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ABSTRACT 

This paper proposes an open-source algorithm for simulation optimization. The intent is to permit many who use a variety of 
simulation software codes to be able to apply the proposed methods using an MS Excel-Visual Basic interface. First, I will 
begin by discussing simulation optimization and its usefulness. I will then discuss different methods that are commonly used 
for simulation optimization. Next, I will present the proposed Population Indifference Zone (PIZ) algorithm and related soft-
ware code. I will discuss the properties of the proposed method and present the code that runs the Visual Basic program. I 
will then discuss the functionality of the Population Indifference Zone method with examples of problems to which it might 
be applied. I conclude with a description of topics for future research. 

1 INTRODUCTION 

Discrete event simulation continues to grow in popularity presumably because it helps increase profitability through the 
avoidance of problems in business expansion and manufacturing. Simulation allows for the testing of how system parameters 
(factors) impact system performance (responses) without costly and time consuming testing on the actual systems. Simulation 
optimization is the systematic search for factor settings that derive the most desirable expected response values. Interest in 
simulation optimization also continues to grow perhaps because increasing computer power makes solving large simulation 
optimization problems computationally feasible (Zhao and Sen 2006). 
 More generally, after a simulation code has been built and validated, it is then studied to provide decision-support. These 
phases are often called �output analysis� and generally involve some form of optimization (Fu, Glover, and April 2005). As a 
motivating example, consider a problem at a major automotive manufacturer that is evaluating alternative policies for running 
a major production line. Examples of factors in the simulation optimization study include work-in-process management pol-
icy (off or on), the conveyor speed at the wash substation, and the transfer time for units at a major substation. By varying 
these factor settings, a large number of alternative systems are developed and studied using the simulation codes. Because 
each evaluation is noisy, there is generally a concern about how many replicates of each run should be used to gain useful in-
formation and (hopefully) derive the optimal system or combination of factor settings. 
 Simulation optimization methods can be divided into two types: (1) problem specific and (2) generic or �black box� me-
thods (Zhao and Sen 2006). The problem specific methods usually require less time to find the a solution, but are generally 
more difficult to apply in simulation optimization because they require the attention of expert operations researchers. Some-
times problem generic methods can be relatively inefficient because they involve comparison of solutions that give very simi-
lar average response values. Such comparisons are computationally costly particularly when each simulation takes a long 
time (Fu, Chen, and Shi 2008). On the other hand, black box methods can be applied to many types of problems and can be 
used by anyone with limited knowledge of simulation.  
 Black box methods can further be divided into methods based on constant sample sizes and systemically varying sample 
sizes. There are multiple types of black box methods including tabu searches, scatter searches, and genetic algorithms. In the 
context of constant sample size methods, tabu searches and scatter searches have been established as the most effective ac-
cording to many authors (Fu, Glover, and April 2005). The other simulation optimization methods being employed and stud-
ied are ranking and selection, response surface methodology, gradient-based procedures, stochastic approximation, random 
search, and sample path optimization (Fu, Glover, and April 2005; Fu, Chen, and Shi 2008). 
 For the variable sample size, black box methods, the computational dominance of black box and scatter search methods 
is less well established. Here, we focus on hybrid technology that involves a population search method (like a genetic algo-
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rith) combined with selection and ranking methods. Therefore, this paper follows up on the essential insights in Boesel, Nel-
son, and Ishii (2003). However, the methods here have rigorous properties building on mathematical results in Zheng and Al-
len (2007). 
 Many commercial codes support optimization using simulation through either full factorial experimental designs or 
through deterministic heuristics applied to simulation optimization. In either case, these methods historically tended to use 
constant numbers of samples for each solution being evaluated at each iteration in the method. However, recently most of the 
main simulation software, such as Arena, AnyLogic, ProModel and its affiliated software, FlexSim, and SIMUL8 use Op-
tQuest as the optimizer for their simulations (Simulation Software Survey; Arena Comparison Statement; Fu, Glover, and 
April 2005, OptQuest). OptQuest is a �general-purpose optimizer� which runs a complicated metaheuristic using a variable 
sample size scatter search and tabu search to find optimal solutions (Laguna 1997; Fu, Glover, and April 2005). The method 
of ranking and selection has become increasingly studied and applied in order to come to conclusions on the goodness of a 
solution (Fu, Chen, and Shi 2008). 
  It is likely that OptQuest offers greater computational efficiency than the methods here as well as better integration with 
existing software packages. However, we are not aware of any rigorous properties related to convergence or other associated 
with OptQuest. The intent here is to offer open-source code for a method with likely reasonable performance that is associ-
ated with rigorous convergence properties. Therefore, the proposed method can be viewed as a springboard for more efficient 
methods. Also, for cases in which integration with OptQuest or its cost are prohibited, the proposed methods may fill a useful 
gap.  

Section 2 proposes the population indifference zone (PIZ) method. In Section 3, rigorous properties of the PIZ method 
are established building on results in Zheng and Allen (2007). Section 4 describes details related to implementing the code 
which can be downloaded from the web. Problems that can be used to compare the proposed method with alternatives are de-
scribed in Section 5. Section 6 closes with a brief discussion and description of opportunities for future research. 

2 THE POPULATION INDIFFERENCE ZONE (PIZ) METHOD 

In this section, the population indifference zone (PIZ) method is proposed. The method includes three sub-phases: the forma-
tion of the solutions to be evaluate (e.g., creation of a new population in a genetic algorithm), the preliminary evaluation of of 
those solutions using subset selection, and the follow-up evaluation of solutions (if necessary) using an indifference zone 
procedure.  
 The specific problem that this paper is aimed at solving is:  minimize E(y(xi) + ε).  
 Subset selection (steps 2-5) is described in Goldsman, Nelson, Opicka, and Pritsker (1999). That procedures and those 
steps achieve a subset having a probability greater than P* of containing a solution with mean or expected value within δ(1) of 
the optimal or best system solution. The indifference parameter, δ(1), can be set to zero, but generally fewer systems will be 
eliminated. Let k denote the number of alternative systems being compared. Assume we want to find a subset containing a 
system with mean within δ(1) of the smallest, i.e., we are minimizing.  
 The indifference zone method is then used (steps 6-9) which is a two-stage selection from Sullivan and Wilson(1989). 
The sub-procedure starts with a set of k alternative systems and terminate with a subset of m, where the method user picks m. 
The user picks m together with the indifference parameter δ2 and the lower bound on the quality probability P*. For example, 
one might start with k = 100 systems and plan to end with 10 systems with one having a mean within δ(2) = 3.0 of the true 
best mean from the original 100 with probability P* = 0.95. The procedure is based on pre-tabulated Rinott�s constants, de-
noted here as h = Rinottk,m,n0,P*. Rinott (1978) was probably the first to tabulate these constants.   
 
