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We study a simple class of unitary renormalization group transformations governed by a parameter f in

the range [0, 1]. For f ¼ 0, the transformation is one introduced by Wegner in condensed matter physics,

and for f ¼ 1 it is a simpler transformation that is being used in nuclear theory. The transformation with

f ¼ 0 diagonalizes the Hamiltonian but in the transformations with f near 1 divergent couplings arise as

bound-state thresholds emerge. To illustrate and diagnose this behavior, we numerically study

Hamiltonian flows in two simple models with bound states: one with asymptotic freedom and a related

one with a limit cycle. The f ¼ 0 transformation places bound-state eigenvalues on the diagonal at their

natural scale, after which the bound states decouple from the dynamics at much smaller momentum scales.

At the other extreme, the f ¼ 1 transformation tries to move bound-state eigenvalues to the part of the

diagonal corresponding to the lowest momentum scales available and inevitably diverges when this scale

is taken to zero. Intermediate values of f cause intermediate shifts of bound-state eigenvalues down the

diagonal and produce increasingly large coupling constants to do this. In discrete models, there is a critical

value fc below which bound-state eigenvalues appear at their natural scale, and the entire flow to the

diagonal is well behaved. We analyze the shift mechanism analytically in a 3� 3 matrix model, which

displays the essence of this renormalization group behavior, and we compute fc for this model.
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I. INTRODUCTION

Wilsonian renormalization group transformations typi-
cally eliminate (integrate out) degrees of freedom whose
energy is much higher than those of interest, replacing
them with effective scale-dependent interactions. Such
transformations allow one to tune an effective theory reso-
lution, focusing on essential degrees of freedom and inter-
actions at any scale of interest. Anticipated by Kadanoff’s
block spin transformation [1], early transformations ex-
plicitly reduced the number of degrees of freedom by
lowering cutoffs on energy [2,3]. Głazek and Wilson in-
troduced a similarity renormalization group (SRG) proce-
dure, which instead uses transformations that do not
remove any degrees of freedom but eliminate couplings
between disparate energy scales [4–6]. After regularization
and identification of necessary counterterms, the SRG
procedure eventually produces a renormalized, band-
diagonal matrix representation of the Hamiltonian.
Independently, Wegner introduced nonperturbative differ-
ential flow equations that unitarily transform Hamiltonian
matrices to the band-diagonal form [7,8], and Wegner’s
flow equations can be employed in the SRG procedure.

A simplified version of Wegner’s transformation [9] has
been successfully applied to a number of nuclear few-body
problems [10,11]. Nuclear many-body calculations are
plagued by strong nucleon-nucleon correlations due to a
hard core and strong short-range tensor force, so perturba-
tive and variational methods converge poorly. The new
simple transformation produces universal nucleon-nucleon
interactions with drastically improved perturbative and
variational behavior. It has also been shown that one can
apply SRG with Wegner’s flow (or a suitably altered flow)
for studying the connection between asymptotic freedom
and limit cycles [12], and it has been suggested that an
infrared limit cycle may exist in QCD [13]. These ex-
amples indicate that convergence properties of SRG trans-
formations are relevant to the theory of particles over a
broad range of energies.
We find that convergence properties of the simple trans-

formation are worse than those of Wegner’s transforma-
tion. The simple transformation tends to diverge whenever
the SRG parameter approaches the momentum scale at
which a bound state is formed in the theory. This effect
may present no problem for applications in low-energy
nuclear physics as long as the SRG parameter stays larger
than the momentum scales at which formation of bound
states occurs. However, such fortunate conditions may not
be available if the Efimov effect [14–16] in the three-
nucleon problem [17–20] cannot be avoided. The Efimov
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effect shows up as a limit cycle. We will see that Wegner’s
transformation is capable of resolving limit cycle behavior,
while the simple transformation diverges as the first high-
energy cycle is resolved.

Transform a Hamiltonian Hð0Þ using a unitary operator
UðsÞ

HðsÞ ¼ UðsÞHð0ÞUyðsÞ; (1)

where s is the SRG flow parameter. We want to choose
UðsÞ so that H is diagonalized as s ! 1 (band-
diagonalized for finite s). We choose s ¼ 0 for the initial
value, so Hð0Þ can be thought of as an input bare regular-
ized Hamiltonian with all required and properly adjusted
counterterms (such Hamiltonians are established using the
same SRG procedure, but this aspect is not our focus here).

Taking derivatives of both sides of Eq. (1), we see that
HðsÞ evolves according to

dHðsÞ
ds

¼ ½�ðsÞ; HðsÞ�; (2)

with

�ðsÞ ¼ dUðsÞ
ds

UyðsÞ ¼ ��yðsÞ: (3)

Choosing �ðsÞ specifies the transformation. We study
transformations that mix two simple choices

�ðsÞ ¼ ½DðsÞ; HðsÞ�; (4)

where DðsÞ is the diagonal part of HðsÞ in momentum
representation, and

�ðsÞ ¼ ½T;HðsÞ�; (5)

where T is a fixed matrix, here chosen to be the kinetic
energy. If one considers T to be an arbitrary H0 that has a
known spectrum, the interaction is the remaining part,
HI ¼ H �H0.

Using D in � was Wegner’s initial choice, and this
transformation has been studied extensively [8]. The use
of T was explored perturbatively [9] and then shown to
effectively decouple low- and high-momentum scales in a
universal characterization of the nucleon-nucleon interac-
tion [10,11]. Universality in effective nucleon-nucleon
interactions was discovered earlier [21,22] using the
same transformation Wilson used in his initial numerical
RG calculations [2].

We will see that using T instead of D produces singu-
larities starting at bound-state thresholds and limits how far
the transformation can be run. But we stress that if it is not
run too far, for any phenomenologically tuned nucleon-
nucleon interaction Hð0Þ the low-energy part of HðsÞ is
nearly universal. This means that all infrared-constrained
nucleon-nucleon interactions with bare cutoffs at or even
well above 500 MeV collapse onto a nearly universal
infrared Hamiltonian after the SRG parameter � ¼ 1=

ffiffiffi
s

p
,

playing the role of effective cutoff, is evolved to well below

the bare cutoff. These evolved potentials disagree only on
the high-energy part of HðsÞ, which is not constrained by
low-energy physics [11].
Introducing a parameter f, which takes values in the

range [0, 1], we define

GfðsÞ ¼ fT þ ð1� fÞDfðsÞ; (6)

and write

d

ds
HfðsÞ ¼ ½FfHfðsÞg; HfðsÞ�; (7)

Hfð0Þ ¼ H; (8)

where H is an initial Hamiltonian matrix, and the SRG
generator matrix takes the form

