0°

[3]. It is proposed by the author that when the iBrutus is implemented, this location

should be marked on the ground as the preferred location for the human speaker to

stand. Mathematically, having the speaker stand at .8 m at 0° would yield even better

performance, but a .2 m safety margin is practical so the speaker does not lean out of

range of the Kinect cameras. And consequently the beamforming algorithm should be

27

tested for the parameters to be optimized for this particular location (as it is the best

candidate location in the first place).

 The 13 second speech signal was mixed with 7 interferers in total drawn from the

wave file of crowd noise. The reason for choosing 7 interferers related to use of 8

microphones (degrees of freedom for the MVDR weighted summing) is explained in [4].

The wave file is described in more detail in Section 3.4. The way the interference was

implemented for this test (e.g. balancing of the interference frequency spectrum) is

similar to the way the interference was implemented in the second test in Section 3.4,

except for the duration of interference signals; see below. All interferers had random

spatial locations chosen from a distribution identical to the one in the other test

described in Section 3.4. Two of the interferers lasted for the entire 13 seconds, while

the remaining five had durations between 3 and 10 seconds starting at random time

positions within the signal. The rate at which temporary interferers became active and

inactive was a guess approximation of a real interference environment like the Ohio

Stadium on a busy day.

 To reduce the number of output files to manually work with, only a signal to

interference (SIR) value was of 2.0 was tested. This amount of interference was enough

to obscure the speech signal to the point where speech recognition cannot discern any

words. It should be noted that previous tests [4] and recent minor experiments showed

author’s algorithm to be more detrimental than useful to speech recognition when the

SIR was approximately equal to or less than unity. This poses a problem to the

beamforming design and will be discussed more in the “Results” and “Future Work”

28

sections. Minor experiments however showed that processing a signal with SIR values

ranging from 1.5 to 5 yields acceptable speech recognition.

Bandpass filters with range 300-3400 Hz and 150-6300 Hz were implemented. In

much of previous work, the author approximated the human speech spectrum effective

for speech recognition to be 300-3400 Hz. However, starting February 2012, the author

attempted to process speech using the wider bandpass filter. When GSR was invoked,

it was clear that speech recognition rates were much better for the wider bandwidth; see

“Results” section. The original bandwidth conveniently required 144 DFT bins (at 22050

Hz) – a number divisible into many sub-band sizes, using equal-size sub-bands. The

new extended bandwidth was chosen by consulting [5] as well as doubling the number

of sub-bands to preserve divisibility. Processing time would nearly double; however, the

results show that the performance gained may be worth this trade-off.

 For convenience, interference was virtually delayed across microphone

channels. The microphone array lengths tested were: 0.6, 0.7, 0.8, 0.9, and 1 m. Note

that since the author presented the oral defense of his thesis on May 11, 2012 [12], new

lengths of 0.7 and 0.8 m were tested.

Based on qualitative listening test from previous work [4], forgetting factors of

0.95, 0.97, 0.98, 0.99, 0.995, and 0.999 were chosen. This range of forgetting factors

yielded output that sounded better than when lower values were used. Surprisingly, the

lower forgetting factors that produced a more distorted output actually worked better

with speech recognition; see “Results” section.

Finally, sub-band sizes of 4, 8, 16, 24 bins were tested as well. Previous tests

showed that contrary to the intuition that would be drawn from the discussion in Section

29

2.2.2, processing with larger sub-band sizes has yielded higher signal integrity [4].

Therefore the larger sub-bands of 16 and 24 that weren’t previously tested were

chosen. It would be very beneficial, if larger sub-band sizes result in acceptable speech

recognition as they require less computation time; the results revealed that this was

generally not the case though.

 Figure 3 outlines this procedure of this speech recognition test. Note that the

word recognition rate metric was computed by manually counting the number of

correctly recognized words in the text strings created from every input with GSR.

Figure 3. Speech Recognition Test Process.

30

3.4 Second Test: Approximating Speech Frequencies with a Non-Speech

Signal

See Figure 4 for a visual description of the simulation process for this test.

Figure 4. Non-speech Signal Simulation Test Process.

To simulate realistic non-stationary interference short segments of audio data

have been randomly drawn from a nine minute wave file of acoustic interference within

the hallway spaces of the Ohio Stadium and several other stadiums. This file has been

put together from user-contributed recordings on the YouTube video hosting website

[15, 16, 17, 18]. Fifty trials (around 0.3 sec: 6144 samples at 22050 Hz) of randomly

generating short-time interference profiles were run in the simulation. Each such profile

contained a total of seven interference signals active at random time intervals and

simulated as if originating from random locations around a microphone array (the

number 7 was chosen for the same reason as mentioned in the first test). Running this

particular test several times using fifty such trials over a few parameters showed that

the error scores varied little from time to time; the trends across parameters remained

the same; therefore fifty random trials was sufficient. For convenience in processing, the

fifty 6144-sample interference signals were consolidated into one signal. This entire test

31

signal was MVDR-processed after adding a desired source signal to the interference as

will be further described.

The spatial locations of the interference were randomly drawn from a uniform

distribution between 1.5 m and 15 m from the center of the microphone array at angles

between -90 and 90 degrees.

Interferers at two locations were active throughout the entire 6144 samples. Five

other interferers at fixed locations remained active for a shorter number of time samples

(50-80% of the 6144 sample period) throughout the signal. It is not believed that

interference sources would become active and inactive this rapidly at a location such as

the Ohio Stadium. But simulation time would take several days if fifty trials of several

seconds of such interference would be used; to speed up the simulations, shorter

interference durations were used.

The speech recognition tests from the previous section showed that a processing

over 300-3400 Hz while filtering frequencies outside this range fails to produce a 70% or

better word recognition rate regardless of parameter choices. The bandwidth of 150-

6350 Hz however, showed more success. Therefore, for this simulation test, only the

more potent extended bandwidth was considered.

The recordings present in the interference wave file may have been done with

poor frequency response microphones and far from all of the noise in the recordings

was human speech. It could not be assumed that the frequency content in the

recordings was a good representation of the average American English speech content.

Nor has it been researched what the magnitude distribution curve of the average

speech content is. Instead the frequency content of the interference drawn from the

32

wave file was balanced to contain rather even magnitude distribution over the 150-6350

Hz bandwidth (filtering away frequencies outside this range). This way, all frequencies

in this range would have an equal effect on the performance metric (rather than

performance being biased by, say, very strong frequency content in the 500 Hz region).

To accomplish this balancing, each DFT bin was multiplied by a scalar which would

bring that particular bin’s magnitude closer to the average magnitude across the entire

DFT spectrum.

The desired signal to be summed with the interference was drawn from the same

wave file as the interference. It was balanced the same way over 150-6350 Hz. The

desired source was simulated to originate from 1 m away and perpendicular the center

of the microphone array (0°).

To test various interference strengths the RMS of the interference was adjusted

to several values (whereas the RMS of the desired signal was 1.0). The RMS of the

interference would thus be the reciprocal of the SIR (nominal, not dB).

The performance metric for this test was RMS error improvement. It measures

how much closer to the desired signal the output is than the input. It was computed as

follows:

E%,time = [RMS{xclean(t) – xprocessed(t)} – RMS{ xnoisy(t) – xprocessed(t)}] /

RMS{ xnoisy(t) – xprocessed(t)} *100%

Equation 7

33

In Equation 7, xclean(t) is the desired signal from the microphone closest to the

desired source. Post-MVDR xprocessed(t) strives to track this signal in presence of

interference. “RMS{…}” here is the root mean square of the vector enclosed.

An error score of 100% would mean that MVDR recovers the desired signal

perfectly, where as an error score of 0% or less would indicate that MVDR makes no

improvement to the signal.

Several parameters were varied. Array lengths from 0.55 to 1 m in 5 cm

increments were tested. Note that additional lengths have been tested since the

author’s Oral Defense presentation on May 13, 2012 [12]. The optimal array length

found in preliminary simulations of September-March 2012 was observed to be around

the upper length constraint of 1 m, but possibly somewhat less [3, 4]. With updates

made to the simulation test and a new spectrum of 150-6350 Hz, this range of lengths

was chosen to see if there what the performance trends would be over the range of

lengths stated above.

Additional parameters tested were sub-band sizes of 1, 2, 4, 8, 12, 16, and 24

bins, forgetting factors .85, .9, 95, .99, and SIR values of .5, 1, and 2. If the author’s

beamforming algorithm were to be implemented for iBrutus, the forgetting factor would

have to be determined experimentally by testing in the acoustic environment at the Ohio

Stadium, for example. Several values closer to 1 were chosen to observe performance

trends, as previous simulations done by the author as well as sources of literature

showed that forgetting factors in this range tend to perform better.

34

4. Experimental Results

4.1 Speech Recognition Test Results and Discussions

 Refer to the results plots for the first test in the Appendix for this discussion.

Note: that additional data was obtained (for 0.7 and 0.8 m array lengths) and results

were re-examined since the author’s Oral Defense on May 11, 2012 [12]. The following

trends were observed regarding parameters:

 Bandwidth:

o Only the 150-6350 Hz bandwidth achieves consistent 70+% word

recognition (for most combinations of other parameters).

o 300-3400 Hz almost always yielded a word rate of less than 70%. For

brevity, results with the 300-3400 Hz bandwidth were omitted. This

bandwidth is not recommended for future research. Many consonant

sounds that help distinguish one word from another have important

frequency content above 3400 Hz, but below 7000 Hz [5].

 Array length:

o The only trend that clearly stands out regardless of what other parameters

are used is that only 0.9 m and 1m arrays consistently achieve a word

recognition rate which is greater than 70%. However, the author’s voice is

has lower frequency content than the average human voice. As discussed

35

before, lower frequencies benefit from using longer arrays for MVDR

beamforming.

 Sub-band size:

o Performance is generally better as the sub-band size decreases, although

there is deviation from this trend for certain choices of other parameters.

This is expected from the discussion of wideband MVDR in section 2.2.2.

o There is not a significant improvement for doubling the computation time

when the sub-band size is decreased from 8 to 4 bins. Eight-bin sub-

bands still perform fairly well (above 70% word recognition) so given the

results of this test alone, eight bins may be a viable trade-off between

processing speed and performance for iBrutus.

 Forgetting Factor:

o The lowest two factors of 0.95 and 0.97 would generally perform better

than the four higher values tested. A qualitative listening test revealed that

the signals processed with these factors sounded less pleasing and

harder to understand. The signals processed with higher forgetting factors

sounded better, but had more reverb as the forgetting factor increased.

Perhaps GSR has more trouble recognizing speech with reverb present

than the human ear.

o Again, forgetting factors should be determined experimentally based on

the acoustic environment and interference. Several values were used in

36

this test as it is not known what value will be chosen for beamforming for

iBrutus.

4.2 Non-Speech Test Results and Discussions

 Refer to the results plots for the second test in the Appendix for this discussion.

Note: that additional data was obtained (for 0.55, 0.6, 0.65, 0.7, and 0.75 m array

lengths) and results were re-examined since the author’s Oral Defense on May 11,

2012 [5]. The following trends were observed regarding parameters:

 SIR:

o If inference is weaker than desired signal significantly lower error

improvement is observed.

o For SIR of 0.5 (strongest interference tested) the best error improvement

is observed.

o This trend has been confirmed by the first test as well (the speech

processing test only used an SIR of 0.5 as brief experiments showed that

using a high SIR will not improve speech recognition after processing).

 Sub-band size:

o Larger sub-band sizes (24, 16, 12 bins) are consistently better; this result is

counterintuitive, given the discussion in Section 2.2.2.

37

o Peak performance point for sub-band size may be larger than the maximum

size of 24 bins tested; at times however, the next largest sub-band of 16 bins

shows better improvement; this is an indication that the peak may be around

24 bins.

o The same trend has been observed for the non-speech test during the

January-March 2012, and a possible reason for this phenomenon is offered

[4]. However, this trend seems too extreme, and definitely does not agree

with the speech processing test. There may be a bug in the simulation code

that has not been fixed; or the RMS error improvement may not correlate well

with speech recognition performance.

 Other algorithm parameters do not show significant trends in error improvement.

It is concluded that the second test has returned some questionable results and should

probably be abandoned in favor of speech recognition testing. Again, this test was

carried out because it was hoped it would achieve the equivalent of testing the average

human speech spectrum with many interference sources in much less time than the

speech recognition test. Full automation for the process of deriving the word error rates

has not been available. Therefore this test was used as a rudimentary alternative to the

speech processing test, in hopes that the results would coincide well with the less

comprehensive speech processing test.

38

4.3 Processing Time Results.

 MATLAB processing time of the author’s current MVDR algorithm was measured

by the MATLAB tic and toc commands. This was done while running the speech

processing test (which again, used only an eight microphone array). Of the parameters

varied, only the sub-band size has an effect on processing time. The processing time is

expressed in Figure 5 as a measure of how long it takes to process a second of signal

(not counting algorithm setup time; this setup would initialize variables like the steering

vector and would only occasionally be repeated when beamforming for iBrutus).

 It can be seen in Figure 5 that currently the algorithm cannot process a second of

signal in under a second. But for convenience, all testing was done only using the

authot’s HP Pavilion dv4 laptop PC – not an incredibly fast machine by today’s

standards. There are other potentially significantly faster machines available at the ECE

department; future researchers should consult Dr. Potter. There is potential to optimize

the algorithm speed without detracting from performance (see Section 5). The goal

would be for example to cut the processing time of a 150-6350 Hz bandwidth using 8-

bin sub-bands from 3.5 seconds to under 1 second (again, using 8-bin sub-bands has

shown to have decent performance).

