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PREFACE


The analysis of eutrophication processes and pollutant transport has


been aided by an overwhelming number of numerical models, each purporting


some advantage over existing formulations. Difficulties with these models


exist and their utility is often called into question, particularly with


regard to verification. The following research report is a two-volume


report which attempts to review, and clarify, the basic assumptions in these


models and to suggest extensions or improvements in the structure which will


reduce the amount of artificial empiricism. The first volume suggests


improvements in the turbulent transport structure and the second volume


describes the primary productivity formulation available and identifies


optimal representation.
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CHAPTER I 

INTRODUCTION AND OBJECTIVE 

One of the drawbacks of modern industrialization and population growth 

is the large amount of contaminants entering lakes and seas. These con­

taminants can be chemical or biological substances (nutrients) or heat. 

Eutrophication refers to the degradation processes ocurringin an aquatic 

system resulting from excessive nutrients being available to the aquatic system 

from external sources. As nutrients are added to the aquatic system, more 

phytoplankton and zooplankton life is supported. When these organisms die, 

the decomposition consumes dissolved oxygen. Excessive accumulation of 

decaying organic matter in the hypolimnion is augmented by the lack of wind 

induced mixing with oxygenated water during stratification,and often leads to 

an anoxic hypolimnion condition. In addition,the eutrophication process results 

in algal blooms. These algal blooms and contaminants adversely affect 

municipal water supplies, aquatic life and the recreational value of affected 

areas. There are increasing numbers of lakes where deterioration is so 

great that federally funded restoration measures are being implemented. 

Since rehabilitation requires great expense, mathematical transport models 

that are able to simulate and predict contaminant transport and eutrophication 
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processes are necessary to help identify the optimal management and restora­

tion policy. 

It is Utopian to expect these transport models to predict the correct 

velocity field and contaminant concentration at each point in the lake. The 

reason is that water mass and contaminant movements are dominated by very 

complex random turbulent motions. Therefore, the best a transport model can 

do is predict the gross or averaged features of the turbulent flows. Model 

accuracy will therefore be a function of how well the turbulent processes, at 

the length scales realized in these models, are delineated within the model. 

The traditional modelling approach to the numerical pollutant transport 

problem is the finite difference or finite element solution of governing equa­

tions prepared by Reynolds averaging. According to the Reynolds procedure 

the equations are averaged over time or space, yielding equations in averaged 

variables. The most important requirements or manifestations of this model­

ing method are: (1) An eddy viscosity concept be used to cope with the Reynolds 

stress closure problem; (2) A very coarse grid, on the order of kilometers, 

be employed to effectivelly reduce the computer cost; and (3) A second order 

numerical differentiation scheme is used for the representation of spatial 

derivatives. The models resulting from the Reynolds averaging procedure 

achieve very reasonable solution times but predictions for verification have 

failed. As an example, Allender (1976) statistically compared the predicted 

values of existing transport models against field datafor.Lake Michigan and 

the null hypothesis of zero velocity being the best prediction. He came to the 
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conclusion that the zero velocity was the best prediction! There are three 

general reasons for this failure; (1) The model structure is faulty, i .e . in­

consistent averaging, improper eddy viscosity representation, and incorrect 

input data preparation; (2) Too much time is spent in improving the biological 

structure of these models, the "adding a new trophic level mentality" (Indeed 

Smarkel (1978) has shown that a dramatically simple biological structure is 

satisfactory if the turbulence is represented property; and (3) the accepted 

technique of verification is wrong. 

The astonishing failure of the existing transport models to predict the 

field data raises a question of what constitutes a model validation. The current 

procedure is to erect a monitoring network, usually without advice from the 

numerical analyst, and to compare the collected field data with the predicted 

model values of the averaged variables. However, this procedure is faulty. 

The primary reason is that turbulent flows are stochastic in nature (Monin and 

Yaglom, 1975) indicating that at best the only verification possible is that of 

the statistics of the turbulent flow field. If the statistical details of the turbulent 

structure can be numerically calculated and verified then much more confidence 

can be placed in the calculated output of the average quantities. 

None of the available transport models preserve those statistics, 

therefore failures of the existing models can be reduced and a significant step 

towards proper verification made by being more exact in the capability of 

numerically calculating the statistics of the turbulent eddy structure. The 

ideal situation is to numerically resolve all the scales present in the turbulent 
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field. However, this requires a number of nodal points on the order of  | 4 

(Kwak, et al. 1975, Leonard, 1974). For a typical basin (surface area of 

2 6 

1.53 km ), which is used in this thesis this means over 18x10 nodal points. 

This exceeds the capability of the largest available computers. Therefore, 

not only should the turbulent details be calculable but the solution domain must 

also have a relatively coarse network of cells. The solution of this problem 

is the overall objective of this report. 



CHAPTER H 

REVIEW OF TURBULENT TRANSPORT MODEUS 

As mentioned in the introduction, the classical approach to the formula­

tion of the numerical transport problem is by averaging the governing equations 

over space or time. As a result of this averaging, new double correlation 

terms arise called Reynolds fluxes or Reynolds stresses. In this chapter a 

classification of the lake transport models based on the treatment of the 

Reynolds terms will be presented. The most well known lake models will be 

classified according to the particular averaging technique and briefly reviewed. 

At the chapter's iend some advanced numerical turbulence models employing 

newly developed averaging techniques will be presented. 

For a long time the evolution of transport models coincided with the 

added sophistication in the description of the Reynolds stresses and Reynolds 

fluxes. These Reynolds terms represent the activity of a large number of 

turbulent scales and therefore, their mathematical representation is very 

difficult. There are basically three methods of approximating the Reynolds 

terms in lake transport models: (a,) the constant eddy viscosity method; 

(b) the variable eddy viscosity method; and (c) the inertial subrange method. In 

the constant eddy viscosity method,	 the Reynolds fluxes are approximated by 
5 
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a constant coefficient (eddy diffusivity) multiplied by a concentration gradient, 

while the Reynolds stresses are approximated by the product of a constant 

coefficient (eddy viscosity) and the angular deformation. In the variable 

viscosity method the constant coefficient of the first method is replaced by a 

variable coefficient. The form of this coefficient is determined empirically 

often as a function of position (a mixing length) or temperature. The third 

method is a variable viscosity method but based on the theoretical calculations 

of the energy transfer required by the grid size of the numerical model. In 

this method the grid size is small enough to be included in the inertial subrange 

(Chapter in, Section A. 6) and the eddy viscosity and eddy diffusivity are 

computed by considering the well known form of energy transfer in the inertial 

subrange. 