Population Indifference Zone (PIZ) Method 

Step 1. (Initialization) Create k system alternatives by sampling uniformly from the decision-space. 

Step 2.  Evaluate all systems using n0 samples, which are generally batch sample average values. Denote the resulting values 
Xi,j, with i = 1,�,k referring to the system and j = 1,�,n0 referring to the sample. 

Step 3.  Calculate the sample means or Monte Carlo estimates, Xbar,i, for each system i = 1,�,k. Denote the index for the sys-
tem with the best mean as �b�. 

Step 4.  Next, we examine the differences between the samples from each system paired with the samples from system b. 
Compute the standard deviations of the differences using: 

S2
i,j = {Σj=1,�,n0 [Xi,j � Xb,j � (Xi,bar � Xb,bar)]2}/(n0 � 1)                                                              (2.1) 

and 
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Wi,b = (tν,n0� 1)(Si,b)/[(n0)½]                                                                                             (2.2) 

with 

ν = 1 � (P*)[1/(k � 1)]                                                                                              (2.3) 

and where �t� is a critical value for the t-distribution with α = ν and n0 � 1 degrees of freedom .  
Step 5. Form the subset by including only the systems with means satisfying: 

 (Xi,bar� Xb,bar) ≤ maximum(Wi,b � δ(1), 0.0)                                                                              (2.4) 

where the �maximum� implies taking the larger value which could be 0.0. If the subset contains less than 10% of the 
generation skip to step 10. 

Note that the above method with δ = 0 is essentially creating single sample differences of each subsystem and the appar-
ently best system. The approach essentially creates these difference and t-tests whether the differences are statistically 
significant. With δ = 0, the previous steps are guaranteed to keep the best solution with probability greater than P*. 

Step 6. (First stage, optional because we can reuse the Step 2 evaluations) Evaluate all systems with n0 samples. These are 
generally batch means with typical initial values equal to n0 = 10 or n0 = 20. Fewer samples are generally needed if 
the batches are large. Calculate the sample means, Xi,bar, and sample standard deviations, Si, for all system responses. 

Step 7. Calculate the total number of samples first stage plus follow-up for each system using: 

ni = maximum{n0 + 1, roundup[(h)2 (Si) 2 /(δ(2))2]}.                                                                           (2.5) 

Step 8.  (Second stage) Perform the additional ni runs and then calculate the means of these second stage runs, Xbar,i
(2). De-

note the index for the system with the best mean as �b�. 
Step 9.  Using the first stage standard deviations, Si, calculate: 
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and keep m subsystems with among these with the smallest Wi Xi,bar + (1 � Wi)Xi,bar
(2) values. 

The above procedure (Steps 6-9) is essentially the same as the Koenig and Law (1985) procedure. 
Step 10.  (Termination) Is any of our solutions good enough? If yes, stop, otherwise continue. Or if stopping rule has been 

reached, stop, otherwise continue.   
Step 11. (Form the next population) Copy the 10% highest ranked solutions into the next population. If the subset selection 

eliminated 90% or more solutions, the ones left are the elitist subset. Otherwise, they are the subset from the indifference 
zone procedure. Fill in 80% of the total generation by selecting two systems at random, then for each variable in the sys-
tem select a random number from 0 to 1. If the number is greater than .8 switch the level of the selected variable of the 
two systems. Repeat this for each variable. Fill the remaining 10%, or slightly more depending on the results of the sub-
set selection, solutions with uniform random selections from the decision-space. 

  Willcox (1984) presents tables for Rinott�s constants including those in Table 2-1. Use the condensed table below to 
select the appropriate Rinott�s constant h. The is for use when population size k is equal to 10 and where l is the number 
of solutions in the subset. When we use 100 solutions in the population ad n0 equal to 10 the bound on h is 3.3. We will 
use this as an approximation in this code because we do not currently have a proper lookup function to find all possible 
Rinott�s constants.  

 
 

Table 2-1. Rinott�s constant values for population of size 10 where �l� is the # of solutions not eliminated in subset selection. 

k 10 
n0 5 
P* .95 
l h 
2 3.107 
3 3.908 
4 4.390 
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5 4.746 
6 5.025 
7 5.260 
8 5.463 
9 5.641 
10 5.799 

     
 
         The above method can be used very generally as long as solutions can be sampled uniformly from the solution space. It 
essentially draws from the huge space of solutions batches and then compares the batches efficiently using selection and 
ranking methods. In the next section, some of the rigorous properties of the PIZ method are established. 
         The presented PISA method is only a framework in the sense that virtually any method could be used to fill the popula-
tion including tabu and scatter search methods. The only step that would be modified would be Step 11 to the specifications 
of the method chosen to fill the population. 

3 METHOD PROPERTIES 

There are multiple desirable properties of the PIZ method. The first is that it is a black box method in  the way that it is rela-
tively simple and can be applied to virtually all simulation optimization problems as long as one can sample uniformly from 
the search space. The second property is that it offers some potential advantage in computational efficiency compared with 
constant sample size methods. This follows because poor quality solutions are usually removed from consideration in Step 5. 
This way, these solutions do not waste valuable CPU run time during the relatively exhaustive indifference zone-based 
evaluations in Step 8.  
 In addition, the PIZ method is associated with some rigorous claims about the solution quality as we next establish. This 
is not true for other methods of similar type including the genetic algorithm-based methods in Aizawa and Wah (1994) and 
Bernshteyn (2001). The makes it, perhaps a strong platform for additional method development.  
 The first rigorous claim is described in Theorem 1. 
Theorem 1. Assume that there are N normal populations in the search space (N is generally very large). After M iterations, 
the PIZ method will retain at least one solution with objective value within (M×δ) of the best solution evaluated with prob-
ability greater than (P*)2M. 
Proof. In the subset selection steps, we keep the best solution with probability greater than P*. In the indifference zone steps 
we keep a solution within δ of the best with probability greater than P*. Therefore, in each complete iteration we keep a solu-
tion within δ of the best with probability greater than (P*)2. This follows because of independence of the two positive events, 
i.e., keep the best and then keep a solution within δ of the best. The next iteration, there might an additional loss of δ. There-
fore, after M iterations the loss is guaranteed to be less than (M×δ) with probability greater than (P*)2M. 