 Note that the more sub-bands are used, the less the algorithm slows down in

response to doubled bandwidth. This can be seen from the slope of the “Slow-down

Ratio” curve in Figure 5.

39

Figure 5. Effect of Sub-band Size on MATLAB Processing Time.

40

5. Future Work

 Three areas of future advancement directly related to the author’s work on

iBrutus have been identified. Advice in these areas is offered to future researchers in

the following sub-sections.

5.1 Improving Testing Procedure to Find Beamforming Parameters Optimal

for Speech Recognition

 Simulation Tests should improve in the following general areas:

o Accomplish more automation for speech recognition testing.

 The author has written working code in Perl (see “Author’s Code”

section of the Appendix). This code uses downloadable Perl

modules which interface with a 32-bit Windows system to allow

mouse clicks, key presses, access to windows in the taskbar and

access to the clipboard. The code plays wave files that the author’s

MATLAB speech processing test has generated and invokes

speech recognition in Google Chrome. It then copies the

recognized text and prints it to a results file.

 No code has yet been written to automate word recognition rate

computation from a string of words. Therefore the author has done

this part manually. Comparing two strings of words to determine the

word recognition rate could be a difficult and ambiguous process.

41

There may be existing freeware code which accomplishes this.

Otherwise, a solution may be to create a separate wave file for

every word a recorded speaker says and tally the recognition

success count word by word.

 Sometimes, when audio consisting of several words is played, GSR

stops listening and converts to text prematurely; to avoid this issue,

it would again help to design automation to play one word at a time.

 Note: it has been observed that speech recognition engines like

WSR and GSR have can produce different outputs, when the same

exact audio file is played several times; therefore for testing,

several trials of speech recognition are recommended for a single

audio source; then the word recognition rate can be averaged.

 Sometimes GSR displays an error message saying that it cannot

connect to the server; one should be set up automated tests to

detect this in some way and redo the trial in such a case.

o Testing multiple human speakers of various ages, genders, and vocal

qualities; more test words than the author attempted should be used.

 Note that such testing may require a lot of hard drive space for

uncompressed wave files (compressed files may be detrimental to

speech recognition); MATLAB may require more memory than

available so code may have to be modified to perform a section of

work at a time; testing will require a lot of time.

o Recording audio which is more realistic for the purposes of iBrutus

42

 Interference should be recorded into a microphone array (or

several physically adjusted lengths) from a real physical noisy

environment, preferably the walkway belt under the seats of Ohio

Stadium. This will incorporate the following realistic features into

tests: moving interference sources (not previously simulated),

proper durations of interference, proper levels of interference, and

proper statistical properties of interference.

 Note: officials should be consulted on legality of recording.

 For convenience, the human speech may still be delayed via

simulation. However, a reverb profile mimicking that of the

mentioned space at the Ohio Stadium could be added to the

speech.

5.2 Algorithm Improvements

5.2.1 Performance Improvements

 Research how to avoid the problem that low interference poses to beamforming;

this problem may be a quirk of the frequency domain based algorithm.

o One possible solution is to artificially mix in a minimum level of

interference with the signal to maintain the SIR above a certain level. It is

not known how likely this approach would be to do more harm than good

in the context of iBrutus. Tests have shown that the author’s algorithm

43

successfully extracts relatively clean speech even when SIR is as high as

5, although a ceiling SIR level has not been found.

o Another method is to research a way to detect when the audio level is

below a certain threshold (i.e. interference is low) and conditionally switch

to simple delay-sum beamforming which may be less detrimental in that

case than MVDR.

 Research and implement the time domain MVDR algorithm; determine whether

the low interference problem is present and whether other differences exist.

 The article in which the frequency-based MVDR was described [7] offered an

adaptive memory element which was somewhat different from the exponential

forgetting adapted by the author for simplicity of coding. Implement the forgetting

method described in the article, and observe any differences.

 An acoustic space where iBrutus is to reside (like that within the belt of hallway at

the Ohio Stadium) may induce a lot of reverberation. Research an algorithm that

removes reverberation from speech and determine if it is worth the extra

processing time.

5.2.2. Reducing Beamforming Computation Time:

 Current algorithm is in MATLAB and could be converted to compiled languages

such as C/C++ which could possibly run faster.

o MATLAB 11 toolbox which offers automatic conversion to C/C++ is $500.

This toolbox might not use proprietary fast algorithms built into MATLAB

and replace them with more rudimentary slower algorithms [10].

44

o Code can be converted manually

 C/C++ libraries for faster computational routines such as FFT, fast

matrix multiplication, etc. are available commercially or as freeware.

 Code could be optimized for speed while maintaining performance:

o Decimation of the current algorithm input at 22050 Hz to a lower rate may

yield similar performance while speeding up the code. For an aliasing-

proof safety margin a sampling rate of less than 13 kHz Hz is not

recommended if frequencies up to 6350 Hz are to be used.

o The matrix inversion lemma for updating the inverse of the MVDR

covariance matrix can be implemented. This will possibly speed up the

algorithm.

o For the lower frequency sub-bands fewer channels than eight could be

processed. As lower frequencies do not require as close of microphone

spacing (discussed in [3]), using every other microphone in the array for

the lower frequencies could maintain performance while reducing

computation.

o It is possible that the higher frequencies of human speech (e.g. 3400-6350

Hz) do not require as accurate of processing as the lower frequencies.

Sub-band sizes for these frequencies could be made large, reducing

computation while possibly maintaining performance.

45

5.4 Interfacing Beamforming with the iBrutus System

 Research and develop methods of Data Acquisition/Transfer:

o Research devices compatible with ASIO or MATLAB DAQ Toolbox. Either

of these avenues could allow continuously recording and processing

blocks without time gaps in audio.

o MATLAB DAQ Toolbox may be more convenient as it could be

directly interfaced with the author’s code [11].

o ASIO devices will likely require programming knowledge at the

driver level. MATLAB has already been shown by the author’s

colleagues to be unable to record without gaps using the ASIO

driver [4].

o It could be beneficial to acquire hardware which could support 12 or

16 microphones. It may turn out that the multitude of interference

sources in the acoustic environment of iBrutus may require a large

number of microphones for successful beamforming.

o The report of the author and his colleagues from March 2012 offers

more detailed advice on DAQ hardware [4].

 Work on integrating beamforming into the iBrutus system

o Consult the CSE iBrutus team at OSU headed by Thomas Lynch on how a

beamforming algorithm and DAQ hardware could be interfaced with the

system.

46

o The iBrutus System is currently written in C# and uses Windows Speech

Recognition.

o Note again: the author was only able to obtain successful speech recognition

results when using Google Speech Recognition. Though GSR may not

integrate as well with iBrutus. It is slower than WSR (built into the Windows

Vista and Windows 7) as it relies on an internet connection; sometimes there

is a server error which requires redoing speech recognition. GSR does not

support a streaming audio input like WSR and must be invoked repeatedly for

recognizing words.

o Advancements in these or other speech recognition systems may be made

soon. For example, the quality of WSR could be improved by Microsoft while

a new release of Google Speech Recognition could be more compatible with

iBrutus.

o Develop means of estimating what processing time a beamforming algorithm

would require to maintain quasi-real-time processing for iBrutus.

 For quasi-real-time processing:

Tbeamform,block + toverhead < trecord,block

Equation 8

In other words, the beamforming time for a block of audio combined

with the overhead time it takes for the recorded audio to be accessed

by the algorithm should be below the recording time of the same block.

o iBrutus needs fast, multi-core machines to be able to run several components

of the system at once. Consider benchmarking processing time on machines

47

such as those on which iBrutus would be implemented. Consult with the

iBrutus team on what computing resources could be used.

48

6. Conclusion

 A potentially viable beamforming algorithm has been developed by the author.

The algorithm meets the desired 70% word recognition level under certain parameters

when using eight microphones. However the algorithm needs processing speed

improvement; several avenues for this improvement have been offered. Also the issue

of unsuccessful speech processing in the case of low interference case must be

addressed.

 To ensure that the algorithm performs well in the required processing time, more

testing with beamforming followed by speech processing will need to be done as

mentioned. Testing procedures have been laid out and enough testing code has been

written to provide a good starting point for future researchers. Running speech

recognition must be automated as many audio files are required to be processed for

comprehensive testing. For this, prototype Perl code has been provided; it could be

modified as needed.

 For interfacing beamforming with iBrutus, proper DAQ hardware must be

acquired; the algorithm must also be interfaced with the system in software. Eventually,

a working iBrutus component must be able to process a noisy input to aid speech

recognition while incurring a time delay small enough for users of iBrutus to be satisfied.

Advice on how to accomplish these goals has been offered.

49

References

[1] Ramnath, Dr. R. (2011). iShoe: Mobile [Online]. Available:

http://iss.osu.edu/iShoe/site/mobile/about/index.php

[2] Lynch, T. (2011-2012, October-February). Technical meetings regarding iBrutus.

[3] Preobrazhensky S. (2011, December). Acoustic Interference Suppression for iBrutus Project.

[Online] Available: https://sites.google.com/site/osuacoustics/classroom-

news/ece699reportdec2011

[4] Belgiovane D, Blanton N, Lane J, Leonard D, Miller M, Preobrazhensky S. (2012, March.)

Winter Quarter Progress Report. [Online] Available:

https://sites.google.com/site/osuacoustics/classroom-

news/march2012reportonibrutusmicrophonearrayproject

[5] Cisco. (2007, December). Wideband Audio and IP Telephony. [Online] Available:

http://www.cisco.com/en/US/prod/collateral/voicesw/ps6788/phones/ps379/ps8537/prod_white_

paper0900aecd806fa57a.html

[6] Bednar J, Jender S, Ehret A, Kondo Y. (2011, June 7). The Ohio State University. Columbus,

Ohio, USA. iBrutus Acoustic Array: Team Gray ECE 682: Final Report.

[7] Lockwood E, Jones D, Lansing C, O’Brien W, Wheeler B, Feng S. (2003, July). Effect of

Multiple Nonstationary Sources on MVDR Beamformers. [Online] Available:

http://www.brl.uiuc.edu/Publications/2003/Lockwood-Asilomar-7302003.pdf

[8] Boonstra A. (2007, Novemeber 29). Digital Signal Processing and Beamforming. [Online]

Available: http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf

[9] Schniter, Dr P. (2008, March 24). ECE 700 Digital Signal Processing. [Online]. Available:

http://www2.ece.ohio-state.edu/~schniter/ee700/index.html

[10] MathWorks. (2012). MATLAB Coder Toolbox. [Online]. Available:

http://www.mathworks.com/products/matlab-coder/

[11] MathWorks, (2012). Data Acquisition Toolbox Supported Hardware. [Online] Available:

www.mathworks.com/products/daq/supportedio.html

http://iss.osu.edu/iShoe/site/mobile/about/index.php
http://iss.osu.edu/iShoe/site/mobile/about/index.php
https://sites.google.com/site/osuacoustics/classroom-news/ece699reportdec2011
https://sites.google.com/site/osuacoustics/classroom-news/ece699reportdec2011
https://sites.google.com/site/osuacoustics/classroom-news/march2012reportonibrutusmicrophonearrayproject
https://sites.google.com/site/osuacoustics/classroom-news/march2012reportonibrutusmicrophonearrayproject
http://www.cisco.com/en/US/prod/collateral/voicesw/ps6788/phones/ps379/ps8537/prod_white_paper0900aecd806fa57a.html
http://www.cisco.com/en/US/prod/collateral/voicesw/ps6788/phones/ps379/ps8537/prod_white_paper0900aecd806fa57a.html
http://www.brl.uiuc.edu/Publications/2003/Lockwood-Asilomar-7302003.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www.astron.nl/other/workshop/MCCT/ThursdayBoonstra.pdf
http://www2.ece.ohio-state.edu/~schniter/ee700/index.html
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html
http://www.mathworks.com/products/daq/supportedio.html

50

[12] S. Preobrazhensky. (2012, May). Undergraduate Honors Thesis Defense ECE 683H.

[Online]. Available: https://sites.google.com/site/osuacoustics/classroom-

news/may2012oraldefensepresentationibrutusmicrophonearrayproject

[13] LAW Writer® Ohio Laws and Rules. (2012). Chapter 2933: PEACE WARRANTS; SEARCH

WARRANTS [Online]. Available: http://codes.ohio.gov/orc/2933

[14] Searchengineland.com. (2011, June). Court Says No, You Can’t Sue Google For Bad

Walking Directions [Online]. Available: http://searchengineland.com/court-dismisses-google-

walking-directions-lawsuit-claims-82312

[15] YouTube. (2010, November). How to sneak into OHIO STADIUM. [Online]. Available:

http://www.youtube.com/watch?v=tmaQPTRf-2Y.

[16] YouTube. (2008, September). OSUMB Drum Line Entering Skull Session. [Online].

Available: http://www.youtube.com/watch?v=OFXsrdiPr24.

[17] YouTube. (2008, January) Penn State White Out - Tunnel Walk. [Online]. Available:

http://www.youtube.com/watch?v=DN6SCrU681o.

[18] YouTube. (2009, October). OSUMB - The Ohio State University Marching Band pre-game.

[Online]. Available: http://www.youtube.com/watch?v=7pTr8JMvsAY.