FfHfðsÞg ¼ ½GfðsÞ; HfðsÞ�; (9)

and thus defines � that depends on f and interpolates
between the two cases from Eqs. (4) and (5) when f varies
from 0 to 1. For explicit calculations one uses a basis in
which T is diagonal, since it is in this representation that
HðsÞ is driven toward band-diagonal form.
The generator FfHfðsÞg is guaranteed to bring the

Hamiltonian to diagonal if some sufficient and easily veri-
fiable conditions are satisfied. Such conditions will be
discussed after we introduce all details that count in the
derivation, in the context of two examples of basic interest
in physics.
Namely, we use the family of generators FfHfðsÞg to

evolve Hamiltonian matrices that exhibit asymptotic free-
dom and limit cycle behavior. The asymptotically free
matrix model is easily derived from the nonrelativstic
Schrödinger equation in two dimensions with a delta-
function potential. Isolate the angular momentum zero
states and discretize the momentum so that p ! bnp0

with b > 1; include the appropriate weights to reproduce
the momentum representation bound-state integral equa-
tion in the limits where n is allowed to be any integer and
b ! 1. Introduce cutoffs so thatM � n � N and you have
the matrix we use to illustrate asymptotic freedom (M is a
large negative and N is a large positive integer number).
The limit cycle model is obtained by adding an imaginary
part to the same asymptotically free model Hamiltonian.
The operator T can be replaced by any Hermitian operator
one wants to use and the methods we employ in this study
can still be applied.

II. DETAILS OF EQUATIONS

The equations for a fixed value of f contain the diagonal
matrix GfðsÞ given in Eq. (6) that contains the diagonal

part of HfðsÞ. The Hamiltonian matrix is split into its

diagonal and off-diagonal parts at every value of s

HfðsÞ ¼ DfðsÞ þ VfðsÞ: (10)
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This splitting implies also

HfðsÞ ¼ GfðsÞ þ ½HfðsÞ �GfðsÞ�; (11)

¼ GfðsÞ þ f½DfðsÞ � T� þ VfðsÞ: (12)

This means that the diagonal part of the interaction is
included in DfðsÞ. The important point is that only VfðsÞ
has nonzero off-diagonal matrix elements. Diagonal matrix
elements of VfðsÞ are zero. T and DfðsÞ are diagonal, and
we use an abbreviated notation for their matrix elements:
Tmn ¼ Tm�mn, DfmnðsÞ ¼ Dm�mn, and GfmnðsÞ ¼
Gm�mn. Our abbreviated notation for interaction matrix
elements is VfmnðsÞ ¼ ð1� �mnÞVmn, where V is the full

interaction part in the matrix HfðsÞ ¼ T þ V.

The SRG Eq. (7) implies

d

ds
Dn ¼ 2

X
k

ðGn �GkÞVnkVkn; (13)

d

ds
Vm�n ¼ �ðGm �GnÞðDm �DnÞVmn

þ X
m�k�n

ðGm þGn � 2GkÞVmkVkn: (14)

We solve these equations numerically, starting from

Hfð0Þmn ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p ½�mn � g� ihsgnðm� nÞ�; (15)

En ¼ bn; (16)

M � n � N: (17)

In the case of the model with asymptotic freedom, the
coupling constant h is set to 0, the Hamiltonian matrix is
real, and Eqs. (13) and (14) display all relevant formulae.
In the case of the model with a limit cycle, the Hamiltonian
contains an imaginary part, and the equations we use to
compute the Hamiltonian flow numerically involve the
imaginary components

HfðsÞmn ¼ rmn þ icmn; (18)

where r is a real symmetric matrix, and c is a real anti-
symmetric matrix. Thus, Dm ¼ rmm. With this notation,
the SRG equations we solve are

d

ds
Dn ¼ 2

X
k

ðGn �GkÞðr2nk þ c2nkÞ; (19)

d

ds
rm�n ¼ �ðGm �GnÞðDm �DnÞrmn

þ X
m�k�n

ðGm þGn � 2GkÞðrmkrnk þ cnkcmkÞ;

(20)

d

ds
cmn ¼ �ðGm �GnÞðDm �DnÞcmn

þ X
m�k�n

ðGm þGn � 2GkÞðcmkrnk � cnkrmkÞ:

(21)

We will show that to a good approximationHfðsÞ retains
the form of Hfð0Þ for matrix elements between states with

kinetic energies well below the SRG parameter � ¼ 1=
ffiffiffi
s

p
.

The dominant change that occurs in these matrix elements
is that g is replaced by gfðsÞ. This feature emerges in

numerical calculations. We also analytically derive this
result in the limit of large b in the next section.
Once it is established through numerically calculated

nonperturbative evolution of the whole Hamiltonian that its
evolution can be reduced to the evolution of the coupling
constant gfðsÞ, we focus discussion on the evolution of the
coupling and its dependence on f. The coupling constant is
defined as

gfðsÞ ¼ 1�HfðsÞMM=EM; (22)

where EM is the smallest energy in the matrix representa-
tion of the theory (smallest allowed eigenvalue of T), and
HfðsÞMM is the smallest energy diagonal matrix element of

HfðsÞ, the infrared corner of the Hamiltonian. We can

choose any diagonal or off-diagonal matrix element near
the infrared corner of the Hamiltonian matrix to define the
same coupling constant, and no significant changes result
until this element begins to freeze at its asymptotic limit as
s ! 1. Each matrix element follows a universal trajectory
until it freezes at its s ! 1 value. Only the lowest diagonal
element displays the full evolution of the diagonal.
When G differs from D, i.e., f > 0, we show that the

SRG transformation does not necessarily bring the Hamil-
tonian matrix to diagonal form as s ! 1. However, there
is a sufficient condition for cases with f > 0 that will be
derived in Sec. IV. Namely,

dV

dT
>�1; (23)

where the derivative means the rate of change of matrix
elements of V along the diagonal in units of rate of change
of eigenvalues of T along the diagonal. This condition
could be violated when bound-state (negative) eigenvalues
appear on the diagonal among positive eigenvalues. To
study how the SRG transformation behaves depending on
the choice of f in the presence of bound states, and, in
particular, what happens in the case f ¼ 1 that is useful in
nuclear physics, one needs to see what happens in the
generic models when f deviates from 0 and reaches 1.
Since the sufficient condition could be violated when the
SRG parameter � passes the momentum scale of binding,
one should find out how HfðsÞ behaves around s corre-

sponding to this region.
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In the next section we discuss results of calculations of
HfðsÞ. We show that Wegner’s transformation (f ¼ 0)

encounters no difficulty and places bound-state eigenval-
ues on the diagonal when � approaches the appropriate
bound-state scale from above. The f ¼ 1 transformation
breaks down as the effective cutoff approaches a bound-
state scale. In fact, the transformation moves the bound-
state eigenvalue to the infrared corner of the Hamiltonian.
When the minimal momentum scale is much less than the
bound-state momentum scale, the f ¼ 1 transformation
forces off-diagonal matrix elements to diverge in order to
move the bound-state eigenvalue to such a significantly
wrong scale.