 
 Zheng and Allen (2007) describes the changing of both the δ and the P* in each population as the algorithm iterates. 
They do this to provided long run guarantees based on essentially Theorem 1. Examples of schedules offering long run guar-
antees are in equations (3.1), (3.2), (3.3), and (3.4). If at each iteration one has the probability of greater than Pt, to keep the 
solution with an objective value within δt of the real best solution in generation t, then: 
 
                                                                             ,  and                                                                                     (3.1) 

                                                                                                                           (3.2) 

Using the above equations one can calculate δt and Pt for each generation t using the final ∆ and Pt chosen by the user. 
These equations are presented below where , o, u, and s are predetermined parameters where 0 <  s < 1, o < u < 1 and 0 <  
< 1. 
                                                                                                                                                                      (3.3) 

                                                                                                                                                                   (3.4) 

 
 Applying a schedule to dt and pt can generate long run convergence to within d of global optimum with probability P*. 
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4 CODE DETAILS 

The appendix contains the open-source code for simulation optimization.  

4.1  Code explanation 

The MS Excel-Visual Basic code uses a user-form to receive information from the user like number of variables, generation 
size, and total generations. The code itself breaks down into 6 main sections: setup, mapping, subset selection, indifference 
zone, cross-over, and output. In the setup basic computer programming techniques are applied: variables are named and their 
data type defined, arrays are dimensioned, and some variable values are set. The mapping section, which could possibly pre-
sent the most challenging issue when trying to solve some problems, selects random variables from a uniform (0,1) distribu-
tion and maps them to the decision-space, which for the A4 function described in section 5.1 and used in this code is             
(-1.28, 1.28). The function used to do this is    =1.28  2.56[N(0,1)]. It is irrelevant that   will always be negative because 

is always positive.  
In general, the code uses many for loops and arrays to store the information needed. In the subset selection section the 

objective value of each iteration of each system is calculated to then find . Application.Worksheetfunction.Small is used 
to find the smallest objective value . Before the systems are selected the code finds the number that will be selected so 
that an array Copyover() can be dimensioned properly. Once the subset is selected it moves on to the indifference zone. First 
it checks to see if Copyover() has more than 10% of the original population in it. If it does it proceeds. The indifference zone 
is rather similar to the subset selection section, but with slightly different computations. The major difference is that in the 
indifference zone section some systems require more samples than others. To account for this we found the largest new sam-
ple size required. The array was then dimensioned with that n, and each system requires a reference to its new sample size. 

The cross-over section begins by selecting the systems at random with uniform probabilities of being chosen by using 
Application.Worksheetfunction.Ceiling[GenerationSize * Rnd() 1]. This selects a system 1 through the total number in the 
generation to be one of the parents. We use four new arrays called FirstParent(), SecondParent(), FirstChild(), and Second-
Child(). Once the parents are selected a random number (0,1) is picked. If the number is greater than .8 the value for the vari-
able in FirstParent() is assigned to the value for the variable in SecondChild() and vice versa. If the number is less than .8 the 
value for the variable in FirstParent() is assigned to the value of the variable in FirstChild(). The code uses the basic 
Cells(R,C) command to output the value of the variables from the selected system. 

4.2 Adapting the code 

If one were interested in adapting the code to another function, all that would be necessary is to change the mapping section 
of the code. This is where the A4 function is located in the code. The comment in the code says, �Runs the A4 problem as a 
simulation.� Filling the population could be changed as well, but would take more effort. All that needs to be done is change 
out the cross-over section and write code for tabu search or scatter search or your favorite search method. 

5 NUMERICAL EXAMPLES 

In this section, problems are described that can be used to evaluate the PIZ method and compare its computational perform-
ance with alternatives. These include the A4 function and the noisy Rastrigin function. 

5.1 A4 function 

Aizawa and Wah (1994) and Bernshteyn (2001) use a test function called the A4 function. This function is built into the code 
described in the appendix. This test function involves the random variable  which is N(0,1) and can be written: 
 

                                                                                      (5.1) 

where typically k = 30 dimensions and -1.28 <   < 1.28. This equation can be studied for different values of A from 1 to 64, 
do 10 replicates of the whole procedure. 
        The PIZ method was tested with the A4 function. The results are shown in Table 5-1 and graphical representations are 
shown in Figures 5.1 � 5.5. The solution strength was measured by evaluating the A4 function without noise. Y-Bar is the 
average of four of these replicates. After seeing these results one can be confident in saying that the PIZ method is superior to 
constant sample size, especially for more variables (10) in a smaller population (10). It is also clear everything, but sigma had 
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a major impact on the average objective value; however, if sigma were varied more than just 1 there would probably have 
been a larger impact. We can say this just from experience while debugging the code. This would be another issue to address 
in the future. The total number of simulations run had a smaller effect than the other factors. 
 

Table 5-1. Results of PIZ Method Testing on A4 Function. 
 