[19] Hewlett Packard. (2008, November). HP Pavilion dv4 Entertainment PC Maintenance and

Service Guide. [Online] Available: http://h10032.www1.hp.com/ctg/Manual/c01597750.pdf

[20] TASCAM. (2012). Product: US 1641 | TASCAM. [Online]. Available:

http://tascam.com/product/us-1641/

[21] CUI Inc. (2012). CMC-2742WBL-25L | Microphones | CUI, Inc. [Online]. Available:

http://www.cui.com/Product/Components/Microphones/Electret_Condenser_Microphone/CMC-

2742WBL-25L

https://sites.google.com/site/osuacoustics/classroom-news/may2012oraldefensepresentationibrutusmicrophonearrayproject
https://sites.google.com/site/osuacoustics/classroom-news/may2012oraldefensepresentationibrutusmicrophonearrayproject
http://codes.ohio.gov/orc/2933
http://searchengineland.com/court-dismisses-google-walking-directions-lawsuit-claims-82312
http://searchengineland.com/court-dismisses-google-walking-directions-lawsuit-claims-82312
http://www.youtube.com/watch?v=tmaQPTRf-2Y
http://www.youtube.com/watch?v=OFXsrdiPr24
http://www.youtube.com/watch?v=DN6SCrU681o
http://www.youtube.com/watch?v=7pTr8JMvsAY
http://h10032.www1.hp.com/ctg/Manual/c01597750.pdf
http://tascam.com/product/us-1641/
http://www.cui.com/Product/Components/Microphones/Electret_Condenser_Microphone/CMC-2742WBL-25L
http://www.cui.com/Product/Components/Microphones/Electret_Condenser_Microphone/CMC-2742WBL-25L

51

Appendices

A1. Results Data Plots

A1.1 First Test Results: Effect of MVDR Beamforming on Speech Recognition

Note: only a bandpass filter of 150-6350 Hz was used in this test.

Figure 6. Test 1 Results 1.

52

Figure 7. Test 1 Results 2.

53

Figure 8. Test 1 Results 3.

54

A1.2 Second Test Results: Approximating Speech Frequencies with a Non-Speech Signal

Note that again only the 150-6350 Hz bandpass filter has been used in these tests.

Figure 9. Test 2 Results 1.

55

Figure 10. Test 2 Results 2.

56

Figure 11. Test 2 Results 3.

57

Figure 12. Test 2 Results 4.

58

Figure 13. Test 2 Results 5.

59

Figure 14. Test 2 Results 6.

60

A2. Hardware and Materials Used

Note: For OSU-based research, Consult Dr. Potter of the ECE department at OSU; all

hardware and materials listed except for HP Laptop PC are available through the ECE

department. Other computers are available through the ECE department.

A2.1. HP Pavilion DV 4 Entertainment Laptop PC

Figure 15. HP Pavilion DV 4 Laptop.

Courtesy: http://www.notebooknotes.com

 Used for recording and running tests.

 Dual array microphones used. See [19] for more information.

61

A2.2 Hardware and Materials used for DAQ only during Jan-Mar 2012

 These were used by author and colleagues for microphone array recording [4].

A.2.2.1 TASCAM US 1641 audio ADC/DAC

Figure 16. TASCAM Data Sheet. (For more datasheet information: [20]).

62

A2.2.2 CUI, Inc. Microphones.

Figure 17. CUI, Inc. Microphone Data Sheet Page 1.

63

Figure 18. CUI, Inc. Microphone Data Sheet Page 2.

(For more datasheet information see: [21]; for wiring: see [6]).

64

A.2.2.3 Acoustic Foam Board for Microphone Array Support

 Board is approximately 1.2 by .8 m, depth approx. 1 cm

 Holes can be punctured in the board at microphone spacing of choice.

Figure 19. Sample Set Up with Acoustic Foam Board.

Microphones (the mentioned C.U.I. Inc. model) are seen as white circular protrusions.

65

A2. Software Used

Four main software packages were used to aid the experiments.

Audacity

 Version 1.2.6

 Freeware.

 Used for recording audio.

MATLAB

 Version R2011a.

 Free student edition available through the Ohio State University.

 Used for all code for the MVDR beamforming algorithm and testing.

Microsoft Windows Media Player

 Version 12.

 Freeware.

 Used for playing back audio for speech recognition.

Google Chrome: Speech Recognizer App

 Chrome version 11, Speech Recognizer version 3.

 Freeware; must have a Google account to install GSR App.

 Used as the speech recognition engine.

66

A3. Author’s Code

As the code requires certain files which are not text files, all the material relevant to the

code can be found at: https://sites.google.com/site/osuacoustics/classroom-

news/ece683hauxiliaryfiles

A3.1 MATLAB for First test (Speech Processing)

MVDR_speech_test.m

%This is the main script for testing MVDR beamforming on given (1-channel)

%clean speech signal under various paramters;

%Required function files:

%gen_BPF.m, gener_delayed_interf.m, gener_interf.m, MVDR_speech.m,

%reprow.m, fix_src.m

%Also required: some recorded input audio file at sampling rate

%which is a multiple of 22050 Hz

%By Sergei Preobrazhensky

%NOTE:

%Here input clean source (human speech) is

%delayed across a microphone array as if the source (human speaker) stood

%1 m from the array center on a line which is perpendicular to the array

%and intersects the array at its center.

%Therefore the input recorded speech signal is delayed

%across various microphone array lengths using this assumption.

%Parameters varied:

%Mic array length - vector of lengths 'Lv';

%(assume uniformly spaced, 1-d array of 8 mics)

%Interference strength - vector of values 'interf_rms_v';

%the clean speech signal is scaled to have an RMS of 1 while the RMS

%of the interference is chosen by this parameter;

%the interference RMS value therefore equals to

%1/SIR where SIR is the signal to interference amplitude ratio

%MVDR forgetting factor - vector of factors 'fg_v';

%this is a factor ranging 0<fg<1 used for the memory element of

%adaptive part of the MVDR algorithm

%number of MVDR sub-bands to use - vector of integer values 'num_bands_v';

https://sites.google.com/site/osuacoustics/classroom-news/ece683hauxiliaryfiles
https://sites.google.com/site/osuacoustics/classroom-news/ece683hauxiliaryfiles

67

%make sure that the number of DFT bins spanning the bandwidth used

%(given Fs=22050 and a 1024-FFT) is divisible by this number;

%this will make each sub-band an equal integer number of bins

%e.g.: 300-3400 Hz => 144 DFT bins, so num_bands_v could be [24,16,12]

%(resulting in corresponding sub-band sizes of 6,9,and 12 bins respectiv.)

%hifi - hifi==0 => bandpass filter of 300-3400 is used for processing;

%effectively reducing the signal to this bandwidth;

%otherwise bandwidth of 150-6350Hz is used

%This script processes the input file under all the combinations of

%parameters and saves the results in a series of wave files

%the names of these output files correspond to the parameters used;

%speech recognition can then separately be run on these files

%and then the word recognition rate can be computed

%to determine which parameter choices results in better rates.

%The input file and save files path is given by 'path' below.

clc

clear all

%preliminary constant setup for test

num_mics=8;

fft_siz=1024;%fft-size used by MVDR algorithm

shift_siz=32;%shift size used by MVDR algorithm

inpad_len=(fft_siz-shift_siz)/2;%pad input by this # samples for MVDR

inpad=zeros(1,inpad_len);

Fs=22050;%sampling rate

Lv=.6:.1:1;

interf_rms_v=[2];

num_bands_v=[9 12 18 36];

fg_v=[.95 .97 .98 .99 .995 .999];

path=...

 'C:\Users\Serge\Documents\z_college\AAiBrutus\MATLAB\Audio_Files\Speech\';

name=input('wav file name of speech signal: \n','s');

Fs_old=input('data sampling frequency, press enter for default of 44.1 k');

if isequal(Fs_old,'')

 Fs_old=44100;

end

[clean_mono,Fs_old]=wavread([path name '.wav']);

%decimate the source signal and cut it to be divisible into fft_siz

%blocks for testing purposes

clean_mono=fix_src(clean_mono',fft_siz,Fs_old,Fs);

sig_len=size(clean_mono,2);

num_blocks=sig_len/shift_siz;

if mod(num_blocks,1)

 error('make sure input wave file fit an integer number of blocks')

end

ham_block=hamming(fft_siz,'periodic')';

%error score arrays setup

err_decr_percs=zeros(length(Lv),length(interf_rms_v),...

 length(num_bands_v),length(fg_v));

ERR_DECR_PERCs=err_decr_percs;

68

%processing time array setup

tm_v=zeros(length(Lv),length(interf_rms_v),...

 length(num_bands_v),length(fg_v),2);

%permute all parameter choices; do additional variable setup within loops

for hifi=0:1

 hifi

 %assign value to string to be included in output file names

 if hifi

 hifstr='hifi';

 else

 hifstr='';

 end

%generate band_pass filter; also return vector which contains bin numbers

%corresponding to frequencies which span the chosen bandwidth;

[BPF,SPECTR_WHOLE]=gen_BPF(Fs,fft_siz,hifi,sig_len,num_mics);

DIRT_ERR_blocks=zeros(1,length(SPECTR_WHOLE));

CLEAN_blocks=DIRT_ERR_blocks;

for L_ind=1:length(Lv)

 L=Lv(L_ind)

 clean0=delay_src(clean_mono,num_mics,Fs,L);

 %compute normalized version of clean signal for error score purposes

 for mic_num=1:num_mics

 clean0(mic_num,:)=clean0(mic_num,:)./sqrt(mean(clean0(mic_num,:).^2));

 end

 clean_ref=[inpad clean0(4,:) inpad];

 cleanfile=[name 'clean_L-' num2str(L) '.wav'];

 clean_norm=clean_ref/max(abs(clean_ref))*.95;

for interf_rms_ind=1:length(interf_rms_v)

 interf_rms=interf_rms_v(interf_rms_ind);

 %generate interference which is properly delayed across mics

 dirty=gen_delayed_interf(num_mics,L,sig_len,interf_rms,BPF,hifi);

 %combine clean signal with interference

 dirty=clean0+dirty;

 %compute normalized noisy signal for error score purposes

 dirty_ref=[inpad dirty(4,:) inpad];

 sqrt(mean(dirty_ref.^2))

 dirty_norm=dirty_ref./max(abs(dirty_ref))*.95;

 %save noisy signal to file

 dirtfile=[name 'dirty_L-' num2str(L) '_rms-' ...

 num2str(interf_rms) hifstr '.wav'];

 wavwrite(dirty_norm,Fs,24,[path dirtfile]);

for num_bands_ind=1:length(num_bands_v)

 num_bands=num_bands_v(num_bands_ind)*(hifi+1)

for fg_ind=1:length(fg_v)

 fg=fg_v(fg_ind)

69

 %run MVDR algorithm with chosen parameters;

 [output,tm]=MVDR_speech(dirty,Fs,L,num_bands,fg,hifi);

 tm_v(L_ind,interf_rms_ind,num_bands_ind,fg_ind,hifi+1)=tm;

 output_norm=output/max(abs(output))*.95;

 %save output file

 outfile=[name 'out_L-' num2str(L) '_rms-' num2str(interf_rms) ...

 '_bands-' num2str(num_bands) '_fg-' num2str(fg) hifstr '.wav'];

 wavwrite(output_norm,Fs,24,[path outfile]);

 %pad output signal to compare to clean and noisy signals

 %to compute error score

 output=[inpad output inpad];

 %time-domain error score computed

 proc_err_rms=sqrt(mean((output-clean_ref).^2));

 dirt_err_rms=sqrt(mean((dirty_ref-clean_ref).^2));

 err_decr_percs(L_ind,interf_rms_ind,num_bands_ind,fg_ind,hifi+1)=...

 (dirt_err_rms-proc_err_rms)/dirt_err_rms*100;

 %frequency-domain error score computed

 DIRT_ERR_RMS_blocks=zeros(num_blocks,1);

 PROC_ERR_RMS_blocks=zeros(num_blocks,1);

 for block=1:num_blocks

 CLEAN_block=abs(fft(...

 clean_ref(shift_siz*(block-1)+1:shift_siz*(block-1)+fft_siz)...

 .*ham_block,100*fft_siz));

 DIRT_block=abs(fft(...

 dirty_ref(shift_siz*(block-1)+1:shift_siz*(block-1)+fft_siz)...

 .*ham_block,100*fft_siz));

 DIRT_ERR_RMS_blocks(block)=...

 sqrt(mean((CLEAN_block(SPECTR_WHOLE)-DIRT_block(SPECTR_WHOLE)).^2));

 PROC_block=abs(fft(...

 output(shift_siz*(block-1)+1:shift_siz*(block-1)+fft_siz)...

 .*ham_block,100*fft_siz));

 PROC_ERR_RMS_blocks(block)=...

 sqrt(mean((CLEAN_block(SPECTR_WHOLE)-PROC_block(SPECTR_WHOLE)).^2));

 end

 ERR_DECR_PERCs(L_ind,interf_rms_ind,num_bands_ind,fg_ind,hifi+1)=...

 mean((DIRT_ERR_RMS_blocks-PROC_ERR_RMS_blocks)./...

 DIRT_ERR_RMS_blocks*100);

end

end

end

end

end

%%%%%%%%%% END OF FILE %%%%%%%%%%%

70

gen_BPF.m

%Function which generates band_pass filter;

%this function is used in MVDR_speech_test.m

%By Sergei Preobrazhensky

%Inputs:

%Fs - sampling rate

%fft_siz - fft_size used in MVDR algorithm in preperation for which this

%function is called; this value is used for generating the output vector

%SPECTR_WHOLE

%hifi - =0 to use 300-3400 Hz bandpass filter, nonzero to use 150-6350 Hz

%sig_len - length of signal to be filtered (and later MVDR processed)

%num_mics - the number of microphones used for the current MVDR test

%Outputs:

%BPF - bandpass filter vector which is roughly a twentieth

%of the signal length;

%SPECTR_WHOLE - vector which contains bin numbers

%corresponding to frequencies which span the chosen bandwidth;

function [BPF,SPECTR_WHOLE]=gen_BPF(Fs,fft_siz,hifi,sig_len,num_mics)

%if Fs==44100

% fbin_btL=7+1;%bin~300 Hz

% fbin_tpL=78+1;%~3400 Hz

if Fs==22050

 if ~hifi

 fbin_btL=14+1;%~300 Hz

 fbin_tpL=157+1;%~3400 Hz

 else

 fbin_btL=7+1;

 fbin_tpL=294+1;

 end

%elseif Fs==7350

% fbin_btL=42+1;%~300 Hz

% fbin_tpL=473+1;%~3400 Hz

else

 error('only Fs=22050 supported')

end

%compute actual frequency values which represent the bottom and the top bin

f_bt=fbin_btL/fft_siz*Fs;%~=300Hz

f_tp=fbin_tpL/fft_siz*Fs;%~=3400Hz

F=...