The lake transport models which use these methods have one of the 

following forms: (a) circulation models; (b) pollutant transport models and 

(c) eutrophication models. Table 2.1 presents some of the most well known 

lake transport models. All of these models use second order finite differencing 

and constant eddy viscosity or variable eddy viscosity for the approximation of 

the Reynolds terms. It should be noted that Table 2.1 is not a complete list 

Of lake transport models. For additional publications the reader is referred 

to review papers by Cheng (1976) and Lick (1976) for lake circulation models 

and to Smarkel (1978) for eutrophication models. 

The inertial subrange method has been proposed by Deardorff (1970) 

who used a 3-D model to study channel flow turbulence at large Reynolds 



CIRCULATION


Liggett (1969)


Liggett (1970)


Paul and Lick (1973)


Cheng (1975)


Lick (1976)


Paul and Lick (1976)


Table 2.1 Lake Transport Models 

POLLUTANT TRANSPORT


Cheng (1975)


Lick (1976)


Paul and l i ck (1976)


EUTROPHICATION


Di Toro, et al. (1971)


Canale, etal . (1973)


Baca, e ta l . (1976)


Bierman (1976)


Ecosystem Models


Chen, et al. (1975)


Scavia (1976)
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numbers. The eddy viscosities were formulated from Smagorinsky, et al. 

(1965) and are parameterized by the size of the numerical ceil. It has been 

shown by Lilly (1967) that Smagorinsky's method is compatible with the exist­

ence of an inertial subrange that encompasses the grid interval. Deardorffrs 

method, modified by Schumann (1973) to account for distorted grids, was used 

by Spraggs and Street (1975) to predict the temperature regime and energy 

transfer in reservoirs and cooling ponds subjected to thermal loading. Finally 

Bedford and Shah (1977) used Spraggs and Streets method to implement a 3-D 

sediment transport model of Maumee Bay. 

By virtue of the fact that the grid size is incorporated directly in the 

eddy viscosity the inertial subrange method is a better approximation of the 

Reynolds terms than the constant eddy viscosity and the variable eddy viscosity 

methods. However, as Leonard (1974) indicates it has not been very satisfactory 

in preserving the correct cascade characteristics (Chapter III) in a turbulent 

flow field. In the last four years there has been an effort at Stanford University 

and at Kings College, England aimed at structuring models which preserve the 

correct spectral form of the cascade process. In these works the energy cascade 

is not viewed solely as an energy loss of the large scales due to an eddy 

viscosity as in the previous methods. The advection terms are modified, by 

using a Taylor series expansion to allow for a more complete presentation of 

the energy cascade process. The first paper to appear was that of Leonard 

(1974) followed by Kwak, et al. (1975), Shaanan, et al. (1975), Mansour, et al. 

(1977) and Ferziger, et al. (1977). For details on the above method the 
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reader is referred to the review papers by Reynolds and Cebeci (1974), 

Reynolds (1976), Love (1976) and to the Symposium on Turbulent Shear 

Flows (1977). 

The models developed in these references have the common character­

istic that: (1) they are limited to unconfined geometries; (2) they use periodic 

boundary conditions; (3) they do not include any external source of energy; 

(4) they are limited to cubical cells; and (5) they are applicable to three-

dimensional homogeneous turbulence. In this report the method developed in 

these references are applied to the problem of shallow basin,wind driven, lake 

transport of momentum and pollution. In so doing these efforts must be 

extended to permit the prediction of mass transport with ongoing biochemical 

interaction. 

The introductory information for the development of this model is 

presented in Chapters in and IV The equations for this model and their 

numerical approximation are presented in Chapters V and VI. 



CHAPTER IE 

TURBULENCE 

According to Hinze (1975, p. 2): "Turbulent fluid flow is an irregular 

condition of flow in which the various quantities show a random variation with 

time and space coordinates, so that statistically distinct average values can be 

discerned" In addition to the irregularity condition that makes a deterministic 

approach to turbulence impossible, turbulence also has the following character­

istics: 

a) it is characterized by large Reynolds numbers; 

b) it is diffusive i . e .  , spreads velocity fluctuations, and causes 

rapid mixing of mass, heat and momentum; 

c) it is dissipative; viscous effects convert all available kinetic 

energy into heat. 

Consequently turbulent flow lasts as long as energy is supplied. Without this 

energy turbulence decays very fast. The main source of energy for the 

maintenance of turbulence is shear in the mean flow. Bouyancy or magnetic 

fields can also supply energy. 

In the remainder of this chapter some of the general characteristics 

of turbulence, aspects of the statistical description of turbulence and classical 

analytical approaches to turbulence will be presented. 
10 
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A. General Characteristics of Turbulence: 

1) Definitions 

In this section two terms, which are required for the development of the 

remainder of this chapter are defined. These terms are: homogeneous 

turbulence and isotropic turbulence. 

Homogeneous turbulence is that form of turbulence where the statistical 

properties of the field (spectrum, velocity correlations, probability distributions 

of velocity and pressure, etc.) do not depend on the position in the flow field. 

Therefore, if u is the x-direction velocity in the positions x^ and x^9 the 

correlation function is defined as 

Ruu 

where the overbar denotes an averaged quantity. It depends only on the vector 

difference of x^ and x'2 ; i . e . 

R = R (x 9 - x) (3.2) 
uu uu * 2 l7 * ' 

Also the N-dimensional probability density function of u( x \  , u(x ) .  . . 

for any number of pointy depends only on the distances  x 2 - x , . .  . f x - x 

and does not change if the same vector y is added to all x , x , x ; 
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<U1'U2 UN> ~ 

u ) . (3.3) 
x» N~ 

It must be noted that in homogeneous turbulence the statistical properties of 

the field are independent of the particular position in the flow field but they do 

depend on the direction. An extension of homogeneous turbulence is isotropic 

turbulence. 

Isotropic turbulence is homogeneous turbulence in which all the statisti­

cal properties of the field are independent of direction. Therefore, the cor­

relation function Ruu is unaltered by any rotation of the vector x^  x 
2 • ^ 

particular in a homogeneous isotropic field the mean square value of the three 

velocity components u ,u ,u are equals 
X 2 3 

uj = u| = û  . (3.4) 

The concept of homogeneous and also of isotropic turbulence is basically 

a mathematical idealization. For a flow to be homogeneous it is required that 

all the mean values of the flow (mean velocity, pressure, temperature) be 
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constant throughout the whole space. This can be true only in some finite region 

of space which is very far from all the boundaries. Therefore, homogeneity 

exists only in some specific region and not throughout the whole space* 

Nevertheless the concept of homogeneous and isotropic turbulence is used very 

extensively* The reasons are that: a) it is relatively simple and constitutes an 

approximation to the highly nonhomogeneous and anisotropic real turbulence 

over small spatial regions; and b) the mathematical concept of homogeneous 

turbulence is very valuable in describing the small-scale components of real 

turbulence (for definition of scales see next section). The statistical regime 

of these components, as will be explained later, is taken to be locally homo­

geneous and isotropic• Therefore, any real turbulence may be considered as 

locally homogeneous and locally isotropic, which simplifies, very much, the 

mathematical investigation. 

