
Honors� Thesis and Project Deliverable to Honda of America, Inc.

AN OPEN-SOURCE POPULATION INDIFFERENCE ZONE-BASED
ALGORITHM FOR SIMULATION OPTIMIZATION

David N. Vuckovich

The Ohio State University
Dept. of Integrated Systems Engineering
1971 Neil Avenue � 210 Baker Systems

Columbus, OH 43210, USA

ABSTRACT

This paper proposes an open-source algorithm for simulation optimization. The intent is to permit many who use a variety of
simulation software codes to be able to apply the proposed methods using an MS Excel-Visual Basic interface. First, I will
begin by discussing simulation optimization and its usefulness. I will then discuss different methods that are commonly used
for simulation optimization. Next, I will present the proposed Population Indifference Zone (PIZ) algorithm and related soft-
ware code. I will discuss the properties of the proposed method and present the code that runs the Visual Basic program. I
will then discuss the functionality of the Population Indifference Zone method with examples of problems to which it might
be applied. I conclude with a description of topics for future research.

1 INTRODUCTION

Discrete event simulation continues to grow in popularity presumably because it helps increase profitability through the
avoidance of problems in business expansion and manufacturing. Simulation allows for the testing of how system parameters
(factors) impact system performance (responses) without costly and time consuming testing on the actual systems. Simulation
optimization is the systematic search for factor settings that derive the most desirable expected response values. Interest in
simulation optimization also continues to grow perhaps because increasing computer power makes solving large simulation
optimization problems computationally feasible (Zhao and Sen 2006).
 More generally, after a simulation code has been built and validated, it is then studied to provide decision-support. These
phases are often called �output analysis� and generally involve some form of optimization (Fu, Glover, and April 2005). As a
motivating example, consider a problem at a major automotive manufacturer that is evaluating alternative policies for running
a major production line. Examples of factors in the simulation optimization study include work-in-process management pol-
icy (off or on), the conveyor speed at the wash substation, and the transfer time for units at a major substation. By varying
these factor settings, a large number of alternative systems are developed and studied using the simulation codes. Because
each evaluation is noisy, there is generally a concern about how many replicates of each run should be used to gain useful in-
formation and (hopefully) derive the optimal system or combination of factor settings.
 Simulation optimization methods can be divided into two types: (1) problem specific and (2) generic or �black box� me-
thods (Zhao and Sen 2006). The problem specific methods usually require less time to find the a solution, but are generally
more difficult to apply in simulation optimization because they require the attention of expert operations researchers. Some-
times problem generic methods can be relatively inefficient because they involve comparison of solutions that give very simi-
lar average response values. Such comparisons are computationally costly particularly when each simulation takes a long
time (Fu, Chen, and Shi 2008). On the other hand, black box methods can be applied to many types of problems and can be
used by anyone with limited knowledge of simulation.
 Black box methods can further be divided into methods based on constant sample sizes and systemically varying sample
sizes. There are multiple types of black box methods including tabu searches, scatter searches, and genetic algorithms. In the
context of constant sample size methods, tabu searches and scatter searches have been established as the most effective ac-
cording to many authors (Fu, Glover, and April 2005). The other simulation optimization methods being employed and stud-
ied are ranking and selection, response surface methodology, gradient-based procedures, stochastic approximation, random
search, and sample path optimization (Fu, Glover, and April 2005; Fu, Chen, and Shi 2008).
 For the variable sample size, black box methods, the computational dominance of black box and scatter search methods
is less well established. Here, we focus on hybrid technology that involves a population search method (like a genetic algo-

Vuckovich

rith) combined with selection and ranking methods. Therefore, this paper follows up on the essential insights in Boesel, Nel-
son, and Ishii (2003). However, the methods here have rigorous properties building on mathematical results in Zheng and Al-
len (2007).
 Many commercial codes support optimization using simulation through either full factorial experimental designs or
through deterministic heuristics applied to simulation optimization. In either case, these methods historically tended to use
constant numbers of samples for each solution being evaluated at each iteration in the method. However, recently most of the
main simulation software, such as Arena, AnyLogic, ProModel and its affiliated software, FlexSim, and SIMUL8 use Op-
tQuest as the optimizer for their simulations (Simulation Software Survey; Arena Comparison Statement; Fu, Glover, and
April 2005, OptQuest). OptQuest is a �general-purpose optimizer� which runs a complicated metaheuristic using a variable
sample size scatter search and tabu search to find optimal solutions (Laguna 1997; Fu, Glover, and April 2005). The method
of ranking and selection has become increasingly studied and applied in order to come to conclusions on the goodness of a
solution (Fu, Chen, and Shi 2008).
 It is likely that OptQuest offers greater computational efficiency than the methods here as well as better integration with
existing software packages. However, we are not aware of any rigorous properties related to convergence or other associated
with OptQuest. The intent here is to offer open-source code for a method with likely reasonable performance that is associ-
ated with rigorous convergence properties. Therefore, the proposed method can be viewed as a springboard for more efficient
methods. Also, for cases in which integration with OptQuest or its cost are prohibited, the proposed methods may fill a useful
gap.

Section 2 proposes the population indifference zone (PIZ) method. In Section 3, rigorous properties of the PIZ method
are established building on results in Zheng and Allen (2007). Section 4 describes details related to implementing the code
which can be downloaded from the web. Problems that can be used to compare the proposed method with alternatives are de-
scribed in Section 5. Section 6 closes with a brief discussion and description of opportunities for future research.