[0 (f_bt+10)/(Fs/2) (f_bt+10)/(Fs/2) (f_tp-10)/(Fs/2) (f_tp-10)/(Fs/2) 1];

A=[0 0 1 1 0 0];

BPF=reprow(fft(...

 [firls(ceil(sig_len/20)+mod(ceil(sig_len/20),2),F,A)...

 zeros(1,sig_len-1)]), num_mics);

FBIN_btL=round(f_bt/Fs*fft_siz*100+1);

71

FBIN_tpL=round(f_tp/Fs*fft_siz*100+1);

FBIN_tpR=fft_siz*100-FBIN_btL+2;

FBIN_btR=fft_siz*100-FBIN_tpL+2;

SPECTR_WHOLE=[FBIN_btL:FBIN_tpL FBIN_tpR:FBIN_btR];

%%%%%%%%%%% END OF FILE %%%%%%%%%%%%%%%%%

72

gen delayed_interf.m

%function which returns profiles of interference simulated as if several

%interference sources originate at various random locations;

%the locations of origin are apparent from the delays that the interference

%exhibits across a microphone array.

%One delayed interference profile is generated for each array length

%passed as input;

%By Sergei Preobrazhensky

%INPUTS:

%num_mics: number of microphones in the arrays (only one scalar value can

%be used per function call)

%Lv: vector of array lengths to simulate

%sig_len: time length of each interference profile returned

%itnerf_rms: the RMS value to which the interference amplitude will be

%approximately scaled; used for adjusting signal to interference ratio

%BPF: bandpass filter to apply to interference and thus restrict

%processed bandwidth (tip: use the BPF returned by gen_BPF.m)

%hifi: 0 if bandwidth is 300-3400; otherwise 150-6350 Hz bandwidth assumed

%OUTPUTS:

%interf_delayed - 3-d array: num_mics rows, sig_len cols, length(Lv) pages;

%each page represents a delayed interference profile for each array length

%in given in Lv input.

function [interf_delayed]=...

 gen_delayed_interf(num_mics,Lv,sig_len,interf_rms,BPF,hifi)

c=339;%approx. speed of sound at altitude of Columbus, OH

%GENERATE INTERFERENCE:

%zero matrix to pad sections of interference to accomodate time delays

sect_pad=zeros(num_mics,size(BPF,2)-sig_len);

num_perm=2;%number of interferers active throughout whole profile

num_temp=5;%number of interferers active during only part of profile

num_interf=num_perm+num_temp;

rms_coef=1.2;%used to rescale rms after filtering off some energy;

%reset random stream to generate the same interference profile each time

%function is called (to maintain consistent interference profile

%while testing different parameters in routine that calls on this function)

stream = RandStream.getGlobalStream;

reset(stream);

%full address of interference data bank (crowd noise wave file)

filename=[...

 'C:\Users\Serge\Documents\z_college\AAiBrutus\MATLAB\Audio_Files',...

 '\Ohio_Stadium_noise24.wav'];

%the code below calls on function that randomly returns variables to use

%for building profiles of random interference throughout the rest of this

%function

73

%interf and interflocs_cel contain randomly generated interference samples

%and spatial locations respectively; strtpos contains starting time

%positions of short-time interference sources;

%the rest of the outputs of gener_interf are used for delaying in time;

[interf,fft_fctrs,fft_fctr,interflocs_cel,strtpos,k,shift_smp] =...

 gener_interf(filename,22050,num_perm,num_temp,1,sig_len);

%DELAY INTERFERENCE:

%All mic arrays simulated have num_mics mics uniformly spaced along x axis,

%centered at origin; they vary only in length and thus the mic spacing).

%preallocate output array of interference profiles

interf_delayed=zeros(num_mics,sig_len,length(Lv));

for L_ind=1:length(Lv)

 L=Lv(L_ind);

 miclocs=linspace(-L/2,L/2,num_mics)';

 interflocs=interflocs_cel{1};

 interf_delays=zeros(num_mics,num_interf);

 xmicinterf=zeros(num_mics,num_interf);

 for interf_ind=1:num_interf

 for mic_num=1:num_mics

 xmicinterf(mic_num,interf_ind)=...

 interflocs(1,interf_ind)-miclocs(mic_num);

 %calculate horiz dist from each source and interferer to

 %current mic in the current mic array

 end

 end

 ymicinterf=reprow(interflocs(2,:),num_mics);

 %y coords of mic locations are all 0 so y_interf_i-y_mic_n=y_interf_i

 interf_delays(:,:,L_ind)=sqrt(xmicinterf.^2+ymicinterf.^2)/c;

 input_sect=zeros(num_mics,k);

 %delay and condition interference sources active throughout whole

 %profile

 for interf_ind=1:num_perm

 INTERF0=fft(interf{interf_ind});

 %balance frequency spectrum for each interference source

 INTERF0=INTERF0.*...

 (9*(hifi+1)*mean(abs(INTERF0))+abs(INTERF0))/...

 (9*(hifi+1)+1) ./ abs(INTERF0);

 %normalize not to make some interference sources

 %disproportionately loud or quiet after the balancing

 INTERF0=INTERF0./max(abs(INTERF0));

 %preallocate copy 1-channel interference source

 %to form num_mics channels

 INTERF_MICS=reprow(INTERF0,num_mics);

 %apply delays in frequency domain

 interf_mics=real(ifft(INTERF_MICS.*...

 exp(interf_delays(:,interf_ind)*...

 fft_fctr),[],2));

 %add interference source to profile:

74

 input_sect=input_sect+interf_mics;

 end

 %delay and condition interference sources active during only parts of a

 %profile

 for interf_ind=interf_ind+1:num_temp

 el=length(interf{interf_ind});

 strt=strtpos(interf_ind-num_perm);

 INTERF0=fft(interf{interf_ind});

 %balance frequency spectrum for each interference source

 INTERF0=INTERF0.*...

 (9*(hifi+1)*mean(abs(INTERF0))+abs(INTERF0))/...

 (9*(hifi+1)+1) ./ abs(INTERF0);

 %normalize not to make some interference sources

 %disproportionately loud or quiet after the balancing

 INTERF0=INTERF0/max(abs(INTERF0));

 %apply delays in frequency domain

 INTERF_MICS=reprow(INTERF0,num_mics);

 interf_mics=real(ifft(INTERF_MICS.*...

 exp(interf_delays(:,interf_ind)*...

 fft_fctrs{interf_ind-num_perm}),[],2));

 %add interference source to profile:

 input_sect(:,strt:strt+el-1)=...

 input_sect(:,strt:strt+el-1)+interf_mics;

 end

 %adjust RMS before filtering

 %the strength of the interference is controlled by interf_rms,

 %but a wider bandwidth will generally have a larger RMS

 %so that interference energy isn't spread thinner over

 %the larger number of sub-bands

 for mic_num=1:num_mics

 input_sect(mic_num,:)=input_sect(mic_num,:)*...

 rms_coef*interf_rms/sqrt(mean(input_sect(mic_num,:).^2));

 end

 %skip the silence (due to time delays) at beginning of profile

 input_sect=[input_sect(:,shift_smp:shift_smp+sig_len-1), sect_pad];

 %bandpass filter each profile

 input_sect=real(ifft(fft(input_sect,[],2).*BPF,[],2));

 input_sect=input_sect(:,size(input_sect,2)/2-sig_len/2+1:...

 size(input_sect,2)/2+sig_len/2);

 interf_delayed(:,:,L_ind)=input_sect;

end

%%%%%%%%%%%% END OF FILE %%%%%%%%%%%%%%%%

75

gener_interf.m

%generates interference by randomly drawing chunks from crowd noise file

%(or any given audio file) for simulating interference recorded into

%a mic array

%NOTE: this file is used by the speech signal simulation test

%such as MVDR_speech_test.m via the gen_delayed_interf function

%By Sergei Preobrazhensky

%Inputs:

%filename - full path of audio data file from which to draw interfernce

%Fs - sampling frequency (should match that of file preferably)

%num_perm - number of interference sources which are active throughout

%entire time length of one trial

%(one trial a single profile of randomly generated interference

%see 'random_trials' input)

%num_temp - number of short term interference sources. These are active

%for only a fraction of the trial time length (specified by Lmin, Lmax

%below)

%rand_trials,sig_len - rand_trials # of interference profiles,

%each sig_len time samples long will be generated. Each of these profiles

%will contain the num_perm and num_temp type interferers.

%NOTE: interference profiles are not delayed across a microphone array

%in this function. Only random audio data is drawn, as well as random

%time positions, durations, and random spatial coordinates are chosen.

%An outside routine must take care of delaying these interference sources

%depending on microphone locations chosen

%Outputs:

%interf - cell_array of all the interference data drawn from audio file

%fft_fctrs - cell array of vectors used for delaying 'num_temp'-type

%interferers in frequency domain (must be done by outside routine).

%fft_fctr - vector used for delaying any 'num_perm'-type

%interferer in frequency domain (must be done by outside routine).

%interflocs_cel - cell array of

%randomly generated spatial location of all the interferers;

%see 'space and physical constraints' section of code below.

%strtpos - array of starting position (in time samples)

%of each 'num_temp'-type interferer in each trial;

%used by outside routine to place these interferers at the given positions

%k - maximum possible time length of one interference profile after delays;

%this is based on the maximum distance between a microphone and an

%interferer; the maximum mic_array length is assumed to be 1 m;

%the maximum distance inteference can be generated is defined in

%'space and physical constraints' section of code below.

%k = sig_len + maxsmplsdelay;

%this value is used by an outside routine for delaying purposes

76

%shift_smp - since the all interference sources will be delayed there will

%by default be silence at the beginning of an interfrence profile;

%to avoid this silence, the profile will start at sample # shift_smp

%of length k signal and will continue for sig_len samples;

%this effectively produces a window of interference

%which is length sig_len and has little to no silence at the beginning;

%this operation is done by an outside routine.

function [interf,fft_fctrs,fft_fctr,interflocs_cel,strtpos,k,shift_smp]=...

 gener_interf(filename,Fs,num_perm,num_temp,rand_trials,sig_len)

%hold on

%rng('shuffle')

num_interf=num_perm+num_temp;

%reading interference wav file

data = wavread(filename)';

LENG = length(data);

%signal sample constraints

Lmin=round(8/48*sig_len);

Lmax=round(24/48*sig_len);

%e.g. for a 2400 sample signal, temp interferer length will be chosen

%randomly to be between 50 and 400 samples

%signal amplitude constraints

%amplLo=.25;

%amplHi=2.5;

ampl=1;%^no longer used...

%space and physical constraints

c=339;

rmin=1.5;

rmax=15;

thetamin=-90;

thetamax=90;

%compute zero-padding for delay

distmax=rmax+.5;

maxsmplsdelay=ceil((distmax./c)*Fs);

maxsmplsdelay=maxsmplsdelay+mod(maxsmplsdelay,2);

pad=zeros(1,maxsmplsdelay);

shift_smp=round(maxsmplsdelay*.7);

k=sig_len+maxsmplsdelay;

%preallocating

interf=cell(num_interf,rand_trials);

strtpos = zeros(num_temp,rand_trials);

fft_fctrs=cell(num_temp,rand_trials);

interflocs_cel=cell(1,rand_trials);

%preparing additional auxilary vectors

fft_fctr=-2i*pi*[0:k/2 -k/2+1:-1]/k*Fs;

%populating interference array

for trial=1:rand_trials

 %random spatial locations

 interflocs = [rand(1,num_interf)*(rmax-rmin)+rmin;

 rand(1,num_interf)*(thetamax-thetamin)+thetamin];

 interflocs_cel{trial} = [interflocs(1,:).*sind(interflocs(2,:))

 interflocs(1,:).*cosd(interflocs(2,:))];

 %Easier to generate interf in polar coords to have all interference be

 %at least 1.5 m away from mic array center and more sparse as the distance

77

 %increases. Then interference locations are converted to cartesian coords

 %sind x=r*sind(theta) as theta measured from y-axis

 for i=1:num_perm

 %ampl=(rand*(amplHi-amplLo)+amplLo);

 pos=randi(LENG-sig_len+1);

 chunk=data(pos:pos+sig_len-1);

 nonstat=ampl*chunk;

 white=0;

 interf{i,trial}=[nonstat+white pad];

 end

 %lin='-:+o*.xsd^v><ph';

 %cel={};

 for i=i+1:i+num_temp

 leng=randi([Lmin,Lmax]);

 leng=leng+mod(leng,2);

 padded_leng=leng+maxsmplsdelay;

 %ampl=(rand*(amplHi-amplLo)+amplLo);

 pos=randi(LENG-leng+1);

 chunk=data(pos:pos+leng-1);

 nonstat=ampl*chunk;

 white=0;

 interf{i,trial}=[nonstat+white pad];

 strtmin=round(maxsmplsdelay*2/3);

 strtmax=sig_len-leng+1;

 strt=randi([strtmin,strtmax]);

 strtpos(i-num_perm,trial)=strt;

 fft_fctrs{i-num_perm,trial}=...