For values of f between these two extremes the trans-
formation puts the bound-state eigenvalue on the diagonal
at some scale between the natural one and the infrared
cutoff. However, for f approaching 1, the amount of shift
approaches the maximal possible and correspondingly
large couplings must be generated on the way. For f ¼ 1,
the transformation becomes numerically unstable near the
bound-state scale when the infrared cutoff tends to zero.

In discrete matrix notation, one can ask how large a
value of f > 0 causes the first shift of the bound-state
eigenvalue down the diagonal, just by one free energy level
in comparison to the Wegner case (f ¼ 0). This value of f
will be called critical, and denoted by fc. It can be com-
puted numerically to high accuracy.

III. NUMERICAL RESULTS: ASYMPTOTIC
FREEDOM

The characteristic SRG behavior displayed by the full
matrix HfðsÞ is difficult to grasp (in our typical cases, the

matrix has about 2,000 matrix elements, each a function of
s that ranges from 0 to 1) without studying a number of
cases. Such studies involve large amounts of data.
Fortunately, the overall result of such studies is that the
essence of what happens for large matrices can be ex-
plained in a simple way using just one running coupling
constant. Most interestingly, the characteristic behavior of
this one running coupling constant in large matrices can be
explained using much smaller matrices, and a matrix that is
only 3� 3 in size will be sufficient. These two facts guide
the way we present and discuss our results.

Our goal is to describe the most important qualitative
features of the Hamiltonian evolving from its initial form
of the type

ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p
(�mn � g) to complete diagonalization.

We need to cover a large range of scales and make im-
portant features of V at all scales visible simultaneously.
Taking our cue from the initial Hamiltonian and experience
gathered in observing many examples of the SRG flows,
we display what we will call the scaled interaction,
Vmn ¼ VmnðsÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p
. Matrix elements of the scaled

interaction are all of Oð1Þ or decay to 0 during the entire
process of diagonalization when Wegner’s transformation
is used (f ¼ 0). When f ¼ 1, however, matrix elements of

V diverge as the bound-state threshold is reached (see
below).
Throughout its evolution, the scaled interaction matrix

can be approximated by Vmn ��gfðsÞ þ corrections for

subscriptsm and n below the transition region, in which the
subscripts m and n take values k such that sE2

k � 1. Well

above the transition region the Hamiltonian matrix is di-
agonalized. As s increases, gfðsÞ increases to a maximum,

at which point the bound-state negative eigenvalue
emerges on the diagonal or a process of shifting the
bound-state eigenvalue down the diagonal begins.
We start with the model case of asymptotic freedom

(a discretized � function in two dimensions), for which
h in Eq. (15) is zero, and the single bound-state eigen-
value determines g through dimensional transmutation.
In the notation of Sec. II, cmn ¼ 0 and
rmnðs ¼ 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

EmEn

p ð�mn � gÞ. We consider g ¼
0:040 002 279 758 172 565 4. (This particular value of g is
not significant; it is found from the condition that for h ¼
0, b ¼ 4, N ¼ 16, M ¼ �25, the bound-state eigenvalue
is with high accuracy the same as one of the bound-state
eigenvalues in another case: one with a limit cycle for g ¼
0 and h ¼ tan�=50, and eigenvalue E��7:64447910�6,
see [12].)
In Fig. 1, we display frames from a movie of the evolv-

ing interaction VðsÞ in the Hamiltonian H ¼ T þ V, using
Wegner’s transformation, f ¼ 0. We show �Vmn. Since
small-energy matrix elements of V equal the negative of
the coupling constant, we need to display �V instead of
V itself in order to directly show how well the one
coupling constant gf¼0ðsÞ approximates the evolution of

V below the transition region and at the same time show
how the coupling constant itself evolves. With these rescal-
ing and display conventions, T is the identity matrix. To get
Hmn=

ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p
, simply take the negative of the displayed

values of �V and add peaks of height one along the
diagonal in each frame. Details concerning the frames
shown in Fig. 1 are listed in Table I.
The negative of the scaled interaction is initially a

featureless plane (frame 1), its size fixed at about 0.04,
just above zero because it is a negative of a momentum
representation of an attractive delta function in position
representation with the initial value of the coupling con-
stant g� 0:04. As s increases from 0, the plane drops to
zero at highest energies, creating a barely visible cliff
(frame 2) between the low- and high-energy parts of the
matrix (transition region). This cliff runs along a single row
and column that meet on the point along the diagonal at
which newly decoupled eigenvalues are emerging. The
cliff moves toward lower energies and grows in height as
s increases (frame 3), showing evolution of the transition
region between a flat plane of zeroed high-energy off-
diagonal matrix elements of V and a low-energy plateau
that is rising higher as s increases (that this plateau rises
means that the coupling constant increases, and the poten-
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tial itself becomes more negative). The positive peaks left
along the high-energy diagonal decouple from the rest of
the matrix when the ridge moves past, and they are basi-
cally left at the height of the low-energy rising plane at the
decoupling point.

This process continues, with the low-energy part of the
matrix rising and high-energy eigenvalues being left in
isolation on the diagonal as the growing cliff separating
low- and high-energy portions of the Hamiltonian moves
toward the infrared corner of the matrix, and the off-
diagonal high-energy part of the matrix settles to zero.

We display a frame in which many high-energy eigen-
values are in place and the low-energy plateau has barely
fallen from its maximum height (frame 4), at a point where
a bound state is going to emerge on the diagonal of HðsÞ.
Remember that what we are showing is �V , which must
be multiplied by

ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p
and subtracted from T to produce

HðsÞ. Two important things happen: the low-energy plane
is high enough to cancel T and produce a negative eigen-
value on the diagonal, and as this bound-state eigenvalue is
left on the diagonal the low-energy plane reverses its
motion (frames 4 and 5) and drops rapidly to negative
values (frame 6, the coupling constant becomes negative
and the whole interaction �gfðsÞ becomes positive, i.e.,

repulsive).
After the bound-state threshold is crossed, V adds to the

eigenvalues of T, while up to this point it had subtracted
from these eigenvalues. After quickly reaching its deepest
level, the low-energy plane gradually rises to zero (frames
7 and 8), leaving a sequence of eigenvalues that smoothly
emerge from this flow one after another toward the infrared
corner.
The only violent changes in these scaled variables ap-

pear around the point where the bound state emerges. This

FIG. 1. SRG evolution of H ¼ T þ V with � for f ¼ 0. Successive frames correspond to entries in Table I. The horizontal axes
display subscripts m and n (each running from M to N, counting from left to right and from front to back) of the matrix �V, and the
vertical axis displays corresponding matrix elements �Vmn divided by

ffiffiffiffiffiffiffiffiffiffiffiffi
EmEn

p
. See text for details.
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is where the coupling that characterizes the evolution of the
low-energy part of the matrix grows to its maximum value,
before dropping rapidly to negative values.