Whenever shear and therefore a velocity gradient exists, the turbulence 

is nonhomogeneous and therefore anisotropic. Since shear is necessary for 

Its existence this form of turbulence is usually called "shear flow turbulence" 

2) Scales of Turbulent Motion 

In order to describe a certain turbulent motion it is necessary to 

introduce the notion of scales of turbulence i.e. a time scale and a space 

scale. The magnitude of these scales depends on the dimensions of the flow 

field and the velocities present. For example, for lake turbulence a length 

scale is expected to be of the order of a characteristic length of the basin and 

a time scale of the order of the ratio between characteristic length of the basin 
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and a mean velocity. These two scales are the maximum scales present in the 

flow field. A study of pictures of turbulent flows and of oscillograms of velocity 

fluctuations shows that there are a very large number of scales. These scales 

are bounded from above by the maximum scales and from below by the action of 

the molecular viscosity Actually there is a cascade process (see Section A. 6 

of this chapter) by which the large scales generate ever-smaller sizes until 

molecular viscosity becomes important and dissipation of energy into heat 

occurs. Associated with these scales are certain quasi periodicities and 

frequencies. The adjective "quasi" is used because the irregularity and dis­

orderliness of turbulence involves the impermanence of the various frequencies 

and periodicities. Therefore, it can be said that turbulence consists of the 

superposition of ever-smaller periodic motions. A periodicity in the velocity 

distribution involves a velocity gradient. Since a certain vortex is associated 

with a velocity gradient it is considered that turbulence consists of the super­

position of a large number of eddies each one characterized by a characteristic 

length and time scale. Basically there are three characteristic ranges of 

eddies (scales); the largest, the smallest and the intermediate ones. The 

largest eddy sizes are the ones that do most of the momentum and contaminant 

transport. Therefore, in the development of the theory of turbulence attention 

was first given to the study of the largest scale eddies. G. Taylor (1915,1932), 

L.Prandtl (1925) and T.Von Karman (1930) formulated "semi-empirical theories 

of turbulence" These theories were based on an extensive amount of experi­

mental work on the large-scale components of turbulence in pipe flows, chan­

nels, free turbulent flows (jets, wakes) and boundary layers. 
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The smallest scales were studied first by A-M. Obukhov (1941) and the 

intermediate scales by A.N.Kolmogorov (1941) who proposed the universal 

equilibrium theory. According to this theory, at high Reynolds numbers the 

smallest scales have a universal structure which is independent of the larger 

scales and the mean flow. In the smallest scales the energy which is supplied 

from the larger scales dissipates into heat. It is always assumed that the rate 

of energy supply equals the rate of dissipation. Therefore, the viscosity, 

o 
v (L /T), and the rate of dissipation of turbulent kinetic energy per unit mass 

2 -3 

of fluid, E(L T ) govern the kinematic features of this range of scales. 

The intermediate scales are the ones that constitute the so called 

inertial subrange. In these scales viscosity is not important but presents non-

the-less a universal character defined by the rate of energy dissipation (see 

Section A.6 of this chapter). 

A detailed description of the small and the intermediate scales with 

their most important characteristics is given below ­

3) Frequency Spectra 

Frequency spectra are very important in statistically analyzing any 

turbulent flow. The reason is that measuring instruments are usually capable 

of recording flow variables as a function of time. All the recorded time 

histories include the contributions of a large range of frequencies. By passing 

the complete signal through a spectral analysis these frequencies are determin­

ed. Consider for example, the x-direction fluctuating component, u f , of the 

velocity field recorded at one point. Assuming that the field is quasi-steady, 
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there exist a function, E(u>) which when integrated over the whole range of 

frequencies gives an average value of u*2 : 

00 

2 

/ •E(cu)da) uf (3.5) 

The function E(w) is called the spectral density or power spectral density of 

the signal, A typical power spectrum is given in Figure 3 , 1 . The dashed curve 

indicates that complete power spectrum where w and w denote the lower 

and upper limit to which the frequency scanning is extended. The solid line 

indicates the spectrum when a band-pass filter is used. o>, and w^ are the 

lower and the upper frequencies passed through the filter and Aw =  W 2  ~ wl • 

Figure 3 .1 Frequency Spectrum. Solid Curve-Contribution for 
Filters with Nominal Limits w. and f>2; Dashed Curve-
Complete Power Spectrum, (after Reynolds, 1974). 
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Expressing uf (t) as a Fourier integral it can be shown by some algebra 

(Hinze 1975, p. 61) that the spectral density E(w) and the autocorrelation 

coefficient 

_ ^ ^ i . - t> 

•f 

are Fourier cosine transforms: 

rR ( T  ) = —L- / E(w) cos2 TUT d u (3.7) 

00 

E ( w ) = 4uf2 / R(T) COS2TT(OT d T (3.8) 

0 

The relationships (3.7) and (3.8) were first pointed out by Taylor therefore 

E(w) is very commonly called Taylor's one-dimensional energy spectrum. 

Since R( t) and E(o>) are Fourier transforms they give the same 

information in different ways. If only small eddies are present the autocor­

relation drops very fast to zero and E(w) exists mainly in the range of the 

high frequencies. When only large eddies are present the autocorrelation 

approaches zero more slowly and E(w) exists mainly in the range of small 

frequencies. 

4) Wave-Number Spectra 

Many times the spatial structure of a turbulent field is desired. In this 



18 
case the frequency, w t has to be replaced by its analogous wave number, 

k = 2 Ti/\ t where * is the wavelength of an harmonic element. The relation­

ships (3.7) and (3.8) are written as: 

oc 

R(r)  — j / E t k j c o s ^ r d^ (3.9) 
U1 J 

00 

? / R ( r ) c o s k r d r (3.10) 

where R(r) is the spatial correlation, r is the distance between the points 

where the velocity fluctuation is observed, k is the wave number in x-direction 

and E(k-) is the one-dimensional wave number spectrum. 

Equations (3.9) and (3.10) do not take into account the three-dimensional 

nature of turbulence. To include this the three-dimensional spectrum has to 

be considered. This is done in a similar way to the one-dimensional case by 

transforming with respect to each of the three space coordinates (Hinze, 1975, 

p. 204), Reynolds (1974, p. 88): 

00 

[ k2r2 
— 00 

(3.11) 
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i err - i—<f JJJ R(->-) exp I
8 7T —00 

(3.12) 

Equations (3.11) and (3,12) are expressed in vector notation as: 

00 

/*E(k) exp (ik r) dk (3.13) 
—00 

00 

/ R ( 5 » I ) exp(-ik r) dr (3.14) 

The relationship between the one-dimensional spectrum E(k-) and 

ihree-dimensional spectrum E(k) is given as: (Reynolds, 1974, p.89) 

ocoo 

E(k ) = ff E(k) dk dk (3.15) 
-CO-CO 

which indicates disadvantage of the one-dimensional spectrum: in addition to 

the energy associated with a particular scale of distrubances k it includes 

also the effect of larger k disturbances. This effect is called aliasing and can 

be seen more easily in Figure 3.2. 
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direction of M 

measurement 

wave-number 
vector 

• wave crests 

I 
(a) 

Figure 3  . 2 Aliasing in a one-dimunsionel spectrum: (3) a wavo of true wava number 
K, aligned with the line of measurement, (b) a wave of wave number K > K, with 
wave-number vector oblique to the line of measurement. 