 -2i*pi*[0:(padded_leng)/2,-(padded_leng)/2+1:-1]/(padded_leng)*Fs;

 %plot(strt:strt+leng-1+length(pad),interf{i,trial},...

 %'color',rand(1,3),'linestyle',lin(i-num_perm))

 %cel{end+1}=[num2str(i-num_perm) ' ' num2str(leng)];

 end

 %legend(cel);

end

end

%%%%%%%%% END OF FILE %%%%%%%%

78

MVDR_speech.m

%this function is an MVDR beamforming algorithm

%which can be to process for an n-channel signal;

%it was designed for use with processing a noisy speech signal

%recorded into a microphone array to aid with speech recognition

%By Sergei Preobrazhensky

%NOTE:

%Here it has been assumed that a desired source (e.g. human speaker) is

%1 m from the array center on a line which is perpendicular to the array

%and intersects the array at its center.

%See 'STEERING VECTOR SETUP' section of code. The steering vector can

%be modified as needed, if the desired source is at a different location.

%Inputs:

%dirty - N-channel matrix of audio input; M columns => M time samples

%Fs - sampling rate in Hz (only 22050 supported currently)

%L - length of uniformly spaced, 1-dim, mic array

%num_bands - number of sub-bands to use;

%make sure that the number of DFT bins spanning the bandwidth used

%(given Fs=22050 and a 1024-FFT) is divisible by this number;

%this will make each sub-band an equal integer number of bins

%e.g.: 300-3400 Hz => 144 DFT bins, so num_bands can be 24,16,12, etc.

%(resulting in corresponding sub-band sizes of 6,9,and 12 bins respectiv.)

%fg - forgetting factor value for memory element of adaptive part of

%algorithm 0<fg<1; optimal value must be determined experimentally;

%usually values of 0.9 or more perform better.

%hifi - hifi==0 => bandpass filter of 300-3400 is used for processing;

%effectively reducing the signal to this bandwidth;

%otherwise bandwidth of 150-6350Hz is used

%Outputs:

%output - 1xM vector of processed signal, M is input signal time length

%tm - MATLAB processing time of algorithm (setup time not included)

function[output,tm]=MVDR_speech(dirty,Fs,L,num_bands,fg,hifi)

%close all

%NOTE:

%all lengths/space coordinates in meters, frequencies in Hz, time in sec

for misc_prelim=1:1

%MISC PRELIMINARY SETUP:

%clc

c=339;%approx. speed of sound at altitude of Columbus, OH

num_mics=size(dirty,1);

sig_len=size(dirty,2);

half_num_bands=fix(num_bands/2);

fft_siz=1024;

block_siz=32;

79

num_blocks=(sig_len)/(block_siz)-1;

if mod(num_blocks,1)

 error('make sure a section of test signal fits integer num of blocks')

end

epsi=1e-13;

cndfctr=1.03;

if Fs==44100

 fbin_btL=7+1;%bin~300 Hz

 fbin_tpL=78+1;%~3400 Hz

elseif Fs==22050

 if hifi

 fbin_btL=7+1;%~300 Hz

 fbin_tpL=294+1;%~6300 Hz

 else

 fbin_btL=14+1;%~300 Hz

 fbin_tpL=157+1;%~6500 Hz

 end

elseif Fs==7350

 fbin_btL=42+1;%~300 Hz

 fbin_tpL=473+1;%~3400 Hz

else

 error('only Fs=7350, 22050, sand 44100 supported')

end

fbin_btR=fft_siz-(fbin_btL-1)+1;

f_bt=fbin_btL/fft_siz*Fs;%~=300Hz

f_tp=fbin_tpL/fft_siz*Fs;%~=3400Hz

j = sqrt(-1);

pi2=2*pi;

j2pi = j*pi2;

end

for steering_vect=1:1

%STEERING VECTOR SETUP:

%for each mic array: precalculate time delays from the desired source

%to each mic in the array.

%All mic arrays here have num_mics mics uniformly spaced along x axis,

%centered at origin; they vary only in length and thus the mic spacing).

%Desired Source is assumed to be at coordinates: (0,1)

%assume mics are unifromly spaced

miclocs=linspace(-L/2,L/2,num_mics);

%assume human speaker coordinates of (0,1)

xmicsrc=miclocs;

ymicsrc=ones(1,num_mics);

src_delays=sqrt(xmicsrc.^2+ymicsrc.^2)'/c;

wop_L=zeros(num_mics,num_bands);

band_siz=(fbin_tpL-fbin_btL+1)/num_bands;

if mod(band_siz,1)

 error('make sure subband size comes out to be an integer')

end

%populate array of steering vectors

fv=zeros(1,num_bands);

for f_ind=1:num_bands

80

 %find center freqs of sub-band to later plug into the steering vectors

 %only need to compute the positive center freqs (left half of dft)

 fbin_L=((fbin_btL+(f_ind-1)*band_siz)+...

 (fbin_btL+(f_ind-1)*band_siz+band_siz-1))/2;

 fv(f_ind)=(fbin_L-1)/fft_siz*Fs;

end

%only compute steering vector for positive center freqs as steering vectors

%for the negative freqs are computed by taking the conjugate

vssL=exp((src_delays-min(src_delays))*-j2pi*fv);

%vssR=conj(vssL);

end

for other_misc=1:1

%OTHER MISC SETUP:

F=...

[0 (f_bt+20)/(Fs/2) (f_bt+30)/(Fs/2) (f_tp-30)/(Fs/2) (f_tp-20)/(Fs/2) 1];

A=[0 0 1 1 0 0];

BPF=reprow(fft(...

 [firls(ceil(sig_len/40)+mod(ceil(sig_len/40),2),F,A)...

 zeros(1,sig_len-1)]), num_mics);

%fir2(sig_len,F,A) is length sig_len+1 by default

outpad=zeros(num_mics,size(BPF,2)-sig_len);

%hamming window will be applied to one time block at a time before fft

ham=reprow(hamming(fft_siz,'periodic'),num_mics);

%other prelim pre-allocation

dirtpad=zeros(num_mics,(fft_siz-block_siz)/2);

%conditioning matrix for MVDR

CND=(cndfctr-1)*diag(ones(1,num_mics))+ones(num_mics);

R_L=zeros(num_mics,num_mics,num_bands);

output=zeros(1,sig_len);

end

%perform MVDR

tic

dirty2=[dirtpad dirty dirtpad];

%{

%zero pad and perform fast convolution with band pass filter

dirty=real(ifft(fft([dirty outpad],[],2).*BPF,[],2));

 dirty=dirty(:,size(dirty,2)/2-sig_len/2:...

 size(dirty,2)/2+1+sig_len/2);

%}

for block_num=1:num_blocks

 timepos=(block_siz*(block_num-1)+1);

 %if timepos+fft_siz>sig_len3

 %--remove secur. measure for speed

 % timeblock=inputs(:,timepos:end);

 %else

81

 dirty_block=dirty2(:,timepos:timepos+fft_siz-1).*ham;

 %end

 %convert interference block to frequency domain

 DIRTY_BLOCK=fft(dirty_block,[],2);

 PROCESSED=DIRTY_BLOCK(4,:);

 for f_ind=1:length(fv)

 %work with one subband at a time;

 %define subband edges for pos. & neg. freq pairs:

 fbin_loL=fbin_btL+(f_ind-1)*band_siz;%left edge

 fbin_hiL=fbin_loL+band_siz-1;%right edge

 fbin_loR=fbin_btR-(f_ind-1)*band_siz;%-left edge

 fbin_hiR=fbin_loR-band_siz+1;%-right edge

 S_L=DIRTY_BLOCK(:,fbin_loL:fbin_hiL);

 S_R=DIRTY_BLOCK(:,fbin_loR:-1:fbin_hiR);

 vsL=vssL(:,f_ind);

 %vsR=vssR(:,f_ind);

 %{

 if f_ind==1

 EXTRA=0;

 elseif f_ind==2

 EXTRA=0;%.5*R_L(:,:,f_ind-1);

 else

 EXTRA=0;%.5*EXTRA;

 end

 %}

 R_L(:,:,f_ind)=R_L(:,:,f_ind)*fg+...

 +S_L*S_L'.*CND;

 %R_R(:,:,f_ind)=R_R(:,:,f_ind)*forgetfctr(f_ind)...

 %+S_R*S_R'.*CND;

 %covariance matrix and MVDR steering vectors are made

 %for both the pos. freqs (_L) and neg. freqs (_R)

 %MVDR weights computed

 if (mod(block_num,2) && f_ind<=half_num_bands)||...

 ((~mod(block_num,2)||block_num==1) && f_ind>half_num_bands)

 wop_L(:,f_ind)=...

 (R_L(:,:,f_ind))\vsL ./...

 (vsL'/ (R_L(:,:,f_ind))*vsL+epsi);

 end

 %weights are applied to both the pos. and neg. freq

 %subband

 WS_L=wop_L(:,f_ind)'*S_L;

 WS_R=wop_L(:,f_ind).'*S_R;

 PROCESSED([fbin_loL:fbin_hiL, fbin_loR:-1:fbin_hiR]) = [WS_L WS_R];

 end

 processed=real(ifft(PROCESSED));

 processed=processed(fft_siz/2-(block_siz)/2+1:...

 fft_siz/2+(block_siz)/2);

82

 output(timepos:timepos+(block_siz)-1)=processed;

end

%FINAL RESULTS:

%zero pad and perform fast convolution with band pass filter

output=real(ifft(fft([output outpad(1,:)]).*BPF(1,:)));

output=output(:,length(BPF)/2-sig_len/2+1:...

 length(BPF)/2+sig_len/2);

output=output/max(abs(output))*.9;

tm=toc;

end

%END OF FILE

%==

83

reprow.m

%Faster repmat function strictly for repeating rows.

%Used by MVDR_speech.m and gen_delayed_interf.m

function M=reprow(v,rows)

M=zeros(rows,length(v));

for row=1:rows

 M(row,:)=v;

end

%%%%%%%% END OF FILE %%%%%%%%%%%

fix_src.m

%decimate the source signal and cut it to be divisible into fft_siz

%blocks for testing purposes

function y=fix_src(x,shift_siz,Fs_old,Fs_new)

x=x(:,1:end-mod(length(x),shift_siz));

y=[];

for i=1:size(x,1)

 z=decimate(x(i,:),Fs_old/Fs_new,'FIR');

 z=z(1:end-mod(length(z),shift_siz));

 y=[y; z];

end

%y=.95*y./max(abs(y));

%%%%%%%%%%%%% END OF FILE %%%%%%%%%%%%%%%

84

A3.2 MATLAB Code for Second Test: Non-Speech Signal

MVDR_sp_sim_batch.m

%Main Script: MVDR simulation for non-speech signal

%under various parameters, March-May 2012

%By Sergei Preobrazhensky

%Required function files:

%MVDR_test_apr20.m, gener_desired_noise.m, gener_interf_old.m,

%Also required: Ohio_Stadium_noise24.wav crowd noise wave file

clear all

close all

clc

path='C:\iBrutus';

%path=input('input noise file path \n');

%if isequal(path,'')

% path='C:\Users\Serge\Documents\z_college\AAiBrutus\MATLAB\Audio_Files';

%end

%lines below not used: parallel computing toolbox found to be ineffective:

%matlabpool close force

%matlabpool open local 2

%set up paramter vectors and other fixed inptus to MVDR_test_apr20 function

%see MVDR_test_apr20.m file for help

num_mics=8;

Lv=.55:.05:1;

rand_trials=50;

band_siz_v=[24 16 12 8 4 2 1];

Fs=22050;

sect_len=1024*6;

shift_siz=32;

fg_v=[.85 .9 .95, .99];

interf_rms_v=[.5 1 2];

%preallocate results data arrays

%originally these were made into cell arrays to be compatible with

%parallel computing toolbox.

%This toolbox is no longer used, but the slightly

%awkward format of an array within a cell array remains.

err_sub_cel=repmat({[]},[length(band_siz_v) length(Lv) length(fg_v)]);

err_decr_percs_cel=repmat({err_sub_cel},1,length(interf_rms_v));

ERR_DECR_PERCs_cel=err_decr_percs_cel;

update=0;%explained in MVDR_test_apr20

hifi=1;%test with 'hifi' bandwidth of .15-6.35 KHz rather than .3-3.4 KHz

i=0;%counter for saving data files

%the for loops below permute all parameter choices

for fg_ind=1:length(fg_v)

 fg=fg_v(fg_ind)

 for L_ind=1:length(Lv)

85

 L=Lv(L_ind)

 for band_siz_ind=1:length(band_siz_v)

 band_siz=band_siz_v(band_siz_ind)

 for interf_rms_ind=1:length(interf_rms_v);

 fprintf(['interf_rms_ind=' num2str(interf_rms_ind) '\n'])

 %reset MATLAB random number stream every time to

 %have consistent resutls across parameter combinations

 stream = RandStream.getGlobalStream;

 reset(stream);

 %run MVDR simulation test for one chosen set of parameters

 %(see function file MVDR_test_apr20.m for help)

 %MVDR_test_apr20 fucntion can handle a vector of parameters

 %for L, band_siz, and fg, but to avoid running out of memory,

 %only one choice is given to the function for each of these

 %parameters

 [err_decr_percs ERR_DECR_PERCs]=...

 MVDR_test_apr20(num_mics,L,rand_trials,...

 band_siz,Fs,update,...

 hifi,sect_len,shift_siz,...

 interf_rms_v(interf_rms_ind),fg,path);

 err_decr_percs_cel...