A 
Num 
of Var n0 

Generation 
Size 

# of Function 
evals.  Y_Bar S 

2 3 5 10 1000 0.1789 0.3024 
2 3 5 10 10000 0.6371 0.4811 
2 10 5 10 1000 5.3653 3.6542 
2 10 5 10 10000 3.3782 1.8258 
2 3 10 100 1000 0.0094 0.0071 
2 3 10 100 10000 0.0141 0.0154 
2 10 10 100 1000 4.2584 1.0010 
2 10 10 100 10000 1.4863 1.0503 
1 3 5 10 1000 0.1424 0.1677 
1 3 5 10 10000 0.1919 0.1978 
1 10 5 10 1000 6.3125 1.5192 
1 10 5 10 10000 1.5610 0.7929 
1 3 10 100 1000 0.0171 0.0181 
1 3 10 100 10000 0.0054 0.0055 
1 10 10 100 1000 3.8757 1.2707 
1 10 10 100 10000 1.4220 0.6787 
2 3 20 10 1000 1.2510 1.1176 
2 3 20 10 10000 0.1972 0.2159 
2 10 20 10 1000 16.0049 8.0635 
2 10 20 10 10000 14.6057 4.2168 
2 3 20 100 1000 0.0108 0.0097 
2 3 20 100 10000 0.0245 0.0153 
2 10 20 100 1000 3.5343 2.4640 
2 10 20 100 10000 3.1535 0.8398 
1 3 20 10 1000 0.5005 0.5932 
1 3 20 10 10000 0.8665 0.9407 
1 10 20 10 1000 17.2263 6.2762 
1 10 20 10 10000 13.3052 6.0228 
1 3 20 100 1000 0.0476 0.0396 
1 3 20 100 10000 0.0201 0.0352 
1 10 20 100 1000 5.0307 2.4679 
1 10 20 100 10000 3.4815 1.8323 
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Figure 5.1. A graph of solution strength comparing the PIZ method and constant sample size. 
 

 
Figure 5.2. A graph of sample standard deviation comparing the PIZ method and constant sample size. 
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Figure 5.3. Box plot of the average objective value (solution strength) of constant sample size and PIZ. 
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Figure 5.4. Main effects plot for the average objective value (solution strength). 
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5.2 Rastrigin function 

Aizawa and Wah (1994) present another test function. The Rastrigin function involves the same random variable ε as de-
scribed above, but now -5.12 <   < 5.12. This function will soon be used to test the robustness of the PIZ method. 
 

                                                                                   (5.2) 

6 DISCUSSION 

This thesis has proposed an algorithm for simulation optimization called the population indifference zone (PIZ) method. It is 
called an algorithm because it is associated with rigorous convergence guarantees as described in section 3. Perhaps more 
importantly, it is available with open-source in a Visual Basic implementation. There are, however, a number of opportunities 
for future research. 

First, the PIZ method can be compared computationally with constant sample size and other alternatives using the func-
tions in Section 5. Such results can establish the benefits of using the method in practice. As for now it is clear that that PIZ 
method is superior to the constant sample size method. The robustness of the PIZ method is still in question and will soon be 
tested with the Rastrigin function. Second, a download site for the code can be established to facilitate others benefiting from 
the code. Third, an example of using SHELL of other visual basic commands to control an actual simulation code executable 
can be developed. This will help engineers at major companies benefit from simulation optimization even in cases in which 
connection with OptQuest is difficult or impossible. 

Finally, the application of PIZ to a real problem could illustrate the method and its practical benefits. This could be done 
in an integrated method together with other visual basic capabilities at a major manufacturer. 
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APPENDIX 

    Option Explicit 
    Option Base 1 
____________________________________________________________________________ 
Private Sub DisplayMatrix_Click() 
    DisplayMatrix = True 
End Sub 
____________________________________________________________________________ 
 
   
Private Sub GeneticAlgorithm_Click()                        ' Runs Program When Userform is clicked 
 
Application.ScreenUpdating = False                           ''''''''''''''''Turns off screen updating 
 
Dim i As Integer, j As Integer, k As Integer, m As Integer, n As Integer, q As Integer, p As Integer, z As Integer 
Dim NumOfVariables As Long, TwoTimesNumOfVariables As Long, ThreeTimesNumOfVariables As Long 
Dim arrMyArray() As Double, ObjectiveArray() As Double, NewBigArray() As Double, OptimumArray() As Double, 

SwitchingValueArray() As Double 
Dim GenerationSize As Double, Generation As Long, SwitchingValue As Double 
Dim TenthLarge As Double, TenthSmall As Double, TenthLargest As Double, TenthSmallest As Double, Small As 

Double 
Dim FirstParentRand As Double, SecondParentRand As Double, FirstParent() As Double, SecondParent() As Double, 

Child() As Double, SecondChild() As Double 
Dim TotalGenerations As Long, SimulationRunCounter As Long 
Dim Percent As Double, Indif As Integer, SolutionQuality() As Double 
Dim new_n() As Long, n0 As Integer, t As Long, b As Long, delta2 As Double, delta1 As Double 
Dim XBar As Double, StandardDeviations2 As Double, StandardDeviations As Double 
Dim SubsetWeight As Double, Nu As Double, TValue As Double, BestSubsetWeight As Double 
Dim CopyOver() As Double, w As Long, s As Long, largestn As Long, u As Long 
Dim IndifSubsetWeight() As Double, CopyOver2() As Double, ConstantCopyOver() As Double 
Dim IndifSubsetWeightDiff() As Double, CopyOverCounter() As Boolean 
Dim IndifSubsetWeight1() As Double, r As Long, ExitLoop As Double, ExitLoop2 As Double 
Dim CopyOverCounter2() As Boolean, OptimumSetingsArray() As Double, NewOptimumSetingsArray() As Double 
Dim Rinott As Double, epsilon As Double, Best As Long, FinalVariablesArray() As Double 
 
 
 
NumOfVariables = CDbl(NumberOfVariables)                                    'Reads in Variables from userform 
TwoTimesNumOfVariables = NumOfVariables * 2 
ThreeTimesNumOfVariables = NumOfVariables * 3 
GenerationSize = CDbl(GenSize) 
TotalGenerations = CDbl(TotGen) 
Percent = CDbl(Perc) 
Randomize 
 
ReDim arrMyArray(GenerationSize, TwoTimesNumOfVariables + 1)                'Dimensions Arrays with information 

from userform 
ReDim ObjectiveArray(GenerationSize) 
ReDim NewBigArray(GenerationSize, TwoTimesNumOfVariables + 1) 
ReDim OptimumArray(TotalGenerations) 
ReDim SwitchingValueArray(NumOfVariables) 
ReDim FirstParent(NumOfVariables) 
ReDim SecondParent(NumOfVariables) 
ReDim FirstChild(TwoTimesNumOfVariables + 1) 
ReDim SecondChild(TwoTimesNumOfVariables + 1) 
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ReDim SolutionQuality(GenerationSize) 
ReDim arrMyArray(GenerationSize, (NumOfVariables * (n0 + 1) + n0 + 3)) 
ReDim new_n(GenerationSize) 
ReDim NewBigArray(GenerationSize, (NumOfVariables * (n0 + 1) + n0 + 3)) 
ReDim CopyOverCounter(GenerationSize) 
ReDim CopyOverCounter2(GenerationSize) 
ReDim OptimumSettingsArray(TotalGenerations, NumOfVariables) 
ReDim FinalVariablesArray(GenerationSize, NumOfVariables) 
ReDim ConstantCopyOver(GenerationSize, NumOfVariables) 
 