(after Tennekes and Lumley, 1972) 

Suppose that measurements of wave number, k, are taken along a 

straight line. Then disturbances of wave number, k\ greater than k, occurring 

in a direction oblique to the direction of measurement is not distinguishable 

from the disturbances of wave-number, k. To avoid the aliasing problem the 

three-dimensional spectrum is used. However this introduces the directional 

information which makes physical reasoning difficult. This problem is 

eliminated by integrating E(k) over spherical shells in k  - space. The 

three-dimensional spectrum derived in this way is a function of the magnitude 

of the wave number, k, but not of its direction. Also it does not have the 

disadvantage of aliasing. 
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Often in practice the one-dimensional spectra of u* ,Ug fUg are known 

separately. To obtain the spectrum that-represents the kinetic energy at a 

given wave number, the three one-dimensional spectra are added together. 

(Tennekes and Lumley, 1972, p. 250), The resultant spectrum is referred to as 

the three-dimensional spectrum. 

5) Taylor's Frozen Turbulence Hypothesis 

Wave number spectra are many times more desirable than frequency 

spectra. As in Reynolds (1974, p.91) two specific advantages of the wave 

number spectra are: 

"(1) Wave number spectra are much less strongly influenced by mean 

convection than are frequency spectra, and thus provide more 

direct insight into the time and length scales of the turbulence; 

and 

(2) three-dimensional spectra are more clearly related to disturbances 

of a particular size." 

However, the spatial structure of turbulence is very difficult to determine. 

This requires simultaneous recording of oscillations at a relatively large 

number of points in the flow field which is very impractical. Therefore, the 

existence of a way to convert the one-dimensional frequency spectra into one-

dimensional wave number spectra is very important. This is done by means 

of Taylor's frozen turbulence hypothesis. Taylor (1938 ) formulated his 

hypothesis for grid-generated turbulence in a wind tunnel. According to this 

hypothesis the turbulent fluctuations are much smaller than a typical mean 
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flow. Consequently it is assumed that the instantaneous velocity at one point, 

xo> is replaced by the mean velocity at that point. Taylor next assumed that 

for small time intervals the turbulent fluctuations are transported past this 

point with the mean velocity without any distortion. Therefore, the transport 

of turbulence past this point is equivalent to the movement of an unchanging 

pattern past this point. Of course, the assumption of non-distortion of 

turbulence is not completely true because there is always a change in pattern 

even in small time intervals. However, in many cases the changing process is 

very slow and the assumption of unchanged pattern does not introduce a large 

error This assumption is called the frozen turbulence hypothesis since 

turbulence is assumed to be "frozen" in a reference frame moving past the 

point, XQ, with the mean velocity. The frozen turbulence hypothesis is very 

valuable since according to this, the spectral contribution at frequency u> is 

generated by a sinusoidal wave with wave number, k = 2ir /X, given by k = w / u  , 

(Ais the wave-length of the sinusoidal wave and U is the mean speed with which 

the disturbances are transported past the measuring point). Also the time delay, 

T , is equivalent to a separation distance r = UT in the direction of convection. 

Using the above relationships the correlation function and the frequency 

spectrum of Equations (3.7) and (3.8) are written as: 

U f 
~=T / E(kU) cos kr dk ; (3.16) 

u f 0 

E(kU) =  i - / R ( i ) coskrdr (3.17) irJ R(iU *n 
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Comparison of Equations (3.16) and (3.17) with (3.9) and (3.10) shows that the 

one-dimensional wave number spectrum is estimated as: 

E (kj) = UE (OJ) (3.18) 

where: 

k i = I T (3-19) 

implying the w and k̂  have consistent units i .e . cycles or radians. When wis 

measured in cycles and kĵ  in radians, Equations (3.18) and (3.19) are written 

as: 

E  =  E  a n d(ki)  "^7  (u ) »  (3.20) 

(3.21) 

The validity of Taylor's hypothesis is shown in Figures 3.3 and 3.4. 

Figure 3.3 is from the original paper by Taylor (1938 ) presented in Monin and 

Yaglom (1975) and Figure 3.4 is from Favre, et al. (1938) as presented in 

Hinze (1975). Both compare time and spatial correlations for grid generated 

turbulence ar.d the agreement is completely satisfactory. Taylor's frozen 

turbulence hypothesis applies not only for nearly homogeneous and isotropic 

grid generated turbulence but also through large parts of non-homogeneous 

turbulent flows when the ratio u7U is less than 0*1 (Reynolds, 1974,p.91). 

Therefore, it is applicable in most turbulent flows but not too near a wall. 
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Figure 3.3 Comparison of Measured Values of the Velocity Correlation 
Function (Solid Points) with Calculations Based on 
Taylorfs Hypothesis (After Monin and Yaglom, 1975) 

• -Eulenan time correlation R^(t) 
x - Longitudinal spatial correlation f(xx) 
*7-1,227 cm/sec 
A/-2.5 cm 
d -0.5 cm 

i i i Ut/M 
I I 1 1 J xx/M 

10 12 14 16 18 

Figure 3.4 Comparison between Time and Spatial Correlations 
According to Taylor's Hypothesis. (Favre, A . , et al. 
Recherche Aeronaut,, Paris, No. 32, p. 21, 1953) 
(After Hinze, 1975) 
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6) Energy Cascade - Kolmogorov Theory 

Energy enters the flow field at the large length scales. At these scales 

eddies are generally non-homogeneous and anisotropic and the Reynolds 

number is very large. Therefore, viscosity is not important and energy dissi­

pation does not occur. However, these scales produce through inertial inter­

actions a large hierarchy of smaller scales until a level is reached where the 

Reynolds number is very small (Re ) . As a consequence viscosity becomes 

very important and conversion of kinetic energy into heat occurs. Viscosity 

does not control the rate of energy dissipation. The small scales adjust them­

selves so that all the energy transferred to them dissipates. The smaller the 

viscosity, the smaller the scales that survive. This process of continuous 

energy transfer to the dissipation scales is called "the energy cascade" and it 

is very neatly described in Monin and Yaglom (1975, Chapter 8). According to 

them the largest disturbances in a turbulent flow have a length scale, 1*, which 

is of the same order of magnitude of the length scale, L, of the flow as a 

whole. In addition, the velocity scale, v^, is of the same order of magnitude 

as the changes Av in the mean flow velocity over distances of the order of L. 