It is clear that the evolution of the entire matrix V is
well described by the evolution of gfðsÞ in the case of f ¼
0. The same is true in all other cases we consider.
Therefore, we will present only the functions gfðsÞ in all

these cases rather than frames from many movies.
The behavior of coupling constants in the case of asymp-

totic freedom for various values of f is shown in Fig. 2. In
the f � 1 cases, evolution ofHðsÞ is nearly identical to the
f ¼ 0 evolution until the bound state begins to emerge.
The low-energy plane in V moves up to produce the
bound-state eigenvalue, but as f grows this plane reaches
increasingly high values before producing the bound state
and reversing direction. We do not display f ¼ 1 because

in this case the coupling diverges, and our numerical
calculations fail to converge.
The f ¼ 1 transformation becomes singular because it

tries to move the bound-state eigenvalue to the lowest-
energy diagonal matrix element of the Hamiltonian, as
we discuss below and explain in greater detail in the next
section. This means that the bound-state wave function is
being forced to include only disparately small momenta.
As a result, the interactions are forced to grow to maintain
observables at their true values. If the evolution is halted
before the bound-state emerges, the pathological rise of
interaction terms does not occur yet.
One can see in Fig. 2 not only that the larger f the larger

the maximal value of the coupling constant gf at the

corresponding value of the argument ln�f= lnb ¼ tf, but

also that simultaneously the argument tf where the maxi-

mum of gf is reached decreases when f increases. In fact,

when f increases sufficiently to cause a shift of the bound-
state eigenvalue by one state down the diagonal in com-
parison to the case f ¼ 0, the maximal coupling constant
must increase by a factor of b, when f increases suffi-
ciently to shift the bound-state eigenvalue by two states
down the diagonal, the maximal coupling constant must
increase by a factor of b2, and so on. Since Fig. 2 concerns
the case with b ¼ 4, the maximal values of the coupling
are about 4 and then 16 when the bound-state eigenvalue is
shifted by one and two states down the diagonal, respec-
tively. The next shift requires gf � 64, and this leads to a

coupling that grows beyond the scale used in Fig. 2. When
f ¼ 1, the shift occurs to the minimal possible value t1 ¼
M, and this requires that g1 reaches bjMjEboundstate �
b25�9 ¼ 416 in the case illustrated in Fig. 2. With typical
machine limitations, numerical calculations are expected
to fail below the scale of binding if one uses the generator
FfHðsÞg with G in which f ¼ 1.

IV. CONVERGENCE PROBLEMS
AND THE 3� 3 MATRIX

In this section, we explain the phenomenon of rise of the
coupling constant when the SRG parameter approaches the
scale of binding in the asymptotically free model. After
that we will discuss what happens in the model with a limit
cycle.
We reduce the asymptotically free model to a 3� 3

matrix, allowing b to become arbitrarily large (i.e., there
are only three, strongly coupled degrees of freedom of
drastically different momentum scales), and show an ana-
lytic analysis that explains the behavior observed in the full
SRG calculation for the 3� 3 matrix. The 3� 3 matrix
model explains the mechanism that is also at work in large
matrices in our models with asymptotic freedom or a limit
cycle.
In the 3� 3 case, there is a low-energy effective cou-

pling that evolves smoothly as the highest energy scale is
decoupled by the SRG transformation. At a characteristic

-20 -10 0 10 20
ln(λ)/ln(b)

0

5

10

15

20

g(
λ)

f = 0
f = 0.2
f = 0.5
f = 0.75
f = 0.9

FIG. 2. The coupling constants gf in the case of asymptotic
freedom, plotted as a function of ln�= lnb (instead of s ¼ 1=�2)
for 5 values of f: f ¼ 0 (Wegner), f ¼ 0:2, 0.5, 0.75, and 0.9.
The correspondence between a curve and f is such that the
curves for larger f reach higher and for f ¼ 1 the corresponding
curve would diverge around �� jEboundstatej. The ultraviolet
cutoff is at b16, and b ¼ 4.

TABLE I. SRG parameters g and � for frames shown in Fig. 1,
numbered from the top to bottom. In this example, g ¼
0:040002, h ¼ 0, b ¼ 4, M ¼ �25, N ¼ 16, and all displayed
numbers are rounded to 6 decimal places.

frame lnð�Þ= lnb gð�Þ
1 (top) 22.780 321 0.040 002

2 2.766 096 0.092 055

3 �6:864 809 0.600 768

4 �8:369 638 1.234 710

5 �8:570 281 0.891 475

6 �9:071 891 �0:680 443
7 �12:282 193 �0:226 083
8 (bottom) �27:330 482 �0:060 769
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‘‘time’’ s, a 2� 2 low-energy effective Hamiltonian
emerges, characterized by gfðsÞ, and this coupling exceeds
some critical value when a bound state emerges. For f ¼
fc, the sign of the dominant term driving further off-
diagonal evolution changes, and fc can be computed ana-
lytically in the simple 3� 3 example. Above fc the re-
maining off-diagonal matrix element is forced to diverge as
a power of b to force the low-energy diagonal to accom-
modate an eigenvalue of the wrong magnitude (wrong in
the sense that it is much larger in size than the correspond-
ing eigenvalue of T). The b ! 1 limit of the full 3� 3
matrix evolution can be analyzed analytically, and this is
how we explain the mechanism at work in the full SRG
evolution.

Before we analyze the drastically simplified 3� 3 ma-
trix truncation of the asymptotic freedom model, we recall
Wegner’s demonstration [7] that his transformation always
diagonalizes Hamiltonians, and we use similar reasoning
to explain why a simpler transformation might fail to
converge.