2 THE POPULATION INDIFFERENCE ZONE (PIZ) METHOD

In this section, the population indifference zone (PIZ) method is proposed. The method includes three sub-phases: the forma-
tion of the solutions to be evaluate (e.g., creation of a new population in a genetic algorithm), the preliminary evaluation of of
those solutions using subset selection, and the follow-up evaluation of solutions (if necessary) using an indifference zone
procedure.
 The specific problem that this paper is aimed at solving is: minimize E(y(xi) + ε).
 Subset selection (steps 2-5) is described in Goldsman, Nelson, Opicka, and Pritsker (1999). That procedures and those
steps achieve a subset having a probability greater than P* of containing a solution with mean or expected value within δ(1) of
the optimal or best system solution. The indifference parameter, δ(1), can be set to zero, but generally fewer systems will be
eliminated. Let k denote the number of alternative systems being compared. Assume we want to find a subset containing a
system with mean within δ(1) of the smallest, i.e., we are minimizing.
 The indifference zone method is then used (steps 6-9) which is a two-stage selection from Sullivan and Wilson(1989).
The sub-procedure starts with a set of k alternative systems and terminate with a subset of m, where the method user picks m.
The user picks m together with the indifference parameter δ2 and the lower bound on the quality probability P*. For example,
one might start with k = 100 systems and plan to end with 10 systems with one having a mean within δ(2) = 3.0 of the true
best mean from the original 100 with probability P* = 0.95. The procedure is based on pre-tabulated Rinott�s constants, de-
noted here as h = Rinottk,m,n0,P*. Rinott (1978) was probably the first to tabulate these constants.

Population Indifference Zone (PIZ) Method

Step 1. (Initialization) Create k system alternatives by sampling uniformly from the decision-space.

Step 2. Evaluate all systems using n0 samples, which are generally batch sample average values. Denote the resulting values
Xi,j, with i = 1,�,k referring to the system and j = 1,�,n0 referring to the sample.

Step 3. Calculate the sample means or Monte Carlo estimates, Xbar,i, for each system i = 1,�,k. Denote the index for the sys-
tem with the best mean as �b�.

Step 4. Next, we examine the differences between the samples from each system paired with the samples from system b.
Compute the standard deviations of the differences using:

S2
i,j = {Σj=1,�,n0 [Xi,j � Xb,j � (Xi,bar � Xb,bar)]2}/(n0 � 1) (2.1)

and

Vuckovich

Wi,b = (tν,n0� 1)(Si,b)/[(n0)½] (2.2)

with

ν = 1 � (P*)[1/(k � 1)] (2.3)

and where �t� is a critical value for the t-distribution with α = ν and n0 � 1 degrees of freedom .
Step 5. Form the subset by including only the systems with means satisfying:

 (Xi,bar� Xb,bar) ≤ maximum(Wi,b � δ(1), 0.0) (2.4)

where the �maximum� implies taking the larger value which could be 0.0. If the subset contains less than 10% of the
generation skip to step 10.

Note that the above method with δ = 0 is essentially creating single sample differences of each subsystem and the appar-
ently best system. The approach essentially creates these difference and t-tests whether the differences are statistically
significant. With δ = 0, the previous steps are guaranteed to keep the best solution with probability greater than P*.

Step 6. (First stage, optional because we can reuse the Step 2 evaluations) Evaluate all systems with n0 samples. These are
generally batch means with typical initial values equal to n0 = 10 or n0 = 20. Fewer samples are generally needed if
the batches are large. Calculate the sample means, Xi,bar, and sample standard deviations, Si, for all system responses.

Step 7. Calculate the total number of samples first stage plus follow-up for each system using:

ni = maximum{n0 + 1, roundup[(h)2 (Si) 2 /(δ(2))2]}. (2.5)

Step 8. (Second stage) Perform the additional ni runs and then calculate the means of these second stage runs, Xbar,i
(2). De-

note the index for the system with the best mean as �b�.
Step 9. Using the first stage standard deviations, Si, calculate:

Wi = ()





























 −
−−+ 22

2
)2(111

i

ii

i Sh
nn

n
n

n
n δ for i = 1,�,k (2.6)

and keep m subsystems with among these with the smallest Wi Xi,bar + (1 � Wi)Xi,bar
(2) values.

The above procedure (Steps 6-9) is essentially the same as the Koenig and Law (1985) procedure.
Step 10. (Termination) Is any of our solutions good enough? If yes, stop, otherwise continue. Or if stopping rule has been

reached, stop, otherwise continue.
Step 11. (Form the next population) Copy the 10% highest ranked solutions into the next population. If the subset selection

eliminated 90% or more solutions, the ones left are the elitist subset. Otherwise, they are the subset from the indifference
zone procedure. Fill in 80% of the total generation by selecting two systems at random, then for each variable in the sys-
tem select a random number from 0 to 1. If the number is greater than .8 switch the level of the selected variable of the
two systems. Repeat this for each variable. Fill the remaining 10%, or slightly more depending on the results of the sub-
set selection, solutions with uniform random selections from the decision-space.

 Willcox (1984) presents tables for Rinott�s constants including those in Table 2-1. Use the condensed table below to
select the appropriate Rinott�s constant h. The is for use when population size k is equal to 10 and where l is the number
of solutions in the subset. When we use 100 solutions in the population ad n0 equal to 10 the bound on h is 3.3. We will
use this as an approximation in this code because we do not currently have a proper lookup function to find all possible
Rinott�s constants.

Table 2-1. Rinott�s constant values for population of size 10 where �l� is the # of solutions not eliminated in subset selection.

k 10
n0 5
P* .95
l h
2 3.107
3 3.908
4 4.390

Vuckovich

5 4.746
6 5.025
7 5.260
8 5.463
9 5.641
10 5.799

 The above method can be used very generally as long as solutions can be sampled uniformly from the solution space. It
essentially draws from the huge space of solutions batches and then compares the batches efficiently using selection and
ranking methods. In the next section, some of the rigorous properties of the PIZ method are established.
 The presented PISA method is only a framework in the sense that virtually any method could be used to fill the popula-
tion including tabu and scatter search methods. The only step that would be modified would be Step 11 to the specifications
of the method chosen to fill the population.