The Reynolds number Rê ^ = v^ l^/ v is very large and these first order 

disturbances break down into smaller scales 12 with velocity scale v2- The 

Reynolds number Re2 = vg 12 / v is smaller than Rej but still much larger 

than Recr . Therefore, the secondary disturbances are still unstable and 

break down to smaller length scales lg and so on until a length scale 1 = n is 

reached where Ren is of the order of magnitude of Rec r . These scales are 
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hydrodynamically stable and do not break down any more. Their energy is 

spent in overcoming frictional forces and is therefore, dissipated into heat. 

Kolmogorov (1941 ) in his famous equilibrium theory was the first one 

to recognize that despite the fact that the small eddies obtain all their energy 

from the non-homogeneous and anisotropic large eddies are in fact homogeneous 

and isotropic and independent of the properties of the large components of the 

motion. Since the time scales of the small eddies are much smaller than the 

time scale of the mean flow they are also regarded as quasi-stationary, i . e . , 

not depending explicitly on time but changing only because of its dependence on 

the slowly changing characteristics of the mean flow. The fact that the small 

eddies are independent of the mean flow does not mean that the statistical 

state of small-scale fluctuations is the same in all flows. The mean motion 

affects the small scale fluctuations through the energy flux, which is transfer­

red throughout all the range of scales to the dissipation scales. Assuming 

that there is no energy dissipation in the intermediate scales the mean amount 

of energy converted into heat per unit mass of the fluid per unit time (dissipa­

tion rate, e) equals the mean amount of energy transferred to the largest scale 

eddies per unit mass of fluid per unit time.The dissipation rate, g , is given 

3u! 3u' 2 
? =  T v Z-f ( — + — ) (3-22)

3 x j  x i 

Kolmogorov, in his first similarity hypothesis, assumed that the 

statistical regime of the smallest scale disturbances, where energy dissipation 
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occurs, depends on e andv . Using these two parameters, Kolmogorov formed 

the following length, time and velocity scales 

e e (3.23) 

These scales are called the Kolmogorov microscales. Based on these scales 

the Reynolds number is derived to be R e  _ =n y/v = l . The length scale, n, 
cr JL 

is the maximum scale where viscosity is important* In his second similarity 

hypothesis Kolmogorov assumed that for scales much greater than n but much 

smaller than L the statistical regime of the turbulent fluctuation depends only 

on £ and is independent of v . In these scales the inertial transfer of energy 

to smaller eddies dominates and therefore they constitute the so called inertial 

subrange. 

Figure 3.5 borrowed from Reynolds (1974) shows the above ideas. 

Kolmogorov formulated a very important law for the inertial subrange. 

This law is the "two-thirds" law according to which the mean square of the 

difference of the velocities at two points in the inertial subrange is given by 
c l (^r) 2/3  where ĉ , is a numerical constant and r is the distance between 

the two points. A law equivalent to "two-thirds11 law in wave space is the 

"five-thirds" law according to which the spectral density of the kinetic energy 

of turbulence is given by: 

E(k) = c2e2/3k~5/B (3.24) 
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0-1 | 1 j 10 100 1000' 

frQ = 2rr/L0 kt - 2ir/Lx x=27T/A, Atari"1) 

Figure 3^ sCharacteristic ranges of a turbulent motion, illustrated by 
three-dimensional wave-number spectra of energy E(fc) and dis­
sipation k2E(k). The Reynolds number for the case considered* 
Re0 = !05, is about the lowest at which an inertial subrange exists. 
The wave-numbers correspond roughly to Lo « 20 cm. 

Ri range of energy-containing motions 
R2 range peculiar to the particular flow 
R3 universal equilibrium range 
R4 range of energy extraction 
R5 inertia] subrange 
/?6 dissipative range 
R7 range of inertial scaling 

(after Reynolds, 19/K) 

where co is another constant and k is the wave number Formula (3.24) was 

first obtained by Obukhov (1949 a,b) and has been verified by several investiga­

tors (see next section). It is very important in the computation of any turbulent 

flow because the parameterization of the non-resolvable scales depends on 

knowing the wave length of this range. 

7) Observation of Five-Thirds Law 

The validity of the five-thirds law has been confirmed by many investi­

gators for atmospheric and aquatic turbulence. Monin and Yaglom (1975, p.467) 

present a very good summary of the verification of this law in atmospheric 
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turbulence. Figure 3.6 borrowed from this section shows that there is an 

appreciable region of wave number where the five-thirds law is satisfied. 

10 
4 J 2w  w  w

Fig. 3:5 Measured one-dimensional spectra 
of the horizontal (u) and vertical (w) wind-
velocity components at a height of 300 m. 
(after Monin and Yaglom, 1975) 

An extensive amount of work exists in verification of the five-thirds 

law in aquatic turbulence. Cannon (1971) observed the motion in a coastal 

plain estuary Even though an inertia! subrange does not exist, he found that 

most of the spectra follow the five-thirds law in periods less than 4 minutes and 

greater than 8 minutes. He also found that some spectra follow a -1 slope. 
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Dillon et ah (1976) measured low-frequency turbulence in the epilimnion 

of Lake Tahoe by using Savonious rotor current meter positioned at three 

depths. They used Taylorfs frozen turbulence hypothesis to convert frequency 

spectra to wave-number spectra and they found that the five-thirds law is 

generally satisfied at wavelengths ranging generally between 10 and 110 m. 

They note that turbulence cannot be assiuned isotropic and therefore a true 

inertial subrange does not exist. 

Grant et al. (1962) used a hot film anemometer to compute the turbulence 

spectra in a tidal channel. They found that in wavelengths 6.28cm-628cm the 

data followed closely the five-thirds law. 

Palmer (1973) used a current meter and a hot-film anemometer to 

develop the kinetic energy spectra in Lake Ontario. Measurements were taken 

at two stations at a depth of 5. 8m. The first station was lkm offshore in 9m 

of unstratified water and the second well offshore in 22m of water with a well 

established thermocline. He found that the nearshore spectra from both the 

hot film and the current meter are characterized by a general slope of -3.0. 

The offshore spectra followed the five-thirds law at wavelengths of 0.6-20nu 

Webster (1969) used the Taylor's hypothesis to convert measured oceanic 

frequency spectra to wave number spectra. He found that the five thirds law 

was observed at length scales ranging from 500m-5000m. These scales are 

the largest ones where this law was found to be satisfied in aquatic tuibulence. 