For any similarity transformation, TrðH2Þ is independent
of s. Separating diagonal and off-diagonal contributions to
this trace, one finds

d

ds

X
m

H2
mm ¼ � d

ds

X
m�n

jHmnj2: (24)

If the magnitudes of diagonal matrix elements increase, the
magnitudes of off-diagonal matrix elements must decrease.
Using Eq. (13) for the evolution of the diagonal matrix
elements,

d

ds

X
m

H2
mm ¼ 4

X
mn

DmðGm �GnÞjVmnj2; (25)

¼ 2
X
mn

ðDm �DnÞðGm �GnÞjVmnj2: (26)

For Wegner’s transformation, Gm ¼ Dm, so we have

d

ds

X
m

H2
mm ¼ 2

X
mn

ðDm �DnÞ2jVmnj2: (27)

No term in this sum can be negative, so the only way
Wegner’s transformation can stop driving off-diagonal ma-
trix elements to zero is if degeneracies appear on the
diagonal. In this case, the matrix is driven to block diagonal
form with diagonal degeneracies in any nondiagonalized
blocks.

In general, from Eq. (26) we see that negative terms
cannot appear on the right-hand-side when all differences
Dm �Dn and Gm �Gn always satisfy the condition

ðGm �GnÞðDm �DnÞ � 0: (28)

Introducing ð�TÞmn ¼ Tm � Tn and ð�VÞmn ¼
Vmm � Vnn, one obtains for every pair of diagonal elements
number m and n

½f�T þ ð1� fÞð�T þ�VÞ�ð�T þ�VÞ � 0; (29)

which, by dividing by �T > 0 for m> n, implies that v ¼
�V=�T must satisfy the condition

½fþ ð1� fÞð1þ vÞ�ð1þ vÞ � 0: (30)

This condition implies for f 2 ½0; 1� that either v � 1
f�1 or

v � �1 and only for f ¼ 0 (Wegner’s generator) these
two regions can join, while for f > 0 they are always
disjoint. Instead of differences for arbitrary m and n, it is
sufficient to consider differences withm ¼ nþ 1, since all
differences can be built from the differences between
neighboring entries on the diagonal. Then, in the limit of
continuous energy variable, the limit of �T ! 0 produces
the condition

dV

dT
� 1

f� 1
or

dV

dT
� �1; (31)

as a sufficient one for the transformation to always bringH
near the diagonal (outside regions of degeneracy men-
tioned earlier).
When f ¼ 1, Gm ¼ Tm, and we see that convergence

can fail if

�V

�T
<�1 (32)

for some momenta. Tm increases monotonically withm, so
we see that problems can appear if Vm decreases rapidly
with m in some region. This is exactly what happens when
a negative value appears on the diagonal, signaling the
appearance of a bound-state threshold. The appearance of
negative values on the diagonal does not guarantee that the
transformation will stop driving off-diagonal matrix ele-
ments to zero, and it gives no indication that off-diagonal
matrix elements will actually start to diverge, but it indi-
cates how problems can arise.
To gain further insight, we proceed to a study of the b !

1 limit, which drastically simplifies the couplings between
various scales, and for further simplicity we truncate the
asymptotically free Hamiltonian model to a 3� 3 matrix.
We refer to the three remaining scales as high, middle, and
low, and we write the initial Hamiltonian as

Hð0Þ ¼
b 0 0
0 1 0
0 0 1

b

0
B@

1
CA� g

b
ffiffiffi
b

p
1ffiffiffi

b
p

1 1ffiffi
b

p

1 1ffiffi
b

p 1
b

0
BB@

1
CCA; (33)

where the first matrix is T and the second is Vð0Þ. We
choose g so that the single negative eigenvalue isOð1Þ and
should appear in the middle of the final diagonalized
matrix in the case f ¼ 0. These conditions imply that
0:5< g< 1 and g must be more than Oð1bÞ away from

either extreme. The three eigenvalues are ð1� gÞbþ
Oð1Þ, ð1� 2gÞ=ð1� gÞ þOð1=bÞ, and ½ð1� 3gÞ=ð1�
2gÞ�=bþOð1=b2Þ.
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We define six couplings in the running interaction

VfðsÞ ¼
�dhb �gh

ffiffiffi
b

p �gm
�gh

ffiffiffi
b

p �dm � glffiffi
b

p

�gm � glffiffi
b

p � dl
b

0
BB@

1
CCA; (34)

where the diagonal couplings dh, dm and dl, and the off-
diagonal couplings gh, gm, and gl are all functions of s. At
s ¼ 0 all of these couplings are equal to g. The scaled
interaction V is obtained from VfðsÞ by replacement of b

by 1.
Our goal is to obtain accurate estimates for all matrix

elements of VfðsÞ, even though their magnitudes span

many orders. We cannot allow small errors in large eigen-
values or far off-diagonal matrix elements to produce large
errors in small diagonal matrix elements that should repro-
duce the eigenvalues of order 1 or 1=b, the prototypical
renormalization problem. As b ! 1 this problem can be
analyzed analytically.

We find evolution of the coupling constants in Eq. (34)
using Eqs. (13) and (14). The full set of equations for
arbitrary f is (dots indicate derivatives with respect to s)

_d h ¼ �2b�hmg
2
h � 2�hlg

2
m; (35)

_d m ¼ 2b2�hmg
2
h � 2b�1�hlg

2
l ; (36)

_d l ¼ 2b2�hlg
2
m þ 2�mlg

2
l ; (37)

_gh ¼ �b2�hm½ð1� dhÞ � b�1ð1� dmÞ�gh
� ð�hl þ b�1�mlÞgmgl; (38)

_gm ¼ �b2�hl½ð1� dhÞ � b�2ð1� dlÞ�gm
� bð�hm � b�1�mlÞghgl; (39)

_gl ¼ b2ð�hm þ �hlÞghgm
� �ml½ð1� dmÞ � b�1ð1� dlÞ�gl; (40)

where

�hm ¼ �h � �m=b; (41)

�ml ¼ �m � �l=b; (42)

�hl ¼ �h � �l=b
2; (43)

�h ¼ fþ ð1� fÞð1� dhÞ; (44)

�m ¼ fþ ð1� fÞð1� dmÞ; (45)

�l ¼ fþ ð1� fÞð1� dlÞ: (46)

A. Approximate evolution of 3� 3 matrix for f ¼ 0

We begin by considering Wegner’s transformation, f ¼
0. We use Eqs. (35)–(40) and keep only the leading terms
for large b. We will see that all couplings remain Oð1Þ
when f ¼ 0, so this analysis is fairly straightforward. The
evolution has two stages: elimination of gh and gm in the
first stage, and elimination of gl in the second stage. Terms
driving the first stage of evolution are Oðb2Þ and govern
evolution until s exceeds Oð1=b2Þ. These terms are then
exponentially suppressed by gh and gm, and the second
stage of evolution is governed by subleading terms. The
leading terms are

d

ds
dh ¼ �2ð1� dhÞg2hbþOð1Þ; (47)

d

ds
dm ¼ 2ð1� dhÞg2hb2 þOðbÞ; (48)

d

ds
dl ¼ 2ð1� dhÞg2mb2 þOð1Þ; (49)

d

ds
gh ¼ �ð1� dhÞ2ghb2 þOðbÞ; (50)

d

ds
gm ¼ �ð1� dhÞ2gmb2 þOðbÞ; (51)

d

ds
gl ¼ 2ð1� dhÞghgmb2 þOðbÞ: (52)