3 METHOD PROPERTIES

There are multiple desirable properties of the PIZ method. The first is that it is a black box method in the way that it is rela-
tively simple and can be applied to virtually all simulation optimization problems as long as one can sample uniformly from
the search space. The second property is that it offers some potential advantage in computational efficiency compared with
constant sample size methods. This follows because poor quality solutions are usually removed from consideration in Step 5.
This way, these solutions do not waste valuable CPU run time during the relatively exhaustive indifference zone-based
evaluations in Step 8.
 In addition, the PIZ method is associated with some rigorous claims about the solution quality as we next establish. This
is not true for other methods of similar type including the genetic algorithm-based methods in Aizawa and Wah (1994) and
Bernshteyn (2001). The makes it, perhaps a strong platform for additional method development.
 The first rigorous claim is described in Theorem 1.
Theorem 1. Assume that there are N normal populations in the search space (N is generally very large). After M iterations,
the PIZ method will retain at least one solution with objective value within (M×δ) of the best solution evaluated with prob-
ability greater than (P*)2M.
Proof. In the subset selection steps, we keep the best solution with probability greater than P*. In the indifference zone steps
we keep a solution within δ of the best with probability greater than P*. Therefore, in each complete iteration we keep a solu-
tion within δ of the best with probability greater than (P*)2. This follows because of independence of the two positive events,
i.e., keep the best and then keep a solution within δ of the best. The next iteration, there might an additional loss of δ. There-
fore, after M iterations the loss is guaranteed to be less than (M×δ) with probability greater than (P*)2M.

 Zheng and Allen (2007) describes the changing of both the δ and the P* in each population as the algorithm iterates.
They do this to provided long run guarantees based on essentially Theorem 1. Examples of schedules offering long run guar-
antees are in equations (3.1), (3.2), (3.3), and (3.4). If at each iteration one has the probability of greater than Pt, to keep the
solution with an objective value within δt of the real best solution in generation t, then:

 , and (3.1)

 (3.2)

Using the above equations one can calculate δt and Pt for each generation t using the final ∆ and Pt chosen by the user.
These equations are presented below where , o, u, and s are predetermined parameters where 0 < s < 1, o < u < 1 and 0 <
< 1.
 (3.3)

 (3.4)

 Applying a schedule to dt and pt can generate long run convergence to within d of global optimum with probability P*.

Vuckovich

4 CODE DETAILS

The appendix contains the open-source code for simulation optimization.

4.1 Code explanation

The MS Excel-Visual Basic code uses a user-form to receive information from the user like number of variables, generation
size, and total generations. The code itself breaks down into 6 main sections: setup, mapping, subset selection, indifference
zone, cross-over, and output. In the setup basic computer programming techniques are applied: variables are named and their
data type defined, arrays are dimensioned, and some variable values are set. The mapping section, which could possibly pre-
sent the most challenging issue when trying to solve some problems, selects random variables from a uniform (0,1) distribu-
tion and maps them to the decision-space, which for the A4 function described in section 5.1 and used in this code is
(-1.28, 1.28). The function used to do this is =1.28 2.56[N(0,1)]. It is irrelevant that will always be negative because

is always positive.
In general, the code uses many for loops and arrays to store the information needed. In the subset selection section the

objective value of each iteration of each system is calculated to then find . Application.Worksheetfunction.Small is used
to find the smallest objective value . Before the systems are selected the code finds the number that will be selected so
that an array Copyover() can be dimensioned properly. Once the subset is selected it moves on to the indifference zone. First
it checks to see if Copyover() has more than 10% of the original population in it. If it does it proceeds. The indifference zone
is rather similar to the subset selection section, but with slightly different computations. The major difference is that in the
indifference zone section some systems require more samples than others. To account for this we found the largest new sam-
ple size required. The array was then dimensioned with that n, and each system requires a reference to its new sample size.

The cross-over section begins by selecting the systems at random with uniform probabilities of being chosen by using
Application.Worksheetfunction.Ceiling[GenerationSize * Rnd() 1]. This selects a system 1 through the total number in the
generation to be one of the parents. We use four new arrays called FirstParent(), SecondParent(), FirstChild(), and Second-
Child(). Once the parents are selected a random number (0,1) is picked. If the number is greater than .8 the value for the vari-
able in FirstParent() is assigned to the value for the variable in SecondChild() and vice versa. If the number is less than .8 the
value for the variable in FirstParent() is assigned to the value of the variable in FirstChild(). The code uses the basic
Cells(R,C) command to output the value of the variables from the selected system.

4.2 Adapting the code

If one were interested in adapting the code to another function, all that would be necessary is to change the mapping section
of the code. This is where the A4 function is located in the code. The comment in the code says, �Runs the A4 problem as a
simulation.� Filling the population could be changed as well, but would take more effort. All that needs to be done is change
out the cross-over section and write code for tabu search or scatter search or your favorite search method.

5 NUMERICAL EXAMPLES

In this section, problems are described that can be used to evaluate the PIZ method and compare its computational perform-
ance with alternatives. These include the A4 function and the noisy Rastrigin function.

5.1 A4 function

Aizawa and Wah (1994) and Bernshteyn (2001) use a test function called the A4 function. This function is built into the code
described in the appendix. This test function involves the random variable which is N(0,1) and can be written:

 (5.1)

where typically k = 30 dimensions and -1.28 < < 1.28. This equation can be studied for different values of A from 1 to 64,
do 10 replicates of the whole procedure.
 The PIZ method was tested with the A4 function. The results are shown in Table 5-1 and graphical representations are
shown in Figures 5.1 � 5.5. The solution strength was measured by evaluating the A4 function without noise. Y-Bar is the
average of four of these replicates. After seeing these results one can be confident in saying that the PIZ method is superior to
constant sample size, especially for more variables (10) in a smaller population (10). It is also clear everything, but sigma had

Vuckovich

a major impact on the average objective value; however, if sigma were varied more than just 1 there would probably have
been a larger impact. We can say this just from experience while debugging the code. This would be another issue to address
in the future. The total number of simulations run had a smaller effect than the other factors.

Table 5-1. Results of PIZ Method Testing on A4 Function.