SimulationRunCounter = 0                            ' Counts the total number of simulation that were run would that would be 

run 
'DisplayMatrix = True                               ''''''''' Sets value as true to display for when debugging 
UserForm1.Hide                                      'closes the userform 
If RunWithErrors = False Then 
 
 
Else 
 
 
'DisplayMatrix = True                               ''''''''' Sets value as true to display for when debugging 
 
n0 = 10                                                                  ' Sets the values of other variables 
Rinott = 3.3                                                            ' May add to userform 
delta1 = 0 
delta2 = 1                                                              ' Need function or table for rinott's constant 
epsilon = 2 
 
Indif = 22 
Generation = 1 
 
Do Until Generation > TotalGenerations 'Or SimulationRunCounter > 100000                                 ' Will run program un-

til the total number of generations is completed 
    ReDim ObjectiveArray(GenerationSize) 
 
    For k = 1 To GenerationSize                                            ' Fills in the entire first generation with uniform random num-

bers 
            If Generation = 1 Then                                         ' from the sample space. In this case (0,1) 
                For i = 1 To NumOfVariables 
                    arrMyArray(k, i) = Rnd() 
                    If DisplayMatrix = True Then 
                        Cells(k, i) = arrMyArray(k, i)            ''''' Will display the array if necessary 
                    End If 
                Next i 
            Else 
                If k > GenerationSize - Percent * GenerationSize Or (k > z And k <= Percent * GenerationSize) Then 
                    For i = 1 To NumOfVariables                            ''' Same as above but only for the mutants of the GA 
                        arrMyArray(k, i) = Rnd() 
                        If DisplayMatrix = True Then 
                            Cells(k, i) = arrMyArray(k, i) 
                        End If 
                    Next i 
                End If 
            End If 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
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'''''''''''''''''''''''''''''''''''''''''''''''''''''''''Begin Subset Selection'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
        XBar = 0 
        For t = 1 To n0 
            SimulationRunCounter = SimulationRunCounter + 1          '''' counts the number of simulation runs over the 

whole algorithm 
            If SimulationRunCounter > 1000 Then 
                For ExitLoop = 1 To GenerationSize 
                    For ExitLoop2 = 1 To NumOfVariables 
                        FinalVariablesArray(ExitLoop, ExitLoop2) = arrMyArray(ExitLoop, ExitLoop2) 
                    Next ExitLoop2 
                Next ExitLoop 
                Exit Do 
            End If 
                            
            For i = NumOfVariables + 1 To TwoTimesNumOfVariables            '''' Runs the A4 problem as a simulation 
                arrMyArray(k, i + (t - 1) * NumOfVariables) = ((i - NumOfVariables) * ((1.28 - 2.56 * arrMyArray(k, i - Nu-

mOfVariables)) ^ 4)) 
                     
                If DisplayMatrix = True Then 
                    Cells(k, i + (t - 1) * NumOfVariables) = arrMyArray(k, i + (t - 1) * NumOfVariables)         ''''' Will display 

the array if necessary 
                End If 
            Next i 
             
            arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) = 0 
            For j = 1 To NumOfVariables                                                                     ' calculates the objective vlue of each 
                arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) = arrMyArray(k, ((n0 + 1) * _ 
                NumOfVariables) + t) + arrMyArray(k, j + (t * NumOfVariables))                              ' and begins calculating 

X-bar for each solution 
            Next j 
             
            arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) = arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) + epsilon * 

WorksheetFunction.NormInv(Rnd(), 0, 1) 
            XBar = XBar + arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) 
             
            If DisplayMatrix = True Then 
                Cells(k, ((n0 + 1) * NumOfVariables) + t) = arrMyArray(k, ((n0 + 1) * NumOfVariables) + t)         ''''' Will 

display the array if necessary 
            End If 
        Next t 
         
        XBar = XBar / n0                                                                                           'calculates true value of X-bar 
        arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) = XBar 
         
        If DisplayMatrix = True Then 
            Cells(k, (NumOfVariables * (n0 + 1) + n0 + 1)) = arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) 
        End If 
     
    ObjectiveArray(k) = arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1))                                     ''' Puts the objective 

values (x-bar) in an array 
    Next k 
 
    TenthLarge = Application.WorksheetFunction.Large(ObjectiveArray, Percent * GenerationSize)                  ''''' Finds 

the tenth largest objective value 
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    TenthSmall = Application.WorksheetFunction.Small(ObjectiveArray, Percent * GenerationSize)                  ''''' Finds 

the tenth smallest objective value 
    Small = Application.WorksheetFunction.Small(ObjectiveArray, 1)                                              ''''' Finds lowest objec-

tive value 
 
    For k = 1 To GenerationSize 
        If arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) = Small Then                         '''' finds the solution with the 

losest objective value 
            Best = k 
            k = k + GenerationSize 
        End If 
    Next k 
     
     
     
    StandardDeviations2 = 0 
     
    For k = 1 To GenerationSize 
        For t = 1 To n0                                                                     ''''' calculates the standard deviation of each system 
            StandardDeviations2 = StandardDeviations2 + _ 
            (arrMyArray(k, NumOfVariables * (n0 + 1) + t) - arrMyArray(Best, NumOfVariables * (n0 + 1) + t) - _ 
            (arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 1) - arrMyArray(Best, NumOfVariables * (n0 + 1) + n0 + 1))) 