We see from (50) and (51) that gh ¼ gm during the first
stage, because all couplings start at g. This implies that
dm ¼ dl ¼ gl during this stage also, because the leading
equations governing their evolution become identical.
Since the low-energy 2� 2 submatrix of V is determined
by dm, dl, and gl, it retains its original form during the first
stage of evolution, with a single coupling that can be
factored from the submatrix of V . This is one of the
most important results of this analysis, and it can be
generalized to larger matrices.
The leading term on the right of Eq. (47) is OðbÞ rather

than Oðb2Þ, so for s of Oð1=b2Þ, dh changes only by
Oð1=bÞ, and we can ignore this change when solving
Eqs. (50) and (51), replacing dh with its initial value g.
Solving Eqs. (50) and (51) for large b we obtain

ghðsÞ � gmðsÞ � ge�ð1�gÞ2b2s: (53)

Both of these couplings decay to zero exponentially, and
for large b this decay is so rapid that it can be treated as
instantaneous. Inserting Eq. (53) in Eq. (47) we find

dh ¼ g� g2

ð1� gÞbþOð1=b2Þ (54)

at the end of the first stage of evolution. For a complete
leading-order analysis, we need only these leading approx-
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imations for gh, gm, and dh. The largest eigenvalue, ð1�
dhÞb � ð1� gÞbþOð1Þ thus appears in the high-energy
corner of the matrix. We do not need theOð1=bÞ correction
to dh to obtain the highest eigenvalue accurately for large
b, and we will see that we do not need this correction to
accurately compute the smaller eigenvalues either.

The leading term governing the early evolution of the
remaining 2� 2 submatrix is

2ð1� dhÞg2hb2 � 2ð1� gÞg2b2e�2ð1�gÞ2b2s � g2

1� g
�ðsÞ;
(55)

where �ðsÞ is defined so that
R1
0 �ðsÞds ¼ 1. The cou-

plings dm, dl, and gl instantly increase by g2=ð1� gÞ, so
at the end of the first stage and the beginning of the second
stage of evolution

dmðsÞ � dlðsÞ � glðsÞ � g

1� g
þOð1=bÞ: (56)

For the range of g that produces a binding energy of Oð1Þ,
these low- and middle-energy couplings exceed 1, and
negative values appear on the diagonal of H at the start
of the second stage of evolution.

After the initial instant of evolution gh � 0, gm � 0 and
dh � g. Corrections to these approximations have no effect
on the leading order of any eigenvalue. For example, the
Oð1=bÞ correction to dh has no effect on the smallest
eigenvalue, which is Oð1=bÞ. Returning to the full equa-
tions, replacing gh, gm, and dh with these approximations,
choosing an initial value of g=ð1� gÞ for dm, dl, and gl, we
find the leading-order equations that govern the second
stage of evolution:

d

ds
dm � �2ð1� dmÞg2l

1

b
� 0; (57)

d

ds
dl � 2ð1� dmÞg2l ; (58)

d

ds
gl � �ð1� dmÞ2gl: (59)

When g, the initial coupling, is chosen so that the
binding energy is Oð1Þ, 1� dm < 0 at the start of the
second stage and for large b, dm does not evolve further.
This means that the negative eigenvalue, 1� dm ¼ 1�
g=ð1� gÞ ¼ ð1� 2gÞ=ð1� gÞ appears in the middle of
the matrix and stays there. This leaves us with

d

ds
dl � 2

1� 2g

1� g
g2l ; (60)

d

ds
gl � �

�
1� 2g

1� g

�
2
gl: (61)

From these we see that

glðsÞ � g

1� g
e�ð1�2gÞ2=ð1�gÞ2s; (62)

which leads as s ! 1 to

dlðsÞ ! g

1� 2g
: (63)

This means that the smallest eigenvalue ð1� dlÞ=b �
½ð1� 3gÞ=ð1� 2gÞ�=b appears in the infrared corner of
the matrix when f ¼ 0, and no couplings become unnatu-
rally large during the evolution.

B. Approximate evolution of 3� 3 matrix for f ¼ 1

Next we study the transformation when f ¼ 1. We again
use Eqs. (35)–(40) and keep only the leading terms for
large b for the first stage of the evolution. We will see that
gh and gm again decay exponentially, and all other cou-
plings remain Oð1Þ during this first stage, but when f ¼ 1,

the coupling gl grows during the second stage to Oðb1=2Þ
before it is finally driven to zero, and the second stage’s
analysis is much more complicated because of this unnatu-
ral growth. The leading terms for f ¼ 1 are

d

ds
dh ¼ �2g2hbþOð1Þ; (64)

d

ds
dm ¼ 2g2hb

2 þOðbÞ; (65)

d

ds
dl ¼ 2g2mb

2 þOð1Þ; (66)

d

ds
gh ¼ �ð1� dhÞghb2 þOðbÞ; (67)

d

ds
gm ¼ �ð1� dhÞgmb2 þOðbÞ; (68)

d

ds
gl ¼ 2ghgmb

2 þOðbÞ: (69)

These equations govern the first stage of the SRG evolu-
tion, with subleading terms becoming important in the
second stage. We again see that gh ¼ gm to leading order,
which implies that dm ¼ dl ¼ gl to leading order during
the first stage. The low-energy 2� 2 submatrix is deter-
mined by these three couplings, and it retains the form of
the initial Hamiltonian for all values of f during the first
stage of evolution, so we can use the universal coupling
governing the submatrix to characterize the transformation
for all values of f. Solving the equations for gh and gm for
large b, using the fact that dh ¼ gþOð1=bÞ, we obtain

ghðsÞ � gmðsÞ � ge�ð1�gÞb2s: (70)

This is nearly the same result we obtained in Eq. (53) for
f ¼ 0, but the exponent is different. Both couplings decay
to zero exponentially, and dh changes only at Oð1=bÞ,
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because the exponent is Oðb2Þ, while the term driving the
evolution of dh is only OðbÞ. The largest eigenvalue, ð1�
dhÞb � ð1� gÞb again appears in the high-energy corner
of the matrix.