A
Num
of Var n0

Generation
Size

of Function
evals. Y_Bar S

2 3 5 10 1000 0.1789 0.3024
2 3 5 10 10000 0.6371 0.4811
2 10 5 10 1000 5.3653 3.6542
2 10 5 10 10000 3.3782 1.8258
2 3 10 100 1000 0.0094 0.0071
2 3 10 100 10000 0.0141 0.0154
2 10 10 100 1000 4.2584 1.0010
2 10 10 100 10000 1.4863 1.0503
1 3 5 10 1000 0.1424 0.1677
1 3 5 10 10000 0.1919 0.1978
1 10 5 10 1000 6.3125 1.5192
1 10 5 10 10000 1.5610 0.7929
1 3 10 100 1000 0.0171 0.0181
1 3 10 100 10000 0.0054 0.0055
1 10 10 100 1000 3.8757 1.2707
1 10 10 100 10000 1.4220 0.6787
2 3 20 10 1000 1.2510 1.1176
2 3 20 10 10000 0.1972 0.2159
2 10 20 10 1000 16.0049 8.0635
2 10 20 10 10000 14.6057 4.2168
2 3 20 100 1000 0.0108 0.0097
2 3 20 100 10000 0.0245 0.0153
2 10 20 100 1000 3.5343 2.4640
2 10 20 100 10000 3.1535 0.8398
1 3 20 10 1000 0.5005 0.5932
1 3 20 10 10000 0.8665 0.9407
1 10 20 10 1000 17.2263 6.2762
1 10 20 10 10000 13.3052 6.0228
1 3 20 100 1000 0.0476 0.0396
1 3 20 100 10000 0.0201 0.0352
1 10 20 100 1000 5.0307 2.4679
1 10 20 100 10000 3.4815 1.8323

Vuckovich

Figure 5.1. A graph of solution strength comparing the PIZ method and constant sample size.

Figure 5.2. A graph of sample standard deviation comparing the PIZ method and constant sample size.

Vuckovich

PIZConstant

18

12

6

0

Type

A
ve

ra
ge

 O
bj

ec
ti

ve
 V

al
ue

Figure 5.3. Box plot of the average objective value (solution strength) of constant sample size and PIZ.

ConstantPIZ

6.0

4.5

3.0

1.5

0.0
21 103

205

6.0

4.5

3.0

1.5

0.0
10010 100001000

Type

M
ea

n
of

 A
ve

ra
ge

 O
bj

ec
ti

ve
 V

al
ue

sigma Number of Variables

n0 (Initial or Complete) Population Size Number of Evaluations

Main Effects Plot (data means) for Average Objective Value

Figure 5.4. Main effects plot for the average objective value (solution strength).

Vuckovich

5.2 Rastrigin function

Aizawa and Wah (1994) present another test function. The Rastrigin function involves the same random variable ε as de-
scribed above, but now -5.12 < < 5.12. This function will soon be used to test the robustness of the PIZ method.

 (5.2)

6 DISCUSSION

This thesis has proposed an algorithm for simulation optimization called the population indifference zone (PIZ) method. It is
called an algorithm because it is associated with rigorous convergence guarantees as described in section 3. Perhaps more
importantly, it is available with open-source in a Visual Basic implementation. There are, however, a number of opportunities
for future research.

First, the PIZ method can be compared computationally with constant sample size and other alternatives using the func-
tions in Section 5. Such results can establish the benefits of using the method in practice. As for now it is clear that that PIZ
method is superior to the constant sample size method. The robustness of the PIZ method is still in question and will soon be
tested with the Rastrigin function. Second, a download site for the code can be established to facilitate others benefiting from
the code. Third, an example of using SHELL of other visual basic commands to control an actual simulation code executable
can be developed. This will help engineers at major companies benefit from simulation optimization even in cases in which
connection with OptQuest is difficult or impossible.

Finally, the application of PIZ to a real problem could illustrate the method and its practical benefits. This could be done
in an integrated method together with other visual basic capabilities at a major manufacturer.

ACKNOWLEDGEMENTS

I would like to thank Theodore T. Allen who provided much of the work and is my thesis advisor, for his passion and contin-
ued guidance from beginning to end of this project. This work was partially supported by a grant from Honda of America.
John Gillard and Timothy Leopold provided insights into what matters in real-world applications. Also, I would like to thank
Cathy Xia for agreeing to be on the committee. I would also like to thank my parents for their unending love, care and sup-
port along with my ultimate teammates and friends.

Vuckovich

APPENDIX

 Option Explicit
 Option Base 1
__
Private Sub DisplayMatrix_Click()
 DisplayMatrix = True
End Sub
__

Private Sub GeneticAlgorithm_Click() ' Runs Program When Userform is clicked

Application.ScreenUpdating = False ''''''''''''''''Turns off screen updating

Dim i As Integer, j As Integer, k As Integer, m As Integer, n As Integer, q As Integer, p As Integer, z As Integer
Dim NumOfVariables As Long, TwoTimesNumOfVariables As Long, ThreeTimesNumOfVariables As Long
Dim arrMyArray() As Double, ObjectiveArray() As Double, NewBigArray() As Double, OptimumArray() As Double,

SwitchingValueArray() As Double
Dim GenerationSize As Double, Generation As Long, SwitchingValue As Double
Dim TenthLarge As Double, TenthSmall As Double, TenthLargest As Double, TenthSmallest As Double, Small As

Double
Dim FirstParentRand As Double, SecondParentRand As Double, FirstParent() As Double, SecondParent() As Double,

Child() As Double, SecondChild() As Double
Dim TotalGenerations As Long, SimulationRunCounter As Long
Dim Percent As Double, Indif As Integer, SolutionQuality() As Double
Dim new_n() As Long, n0 As Integer, t As Long, b As Long, delta2 As Double, delta1 As Double
Dim XBar As Double, StandardDeviations2 As Double, StandardDeviations As Double
Dim SubsetWeight As Double, Nu As Double, TValue As Double, BestSubsetWeight As Double
Dim CopyOver() As Double, w As Long, s As Long, largestn As Long, u As Long
Dim IndifSubsetWeight() As Double, CopyOver2() As Double, ConstantCopyOver() As Double
Dim IndifSubsetWeightDiff() As Double, CopyOverCounter() As Boolean
Dim IndifSubsetWeight1() As Double, r As Long, ExitLoop As Double, ExitLoop2 As Double
Dim CopyOverCounter2() As Boolean, OptimumSetingsArray() As Double, NewOptimumSetingsArray() As Double
Dim Rinott As Double, epsilon As Double, Best As Long, FinalVariablesArray() As Double