^ 2 
        Next t 
        StandardDeviations2 = StandardDeviations2 / (n0 - 1) 
        StandardDeviations = Sqr(StandardDeviations2) 
        arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 2) = StandardDeviations 
        If DisplayMatrix = True Then 
            Cells(k, NumOfVariables * (n0 + 1) + n0 + 2) = StandardDeviations 
        End If 
    Next k 
    w = 1 
    If PIZButton = True Then 
        For k = 1 To GenerationSize 
            If ObjectiveArray(k) <= TenthSmall Then 
                For i = 1 To NumOfVariables 
                    ConstantCopyOver(w, i) = arrMyArray(k, i) 
                Next i 
                w = w + 1 
            End If 
        Next k 
    Else 
'''''''''''''''''''''Weighting''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Nu = 1 - (0.95 ^ (1 / (GenerationSize - 1)))                                              ''''''''''' Calculated nu for finding t-value 
    TValue = Application.WorksheetFunction.TInv(Nu, n0 - 1)                                   ''''''''''' Finds t-value for confidence in-

terval 
    BestSubsetWeight = (TValue) * (arrMyArray(Best, NumOfVariables * (n0 + 1) + n0 + 2)) / (n0 ^ 0.5)  '' Finds the 

weight of the best solution 
    w = 1 
     
    For k = 1 To GenerationSize 
        SubsetWeight = (TValue) * (arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 2)) / (n0 ^ 0.5) 
        arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 3) = SubsetWeight 
 
        CopyOverCounter(k) = False                                                                  '''' Finds the systems to copy over 
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        If arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 1) - arrMyArray(Best, NumOfVariables * (n0 + 1) + n0 + 1) 

<= _ 
            Application.WorksheetFunction.Max(BestSubsetWeight - delta1, 0) Then 
            CopyOverCounter(k) = True 
            For s = 1 To NumOfVariables * (n0 + 1) + n0 + 3 
                If DisplayMatrix = True Then 
                    Cells(GenerationSize + 2 + w, s) = arrMyArray(k, s) 
                End If 
            Next s 
            w = w + 1 
        End If 
    Next k 
     
    z = w - 1 
    w = 1                                                                                           ''''Copies over the systems 
    ReDim CopyOver(z, NumOfVariables * (n0 + 1) + n0 + 3) 
    ReDim IndifSubsetWeight(z) 
     
    For k = 1 To GenerationSize 
        If CopyOverCounter(k) = True Then 
            For s = 1 To NumOfVariables * (n0 + 1) + n0 + 3 
                CopyOver(w, s) = arrMyArray(k, s) 
            Next s 
            w = w + 1 
        End If 
    Next k 
 
    ''''''''''''''''''''''''''''''''''''''''''Indeference Zone ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
 
     
    If z <= Percent * GenerationSize Then 
        Small = Application.WorksheetFunction.Small(ObjectiveArray, 1)           ' If the number copied over is less than 

10% skip to crossovers 
        OptimumArray(Generation) = Small 
    End If 
     
    If z > Percent * GenerationSize Then                                         ' If the number is greater than 10% do Indeference Zone 
        If GenerationSize = 10 Then 
            If z = 2 Then Rinott = 3.107 
            If z = 3 Then Rinott = 3.908 
            If z = 4 Then Rinott = 4.39 
            If z = 5 Then Rinott = 4.746 
            If z = 6 Then Rinott = 5.025 
            If z = 7 Then Rinott = 5.26 
            If z = 8 Then Rinott = 5.463 
            If z = 9 Then Rinott = 5.641 
            If z = 10 Then Rinott = 5.799 
        End If 
        For k = 1 To z                                                           ' Calculate the number of new samples per systems which = 

new_n(k)-n0 
            new_n(k) = Application.WorksheetFunction.Max((n0 + 1), _ 
                (Application.WorksheetFunction.RoundUp(Rinott ^ 2 * (CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 2) ^ 

2 / delta2), 1))) 
                 



Vuckovich 
 
        Next k 
         
        largestn = Application.WorksheetFunction.Large(new_n, 1)                ' Find the largest new n for dimensioning of 

array 
        ReDim Preserve CopyOver(z, NumOfVariables * (n0 + 1) + n0 + 3 + NumOfVariables * (largestn - n0) + (largestn 

- n0) + 3) 
        ReDim ObjectiveArray(z) 
 
        For k = 1 To z                                                             ' Runs simulations for each system selected for the new_n(k)-

n0 amount of times 
               XBar = CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 1) * n0 
            For t = 1 To (new_n(k) - n0) 
                SimulationRunCounter = SimulationRunCounter + 1                    ' Adds to the total count of simulations run 
                If SimulationRunCounter > 1000 Then 
                    For ExitLoop = 1 To GenerationSize 
                        For ExitLoop2 = 1 To NumOfVariables 
                            FinalVariablesArray(ExitLoop, ExitLoop2) = arrMyArray(ExitLoop, ExitLoop2) 
                        Next ExitLoop2 
                    Next ExitLoop 
                        Exit Do 
                    End If 
                For i = 1 To NumOfVariables 
 
                    CopyOver(k, i + (n0 + 1) * NumOfVariables + n0 + 3 + (t - 1) * NumOfVariables) = _ 
                    (i * ((1.28 - 2.56 * CopyOver(k, i)) ^ 4)) 
                    If DisplayMatrix = True Then 
                       Cells(GenerationSize + 2 + k, i + (n0 + 1) * NumOfVariables + n0 + 3 + (t - 1) * NumOfVariables) = _ 
                        CopyOver(k, i + (n0 + 1) * NumOfVariables + n0 + 3 + (t - 1) * NumOfVariables)          ''''' Will display 

the array if necessary 
                    End If 
                Next i 
                 
                CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) = 0 
                j = 1                                                                                           ' Begins calculating X-Bar 
                For j = 1 To NumOfVariables 
                    CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) = _ 
                        CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) + _ 
                         CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + j + (t - 1) * NumOfVariables) 
                Next j 
                CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) = _ 
                    CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) + _ 
                        epsilon * WorksheetFunction.NormInv(Rnd(), 0, 1) 
                XBar = XBar + CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + 

t) 
                 
                If DisplayMatrix = True Then 
                    Cells(GenerationSize + 2 + k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) 

+ t) = _ 
                        CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t)    ''''' Will 

display the array if necessary 
                End If 
            Next t 
             
            XBar = XBar / new_n(k)                                                                                    ' Calculates final X-bar for each 

system 
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            CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) + 

1) = XBar 
            ObjectiveArray(k) = XBar 
            If DisplayMatrix = True Then 
                Cells(k + 2 + GenerationSize, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + 