The verification of the five-thirds law in large scales is very encourag­

ing for those deriving the numerical representation of geophysical flows. As 
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will be shown this law allows the easy formulation of transport models which 

use relatively coarse grids. All turbulent activity not resolved by this coarse 

grid will be parameterized by existing techniques (Chapter V, Section D). 

8) Energy Subranges in 2-D Turbulence 

Two-dimensionality is typical of the large scale motion of the atmo­

sphere and of the large scale motion of the oceans. Also two-dimensionality 

prevails in shallow regions of lakes and ocean. Therefore, an extended por­

tion of literature is devoted to the study of 2-D flows and the energy transfer 

in them. 

In 2-D flows in addition to energy another quantity has to be conserved. 

This is one-half the squared vorticity called enstrophy. Therefore, two kinds 

of dissipation may occur, namely energy, e , and enstrophy, £ . Correspond­

ingly* two kinds of inertial ranges can be defined: that of Kolmogorov (inertial 

subrange) and that of enstrophy (enstorphy subrange). Fj/frtoft (1953) was the 

first one to report that when energy enters the system at a wave number, k,, 

only one fraction transfers into greater wave numbers while the rest of it 

transfers to the smaller wave numbers. Kraichnan (1967) and Leith (1968) 

formulated Fj^rtoft's (1953) theory. According to these studies and unlike 

the 3-D flows where energy flows one way to smaller scales as k ' (Equa­

tion 3.24), a reverse situation occurs in 2-D flows. Suppose that a fluid is 

excited by a force confined at k^ kj and it supplies energy at steady rate, e 

and enstrophy at steady rate K % 2k. c Then on the one hand energy transfers 

to smaller scales as: 
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f 2/3 -3 
E(k) = c  £ k ^ (3.25) 

and dissipates in the viscous range. On the other hand, however, it transfers 

to larger scales towards zero wave number as Equation 3.24. If sufficient 

energy exists it saturates all the larger scales and piles up at the lowest possi­

ble wave number when reaches the outer boundaries of the physical system. 

Kraichnan (1971) corrected Equation (3.25) to: 

2/3 -3 / w \ ~  1 / 3 

E(k) = c' c k ( l nj-M (3-26) 

Also he points out that the energy and enstrophy ranges are mutually exclusive. 

That is there is zero enstrophy transfer in the energy subrange and zero 

energy transfer in the enstrophy subrange. 

Lilly (1969) tested the above models by numerically integrating the 2-D 

Navier-Stokes equations and using a random forcing disturbance in the neighbor­

hood of a wave number, 1^. His results verified the k" ' range at wave 

numbers smaller than ke. However, the k~ range was less clearly verified 

due to numerical problems. 

Spectral analysis of large-scale meteorological data has shown that 

the k spectrum is very common in atmospheric turbulence. The works by 

Benton, etal . (1958), Julian, et al. (1970), Winn-Nielsen (1967) are represen­

-3 
tative of the k spectrum in the atmosphere. 
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Lemmin, et al. (1974) used a current meter to estimate the energy 

spectra in Lake Ontario. The spectra were computed during the passage of a 

storm. At the beginning of the storm the spectra showed a -3 slope indicating 

a 2-D turbulence. Eventually a peak appeared in the spectrum and after the end 

of the storm the slope changed to -5/3. They interpreted the peak as an energy 

input from breaking of surface waves. The -5/3 slope indicated that after the 

energy source was exhausted the structure of turbulence changed from two-

dimensional to three dimensional. 

B. Classical Analytic Approaches to Turbulence Computations 

1) Averaging Procedures 

A study of a turbulence oscillogram shows that the turbulent flow con­

sists of a variety of oscillations with no obvious regularity. The effect of this 

is that the instantaneous value of all the dynamic fields behaves in a very 

disordered way The existence of all these oscillations and also the fact that 

the same turbulence pattern cannot be obtained even if the same conditions are 

repeatedly applied, makes the use of averaging a necessary tool in any turbu­

lence computation. This averaging allows the transition of the instantaneous 

field from a disordered to a smooth nature. 

The standard procedure in averaging is the decomposition of the 

instantaneous field ffXj ,x2 ,x3 ,t) = f(x.t) into a mean and a fluctuating 

component as: 

f = 7 + f1 (3.27) 



34


where f is the instantaneous value of the variable being averaged, f is the 

average value and ff is a fluctuating component such that V = 0. The average 

value is determined by a) time averaging, b) space averaging, or c) ensemble 

averaging. 

As in Monin-Yaglom (1965, Chapter 2) a general space-time averaging 

is given by: 

— 00 

— 00 

(3.28) 

where o> (£ , T ) is some weighting function satisfying the normalization 

condition 

00 

JJfj  ( ' r C 2 ' C 3 ' T > d C l d ^ d C 3 d T = 1 <3-29> 

Depending on u (£ 9 T ) Equation (3.28) takes the form of a time or space 

averaging. If w( £ ) and a>( T ) have a constant value over a parallelepiped 

and are equal to zero outside it and if 6 is a Dirac delta function, then Equa­

tion (3.27) converts to a time averaging if w(C. f x ) = w ( T ) « ( £ ) . The same 

equation converts to a space averaging if w ( i , x ) =  w ( 5 . ) f i ( T ) - Time and 

space averaging are not very convenient because they generally depend on the 

time interval or space volume chosen for averaging. Therefore, they give many 

different mean values. To avoid this problem an ensemble averaging is used 

which is simpler and has more universal properties. To obtain this an 
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experiment has to be performed under identical conditions a large number of 

times and the value f(x,t) has to be obtained in each one of them. The 

arithmetic mean of all these values give the ensemble mean. When the number 

of experiments becomes very large the ensemble mean approaches the pro­

bability mean (see Appendix C for definitions). The ensemble mean is not 

convenient to be used in practice because usually only one experiment exists. 

Therefore, there is a necessity of taking the averages over some time or space 

interval and to examine under what conditions these averages approach the 

probability mean. It is obvious that ensemble ayeraging does not eliminate the 

problem of ordinary space or time averaging but just alters the formulation of 

the problem. 

In order for the mean (time or space) obtained over one single experi­

ment approach the probability mean the averaging interval (time or space) has 

to be very large and ergodicity necessitates that the turbulent field has to be 

stationary or homogeneous relating to time or space averaging respectively. 

This is explained below. Consider first the time averaging. In this case the 

dependence of f(x,t) on x is insignificant and the mean is written as: 

t+T/2 

f(t) = ^ J f ( t « ) d x (3.30) 

t-T/2 

In order that (3.30) approaches the probability mean as T-*00 it is shown in 

Monin and Yaglom (1965, p.244) that: 
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f(t) = f = constant (3.31) 

Equation (3.31) indicates that the process has to be time independent, i . e . , 

stationary- Stationarity is difficult to be assumed in the case of natural turbu­

lent flows. Here short time intervals are considered so that the process can 

be assumed stationary. In these cases the probability mean is found by time-

averaging. For this to be possible it is necessary that the time means as T-*» 

converge to the probability mean and that the means taken over time, T, in the 

course of which the process may be assumed stationary, will already be fairly 

close to the limits corresponding to T-*°° (Monin and Yaglom, 1965, p. 246). 