NumOfVariables = CDbl(NumberOfVariables) 'Reads in Variables from userform
TwoTimesNumOfVariables = NumOfVariables * 2
ThreeTimesNumOfVariables = NumOfVariables * 3
GenerationSize = CDbl(GenSize)
TotalGenerations = CDbl(TotGen)
Percent = CDbl(Perc)
Randomize

ReDim arrMyArray(GenerationSize, TwoTimesNumOfVariables + 1) 'Dimensions Arrays with information

from userform
ReDim ObjectiveArray(GenerationSize)
ReDim NewBigArray(GenerationSize, TwoTimesNumOfVariables + 1)
ReDim OptimumArray(TotalGenerations)
ReDim SwitchingValueArray(NumOfVariables)
ReDim FirstParent(NumOfVariables)
ReDim SecondParent(NumOfVariables)
ReDim FirstChild(TwoTimesNumOfVariables + 1)
ReDim SecondChild(TwoTimesNumOfVariables + 1)

Vuckovich

ReDim SolutionQuality(GenerationSize)
ReDim arrMyArray(GenerationSize, (NumOfVariables * (n0 + 1) + n0 + 3))
ReDim new_n(GenerationSize)
ReDim NewBigArray(GenerationSize, (NumOfVariables * (n0 + 1) + n0 + 3))
ReDim CopyOverCounter(GenerationSize)
ReDim CopyOverCounter2(GenerationSize)
ReDim OptimumSettingsArray(TotalGenerations, NumOfVariables)
ReDim FinalVariablesArray(GenerationSize, NumOfVariables)
ReDim ConstantCopyOver(GenerationSize, NumOfVariables)

SimulationRunCounter = 0 ' Counts the total number of simulation that were run would that would be

run
'DisplayMatrix = True ''''''''' Sets value as true to display for when debugging
UserForm1.Hide 'closes the userform
If RunWithErrors = False Then

Else

'DisplayMatrix = True ''''''''' Sets value as true to display for when debugging

n0 = 10 ' Sets the values of other variables
Rinott = 3.3 ' May add to userform
delta1 = 0
delta2 = 1 ' Need function or table for rinott's constant
epsilon = 2

Indif = 22
Generation = 1

Do Until Generation > TotalGenerations 'Or SimulationRunCounter > 100000 ' Will run program un-

til the total number of generations is completed
 ReDim ObjectiveArray(GenerationSize)

 For k = 1 To GenerationSize ' Fills in the entire first generation with uniform random num-

bers
 If Generation = 1 Then ' from the sample space. In this case (0,1)
 For i = 1 To NumOfVariables
 arrMyArray(k, i) = Rnd()
 If DisplayMatrix = True Then
 Cells(k, i) = arrMyArray(k, i) ''''' Will display the array if necessary
 End If
 Next i
 Else
 If k > GenerationSize - Percent * GenerationSize Or (k > z And k <= Percent * GenerationSize) Then
 For i = 1 To NumOfVariables ''' Same as above but only for the mutants of the GA
 arrMyArray(k, i) = Rnd()
 If DisplayMatrix = True Then
 Cells(k, i) = arrMyArray(k, i)
 End If
 Next i
 End If
 End If
'''

Vuckovich

'''Begin Subset Selection''
'''
 XBar = 0
 For t = 1 To n0
 SimulationRunCounter = SimulationRunCounter + 1 '''' counts the number of simulation runs over the

whole algorithm
 If SimulationRunCounter > 1000 Then
 For ExitLoop = 1 To GenerationSize
 For ExitLoop2 = 1 To NumOfVariables
 FinalVariablesArray(ExitLoop, ExitLoop2) = arrMyArray(ExitLoop, ExitLoop2)
 Next ExitLoop2
 Next ExitLoop
 Exit Do
 End If

 For i = NumOfVariables + 1 To TwoTimesNumOfVariables '''' Runs the A4 problem as a simulation
 arrMyArray(k, i + (t - 1) * NumOfVariables) = ((i - NumOfVariables) * ((1.28 - 2.56 * arrMyArray(k, i - Nu-

mOfVariables)) ^ 4))

 If DisplayMatrix = True Then
 Cells(k, i + (t - 1) * NumOfVariables) = arrMyArray(k, i + (t - 1) * NumOfVariables) ''''' Will display

the array if necessary
 End If
 Next i

 arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) = 0
 For j = 1 To NumOfVariables ' calculates the objective vlue of each
 arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) = arrMyArray(k, ((n0 + 1) * _
 NumOfVariables) + t) + arrMyArray(k, j + (t * NumOfVariables)) ' and begins calculating

X-bar for each solution
 Next j

 arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) = arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) + epsilon *

WorksheetFunction.NormInv(Rnd(), 0, 1)
 XBar = XBar + arrMyArray(k, ((n0 + 1) * NumOfVariables) + t)

 If DisplayMatrix = True Then
 Cells(k, ((n0 + 1) * NumOfVariables) + t) = arrMyArray(k, ((n0 + 1) * NumOfVariables) + t) ''''' Will

display the array if necessary
 End If
 Next t

 XBar = XBar / n0 'calculates true value of X-bar
 arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) = XBar

 If DisplayMatrix = True Then
 Cells(k, (NumOfVariables * (n0 + 1) + n0 + 1)) = arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1))
 End If

 ObjectiveArray(k) = arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) ''' Puts the objective

values (x-bar) in an array
 Next k

 TenthLarge = Application.WorksheetFunction.Large(ObjectiveArray, Percent * GenerationSize) ''''' Finds

the tenth largest objective value

Vuckovich

 TenthSmall = Application.WorksheetFunction.Small(ObjectiveArray, Percent * GenerationSize) ''''' Finds

the tenth smallest objective value
 Small = Application.WorksheetFunction.Small(ObjectiveArray, 1) ''''' Finds lowest objec-

tive value

 For k = 1 To GenerationSize
 If arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) = Small Then '''' finds the solution with the

losest objective value
 Best = k
 k = k + GenerationSize
 End If
 Next k

 StandardDeviations2 = 0

 For k = 1 To GenerationSize
 For t = 1 To n0 ''''' calculates the standard deviation of each system
 StandardDeviations2 = StandardDeviations2 + _
 (arrMyArray(k, NumOfVariables * (n0 + 1) + t) - arrMyArray(Best, NumOfVariables * (n0 + 1) + t) - _
 (arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 1) - arrMyArray(Best, NumOfVariables * (n0 + 1) + n0 + 1)))