(new_n(k) - n0) + 1) = XBar 
            End If 
        Next k 
       
        Small = Application.WorksheetFunction.Small(ObjectiveArray, 1)                                                 ' Finds system 

with smallest objective function 
        OptimumArray(Generation) = Small 
         
        For k = 1 To z 
            If CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) 

+ 1) = Small Then 
                Best = k                                                                                               'Finds system with lowest objective func-

tion 
                k = k + GenerationSize 
            End If 
        Next k 
         
         
        '''''''''''''''IZ Weighting'''''''''''''''''' 
 
        For k = 1 To z 
            IndifSubsetWeight(k) = (n0 / new_n(k)) * (1 + Sqr(1 - ((n0 / new_n(k)) * (1 - ((new_n(k) - n0) * delta2 ^ 2) / _ 
                (Rinott ^ 2 * CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 2) ^ 2)))))                              ' calculates weight 
                CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) 

+ 2) = IndifSubsetWeight(k) 
        Next k 
         
        ReDim IndifSubsetWeightDiff(z) 
        For k = 1 To z                                                                                                ' calculates difference in weights 
            CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) + 

3) = _ 
                CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 3) * CopyOver(Best, (NumOfVariables * (n0 + 1)) + n0 + 3 + 

((new_n(Best) - n0) * NumOfVariables) + (new_n(Best) - n0) + 1) + _ 
                (1 - IndifSubsetWeight(k)) * CopyOver(Best, ((NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(Best) - n0) * 

NumOfVariables) + (new_n(Best) - n0) + 1)) 
            IndifSubsetWeightDiff(k) = CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * Nu-

mOfVariables) + (new_n(k) - n0) + 3) 
        Next k 
         
        TenthSmall = Application.WorksheetFunction.Small(IndifSubsetWeightDiff, Percent * GenerationSize)           ' 

finds tenth smallest weight 
        u = 1 
         
        For k = 1 To z 
            CopyOverCounter2(k) = False 
            If IndifSubsetWeightDiff(k) <= TenthSmall Then                                                          ' selects ten with lowest 

weight 
                CopyOverCounter2(k) = True 
                For s = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) 

+ 3 
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                    If DisplayMatrix = True Then 
                        Cells(GenerationSize + 3 + w + u, s) = CopyOver(k, s) 
                    End If 
                Next s 
                u = u + 1 
            End If 
        Next k 
         
        r = u - 1 
        ReDim CopyOver2(r, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((largestn - n0) * NumOfVariables) + (largestn - n0) 

+ 3) 
        u = 1 
         
        For k = 1 To z                                                                                              ' carries over 10 with losest weights 
            If IndifSubsetWeightDiff(k) <= TenthSmall Then 
                For s = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) 

+ 3 
                    CopyOver2(u, s) = CopyOver(k, s) 
                Next s 
                u = u + 1 
            End If 
        Next k 
         
        If DisplayMatrix = True Then 
            For k = 1 To GenerationSize + 3 + w + u                                                                 ' Erases all cells 
                For m = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 + ((largestn - n0) * NumOfVariables) + (largestn - n0) + 3 
                    Cells(k, m) = "" 
                Next m 
            Next k 
        End If 
         
        For k = 1 To r 
            For m = 1 To NumOfVariables                                                                            ' Stores the selected system in new 

array 
                NewBigArray(k, m) = CopyOver2(k, m) 
                If DisplayMatrix = True Then 
                    Cells(k, m) = NewBigArray(k, m) 
                End If 
            Next m 
        Next k 
        Indif = 1 
    Else 
        If DisplayMatrix = True Then                                                                             ' Erases all cells 
            For k = 1 To GenerationSize + 3 + w + u 
                For m = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 
                    Cells(k, m) = "" 
                Next m 
            Next k 
        End If 
         
         
 
        For k = 1 To z 
            For m = 1 To NumOfVariables                                                                         ' Stores the selected system in new 

array 
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                NewBigArray(k, m) = CopyOver(k, m) 
                If DisplayMatrix = True Then 
                    Cells(k, m) = CopyOver(k, m) 
                End If 
            Next m 
        Next k 
    End If 
     
    
    End If 
    ''''''''''''''''''''''''''''''''''''''''''''''''''' cross overs''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
     
    For k = 1 To ((1 - (2 * Percent)) * GenerationSize) / 2 
        FirstParentRand = Application.WorksheetFunction.Ceiling(GenerationSize * Rnd(), 1)                     ' selects random 

system 
        SecondParentRand = Application.WorksheetFunction.Ceiling(GenerationSize * Rnd(), 1)                    ' selects ran-

dom system 
        For p = 1 To NumOfVariables 
            SwitchingValue = Rnd()                                                                             ' generates the switching value 
            FirstParent(p) = arrMyArray(FirstParentRand, p)                                                    ' assigns appropriate setting to 

each variable 
            SecondParent(p) = arrMyArray(SecondParentRand, p) 
            If SwitchingValue > 0.8 Then                                                                       ' will switch the variable setting if 

value is > .8 
                FirstChild(p) = SecondParent(p) 
                SecondChild(p) = FirstParent(p) 
            Else 
                FirstChild(p) = FirstParent(p)                                                                 ' if not keeps them the same 
                SecondChild(p) = SecondParent(p) 
            End If 
        Next p 
        For p = 1 To NumOfVariables                                                                            ' copies new systems (children) into 

new array 
            NewBigArray(k + (Percent * GenerationSize), p) = FirstChild(p) 
            NewBigArray(k + (Percent * GenerationSize) + ((1 - (2 * Percent)) * GenerationSize) / 2, p) = SecondChild(p) 
            If DisplayMatrix = True Then 
                Cells(k + (Percent * GenerationSize), p) = FirstChild(p) 
                Cells(k + (Percent * GenerationSize) + ((1 - (2 * Percent)) * GenerationSize) / 2, p) = SecondChild(p) 
            End If 
        Next p 
    Next k 
     