In the case of space averaging the situation is similar. Here the depend­

ence of f (x,t) on t is insignificant and the mean is written as: 

A/2 B/2 C/2 

/ / /

-A/2 -B/2 -C/2


As in the case of time averaging in order that (3.32) approaches the probability 

mean for A + » , B -* « , C -> «> (or at least one of them being true) a similar 

expression to Equation (3.31) must exist: 

f(x) = f = constant (3.33) 

Equation (3.33) indicates that the mean has to be independent of the position in 

the flow fielld, i . e . , homogeneity. Therefore, in space averaging the flow 

field has to be homogeneous. As in the case of time averaging homogeneity is 
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difficult to be assumed under natural conditions except in small space regions. 

The assumption of an inertial subrange provides a very good way of defining 

these regions. 

Summarizing this section, it is concluded that when the turbulent flow 

can be considered as being stationary, averaging with respect to time should be 

used. When the turbulent flow is homogeneous space averaging should be con­

sidered. 

2) Reynolds Axioms 

In the previous section it was shown that in the computation of turbulent 

flows the instantaneous values of the flow variables are decomposed into a mean 

and a fluctuating component (Equation 3.27). Then an averaging procedure was 

used (Equations 3.30 and 3.32) to determine the mean value. If Equations (3.30) 

and (3.32) are used in the differential equations of fluid dynamics an unworkable 

set of equations will be derived. Therefore, rules which obey (3.30) and (3.32) 

and which allow sufficiently simple equations to be derived must be used. These 

rules are the so called Reynolds axioms because they were first derived by 

Reynolds (1894). If g and h are two variables and c is a constant then the 

Reynolds axioms are the following: 

g + h = i" + *h (3.34) 

c"g = e  g (3.35) 

T ^ = -zr B (3-36) 
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g h = gh =  gh (3.37) 

It can be shown (Okubo,1964)that Equations(3.34) through (3.37) satisfy Equations 

(3.30) and (3.32)


3) Reynolds Stresses and the Closure Problem


In the previous two sections the existing techniques for the transition of 

the fluid dynamic variables from a complex and irregular character, associated 

with turbulence, to a smooth and gradually varying one were discussed. In this 

section the application of these techniques to the equations of motion will be 

presented. 

The Navier-Stokes equations and the continuity equation for incompres­

sible flow are written as: 

(Schlichting, 1963) 

(iJL + -iL(u2) + —(uv) + —(uw)) = - 2 i i + yV û (3.41a)
V  va t 3 x v /  a y 3 z  v "  3 x  ' 

(vu) + ^ 7 ( v 2 ) + T 7 ( v w ) ) =  ̂ 1 + yv2v (3 41 b)"" ­

p ( 2™. + _!_ (wu) + — ( w v ) + — (w2)) = - - ^ +  p v 2 w (3.41 c)
1 3t 3X 3y 3z 3z 

_iu +  IX JMV = 3 # 4 1 d ) 

3x 3y 3z * 
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The flow variables are expressed as in Equation (3.27) 

u = u + u' , v = v + v 1 , w = w + w1 , P = P + P1 (3.42) 

Substitution of Equation (3.42) into (3.41) and averaging results in the following 

equations: 

3_U_ + 3 ,.-.r. d .— —-,

p ( -3 t


J_ J ­

(3.43 a) 

+ (^ 3 y 

a x 

(3.43 b) 

9w 3 3 3 *ap 2 _ 
— (wu) x  (ww))— - + —  + (wv) +  x n  = - —— + yV w ­

3t 3 x  v ' ay ' a z  3z 

(w'u1) + (wV) + \vt2 

3x 

(3.43 c) 

Equations (3.44), called the Reynolds equations, contain the terms relat­

ing to the mean motion and additional terms on the right hand side due to the 

turbulent motion. These terms are often interpreted as stresses on an 
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element of the fluid in addition to the viscous stresses. They are called 

apparent, virtual stresses of turbulent flow, or Reynolds stresses. The 

components of the stress tensor due to the turbulent velocity components of 

the flow are: 

•ux T'xy Txzv / P u ' 2 p u ' v ' p u ' w ' 

T xy  a y  T yz | =  - | p u ' v ' p v ' Z PV'W* 

T  Txz yz ° z ' ^Pi?w» Pv«w» Pw'2 

Equations (3.44) are written as: 

p (
1 3t 3 x 3 y 3 z v " 8 x 

°x +
3 y

 Txy 

(3.46a) 

3P . n2 ­(vw)) = ­
ax 

T  +  a  + Tx xy yy y

(3.46b) 

(ww)) = ­
3x 3y * ' 3z * " 3z 

3xTxz ay yZ 3z v 

(3.46c) 
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= o a 
3X 3 y 3z 

The difficulty in solving Equations (3.46) arises from the presence of the new 

unknowns (Reynolds stresses). The system is indeterminant because it 

contains more unknowns than equations. The problem of solving Equations 

(3.46) is referred to as the closure problem* Most of the theoretical work in


turbulence is associated with the difficulties arising from this problem. In


the next section the most standard methods of closing the system of Equations


(3.46) by approximating the Reynolds stresses will be discussed.


4) Computational Approaches to the Closure Problem


a) First Order Theory


The first order models are the simplest existing models in closing the


Equations (3.46). To reduce the number of unknowns in (3.46) the


Reynolds stresses are computed in terms of other unknowns. Therefore,


the number of unknowns is reduced down to the number of equations.


The equation used is the following:


3u. 

where K is the eddy viscosity which is assumed to be a function of the 

averaged flow variables and S.. is the strain-rate.tensor. The eddy 

viscosity K is computed by a form suggested by Smagorinsl<y (1965) as: 
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K = (ch)2 u, ( 3 u..3u.
 L +

 33u . u. L) (3,48)
3  x . x 8x x 8  x j 3 3 X 

where c is a constant and h is the mesh separation distance. If an 

inertial subrange exists it can be shown that (3,48) is consistent 

the Kolmogorov energy spectrum (3.24). A special case of the first 

order theory is the constant eddy viscosity and the variable eddy vis­

cosity methods very commonly used in lake transport models. In these 

methods K is considered arbitrarily constant or variable depending on 

position or temperature (Chapter II). 

For more details on first order models, see Chapter V, Section D. 

b) Second Order Theory


The second order theory involves equations for the Reynolds stresses


which have to be solved in addition to the Navier-Stoker equations.