^ 2
 Next t
 StandardDeviations2 = StandardDeviations2 / (n0 - 1)
 StandardDeviations = Sqr(StandardDeviations2)
 arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 2) = StandardDeviations
 If DisplayMatrix = True Then
 Cells(k, NumOfVariables * (n0 + 1) + n0 + 2) = StandardDeviations
 End If
 Next k
 w = 1
 If PIZButton = True Then
 For k = 1 To GenerationSize
 If ObjectiveArray(k) <= TenthSmall Then
 For i = 1 To NumOfVariables
 ConstantCopyOver(w, i) = arrMyArray(k, i)
 Next i
 w = w + 1
 End If
 Next k
 Else
'''''''''''''''''''''Weighting'''
 Nu = 1 - (0.95 ^ (1 / (GenerationSize - 1))) ''''''''''' Calculated nu for finding t-value
 TValue = Application.WorksheetFunction.TInv(Nu, n0 - 1) ''''''''''' Finds t-value for confidence in-

terval
 BestSubsetWeight = (TValue) * (arrMyArray(Best, NumOfVariables * (n0 + 1) + n0 + 2)) / (n0 ^ 0.5) '' Finds the

weight of the best solution
 w = 1

 For k = 1 To GenerationSize
 SubsetWeight = (TValue) * (arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 2)) / (n0 ^ 0.5)
 arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 3) = SubsetWeight

 CopyOverCounter(k) = False '''' Finds the systems to copy over

Vuckovich

 If arrMyArray(k, NumOfVariables * (n0 + 1) + n0 + 1) - arrMyArray(Best, NumOfVariables * (n0 + 1) + n0 + 1)

<= _
 Application.WorksheetFunction.Max(BestSubsetWeight - delta1, 0) Then
 CopyOverCounter(k) = True
 For s = 1 To NumOfVariables * (n0 + 1) + n0 + 3
 If DisplayMatrix = True Then
 Cells(GenerationSize + 2 + w, s) = arrMyArray(k, s)
 End If
 Next s
 w = w + 1
 End If
 Next k

 z = w - 1
 w = 1 ''''Copies over the systems
 ReDim CopyOver(z, NumOfVariables * (n0 + 1) + n0 + 3)
 ReDim IndifSubsetWeight(z)

 For k = 1 To GenerationSize
 If CopyOverCounter(k) = True Then
 For s = 1 To NumOfVariables * (n0 + 1) + n0 + 3
 CopyOver(w, s) = arrMyArray(k, s)
 Next s
 w = w + 1
 End If
 Next k

 ''Indeference Zone '''
 ''

 If z <= Percent * GenerationSize Then
 Small = Application.WorksheetFunction.Small(ObjectiveArray, 1) ' If the number copied over is less than

10% skip to crossovers
 OptimumArray(Generation) = Small
 End If

 If z > Percent * GenerationSize Then ' If the number is greater than 10% do Indeference Zone
 If GenerationSize = 10 Then
 If z = 2 Then Rinott = 3.107
 If z = 3 Then Rinott = 3.908
 If z = 4 Then Rinott = 4.39
 If z = 5 Then Rinott = 4.746
 If z = 6 Then Rinott = 5.025
 If z = 7 Then Rinott = 5.26
 If z = 8 Then Rinott = 5.463
 If z = 9 Then Rinott = 5.641
 If z = 10 Then Rinott = 5.799
 End If
 For k = 1 To z ' Calculate the number of new samples per systems which =

new_n(k)-n0
 new_n(k) = Application.WorksheetFunction.Max((n0 + 1), _
 (Application.WorksheetFunction.RoundUp(Rinott ^ 2 * (CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 2) ^

2 / delta2), 1)))

Vuckovich

 Next k

 largestn = Application.WorksheetFunction.Large(new_n, 1) ' Find the largest new n for dimensioning of

array
 ReDim Preserve CopyOver(z, NumOfVariables * (n0 + 1) + n0 + 3 + NumOfVariables * (largestn - n0) + (largestn

- n0) + 3)
 ReDim ObjectiveArray(z)

 For k = 1 To z ' Runs simulations for each system selected for the new_n(k)-

n0 amount of times
 XBar = CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 1) * n0
 For t = 1 To (new_n(k) - n0)
 SimulationRunCounter = SimulationRunCounter + 1 ' Adds to the total count of simulations run
 If SimulationRunCounter > 1000 Then
 For ExitLoop = 1 To GenerationSize
 For ExitLoop2 = 1 To NumOfVariables
 FinalVariablesArray(ExitLoop, ExitLoop2) = arrMyArray(ExitLoop, ExitLoop2)
 Next ExitLoop2
 Next ExitLoop
 Exit Do
 End If
 For i = 1 To NumOfVariables

 CopyOver(k, i + (n0 + 1) * NumOfVariables + n0 + 3 + (t - 1) * NumOfVariables) = _
 (i * ((1.28 - 2.56 * CopyOver(k, i)) ^ 4))
 If DisplayMatrix = True Then
 Cells(GenerationSize + 2 + k, i + (n0 + 1) * NumOfVariables + n0 + 3 + (t - 1) * NumOfVariables) = _
 CopyOver(k, i + (n0 + 1) * NumOfVariables + n0 + 3 + (t - 1) * NumOfVariables) ''''' Will display

the array if necessary
 End If
 Next i

 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) = 0
 j = 1 ' Begins calculating X-Bar
 For j = 1 To NumOfVariables
 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) = _
 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) + _
 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + j + (t - 1) * NumOfVariables)
 Next j
 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) = _
 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) + _
 epsilon * WorksheetFunction.NormInv(Rnd(), 0, 1)
 XBar = XBar + CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) +

t)

 If DisplayMatrix = True Then
 Cells(GenerationSize + 2 + k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables)