    For k = 1 To GenerationSize - GenerationSize * Percent                                                      ' Copies over new array into 

array used from beginng 
        If Indif = 1 Then                                                                                       ' If it did not go through indiference zone 
            If k <= r Then 
                For m = 1 To NumOfVariables 
                    arrMyArray(k, m) = CopyOver2(k, m) 
                Next m 
            Else 
                For m = 1 To NumOfVariables 
                    arrMyArray(k, m) = NewBigArray(k, m) 
                Next m 
            End If 
        ElseIf PIZButton = True Then 
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            If k <= Percent * GenerationSize Then 
                For m = 1 To NumOfVariables 
                    arrMyArray(k, m) = ConstantCopyOver(k, m) 
                Next m 
            Else 
                For m = 1 To NumOfVariables 
                    arrMyArray(k + (Percent * GenerationSize), m) = NewBigArray(k + (Percent * GenerationSize), m) 
                Next m 
            End If 
        Else 
            If k <= z Then                                                                                                                                                          ' 
                For m = 1 To NumOfVariables 
                    arrMyArray(k, m) = CopyOver(k, m) 
                Next m 
            Else 
                For m = 1 To NumOfVariables 
                    arrMyArray(k + (Percent * GenerationSize), m) = NewBigArray(k + (Percent * GenerationSize), m) 
                Next m 
            End If 
        End If 
    Next k 
    Generation = Generation + 1 
Loop 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''out put''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
k = 1 
i = 1 
j = 1 
 
For k = 1 To GenerationSize 
     
    For i = 1 To NumOfVariables 
        Cells(k, i) = arrMyArray(k, i)         ''''' Will display the array if necessary 
    Next i 
     
    Cells(k, i) = arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1))         ''''' Will display the array if necessary 
         
Next k 
For Generation = 1 To TotalGenerations                                                                          ''' Generates out put 
    Cells(Generation + GenerationSize + 2, 1) = OptimumArray(Generation) 
Next Generation 
 
End If 
 
'For k = 1 To z 
'    If ObjectiveArray(k) = Small Then 
'            'Cells(2 * GenerationSize + 6 + k, 2) = ObjectiveArray(k)                       ' generates output 
'            Best = k 
'    End If 
'Next k 
 
     
     
    For k = 1 To GenerationSize 
        SolutionQuality(k) = 0 
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        For i = 1 To NumOfVariables 
            SolutionQuality(k) = SolutionQuality(k) + (i * ((1.28 - 2.56 * FinalVariablesArray(k, i)) ^ 4)) 
            Cells(k, i) = FinalVariablesArray(k, i) 
'        Cells(1, i + 1) = arrMyArray(Best, i)           ' generates output 
        Next i 
    Next k 
    Small = Application.WorksheetFunction.Small(SolutionQuality(), 1) 
    For k = 1 To GenerationSize 
        If SolutionQuality(k) = Small Then 
            Best = k 
        End If 
    Next k 
    Cells(1, i + 1) = SolutionQuality(Best) 
     
        For i = 1 To NumOfVariables 
            Cells(2, NumOfVariables + 2 + i) = FinalVariablesArray(Best, i) 
        Next i 
    Cells(1, i + 2) = SimulationRunCounter - 1 
 
Application.ScreenUpdating = True 
End Sub 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Vuckovich 
 

REFERENCES 

Aizawa, A.N. and Wah, B.W. (1994). �Scheduling of Genetic Algorithms in a Noisy Environment�. Evolutionary Computa-
tion, 2(2), 97-122. 

�Arena Comparison Statement,� Rockwell Automation, 12 Feb. 2009, <http://www.arenasimulation.com/ 
news/docs/Arena%20comparison%20statement%202007.pdf>. 

Bernshteyn, Mikhail (2001), �Simulation Optimization Methods That Combine Multiple Comparisons and Genetic Algo-
rithms with Applications in Design for Computer and Supersaturated Experiments,� The Ohio State University, In-
dustrial, Welding & Systems Engineering. 

Boesel, J., B. L. Nelson, and N. Ishii (2003), �A Framework for Simulation-Optimization Software,� IIE Transactions, 35:3, 
221-229. 

Fu, M. C., C. Chun-Hung, and L. Shi (2008), �Some Topics for Simulation Optimization,� Proceedings of the 2008 Winter 
Simulation Conference, S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, eds.  

Fu, M. C., F. W. Glover, and J. April (2005), �Simulation optimization: a review, new developments, and applications,� Pro-
ceedings of the 2005 Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 
eds. 

Goldsman D., B. L. Nelson, T. Opicka, and A. A. B. Pritsker (1999), �A Ranking and selection Project: Experiences from A 
University-Industry Collaboration,� In Proceedings of the 1999 Winter Simulation Conference, P. A. Farrington, H. 
B. Nembhard, D. T. Sturrock, and G. W. Evans, eds. 83-92. Piscataway, New Jersey: Institute of Electrical Engi-
neers. 

Koenig, L. W. and Law, A. M. (1985), �A procedure for Selecting a Subset of Size m Containing the I Best of k Independent 
Normal Populations, with Applications to Simulation,� Communications in Statistics: Simulation and Computation, 
14, 719-734. 

Laguna, Manuel  (1997), �Optimization of Complex Systems with OptQuest,� University of Colorado, Graduated School of 
Business Administration.  

�OptQuest,� ProModel, 12 Feb. 2009, <http://www.promodel.com/products/optquest/>. 
Rinott, Y. (1978), �On Two-stage Selection Procedures and Related Probability Inequalities,� Communications in Statistics, 

7: 799-811. 
�Simulation Software Survey,� ORMS Today, Page 4, October 2007. 
Sullivan, D. A. and Wilson, J. R. (1989), �Restricted Subset Selection Procedures for Simulation,� Operations Research, 37, 

1, 52- 71. 
Wilcox,  Rand R. Apr 1984. �A Table for Rinott�s Selection Procedure.� Journal of Quality 
  Technology, 16, 97-100. 
Zhao, L. and S. Sen (2006), �A Comparison of Sample-Path Based Simulation-Optimization and Stochastic Decomposition 

For Multi-Location Transshipment Problems,� Proceedings of the 2006 Winter Simulation Conference, L. F. Per-
rone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds. 

Zheng, N., and T. T. Allen (2007), �Subset Selection and Optimization for Selecting Binomial Systems Applied to Supersatu-
rated Design Generation,� Proceedings of the 2007 Winter Simulation Conference, S. G. Henderson, B. Biller, M. �
H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds. 

 
 
 
 
 