 {interf_rms_ind}{band_siz_ind,L_ind,fg_ind}=...

 err_decr_percs;

 ERR_DECR_PERCs_cel...

 {interf_rms_ind}{band_siz_ind,L_ind,fg_ind}=...

 ERR_DECR_PERCs;

 end

 %incrementally save results as a percaution

 i=i+1;

 save(['C:\iBrutus\May29b' num2str(i) '.mat'],...

 'err_decr_percs_cel','ERR_DECR_PERCs_cel');

 end

 end

end

%line below not used: parallel computing toolbox found to be ineffective:

%matlabpool close

%%%%%% END OF FILE %%%%%%%%%%%

86

MVDR_test_apr20.m

%Function for simulating MVDR performance with a virtual test signal

%Used for development for beamforming to human speech.

%This function calls on subroutines 'gener_interf_old' and

%'gener_desired_noise' to generated interference and desired signal

%by drawing chunks from a large wave file of crowd noise,

%'Ohio_Stadium_noise24.wav'

%Path of this file can be changed as needed below where 'filename' is set.

%These chunks are used to form interference with of relatively

%short time durations throughout the signal

%Multiple interferers at a time simulated at random spatial locations.

%All interference is balanced to contain even energy levels across

%the processed spectrum (e.g. 300-3400 Hz)

%---INPUTS---:

%num_mics: must be at least 2%Lv: is a vector of the uniform linear array lengths

tested

%rand_trials: how many trials of interference to test.

 %e.g. rand_trials=50: a clean test signal will be processed 50 times

 %with a new randomly generated interfence profile added to it each time.

%band_siz_v: a vector of multiple numbers of sub-bands to test

%Fs: only use 22050 in this version

%update:

%--NOTE: during March-May 2012 research, only update=0 has been used

% if update=0:

 %MVDR weights updated only for lower freq. sub-bands for one block

 %before weights are applied to all sub-bands in that block.

 %Then, MVDR weights updated only for higher sub-bands in the next block

 %before weights are applied to all sub-bands in that block.

 %This pattern is then repeated.

% otherwise:

 %all MVDR weights are updated for all sub-bands in every block.

%sect_len: time length of a one trial e.g. a short 1024-sample signal.

%shift_siz: how many samples each 1024-sample FFT is shifted for every

 %block of appying MVDR weights

%interf_rms: each interference profile is adjusted to have this RMS

 %this allows testing different inteference strengths

 %the RMS of the clean signal is set to 1.

%fg_v: a vector of different forgetting factors to test.

 %each factor >0, but <1.

%---OUTPUTS---:

%err_decr_percs:

 %time domain error score:

 %measures improvement in RMS of error in the time domain

 %after processing. 'Error' means deviation from clean signal.

 %100=> perfect recovery of clean signal.

 %0 or less=>MVDR made no improvement to error.

%ERR_DECR_PERCs:

 %Similar to time domain score but more complex.

 %measures improvements in RMS error in magnitude response

87

 %by transforming 1024-sample sections of processed and noisy signal

 %to freqeuncy and computing the average improvement in error

 %for the processed signal across DFT of the many 1024-sample sections.

%--NOTE: each of error score arrays above is 3 dimensional.

%Rows correspond to values from Lv,

%columns to values from band_siz_v,

%pages to values from fg_v.

%

function [err_decr_percs,ERR_DECR_PERCs]=...

 MVDR_test_apr20(num_mics,Lv,rand_trials,...

 band_siz_v,Fs,update,hifi,sect_len,shift_siz,interf_rms,fg_v,path)

%}

%NOTE:

%for debugging and development purposes, remove the '{' below and put '{'

%on the line with '%' directly above line 'function [...' to run this

%as a script rather than a function. This will be slower, but will store

%all variable in workspace (useful for debugging).

%{

clear all

num_mics=8;

Lv=[1];

rand_trials=2;

band_siz_v=[8];

Fs=22050;

sect_len=1024*6;

shift_siz=32;

interf_rms=2;

fg_v=[.97];

hifi=1;

update=1;

path='C:\iBrutus';

%}

%%

%NOTE:

%all lengths/space coordinates in meters, frequencies in Hz, time in sec

for misc_prelim=1:1

%MISC PRELIMINARY SETUP:

%clc

%rng('shuffle')

j = sqrt(-1);

pi2=2*pi;

j2pi = j*pi2;

c=339;%approx. speed of sound at altitude of Columbus, OH

%MVDR conditioning constants

epsi=1e-13;

cndfctr=1.03;

CND=ones(num_mics)+((cndfctr-1)*diag(ones(1,num_mics)));

%blocks and sections setup

fft_siz=1024;

cut=shift_siz*32;

sig_len=(sect_len-cut*2)*rand_trials;%all rand interf. trials put in 1 long signal

num_blocks=(sig_len)/(shift_siz);

if mod(num_blocks,1)

88

 error('make sure a section of test signal fits integer num of blocks')

end

inpad_len=(fft_siz-shift_siz)/2;

inpad=zeros(num_mics,inpad_len);

ham_sect=hamming(fft_siz,'periodic')';

%setup of frequency bins and frequencies in Hz

%Number of DFT bins which approx. represent the speech spectrum

%should be divible by 36 or 18 (to test with 18 or 36 sub-bands)

%Thus for each sampling frequency, particular bin numbers that satisfy

%above condition are chosen:

if hifi

 Flo=150;

 Fhi=6350;

 if Fs==22050

 fbin_btL=7;%~150 Hz

 fbin_tpL=294;%~6350 Hz

 else

 error('only Fs=22050 supported')

 end

else

 Flo=300;

 Fhi=3400;

 %if Fs==44100

 % fbin_btL=7+1;%bin~300 Hz

 % fbin_tpL=78+1;%~3400 Hz

 if Fs==22050

 fbin_btL=14+1;%~300 Hz

 fbin_tpL=157+1;%~3400 Hz

 %elseif Fs==7350

 % fbin_btL=42+1;%~300 Hz

 % fbin_tpL=473+1;%~3400 Hz

 else

 error('only Fs=22050 supported')

 end

end

fbin_btR=fft_siz-(fbin_btL-1)+1;%lowest DFT bin in bandwidth computed

%compute actual frequency values which represent the bottom and the top bin

f_bt=fbin_btL/fft_siz*Fs;%~=150Hz when hifi==1 or 300Hz when hifi==0

f_tp=fbin_tpL/fft_siz*Fs;%~=6350Hz when hifi==1 or 3400Hz when hifi==0;

%for corresponding bin numbers for a sect_len-point fft used for measuring

%frequency domain error for each output

FBIN_btL=round(f_bt/Fs*fft_siz*100+1);

FBIN_tpL=round(f_tp/Fs*fft_siz*100+1);

FBIN_tpR=fft_siz*100-FBIN_btL+2;

FBIN_btR=fft_siz*100-FBIN_tpL+2;

WHOLE_SPECTR100=[FBIN_btL:FBIN_tpL FBIN_tpR:FBIN_btR];

%Bandpass filter Setup

filt_ord=1024;

filt_len=filt_ord+1;

Fs2=Fs/2;

F=[0 (f_bt+20)/(Fs2) (f_bt+30)/(Fs2) (f_tp-30)/(Fs2) (f_tp-20)/(Fs2) 1];

89

A=[0 0 1 1 0 0];

BPF= firls(filt_ord,F,A);

BPF_interf= repmat(fft([BPF zeros(1, sig_len-1)]),num_mics,1);

BPF_desir= repmat(fft([BPF zeros(1, sig_len-1+inpad_len)]),num_mics,1);

%firls(sig_len,F,A) returns a length sig_len+1 filter unit pulse repsonse

%even order => odd length filter

%balancing factor setup for interference and desired signal

balance_factor=9*(hifi+1);

end

for generate_interf=1:1

%GENERATE INTERFERENCE

num_perm=2;

num_temp=5;

num_interf=num_perm+num_temp;

filename=[path '\Ohio_Stadium_noise24.wav'];

[interf,fft_fctrs,fft_fctr,interflocs_cel,strtpos,k,shift_smp] =...

 gener_interf_old(filename,22050,num_perm,num_temp,rand_trials,sect_len);

end

for interf_signals=1:1

%INTERFERENCE SIGNALS SETUP:

%for each mic array: precalculate time delays from the

%interferers to each mic in the array.

%All mic arrays here have num_mics mics uniformly spaced along x axis,

%centered at origin; they vary only in length and thus the mic spacing).

input=zeros(num_mics,sig_len);

inputs=zeros(num_mics,sig_len+inpad_len*2,length(Lv));

for L_ind=1:length(Lv)

 L=Lv(L_ind);

 miclocs=linspace(-L/2,L/2,num_mics)';

for sect=1:rand_trials

 interflocs=interflocs_cel{sect};

 interf_delays=zeros(num_mics,num_interf,length(Lv),rand_trials);

 xmicinterf=zeros(num_mics,num_interf);

 for interf_ind=1:num_interf

 for mic_num=1:num_mics

 xmicinterf(mic_num,interf_ind)=...

 interflocs(1,interf_ind)-miclocs(mic_num);

 %calculate horiz dist from each source and interferer to

 %current mic in the current mic array

 end

 end

 ymicinterf=repmat(interflocs(2,:),num_mics,1);

 %y coords of mic locations are all 0 so y_interf_i-y_mic_n=y_interf_i

 interf_delays(:,:,L_ind,sect)=sqrt(xmicinterf.^2+ymicinterf.^2)/c;

 input_sect=zeros(num_mics,k);

%delay and condition longer interference sources (they are 1 section long)

90

 for interf_ind=1:num_perm

 INTERF0=fft(interf{interf_ind});

 fft_len=length(INTERF0);

 spectr_bins=[round(Flo/Fs*fft_len)+1:round(Fhi/Fs*fft_len)+1 ...

 fft_len-round(Fhi/Fs*fft_len)+2: fft_len-round(Flo/Fs*fft_len)+2];

 INTERF_spectr_mag=abs(INTERF0(spectr_bins));

 %balance frequency spectrum for each interference source

 INTERF0(spectr_bins)=INTERF0(spectr_bins).*...

 (balance_factor*mean(INTERF_spectr_mag)+INTERF_spectr_mag)/...

 (balance_factor+1)./INTERF_spectr_mag;

 %normalize not to make some interference sources

 %disproportionately loud or quiet after the balancing

 INTERF0=INTERF0./max(abs(INTERF0));

 INTERF_MICS=repmat(INTERF0,num_mics,1);

 interf_mics=real(ifft(INTERF_MICS.*...

 exp(interf_delays(:,interf_ind,L_ind,sect)*...

 fft_fctr),[],2));

 input_sect=input_sect+interf_mics;

 end

 %delay and condition shorter interference sources (length <1 section)

 for interf_ind=interf_ind+1:num_temp

 el=length(interf{interf_ind});

 strt=strtpos(interf_ind-num_perm);

 INTERF0=fft(interf{interf_ind});

 fft_len=length(INTERF0);

 spectr_bins=[round(Flo/Fs*fft_len)+1:round(Fhi/Fs*fft_len)+1 ...

 fft_len-round(Fhi/Fs*fft_len)+2: fft_len-round(Flo/Fs*fft_len)+2];

 INTERF_spectr_mag=abs(INTERF0(spectr_bins));

 %balance frequency spectrum for each interference source

 INTERF0(spectr_bins)=INTERF0(spectr_bins).*...

 (9*mean(INTERF_spectr_mag)+INTERF_spectr_mag)/10./...

 INTERF_spectr_mag;

 %normalize not to make some interference sources

 %disproportionately loud or quiet after the balancing

 INTERF0=INTERF0/max(abs(INTERF0));

 INTERF_MICS=repmat(INTERF0,num_mics,1);

 interf_mics=real(ifft(INTERF_MICS.*...

 exp(interf_delays(:,interf_ind,L_ind,sect)*...

 fft_fctrs{interf_ind-num_perm}),[],2));

 input_sect(:,strt:strt+el-1)=...

 input_sect(:,strt:strt+el-1)+interf_mics;

 end

 input_sect=input_sect(:,shift_smp+cut:shift_smp+sect_len-cut-1);

 input(:,(sect_len-2*cut)*(sect-1)+1:(sect_len-2*cut)*sect)=...

 input_sect;

end

 %adjust interference RMS to value specified by input

 for mic_num=1:num_mics

 input(mic_num,:)=input(mic_num,:)*...

 interf_rms/sqrt(mean(input(mic_num,:).^2));

 end

91

 input=real(ifft(...

 fft([input zeros(num_mics,filt_len-1)],[],2).*BPF_interf,[],2));

 input=input(:,length(input)/2-sig_len/2+1:length(input)/2+sig_len/2);

 %pad interf. so MVDR algorithm can output the first 32

 %samples of interference+clean as the first block.

 inputs(:,:,L_ind)=[inpad input inpad];

end

end

for clean_signal=1:1

%GENERATING CLEAN (OR DESIRED) SIGNAL

%the desired test signal will be added to the interference

%with appropriate delays.