+ t) = _
 CopyOver(k, ((n0 + 1) * NumOfVariables) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + t) ''''' Will

display the array if necessary
 End If
 Next t

 XBar = XBar / new_n(k) ' Calculates final X-bar for each

system

Vuckovich

 CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) +

1) = XBar
 ObjectiveArray(k) = XBar
 If DisplayMatrix = True Then
 Cells(k + 2 + GenerationSize, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) +

(new_n(k) - n0) + 1) = XBar
 End If
 Next k

 Small = Application.WorksheetFunction.Small(ObjectiveArray, 1) ' Finds system

with smallest objective function
 OptimumArray(Generation) = Small

 For k = 1 To z
 If CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0)

+ 1) = Small Then
 Best = k 'Finds system with lowest objective func-

tion
 k = k + GenerationSize
 End If
 Next k

 '''''''''''''''IZ Weighting''''''''''''''''''

 For k = 1 To z
 IndifSubsetWeight(k) = (n0 / new_n(k)) * (1 + Sqr(1 - ((n0 / new_n(k)) * (1 - ((new_n(k) - n0) * delta2 ^ 2) / _
 (Rinott ^ 2 * CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 2) ^ 2))))) ' calculates weight
 CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0)

+ 2) = IndifSubsetWeight(k)
 Next k

 ReDim IndifSubsetWeightDiff(z)
 For k = 1 To z ' calculates difference in weights
 CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0) +

3) = _
 CopyOver(k, NumOfVariables * (n0 + 1) + n0 + 3) * CopyOver(Best, (NumOfVariables * (n0 + 1)) + n0 + 3 +

((new_n(Best) - n0) * NumOfVariables) + (new_n(Best) - n0) + 1) + _
 (1 - IndifSubsetWeight(k)) * CopyOver(Best, ((NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(Best) - n0) *

NumOfVariables) + (new_n(Best) - n0) + 1))
 IndifSubsetWeightDiff(k) = CopyOver(k, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * Nu-

mOfVariables) + (new_n(k) - n0) + 3)
 Next k

 TenthSmall = Application.WorksheetFunction.Small(IndifSubsetWeightDiff, Percent * GenerationSize) '

finds tenth smallest weight
 u = 1

 For k = 1 To z
 CopyOverCounter2(k) = False
 If IndifSubsetWeightDiff(k) <= TenthSmall Then ' selects ten with lowest

weight
 CopyOverCounter2(k) = True
 For s = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0)

+ 3

Vuckovich

 If DisplayMatrix = True Then
 Cells(GenerationSize + 3 + w + u, s) = CopyOver(k, s)
 End If
 Next s
 u = u + 1
 End If
 Next k

 r = u - 1
 ReDim CopyOver2(r, (NumOfVariables * (n0 + 1)) + n0 + 3 + ((largestn - n0) * NumOfVariables) + (largestn - n0)

+ 3)
 u = 1

 For k = 1 To z ' carries over 10 with losest weights
 If IndifSubsetWeightDiff(k) <= TenthSmall Then
 For s = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 + ((new_n(k) - n0) * NumOfVariables) + (new_n(k) - n0)

+ 3
 CopyOver2(u, s) = CopyOver(k, s)
 Next s
 u = u + 1
 End If
 Next k

 If DisplayMatrix = True Then
 For k = 1 To GenerationSize + 3 + w + u ' Erases all cells
 For m = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3 + ((largestn - n0) * NumOfVariables) + (largestn - n0) + 3
 Cells(k, m) = ""
 Next m
 Next k
 End If

 For k = 1 To r
 For m = 1 To NumOfVariables ' Stores the selected system in new

array
 NewBigArray(k, m) = CopyOver2(k, m)
 If DisplayMatrix = True Then
 Cells(k, m) = NewBigArray(k, m)
 End If
 Next m
 Next k
 Indif = 1
 Else
 If DisplayMatrix = True Then ' Erases all cells
 For k = 1 To GenerationSize + 3 + w + u
 For m = 1 To (NumOfVariables * (n0 + 1)) + n0 + 3
 Cells(k, m) = ""
 Next m
 Next k
 End If

 For k = 1 To z
 For m = 1 To NumOfVariables ' Stores the selected system in new

array

Vuckovich

 NewBigArray(k, m) = CopyOver(k, m)
 If DisplayMatrix = True Then
 Cells(k, m) = CopyOver(k, m)
 End If
 Next m
 Next k
 End If

 End If
 ''' cross overs'''

 For k = 1 To ((1 - (2 * Percent)) * GenerationSize) / 2
 FirstParentRand = Application.WorksheetFunction.Ceiling(GenerationSize * Rnd(), 1) ' selects random

system
 SecondParentRand = Application.WorksheetFunction.Ceiling(GenerationSize * Rnd(), 1) ' selects ran-

dom system
 For p = 1 To NumOfVariables
 SwitchingValue = Rnd() ' generates the switching value
 FirstParent(p) = arrMyArray(FirstParentRand, p) ' assigns appropriate setting to

each variable
 SecondParent(p) = arrMyArray(SecondParentRand, p)
 If SwitchingValue > 0.8 Then ' will switch the variable setting if

value is > .8
 FirstChild(p) = SecondParent(p)
 SecondChild(p) = FirstParent(p)
 Else
 FirstChild(p) = FirstParent(p) ' if not keeps them the same
 SecondChild(p) = SecondParent(p)
 End If
 Next p
 For p = 1 To NumOfVariables ' copies new systems (children) into

new array
 NewBigArray(k + (Percent * GenerationSize), p) = FirstChild(p)
 NewBigArray(k + (Percent * GenerationSize) + ((1 - (2 * Percent)) * GenerationSize) / 2, p) = SecondChild(p)
 If DisplayMatrix = True Then
 Cells(k + (Percent * GenerationSize), p) = FirstChild(p)
 Cells(k + (Percent * GenerationSize) + ((1 - (2 * Percent)) * GenerationSize) / 2, p) = SecondChild(p)
 End If
 Next p
 Next k

