Data analytics for TDS-1 GNSS-R Ocean Altimetry Using A "Full DDM" Retrieval Approach

Jeonghwan Park¹, Joel T. Johnson¹, Andrew O'Brien¹, and Stephen T. Lowe²

¹ElectroScience Lab, Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

INTRODUCTION

GNSS-R for Ocean Altimetry

- GNSS-R (Global Navigation Satellite System-Reflectometry)
- Using reflected GNSS signal from the Earth's surface for geophysical remote sensing [1-2]
 - Altimetry and Scatterometry
 - Bistatic radar configuration
- Extensive ground and air-borne research reported; limited number of existing satellite demonstrations
- Multiple satellite missions (PARIS, GEROS, CYGNSS) in the planning phases

MOTIVATION

- TechDemoSat-1 (TDS-1) of Surrey Satellite Technology Ltd (SSTL) in orbit since July 2014
 - Provides opportunity to test GNSS-R sensing
 - TDS-1 dataset of onboard-processed Delay-Doppler maps (DDMs) has been made available to the science community
- Results reported to date have focused on ocean sensing
 - Wind speed [3]
 - Altimetry [4] using the delay waveform "leadingedge" method
- Altimetry from TDS-1 is very coarse due to use of C/A code only; high rms errors requiring significant time/space averaging even to see geoid
- Still of interest as a demonstration

Previous Studies

- Fixed Geometry, varying wind speed, C/A and P code, using only the delay waveform (DW) or full DDM in retrieval [5]
- [5] showed full DDM outperforms DW only; C/A code rms SSH error ~ 3 m or more for a 1 sec product
- Results from previous simulations suggest that Full DDM approach may yield improvements in SSH retrieval performance

Goals for this Study

- Perform TDS-1 altimetry using the "Full DDM" approach
- Requires forward model: modified CYGNSS E2ES

Noisy DDM Example GNSS-R Geometry (1ms with 1000 looks)

Maximum Likelihood (ML) Retrieval

- For given geometry and known wind speed, generate set of noise free 'templates' of varying SSH from -100 m to 100 m in 101 steps (2m resolution)
- Compare between noisy DDM and templates and find closest one [5,6]: Retrieved SSH index is

- Thermal noise estimated and removed by averaging data free areas
- Additional spatial and temporal averaging can be used post-retrieval to 'beat down' TDS-1 retrieval errors

CYGNSS End-to-End Simulator (E2ES)

- CYGNSS (Cyclone Global Navigation Satellite System) Mission: launch Oct 2016 [7]
- 8 small satellites in low Earth orbit (LEO) at 35° inclination w/ C/A code only
- CYGNSS E2ES developed for mission simulations

E2ES modified to allow studies of altimetry

Test Regions and Ground Truth

- Test Region: South Atlantic (Lon: -60~0, Lat: -60~-30 degree)
- **Quality Control Filter**
 - Antenna gain > 5 dBi
 - Night ascending tracks to reduce ionosphere
- Retrieved L2 Wind speeds in TDS-1 metadata are used
- Gridded DTU10 Mean Sea Surface Height (MSSH) used as 'truth' to evaluate performance (1min resolution) Geoid with mean sea level good model to

see effects of big signals in the ocean

RESULTS

- Total number of test DDMs: 27827
 - 15247 DDMs for 01/26/15 ~ 02/21/15 (RD16~RD19)
 - 12580 DDMs for 03/16/15 ~ 04/18/15 (RD23~RD27)
- Result 1: Retrieved SSH with Individual DDM

latitude area • Some correlations! → RMSE = 16.3807m Retrieved SSH [m] Truth SSH map [m]

- Result 3: Comparison between night tracks and day tracks
 - Number of averaging : 20~40
 - Ionosphere delay effects the performance for the day

CONCLUSIONS

- Study performed of TDS-1 altimetry
 - Modification of current CYGNSS E2ES
 - TDS-1 DDM Generation using CYGNSS E2ES
- Sea surface height retrievals using
 - DTU10 SSH as a ground truth
 - Quality control filters (i.e. high AG, night track)
- Results
 - RMS error is large with individual DDM only
 - Large geophysical signals are observable given sufficient time and space averaging
- Future work
 - Attempts to reduce the model mismatch
 - Analyze impact of other error sources
 - Preparation for the CYGNSS Altimetry

BIBLIOGRAPHY

[1] M. Martin-Neira, "A Passive Reflectometry and Interferometry System (Paris) - Application to Ocean Altimetry," Esa Journal-European Space Agency, vol. 17, no. 4, pp. 331-355, 1993.

[2] V. U. Zavorotny and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 2, pp. 951–964, Mar. 2000

[3] G. Foti, C. Gommenginger, P. Jales, M. Unwin, A. Shaw, C. Robertson, and J. Roselló, "Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission," Geophys. Res. Lett., vol. 42, no. 13, pp. 5435-5441, 2015.

[4] M.P. Clarizia, C. Ruf, P. Cipollini and C. Zuffada, "First Spaceborne Observation of Sea Surface Height using GPS-Reflectometry", Geophysical Research Letters, Jan 2016.

[5] J. Park, J. T. Johnson, and S. T. Lowe, "Studies of GNSS-R ocean altimetry using full DDM-based retrieval," Radio Science Meeting (USNC-*URSI NRSM),* pp.1-1, 8-11 Jan. 2014

[6] J. Park, J. T. Johnson, A. OBrien, and S. T. Lowe, \A Study of Ocean Altimetry Performance for the CYGNSS Mission," in GNSS+R Workshop, GFZ, Potsdam, May 2015.

[7] A. O'Brien, S. Gleason, J. Johnson, and C. Ruf, "The End-to-End Simulator for the Cyclone GNSS (CYGNSS) Mission, in preparation Geophysical Research Letters, vol. 29, no. 10, pp. 13–1–13–4, May 2002

ACKNOWLEDGEMENTS

This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center