%clean signal will be simulated as if recorded from a source

%at (0,1) into at a mic at (0,0) to compare to MVDR-processed noisy signal

src_delays=zeros(num_mics,length(Lv));

clean_refs=zeros(num_mics,2*inpad_len+sig_len,length(Lv));

clean_ref=zeros(num_mics,sig_len+inpad_len);

%clean signal will actually be randomly drawn from the same crowd noise

%wave file as interference

[desired_noise, shift_smp, des_fft_fctr]=...

 gener_desired_noise(filename,Fs,rand_trials,sect_len);

for L_ind=1:length(Lv)

 for sect=1:rand_trials

 clean_bloc=desired_noise{sect};

 CLEAN_BLOC=fft(clean_bloc);

 fft_len=length(CLEAN_BLOC);

 spectr_bins=[round(Flo/Fs*fft_len)+1:round(Fhi/Fs*fft_len)+1 ...

 fft_len-round(Fhi/Fs*fft_len)+2: fft_len-round(Flo/Fs*fft_len)+2];

 CLEAN_BLOC_spectr_mag=abs(CLEAN_BLOC(spectr_bins));

 %just like with interf, balance freqs of clean signal across bandwidth

 CLEAN_BLOC(spectr_bins)=CLEAN_BLOC(spectr_bins).*...

 (balance_factor*mean(CLEAN_BLOC_spectr_mag)+CLEAN_BLOC_spectr_mag)/...

 (balance_factor)./CLEAN_BLOC_spectr_mag;

 CLEAN_NODELAY_MICS=repmat(CLEAN_BLOC,num_mics,1);

 L=Lv(L_ind);

 miclocs=linspace(-L/2,L/2,num_mics)';

 xmicsrc=zeros(1,num_mics);

 for mic_num=1:num_mics

 xmicsrc(mic_num)=0-miclocs(mic_num);

 end

 ymicsrc=ones(1,num_mics);

 src_delays(:,L_ind)=sqrt(xmicsrc.^2+ymicsrc.^2)/c;

 CLEAN_DELAY_MICS=CLEAN_NODELAY_MICS.*...

 exp(src_delays(:,L_ind)*des_fft_fctr);

92

 clean_ref_block=real(ifft(CLEAN_DELAY_MICS,[],2));

 clean_ref_block=clean_ref_block(:,cut+1:end-cut);

 timepos=((sect_len-2*cut)*(sect-1)+1);

 clean_ref(:,timepos:timepos+(sect_len+shift_smp-2*cut)-1)=...

 clean_ref_block;

 end

 clean_ref=real(ifft(...

 fft([clean_ref zeros(num_mics,filt_len-1)],[],2).*BPF_desir,[],2));

 clean_ref=clean_ref(:,length(clean_ref)/2-(sig_len+inpad_len)/2+1:...

 length(clean_ref)/2+(sig_len+inpad_len)/2);

 clean_ref=clean_ref./...

 repmat(sqrt(mean(clean_ref.^2,2)),1,size(clean_ref,2));

 clean_refs(:,:,L_ind)=[inpad clean_ref];

end

end

for steering_vector=1:1

%STEERING VECTOR SETUP:

vs_cel=cell(length(Lv),length(band_siz_v));

for band_siz_ind=1:length(band_siz_v)

 band_siz=band_siz_v(band_siz_ind);

 num_bands=(fbin_tpL-fbin_btL+1)/band_siz;

 if mod(num_bands,1)

 error(['make sure number of bands',...

 num2str(band_siz_ind) 'comes out to be an integer'])

 end

 fv=zeros(1,num_bands);

 for f_ind=1:num_bands

 fbin_L=((fbin_btL+(f_ind-1)*band_siz)*2+band_siz-1)/2;

 fv(f_ind)=(fbin_L-1)/fft_siz*Fs;

 end

 j2pif=j2pi*fv;

 %preallocate array of steering vectors

 vs_cel{L_ind,band_siz_ind}=zeros(num_mics,num_bands);

 for L_ind=1:length(Lv)

 vs_cel{L_ind,band_siz_ind}=...

 exp((src_delays(:,L_ind)-min(src_delays(:,L_ind))) *-j2pif);

 end

end

end

for results_arrays=1:1

%OUTPUT (and auxiliary) ARRAYS PRELLACOTION

output=zeros(1,sig_len);

DIRT_ERR_RMS_blocks=zeros(num_blocks,1);

PROC_ERR_RMS_blocks=zeros(num_blocks,1);

err_decr_percs=zeros(length(Lv),length(band_siz_v),length(fg_v));

ERR_DECR_PERCs=err_decr_percs;

93

end

%%

%TEST ALL MIC ARRAYS with MVDR

for L_ind = 1:length(Lv)

 L_ind;

 %look up properly delayed clean signal

 clean=clean_refs(:,:,L_ind);

 %various setup for time domain error scores

 clean_reff=clean(4,inpad_len+1:end-inpad_len);

 dirt_err=inputs(4, inpad_len+1:end-inpad_len, L_ind);

 dirt_err_rms=sqrt(mean(dirt_err.^2));

 %various setup for frequency magnitude error scores

 dirty_REF=inputs(4,:,L_ind)+clean(4,:);

 %try different number of sub-bands

 for band_siz_ind=1:length(band_siz_v)

 band_siz=band_siz_v(band_siz_ind);

 num_bands=(fbin_tpL-fbin_btL+1)/band_siz;

 half_num_bands=fix(num_bands/2);

 %try diffent forgetting factors

 for fg_ind=1:length(fg_v)

 fg=fg_v(fg_ind);

 R_L=zeros(num_mics,num_mics,num_bands);

 wop_L=zeros(num_mics,num_bands);

 %process signal with MVDR block by block

 for block_num=1:num_blocks

 %%

 timepos=(shift_siz*(block_num-1)+1);

 dirty_block=inputs(:,timepos:timepos+fft_siz-1,L_ind);

 clean_block=clean(:,timepos:timepos+fft_siz-1);

 %convert interference block to frequency domain

 DIRTY_BLOCK0=fft(dirty_block,[],2);

 CLEAN_BLOCK=fft(clean_block,[],2);

 %add interference to clean signal

 DIRTY_BLOCK=DIRTY_BLOCK0+CLEAN_BLOCK;

 PROCESSED=DIRTY_BLOCK(4,:);

 %calculate and apply MVDR weights one sub-band at a time

 for f_ind=1:num_bands

 %%

 %define subband edges for pos. & neg. freq pairs:

 fbin_loL=fbin_btL+(f_ind-1)*band_siz;%left edge

 fbin_hiL=fbin_loL+band_siz-1;%right edge

 fbin_loR=fbin_btR-(f_ind-1)*band_siz;%-left edge

 fbin_hiR=fbin_loR-band_siz+1;%-right edge

 S_L=DIRTY_BLOCK(:,fbin_loL:fbin_hiL);

 S_R=DIRTY_BLOCK(:,fbin_loR:-1:fbin_hiR);

94

 vsL=vs_cel{L_ind,band_siz_ind}(:,f_ind);

 %covariance matrix: cov=(cov_old*forget_factor)+cov_new

 R_L(:,:,f_ind)=R_L(:,:,f_ind)*fg+...

 S_L*S_L'.*CND;

 %If update is 0, new MVDR weights computed:

 %for only half the sub-bands in one block,

 %other half in next block, and so on.

 %Otherwise, new weights are computed for all bands in

 %every block.

 if ((mod(block_num,2) && f_ind<=half_num_bands)||...

 ((~mod(block_num,2)||block_num==1)&&...

 f_ind>half_num_bands))...

 ||update

 wop_L(:,f_ind)=...

 (R_L(:,:,f_ind)\vsL) ./...

 (vsL'/R_L(:,:,f_ind)*vsL+epsi);

 end

 %weights are applied to both the pos. and neg. freq

 %subband

 WS_L=wop_L(:,f_ind)'*S_L;

 WS_R=wop_L(:,f_ind).'*S_R;

 PROCESSED([fbin_loL:fbin_hiL,...

 fbin_loR:-1:fbin_hiR]) = [WS_L WS_R];

 end

 %{

 %to plot clean, noisy and processed blocks in frequency for

 %observation, remove '{' two lines above

 plot(abs(CLEAN_BLOCK(4,:)))

 title('clean')

 pause(1)

 plot(abs(DIRTY_BLOCK0(4,:)))

 title('interf')

 pause(1)

 plot(abs(DIRTY_BLOCK(4,:)))

 title('b4')

 pause(1)

 plot(abs(PROCESSED))

 pause(1)

 %}

 processed=real(ifft(PROCESSED));

 processed=processed(fft_siz/2-(shift_siz)/2+1:...

 fft_siz/2+(shift_siz)/2);

 output(timepos:timepos+(shift_siz)-1)=processed;

 end

 %calculate time domain error score:

 proc_err_rms=sqrt(mean((output-clean_reff).^2));

 err_decr_percs(L_ind,band_siz_ind,fg_ind)=...

 (dirt_err_rms-proc_err_rms)/dirt_err_rms*100;

 %calculate frequency magnitude error score

 %(as it was observed that there are similarities

 %with time domain error score,

 %this metric was not presented in May 2012 report):

 proc_REF=[inpad(1,:) output inpad(1,:)];

95

 for block_num=1:num_blocks

 timepos=(shift_siz*(block_num-1)+1);

 CLEAN_block_ref=abs(fft(...

 clean(4,timepos:timepos+fft_siz-1).* ham_sect...

 ,100*fft_siz));

 DIRT_block_ref=abs(fft(...

 dirty_REF(timepos:timepos+fft_siz-1).* ham_sect...

 ,100*fft_siz));

 DIRT_ERR_temp=...

 CLEAN_block_ref(WHOLE_SPECTR100)-...

 DIRT_block_ref(WHOLE_SPECTR100);

 DIRT_ERR_RMS_blocks(block_num)=...

 sqrt(mean(DIRT_ERR_temp.^2));

 PROC_block_ref=abs(fft(...

 proc_REF(timepos:timepos+fft_siz-1).* ham_sect...

 ,100*fft_siz));

 PROC_ERR_temp=...

 CLEAN_block_ref(WHOLE_SPECTR100)-...

 PROC_block_ref(WHOLE_SPECTR100);

 PROC_ERR_RMS_blocks(block_num)=...

 sqrt(mean(PROC_ERR_temp.^2));

 end

 ERR_DECR_PERCs(L_ind,band_siz_ind,fg_ind)=...

 mean((DIRT_ERR_RMS_blocks-PROC_ERR_RMS_blocks)./...

 DIRT_ERR_RMS_blocks*100);

 end

 end

end

%END OF FILE

%==

96

gener_interf_old.m

%generates interference by randomly drawing chunks from crowd noise file

%(or any given audio file) for simulating interference recorded into

%a mic array

%NOTE: this file is used by non-speech signal simulation test

%such as MVDR_test_apr20.m

%By Sergei Preobrazhensky

%Inputs:

%filename - full path of audio data file from which to draw interfernce

%Fs - sampling frequency (should match that of file preferably)

%num_perm - number of interference sources which are active throughout

%entire time length of one trial

%(one trial a single profile of randomly generated interference

%see 'random_trials' input)

%num_temp - number of short term interference sources. These are active

%for only a fraction of the trial time length (specified by Lmin, Lmax

%below)

%rand_trials,sig_len - rand_trials # of interference profiles,

%each sig_len time samples long will be generated. Each of these profiles

%will contain the num_perm and num_temp type interferers.

%NOTE: interference profiles are not delayed across a microphone array

%in this function. Only random audio data is drawn, as well as random

%time positions, durations, and random spatial coordinates are chosen.

%An outside routine must take care of delaying these interference sources

%depending on microphone locations chosen

%Outputs:

%interf - cell_array of all the interference data drawn from audio file

%fft_fctrs - cell array of vectors used for delaying 'num_temp'-type

%interferers in frequency domain (must be done by outside routine).

%fft_fctr - vector used for delaying any 'num_perm'-type

%interferer in frequency domain (must be done by outside routine).

%interflocs_cel - cell array of

%randomly generated spatial location of all the interferers;

%see 'space and physical constraints' section of code below.

%strtpos - array of starting position (in time samples)

%of each 'num_temp'-type interferer in each trial;

%used by outside routine to place these interferers at the given positions

%k - maximum possible time length of one interference profile after delays;

%this is based on the maximum distance between a microphone and an

%interferer; the maximum mic_array length is assumed to be 1 m;

%the maximum distance inteference can be generated is defined in

%'space and physical constraints' section of code below.

%k = sig_len + maxsmplsdelay;

%this value is used by an outside routine for delaying purposes

%shift_smp - since the all interference sources will be delayed there will

97

%by default be silence at the beginning of an interfrence profile;

%to avoid this silence, the profile will start at sample # shift_smp

%of length k signal and will continue for sig_len samples;

%this effectively produces a window of interference

%which is length sig_len and has little to no silence at the beginning;

%this operation is done by an outside routine.

function [interf,fft_fctrs,fft_fctr,interflocs_cel,strtpos,k,shift_smp]=...

 gener_interf_old(filename,Fs,num_perm,num_temp,rand_trials,sig_len)

%hold on

num_interf=num_perm+num_temp;

%reading interference wav file

data = wavread(filename)';

LENG=length(data);

%signal sample constraints

Lmin=round(24/48*sig_len);

Lmax=round(40/48*sig_len);

%e.g. for a 2400 sample signal, temp interferer length will be chosen

%randomly to be between 50 and 1200 samples

%signal amplitude constraints

%^no longer used...

