Window effects in PDV measurements

Corrections and dispersion

Heterodyne Workshop, LLNL July 20, 2006

D.H. Dolan

D. Holtkamp and B. Jensen (LANL)

Are PDV windows effects different from VISAR?

- Different operating wavelength
- Window is now interferometer "etalon"
 - Refractive index correction
 - Variable density/thickness
 - Dispersion?
- Multiple reflection capabilities
- Window characterization lacking
 - Brian Jensen will address this...

Ambient index changes

- VISAR
 - 632.8 nm
 - 514.5 nm
 - <u>532 nm</u> (most common)
- PDV
 - 1550 nm

	VISAR			PDV		
			correction			correction
Material	n _o	δ	(published)	n _o	δ	(estimated)
sapphire	1.772	0.039	1.785	1.746	0.027	1.759
quartz	1.547	0.028	1.083	1.528	0.021	1.064
LiF	1.393	0.015	1.280	1.383	0.013	1.269
fused silica	1.461	0.025	-	1.444	0.019	_

Optical phase difference (PDV)

• Definition:

$$\Phi(t) = \phi_1(t) - \phi_2(t)$$
$$= \omega_0 T(t)$$

- Transit time:
 - "Displacement interferometer"

$$T(t) \approx \frac{x_r - x(t)}{c_0}$$

Real-apparent equivalence:

$$v^{*}(t) = v_{s}(t) - \frac{d}{dt} \left[\int_{x(t)}^{x_{s}(t)} \frac{n(x,t) + n'(x,t)}{2} dx' \right]$$

Window correction

- Linear window: $n(x,t) = a(\lambda) + b(\lambda) \frac{\rho(x,t)}{\rho_0}$
- Doppler shifting: $n' \approx n + 2\delta \frac{v}{c_0} \quad \left(\delta = -\lambda_0 \left. \frac{dn}{d\lambda} \right|_{\lambda = \lambda_0} \right)$
- Total correction:

$$v^{*}(t) = v_{w}(t) - \frac{\delta}{c_{0}} \frac{dv^{*}(t)}{dt} \left(x_{s}(t) - x(t) \right) - \left(a(\lambda_{0}) + \delta \frac{v(t)}{c_{0}} \right) \left(v_{s}(t) - v(t) \right)$$

$$\approx a(\lambda_{0})v(t) - \left(a(\lambda_{0}) - 1 \right) v_{s}(t)$$

- Assumes static dispersion
- Corrections significant at high acceleration
 - ~0.01 m/s for 1 km/s over 100 ns in 10 mm window
- Result not PDV specific...

System dispersion

- VISAR (etalon):
 - Fiber dispersion doesn't affect interference

$$\Phi = \omega \tau$$

$$\omega \approx \omega_0 (1 + 2v/c_0) \qquad \tau \approx \tau_0 (1 + 2\delta v/c_0)$$

$$\Phi \approx \Phi_0 + \frac{4\pi \tau_0 (1 + \delta)}{\lambda_0} v$$

- PDV (fiber):
 - No effect in steady motion
 - Dispersion critical during acceleration
 - Critical time scale
 - 0.1 ns/m of silica fiber

$$T = \frac{2}{c_0} \left[\frac{\delta L v}{c_0} + (x_r - x(t)) \right]$$
$$t_c = \frac{2\delta L}{c_0}$$

Dispersion summary: acceleration bad

- Window dispersion
 - Negligible except in shock front
- System dispersion
 - Keep interferometry runs short
- Velocity analysis limited by uncertainty principle (PDV)
 - Velocity-time tradeoff
 - Can be avoided in displacement mode
 - Numerical derivative required
 - Multiple velocities are a problem

Windows introduce a plethora of reflections

- Collimated probe picks up multiple Fresnel reflections
 - Relative amplitude scales with field electric field (n-1)/(n+1)
 - "Weak" components show up easily on a logarithmic scale
- Extra beat frequencies
 - Direct beats from reference signal
 - Cross beats between reflections
 - N(N+1)/2 beats for N reflections
 - Often degenerate!

$$\bar{\omega}_{j0} = \frac{4\pi}{\lambda_0} |v_j^*|$$
$$\bar{\omega}_{jk} = \frac{4\pi}{\lambda_0} |v_j^* - v_k^*| \quad j \neq k$$

Example: symmetric sapphire impact (LANL)

- Similar window corrections for VISAR/PDV
 - Minor difference due to operating wavelength
- Dispersion play a minor role in the window correction at moderate acceleration (ICE, etc.)
 - PDV system dispersion is a larger problem during acceleration
- Basic PDV probe picks many reflection
 - Good news: lots of redundant information
 - Bad news: complex power spectra