 For k = 1 To GenerationSize - GenerationSize * Percent ' Copies over new array into

array used from beginng
 If Indif = 1 Then ' If it did not go through indiference zone
 If k <= r Then
 For m = 1 To NumOfVariables
 arrMyArray(k, m) = CopyOver2(k, m)
 Next m
 Else
 For m = 1 To NumOfVariables
 arrMyArray(k, m) = NewBigArray(k, m)
 Next m
 End If
 ElseIf PIZButton = True Then

Vuckovich

 If k <= Percent * GenerationSize Then
 For m = 1 To NumOfVariables
 arrMyArray(k, m) = ConstantCopyOver(k, m)
 Next m
 Else
 For m = 1 To NumOfVariables
 arrMyArray(k + (Percent * GenerationSize), m) = NewBigArray(k + (Percent * GenerationSize), m)
 Next m
 End If
 Else
 If k <= z Then '
 For m = 1 To NumOfVariables
 arrMyArray(k, m) = CopyOver(k, m)
 Next m
 Else
 For m = 1 To NumOfVariables
 arrMyArray(k + (Percent * GenerationSize), m) = NewBigArray(k + (Percent * GenerationSize), m)
 Next m
 End If
 End If
 Next k
 Generation = Generation + 1
Loop

'''out put'''
k = 1
i = 1
j = 1

For k = 1 To GenerationSize

 For i = 1 To NumOfVariables
 Cells(k, i) = arrMyArray(k, i) ''''' Will display the array if necessary
 Next i

 Cells(k, i) = arrMyArray(k, (NumOfVariables * (n0 + 1) + n0 + 1)) ''''' Will display the array if necessary

Next k
For Generation = 1 To TotalGenerations ''' Generates out put
 Cells(Generation + GenerationSize + 2, 1) = OptimumArray(Generation)
Next Generation

End If

'For k = 1 To z
' If ObjectiveArray(k) = Small Then
' 'Cells(2 * GenerationSize + 6 + k, 2) = ObjectiveArray(k) ' generates output
' Best = k
' End If
'Next k

 For k = 1 To GenerationSize
 SolutionQuality(k) = 0

Vuckovich

 For i = 1 To NumOfVariables
 SolutionQuality(k) = SolutionQuality(k) + (i * ((1.28 - 2.56 * FinalVariablesArray(k, i)) ^ 4))
 Cells(k, i) = FinalVariablesArray(k, i)
' Cells(1, i + 1) = arrMyArray(Best, i) ' generates output
 Next i
 Next k
 Small = Application.WorksheetFunction.Small(SolutionQuality(), 1)
 For k = 1 To GenerationSize
 If SolutionQuality(k) = Small Then
 Best = k
 End If
 Next k
 Cells(1, i + 1) = SolutionQuality(Best)

 For i = 1 To NumOfVariables
 Cells(2, NumOfVariables + 2 + i) = FinalVariablesArray(Best, i)
 Next i
 Cells(1, i + 2) = SimulationRunCounter - 1

Application.ScreenUpdating = True
End Sub

Vuckovich

REFERENCES

Aizawa, A.N. and Wah, B.W. (1994). �Scheduling of Genetic Algorithms in a Noisy Environment�. Evolutionary Computa-
tion, 2(2), 97-122.

�Arena Comparison Statement,� Rockwell Automation, 12 Feb. 2009, <http://www.arenasimulation.com/
news/docs/Arena%20comparison%20statement%202007.pdf>.

Bernshteyn, Mikhail (2001), �Simulation Optimization Methods That Combine Multiple Comparisons and Genetic Algo-
rithms with Applications in Design for Computer and Supersaturated Experiments,� The Ohio State University, In-
dustrial, Welding & Systems Engineering.

Boesel, J., B. L. Nelson, and N. Ishii (2003), �A Framework for Simulation-Optimization Software,� IIE Transactions, 35:3,
221-229.

Fu, M. C., C. Chun-Hung, and L. Shi (2008), �Some Topics for Simulation Optimization,� Proceedings of the 2008 Winter
Simulation Conference, S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, eds.

Fu, M. C., F. W. Glover, and J. April (2005), �Simulation optimization: a review, new developments, and applications,� Pro-
ceedings of the 2005 Winter Simulation Conference, M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines,
eds.

Goldsman D., B. L. Nelson, T. Opicka, and A. A. B. Pritsker (1999), �A Ranking and selection Project: Experiences from A
University-Industry Collaboration,� In Proceedings of the 1999 Winter Simulation Conference, P. A. Farrington, H.
B. Nembhard, D. T. Sturrock, and G. W. Evans, eds. 83-92. Piscataway, New Jersey: Institute of Electrical Engi-
neers.

Koenig, L. W. and Law, A. M. (1985), �A procedure for Selecting a Subset of Size m Containing the I Best of k Independent
Normal Populations, with Applications to Simulation,� Communications in Statistics: Simulation and Computation,
14, 719-734.

Laguna, Manuel (1997), �Optimization of Complex Systems with OptQuest,� University of Colorado, Graduated School of
Business Administration.

�OptQuest,� ProModel, 12 Feb. 2009, <http://www.promodel.com/products/optquest/>.
Rinott, Y. (1978), �On Two-stage Selection Procedures and Related Probability Inequalities,� Communications in Statistics,

7: 799-811.
�Simulation Software Survey,� ORMS Today, Page 4, October 2007.
Sullivan, D. A. and Wilson, J. R. (1989), �Restricted Subset Selection Procedures for Simulation,� Operations Research, 37,

1, 52- 71.
Wilcox, Rand R. Apr 1984. �A Table for Rinott�s Selection Procedure.� Journal of Quality
 Technology, 16, 97-100.
Zhao, L. and S. Sen (2006), �A Comparison of Sample-Path Based Simulation-Optimization and Stochastic Decomposition

For Multi-Location Transshipment Problems,� Proceedings of the 2006 Winter Simulation Conference, L. F. Per-
rone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

Zheng, N., and T. T. Allen (2007), �Subset Selection and Optimization for Selecting Binomial Systems Applied to Supersatu-
rated Design Generation,� Proceedings of the 2007 Winter Simulation Conference, S. G. Henderson, B. Biller, M. �
H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