%amplLo=.25;

%amplHi=2.5;

%ampl=1;

%space and physical constraints

c=339;%speed of sound at altitude of Columbus Ohio

rmin=1.5;

rmax=15;

thetamin=-90;

thetamax=90;

%compute zero-padding to accomodate delays

distmax=rmax+.5;

maxsmplsdelay=ceil((distmax./c)*Fs);

maxsmplsdelay=maxsmplsdelay+mod(maxsmplsdelay,2);

pad=zeros(1,maxsmplsdelay);

shift_smp=round(maxsmplsdelay*.7);

k=sig_len+maxsmplsdelay;

%preallocating

interf=cell(num_interf,rand_trials);

strtpos = zeros(num_temp,rand_trials);

fft_fctrs=cell(num_temp,rand_trials);

interflocs_cel=cell(1,rand_trials);

%preparing additional auxilary vectors

fft_fctr=-2i*pi*[0:k/2 -k/2+1:-1]/k*Fs;

%populating interference array

for trial=1:rand_trials

 %random spatial locations

 interflocs = [rand(1,num_interf)*(rmax-rmin)+rmin;

 rand(1,num_interf)*(thetamax-thetamin)+thetamin];

 interflocs_cel{trial} = [interflocs(1,:).*sind(interflocs(2,:))

 interflocs(1,:).*cosd(interflocs(2,:))];

 %Easier to generate interf in polar coords to have all interference be

98

 %at least 1.5 m away from mic array center and more sparse as the distance

 %increases. Then interference locations are converted to cartesian coords

 %sind x=r*sind(theta) as theta measured from y-axis

 for i=1:num_perm

 %ampl=(rand*(amplHi-amplLo)+amplLo);

 pos=randi(LENG-sig_len+1);

 chunk=data(pos:pos+sig_len-1);

 %nonstat=ampl*chunk;

 %rms_nonstat=sqrt(mean(nonstat.^2));

 %white=0;%rms_nonstat/3*randn(1,sig_len);

 interf{i,trial}=[chunk pad];

 end

 %lin='-:+o*.xsd^v><ph';

 %cel={};

 for i=i+1:i+num_temp

 leng=randi([Lmin,Lmax]);

 leng=leng+mod(leng,2);

 padded_leng=leng+maxsmplsdelay;

 %ampl=(rand*(amplHi-amplLo)+amplLo);

 pos=randi(LENG-leng+1);

 chunk=data(pos:pos+leng-1);

 %nonstat=ampl*chunk;

 %rms_nonstat=sqrt(mean(nonstat.^2));

 %white=0;%rms_nonstat/3*randn(1,leng);

 interf{i,trial}=[chunk pad];

 strtmin=round(maxsmplsdelay*2/3);

 strtmax=sig_len-leng+1;

 strt=randi([strtmin,strtmax]);

 strtpos(i-num_perm,trial)=strt;

 fft_fctrs{i-num_perm,trial}=...

 -2i*pi*[0:(padded_leng)/2,-(padded_leng)/2+1:-1]/(padded_leng)*Fs;

 %plot(strt:strt+leng-1+length(pad),interf{i,trial},...

 %'color',rand(1,3),'linestyle',lin(i-num_perm))

 %cel{end+1}=[num2str(i-num_perm) ' ' num2str(leng)];

 end

 %legend(cel);

end

end

%%%%%%%%%%%% END OF FILE %%%%%%%%%%%%%%

99

gener_desired_noise.m

%%%%%%% gener_desired_noise.m %%%%%%%%%%%%%

%this generates desired signal from given crowd noise (or some audio) file

%By Sergei Preobrazhensky

%Inputs:

%filename - full path of audio data file from which to draw interfernce

%Fs - sampling frequency (should match that of audio file preferably)

%rand_trials,sig_len - rand_trials # of desired signal sections,

%each sig_len time samples long will be generated.

%NOTE: desired signal sections are not delayed across a microphone array

%in this function. Only random audio data is drawn.

%An outside routine must take care of delaying

%depending on the microphone locations chosen.

%Outputs:

%desired_noise - cell_array of the data drawn from crowd noise audio file

%to be used for the desired signal; each cell contains a section of desired

%signal corresponding to one trial (each such section will have an

%interference profile added to it; the interference profile is generated

%by outside routines;)

%shift_smp - since the desired signal will be delayed, there will

%by default be silence at the beginning of a desired signal section;

%to avoid this silence, the section will start at sample # shift_smp

%of the extended desired signal (extended to accomodate delays)

%and will continue for sig_len samples;

%the samples before and after will be discarded;

%this effectively produces a window of desired signal

%which is length sig_len and has little to no silence at the beginning;

%this operation is done by an outside routine.

%des_fft_fctr - cell array of vectors used for delaying

%desired signal in frequency domain (must be done by outside routine).

function [desired_noise,shift_smp,des_fft_fctr]=...

 gener_desired_noise(filename,Fs,rand_trials,sig_len)

%hold on

rng('shuffle');

%reading interference wav file

data = wavread(filename)';

LENG=length(data);

%space and physical constraints

c=339;

des_y=1;

des_x=0;

arrayLmax=1;

%compute zero-padding for delay

distmax=sqrt((des_y^2+(arrayLmax/2-des_x)^2));

maxsmplsdelay=ceil((distmax./c)*Fs*1.5);

100

shift_smp=maxsmplsdelay+mod(maxsmplsdelay,2);

pad=zeros(1,shift_smp);

k=sig_len+shift_smp;

des_fft_fctr=-2i*pi*[0:k/2 -k/2+1:-1]/k*Fs;

%preallocating

desired_noise=cell(rand_trials);

%drawing random audio from file for each trial

for trial=1:rand_trials

 chunk=0;

 for i=1:10

 pos=randi(LENG-sig_len+1);

 chunk=chunk+data(pos:pos+sig_len-1);

 end

 desired_noise{trial}=[chunk pad];

end

end

%%%%%%%%%%%% END OF FILE %%%%%%%%%%%%%%%%

101

A3.3 Prototype Perl Code

This code was drafted and briefly tested to confirm correct functionality. Read the

comments section at the beginning of the code for help. This code only converts a wave

file to text via speech recognition; no computation of the word error rate is done. Further

development is needed to automate speech recognition tests.

############## WavtoText.pl ##############

=pod

Written by Sergei Preobrazhensky, May 2012

The following perl script is a prototype for
automating key presses and mouse clicks to
run Google Speech Recognition on many wave
files. It is implied that each of these
wave files has been processed (to suppress
noise/interference) under various parameters
of the MVDR beamforming algorithm written
in MATLAB by the author. These parameters
are described in step 9.

Steps to run this script:
1. Make sure you are running 32-bit Windows, as the
 auxiliary Perl modules this script relies on are for Win-32 systems.

2. Download, install Strawberry Perl v. 12; this is a freeware perl
 interpreter available online and has the convenient cpan module
 installation support via the command line.

3. Install cpan modules.
 a. Open the Command Prompt (Start->Run->enter “cmd”
 OR: Start->enter “cmd” in search bar)
 b. Make sure you are connected to the internet.
 c. Enter “cpan Win32::GuiTest“
 d. Enter “cpan Win32:Clipboard”
 e. Enter “cd [PATH]” where the [PATH] is the full path of this file.
 You first may have to first type “[X]:” where [X] is the drive containing this file.
 f. Keep the command prompt open.

4. Make sure Windows Media Player (WMP) v. 12 or similar
 version is installed; Perl code specifically works with
 the WMP window and uses the File->Open URL command

5. Make sure G Chrome 11 with Google Speech Recognizer (GSR)
App v. 3 is installed (other versions may work). Open GSR in
a tab, and keep focus on the tab.

6. Make sure Google Speech Recognizer in unobstructed from

102

view when running Perl script; at least make sure that the
“microphone” button and text box are completely unobstructed
 for automated mouse clicks.

7. WMP can be minimized or on the screen. There are no mouse
 clicks involved with WMP

8. The wave file path/name convention in this script is:
C:\Speech\Male1out_L-#_rms-#_bands-#_fg-#hifi.wav where each
“#” stands for the parameter value using which the chosen
wave was created. Make sure you have all the wave files
located at this path prior to running script. The path
and naming conventions can be modified below.
a. It is assumed that wave files are 15 s or less, or
the timing will not work, unless you change SLEEP_SECS
to a higher value.

9. Modify the constant declarations of parameters correspond
to what parameters the wave files are and algorithm below as
needed. A wave for each of the possible parameter choice
combinations must be accessible.
 a. LEN_A is array of lengths of microphone array
 b. RMS_A is the array of interference to signal ratios
 (RMS of interference when RMS of signal is 1).
 c. BANDS_A is the array of numbers of sub-bands
 (144/band_size for 300-3400 Hz; for 150-6350 Hz,
 num_bands=2*288/band_size will be automatically
 computed).
 d. FG_A is the array of forgetting factors
 e. HIFI_A is the array indicating a ‘hifi’ extended
 150-6350 Hz bandwidth or ‘’ (empty string) for a
 300-3400 Hz bandwidth. A wave file for each of these
 cases must exist. Note that if only ‘hifi’ is used,
 the line “my $hifi_ind=#;” must have 1 in place of “#”;
 if both ‘’ and ‘hifi’ are used (declared in HIFI_A in
 that order), the said “#” must be 0;

10. Make sure that you are still connected to the internet.
Enter “perl wavtotext.pl” in command prompt to run Script,
and follow the two setup instructions. Move the command
prompt window as needed not to obstruct GSR. Do not click
with the mouse; only point and press enter; the command
prompt window must be active when you press enter.

11. Do not use the PC while the script is running. If you
 must stop the script, click on the command prompt window
 and press Ctrl+C. You may be interrupted by automated
 mouse clicks or key strokes, so try until you succeed.
 The best time to interrupt is while the audio is playing
 in WMP. It takes approximately half a minute or so per
 to convert one wave file to text so you may want to split
 the work into reasonable sections if you have many files
 to convert.

12. The output text file with resulting strings of speech
is saved in C:\recog_text given the name which corresponds
 to the date and time of start of script execution. In the
 file each string of speech is written under a line that
 details the parameters of the wave file used.
=cut

use strict;

103

use warnings;
use 5.010;
use Win32::GuiTest qw(FindWindowLike SetForegroundWindow
 GetCursorPos MouseMoveAbsPix SendLButtonDown
 SendLButtonUp SendKeys);
use Win32::Clipboard;

#modify file path and format as needed:
use constant PATH_S => 'C:\\speech\\';
use constant PATH2_S => 'C:\\recog_text\\';
use constant PREF_S => 'Male1out';
use constant SUFF_S => '.wav';
use constant SEP1_S => '_';
use constant SEP2_S => '-';

#modify setup parameters as needed:
use constant SLEEP_SECS => 20;
use constant NUM_TRIALS => 1;

#modify speech processing parameter values as needed:
use constant LEN_A => (.8);
use constant RMS_A => (2);
use constant BANDS_A => (9, 12, 18, 36);
use constant FG_A => (.95, .97, .98, .99, .995, .999);
use constant HIFI_A => ('hifi');

sub Setup(); #asks user to indicate two cursor positions for clicking in
 #GSR window. returns two pairs of coordinates.
sub WavText($); #plays audio file at input address, returns recognized text
sub TimeStamp();#returns date+time in format acceptable for folder name

my ($x1, $y1, $x2, $y2) = Setup();
my $loctime=TimeStamp();
my $num_bands;

#run speech recognition on audio files with all given parameter combos
foreach my $len (LEN_A){

 foreach my $rms (RMS_A){

 foreach my $bands (BANDS_A){

 foreach my $fg (FG_A){
 my $hifi_ind=1;

 foreach my $hifi (HIFI_A){
 $hifi_ind++;
 $num_bands=($bands * $hifi_ind);
 my $file_addr=
 PATH_S.PREF_S.
 SEP1_S.'L'.SEP2_S.$len.
 SEP1_S.'rms'.SEP2_S.$rms.
 SEP1_S.'bands'.SEP2_S.$num_bands.
 SEP1_S.'fg'.SEP2_S.$fg.
 $hifi.SUFF_S;
 my $band_siz= 144/$bands;
 open my $fh, '>>', PATH2_S.$loctime.'--'.PREF_S.'.txt';
 say $fh "L=$len rms=$rms bandsize=$band_siz ".
 "forget=$fg $hifi";
 say $fh "\n";
 close $fh;

104

 for (my $trial=1; $trial<=NUM_TRIALS; $trial++){

 my $text = WavText($file_addr);
 open $fh, '>>', PATH2_S.$loctime.'--'.PREF_S.'.txt';
 say $fh $text."\n";
 close $fh;
 }
 open $fh, '>>', PATH2_S.$loctime.'--'.PREF_S.'.txt';
 say $fh '';
 close $fh;
 }
 }
 }
 }
}

sub WavText($){
 my ($window)=FindWindowLike(0, 'Windows Media Player');
 SetForegroundWindow($window);#focus on Windows Media Player
 SendKeys("%fu".$_[0]);#enter address into File -> Open URL...

 SendKeys("~");

 ($window)=FindWindowLike(0, 'Speech Recognizer - Google Chrome');
 SetForegroundWindow($window);#focus on Speech Recognizer

 MouseMoveAbsPix($x1,$y1);
 SendLButtonDown();
 SendLButtonUp(); #click speech recognition button

 sleep(SLEEP_SECS); #wait for speech recogntion to generate text

 MouseMoveAbsPix($x2,$y2);
 SendLButtonDown();
 SendLButtonUp(); #click field of recognized text

 SendKeys("{END}");
 SendKeys("{SPACE}");
 SendKeys("^a");
 SendKeys("^x"); #cut text

 return my $text = Win32::Clipboard::GetText();
}

sub Setup(){
 say 'Move cursor to speech recognition button, enter when ready';
 my $a=<STDIN>;
 my ($x1,$y1) = GetCursorPos();
 say 'Move cursor to left inner edge of recognized speech text field, enter when ready';
 $a=<STDIN>;
 my ($x2,$y2) = GetCursorPos();
 return($x1,$y1,$x2,$y2);
}

sub TimeStamp(){
 my $loctime = scalar localtime();
 $loctime = join ('_', split (':', $loctime));
 return $loctime = join ('-', split (' ', $loctime));
}

############## end of file ########################