The leading term governing the early evolution of the
remaining 2� 2 submatrix is

2g2hb
2 � 2g2b2e�2ð1�gÞb2s � g2

1� g
�ðsÞ; (71)

where �ðsÞ is again defined so that
R1
0 �ðsÞds ¼ 1. Once

again we find that the couplings dm, dl, and gl instantly
increase by g2=ð1� gÞ, to leading order, so at the begin-
ning of the second stage of evolution

dmðsÞ � dlðsÞ � glðsÞ � g

1� g
: (72)

These second-stage ‘‘initial’’ values can differ at Oð1=bÞ,
but such differences do not affect the subsequent analysis
when f ¼ 0. We will see that a full analysis when f ¼ 1 is
sensitive to such Oð1=bÞ corrections, but we are not inter-
ested in the effects of these small corrections. We focus on
how the transformation works when the simple scaling
analysis breaks down. We want to understand the origin
of this breakdown, and we can infer its consequences
without a derivation of the precise evolution of the cou-
plings. The origin lies in the specific SRG transformation,
not in the precise second-stage initial values of the cou-
pling constants.

For the range of g that produces anOð1Þ binding energy,
the low- and middle-energy couplings exceed one, and
negative values again appear on the diagonal of H.
However, when f ¼ 1, the appearance of negative values
on the diagonal can signal trouble, as argued at the begin-
ning of this section.

After the initial stage of evolution, gh � 0, gm � 0, and
dh � g. The subleading terms that govern the second stage
of evolution in this case are

d

ds
dm � �2

b
g2l ; (73)

d

ds
dl � 2g2l ; (74)

d

ds
gl � �ð1� dmÞgl þ 1� dl

b
gl: (75)

When the binding energy isOð1Þ, at the start of the second
stage 1� dm < 0 in Eq. (75), so gl grows exponentially
rather than decaying as it did when f ¼ 0. Equation (73)
implies that dm will decrease monotonically atOð1=bÞ, but
before it can decrease sufficiently to reverse the growth of

gl, gl grows toOð ffiffiffi
b

p Þ. Meanwhile, Eq. (74) implies that dl
will grow monotonically, and it eventually grows to OðbÞ
as the bound-state eigenvalue is moved from the middle of
H to its low-energy corner. Once dm decreases sufficiently

and dl grows sufficiently, the sign of the right-hand-side of
Eq. (75) changes, and gl is driven to zero exponentially
from this point.
An exact solution of these equations is readily found

because the unitary evolution of the 2� 2 low-energy
submatrix of H is simply a rotation that conserves its trace
and determinant. Since dm decreases monotonically, the
bound-state eigenvalue cannot appear in the middle of the
matrix, as it did when f ¼ 0. The low-energy eigenvalue
that isOð1=bÞmust end up in the middle of the matrix, and
this means the precise final result of the transformation is
sensitive to Oð1=bÞ corrections to the initial value of dm,
but the mechanism by which the Oð1Þ eigenvalue is trans-
ferred to the Oð1=bÞ momentum corner of H is not. Thus,
the unitarity of the transformation combined with the
orders of magnitude of the couplings dm, gl, and dl at the
beginning of the second stage are enough to diagnose why
numerical transformations of large matrices fail to con-
verge for some transformations. Moving the bound-state
eigenvalue to an ‘‘unnatural’’ location requires growth of
couplings by powers of b, and in large matrices additional
powers of b appear each time the bound-state eigenvalue is
moved one step down along the diagonal.

C. The critical value fc

We do not provide complete details of the full evolution
for arbitrary f between zero and one; the critical value fc is
revealed at the end of the first stage of evolution. As the
bound-state eigenvalue emerges on the diagonal, f deter-
mines whether gl grows or decays exponentially.
We again use Eqs. (35)–(40) and keep only the leading

terms for large b.

d

ds
dh ¼ �2½1� ð1� fÞdh�g2hbþOð1Þ; (76)

d

ds
dm ¼ 2½1� ð1� fÞdh�g2hb2 þOðbÞ; (77)

d

ds
dl ¼ 2½1� ð1� fÞdh�g2mb2 þOð1Þ; (78)

d

ds
gh ¼ �ð1� dhÞ½1� ð1� fÞdh�ghb2 þOðbÞ; (79)

d

ds
gm ¼ �ð1� dhÞ½1� ð1� fÞdh�gmb2 þOðbÞ; (80)

d

ds
gl ¼ 2½1� ð1� fÞdh�ghgmb2 þOðbÞ: (81)

As expected from the two extremes f ¼ 0 and f ¼ 1,
during the first stage of evolution, gh ¼ gm, implying
that dm ¼ dl ¼ gl. Moreover, the entire analysis of the
first stage of evolution is qualitatively independent of f.
To leading order
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ghðsÞ ¼ gmðsÞ ¼ ge�ð1�gÞ½1�ð1�fÞg�b2s; (82)

c.f. Eqs (53) and (70).
Once again the integrated effect of these couplings on

the low-energy 2� 2 submatrix is to shift the submatrix
couplings to a new starting value, at s ¼ 0þ ¼ Oð1=b2Þ,

glð0þÞ ¼ dmð0þÞ ¼ dlð0þÞ ¼ g

1� g
; (83)

after which we need only examine the equation governing
subsequent evolution of gl

d

ds
gl ¼ �½1� dmðsÞ�½1� ð1� fÞdmðsÞ�glðsÞ þOð1=bÞ:

(84)

This off-diagonal coupling grows for dmðsÞ> 1 if

1� ð1� fÞ g

1� g
> 0; (85)

from which we determine

fc ¼ 2� 1

g
: (86)

This value is always between zero and one if there is a
bound state with a binding energy that is Oð1Þ.

The evolution of larger matrices as b ! 1 is far more
complicated than the b ! 1 limit of the 3� 3 matrix, but
there is remarkable similarity. Any stage in the evolution of
larger matrices can be modeled by a 3� 3 matrix with the
middle diagonal matched to the point on the diagonal
where an eigenvalue is emerging. We have focused on
the point where a bound-state eigenvalue appears, because
in the evolution of large matrices with b near 1, it is at this
point in the SRG evolution of the Hamiltonian that trans-
formations bifurcate; those with f < fc leave the bound-
state eigenvalue on the diagonal where it appears for f ¼
0, while those with f > fc move it down the diagonal.
Transformations with f ! 1 misplace the bound-state ei-
genvalue to such small scales that they fail to numerically
converge. Off-diagonal matrix elements are forced to di-
verge exponentially to accomplish this. There is always a
tipping point fc < 1, and at fc when the bound state
emerges, off-diagonal matrix elements are balanced at an
Oð1Þ value between regions of exponential decay and
exponential growth.

V. NUMERICAL RESULTS: LIMIT CYCLE

The limit cycle Hamiltonian of Eq. (15) with h � 0
possesses many bound states, one for each cycle. The
number of eigenvalues that emerge in each cycle is fixed
by h. Application of the SRG procedure in the case of a
limit cycle is based on [12]. Numerical calculation in this

case produces Fig. 3. One sees that the case of asymptotic
freedom in the previous subsection corresponds in its
behavior around the scale of binding to one cycle around
the scale of binding in the limit cycle. As f ! 1, the
maximum value of the coupling in each cycle grows. For
f ¼ 1, the RG evolution is stuck in the range of scales
corresponding to the scale of binding in the first cycle
(greatest binding energy), because the coupling diverges
before the first cycle is complete. In order to get to the next
cycle and smaller binding energies, one has to introduce
dynamics into the generator ½G;H� through the operatorG.
Note that Fig. 3 also shows that the larger the shifts of

the bound-state eigenvalues down the diagonal and the
larger the corresponding coupling constant, the more sen-
sitive the numerics are to details of the finite matrix,
introducing departures from a clean cycle. These numeri-
cal effects are not fully understood, but they have no
bearing on the findings reported here that concern the
impact of bound states on the SRG transformations.
It is now clear that in the cases where the greatest

binding energy E is very small, one does not encounter
problems using purely kinematic G ¼ T as long as � �
jEj. This is our explanation of what happens in the studies
in nuclear and atomic physics where the binding energies
are much smaller than the cutoffs on momenta. Hadronic
structure is different because there are no free quarks or
gluons; all high-energy eigenstates involve bound states of
quarks and gluons, so it is not possible to remain above a
bound-state threshold.
When one proceeds to the case of a limit cycle with a

geometric series of binding energies, one must insure that
the largest of them is small in comparison with desired
values of � for the generator with G ¼ T to work.

-20 -10 0 10 20
ln(λ)/ln(b)

-2

0

2

4

6

g(
λ)

-20 -10 0 10 20

0

f = 0
f = 0.2
f = 0.5
f = 0.75
f = 0.9

FIG. 3. The coupling constants gfð�Þ in the case of a limit
cycle, plotted as a function of ln�= lnb for 5 values of f: f ¼ 0
(Wegner), f ¼ 0:2, 0.5, 0.75, and 0.9. The correspondence be-
tween a curve and f is such that the curves for larger f reach
higher and for f ¼ 1 the corresponding curve would diverge
around ln�= lnb� 15. The ultraviolet cutoff is at b16 and b ¼ 4,
see [12].
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VI. CONCLUSION

The SRG offers an alternative to traditional renormal-
ization group transformations, which discard degrees of
freedom and is being developed to attack problems where
traditional methods fail. These problems all involve a
broad (in principle, considered infinite) range of momen-
tum scales that are strongly coupled and are typically not
amenable to perturbation theory, even if the latter is so-
called renormalization group improved. Analytic methods
fail, and direct numerical solutions are not possible, be-
cause the space of states cannot be truncated, due to the
strong coupling, and the full space is too large for current
or foreseeable numerical storage and manipulation. In the
most interesting problems one cannot even be sure what
operators are needed to construct renormalizable
Hamiltonians (e.g., what counterterms are required in the
presence of known bare interactions).

We have not illustrated the initial steps required to find
renormalizable Hamiltonians, choosing simple model
problems in which the required operators are basically
known (e.g., see [23]). But our calculations do illustrate
methods that can make such initial steps feasible. First, as
anticipated in Wilson’s earliest work [24], we drastically
truncate the space of states by moving from a continuum to
a space of discrete states that are spaced exponentially,
with a tunable spacing governed by a parameter b. Going
from a well-defined continuum problem to a discretized
problem is straightforward in the models we use, so we
have paid little attention to this step; nor have we shown
that with the renormalization problems we solve the con-
tinuum can be recovered with exponential convergence by
letting b ! 1. The relevance of our calculations rests on
the assumption that such a limit can be taken with control
of errors and without introducing new renormalization
problems. Once we identify the operators required for
renormalization with large b, using nonperturbative nu-
merical calculations like those shown here, we reach
what is the starting point for the calculations we present.

Attempts to control the effects of strong coupling over
large numbers of momentum scales typically fail because
divergences emerge. Originally, such divergences showed
up in perturbation theory and gave rise to the whole renor-
malization program of the last century. Far more challeng-
ing are the types of divergence illustrated by our
calculations, divergences that persist if one attempts to
go beyond perturbation theory using perturbative renor-
malization schemes such as standard methods for the re-
normalization of quantum electrodynamics. Wilson’s
renormalization group improved perturbation theory
avoids many of these problems in asymptotically free
theories as long as cutoffs are kept sufficiently large.
However, to solve problems in which strong-coupling fixed
points [3] or limit cycles exist, renormalization group

transformations often must be crafted on a case by case
basis. What the SRG offers is a wealth of new transforma-
tions, and in this paper, we have focussed on some of the
critical features of these new transformations.
The existence of a critical value f ¼ fc in SRG trans-

formations with generators FfHg ¼ ½G;H� and G ¼ fT þ
ð1� fÞD is demonstrated in discrete models with impor-
tant features such as asymptotic freedom or a limit cycle.
The case of SRG with f ¼ 1, or G ¼ T, is always in the
region f > fc. Therefore, when bound states exist and the
SRG parameter � ¼ 1=

ffiffiffi
s

p
approaches the scale of mo-

menta that dominate in the formation of bound states, the
strength of renormalized interactions grows. Numerical
calculations of the interaction Hamiltonians become in-
creasingly difficult due to this growth. But if it is enough to
calculate effective theories with � much larger than the
scale of binding, the generator with f ¼ 1 can be employed
without encountering an intractable increase of interaction
strength.
As long as one stays away from the bound-state mo-

mentum scale, the numerical calculations in the generic
models are equally powerful for f > fc as they are for f <
fc. This result shows that limits on applicability of the
simplest version of the SRG transformation with f ¼ 1 due
to bound states are not as severe as one might expect
provided one keeps � away from the scale of binding.
This is important because the SRG transformations with
f ¼ 1 are the simplest to implement in the continuum limit
and in perturbative evaluation of the SRG flow of
Hamiltonians.
At the same time, it is also made clear that in order to

handle cases with a limit cycle, one has to consider f < fc.
This means that the generator must include interactions in
G and cannot be limited to T. The f ¼ 0 transformation
advocated by Wegner [7,8] is able to drive both of our
models to diagonal form. We have not shown that this
reproduces both the correct binding energy and phase shifts
for the continuum problem but such a demonstration
should be straightforward and is left for future work.
Finally, it should be pointed out that this article does not

resolve many important issues that must be resolved to deal
with confinement. These go well beyond dealing with
bound states and are not encountered in our simple generic
models, but confinement presents us with the problem of
bound states at all cutoffs and at least in this respect the
limit cycle model should provide important insights.
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