These equations are the following (Harlow, et aL, 1967)•


3 u'.u' 3u | u 3 u 3 u. 3 u! u! u^ 
L-1 + H J + U! u,? -L + u! uj  — - + J 

3t k 3 x k
 l k 3 x k J  k 3 x k 3 x k 

i 3X 3 3x / \ 

where $ is the ratio of pressure to density. 
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To make (3.49) determinate a flux approximation for the Reynolds 

stress is used: 

where q is the kinetic energy of the turbulent fluctuations and 5.^ is the 

kronecker delta. An equation now for q is needed. This is given by: 

i f + ck 

*2 n 3 U! 
-2—t v( — 
3x2 3 

For more information on the second order theory the reader is 

referred to Lilly (1967), Daly, et al. (1970), Harlow, et al. (1967) 

and Deardorff (1973). 



CHAPTER IV 

FILTRATION 

One of the very important tools in signal processing is signal filtration.. 

By filtration it is meant that some undesired information of the signal is 

removed by the use of a mathematical device or a physical process* For 

example, if a signal or process is composed of oscillatory activity with a finite 

number of frequencies, a filter can remove specified frequencies such as 60 

Hertz Notch filters for line noise, or all frequencies which are larger or smaller 

than some cutoff frequency Therefore, only the relevant frequencies are kept 

for further processing. 

Filters are in use in many engineering applications. The mathematical 

modelling of turbulence is one of them. Here the necessary discretization of 

time and space is in fact a process of filtration which requires that the govern­

ing equations be properly filtered and therefore consistent with the act of 

discretization. 

In this chapter some of the most imporant characteristics of filters and 

their application to turbulent flow computations will be discussed. Since the 

most applicable definition of a filter is through the convolution integral the 

first section of this chapter is devoted to the description of this integral. 
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Filter Methodology 

1) The Convolution Integral 

The best way of defining the convolution integral is by following the 

method applied in systems analysis where the response of a linear system to 

certain signals is desired. Here the input signal is decomposed into a set of 

elementary signals and the response of the system to each one of those is 

determined. By assuming that the system is linear and the principle of super­

position applies the total response of the system is determined by the super­

position of all these separate responses. The expression which states the total 

response of the system in terms of these separate elementary responses is 

called the convolution integral. To express the convolution integral mathemati­

cally the elementary signal (impulse or delta function) and the elementary 

response of the system (impulse response) have to be defined. 

Consider the finite ramp function (Figure 4.1), where 9 is the time or 

space variable. 

F(9) 

Figure 4.1 The Finite Ramp
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Next consider the derivative of the finite ramp, riff(9.) 

d 6 

d8 

1 
a 

Figux-e 4.2 Derivative of the finite ramp 

It is seen that the derivative of the finite ramp is a rectangular pulse of length 

magnitude 1/ a and area unity No matter how small a is the area remains 

constant at unity. An impulse or delta function is the first derivative of the 

finite ramp as a appoaches zero: 

6(6) = lim dF<9> (4.1) 
a ->0 d 6 

The graphical representation of 5(9) at 6 = 0 and 6 = 3 is shown in 

Figure 4.3. The factor multiplying the unit impulse in Figure 4.3b indicates 

that the area (strength) of the impulse is not unity but A. 
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6(8) 

0 3 6 

a) Unit Impulse b) Shifted Impulse of Area, A. 

Figure 4.3 

Therefore the impulse or delta function is a very narrow pulse with a total area 

of unity- The response of a system to the impulse or delta function is called 

the impulse response. The usefulness of the impulse response and therefore 

of the delta function, is that it can be used to obtain the response of the system 

to any input signal. For this the input signal x(9) is decomposed into a 

continuum of impulses of strength x(e) d e The form of these impulses is 

x( X) 5 ( 6 - A) d x . The complete input signal is written as: 

00 

x(6) = 6(9 -X )dA (4.2) 
— o * 

The response to each elementary impulse is h(8) multiplied by the strength 

of the impulse and it is positioned so that it coincides with the point in time or 

space of application of the impulse: x(X)h (9 - ,\ ) d \ . The total response 

of the sj-srem y (0) is written as: 
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y(e) - \ ) d X (4.3) 

-no 

The integral (4.3) is called the convolution of x(e) and h(e) and is denoted 

as x( 9) * h( e). Generally the convolution of the functions g.,(8) and g2(8 ) 

is written as: 

g i ( e ) * g  2 ( e ) A (4.4) 

Some examples of convolution borrowed from Cooper, et al (1967) are shown 

in Figures 4.4.through4.6. 

6 B 

Me) 

o 6 e •*• 

6 8 •*• 

Figure 4.4 Convolution of Two Rectangular Pulses 
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6 8 -»• 

go0) 

6


2 4


Figure 4 .5 Convolution of a Rectangular and an Exponential

Pulse


2


1


6 6 -»­


6 e -• 

g l *  g 2 

0 2 4 6 8-*


Figure 4, 6 Convolution of a Triangular and a Rectangular Pulse




50 

Figures 4.4 through 4.6 show that the convolution integralcan be thought as an 

averaging,smoothing or weighting operation. This property of the convolution 

integral is very useful in the construction of a filter by which some undesired 

property of a function is removed. 

2) The Use of the Convolution Integral in the Construction of a Filter 

The filtering operation is defined as: 

00 

y(8) = yG( 6 - A) x (A) dA (4.5) 

where x( A) is the input signal which consists of a desired and an undesired 

component, G( e- A) is a filter which removes the undesired component of 

x(X) and y( 9) is the output of the filtering operation. The discrete represent­

ation of (4.5) is given by 

yi =  Z G i - k xk- (4.6) 

In this case, the filter G can be thought of as consisting of a set of weights, 

which, when applied to the input signal x, , produce y.. Depending on its 

transmission ability a filter is classified as high pass filter, low pass filter 

band pass and band rejection. A high pass filter transmits the high frequency 

components and rejects those lower than a specified cutoff frequency. A low 

pass filter transmits the low frequency components and rejects those above 

the cutoff frequency. A band pass filter allows a certain range of frequencies 

to pass and rejects the rest of them. A band rejection filter rejects a certain 
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range of frequencies and allows the rest of them (Figure 4.7)­

Low Pass 

High pass 

Band pass 

Band re jec t ion 

Frequency 

Figure 4.7 Classification of Filters 

A filter also is classified as recursive and nonrecursive. A recursive filter 

recirculates the output back into the input while in a nonrecursive filter the 

output is a function of the input terms only The reader can find an extensive 
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description of filters in Otnes andEnochson(1972),Stanley (1975), and 

Hamming (1977). 

To show the ability of a filter to reject a certain portion of frequencies 

consider Equation (4.6) after a simple change of variables is performed. 

Z  G k x i - k <4-7> 
k=-oo 

Let Gk = 1/3, k = -1,0,1 and Xj = R cos(wt +? ). In this case Equation (4.7) 

is a three point simple moving averaging. This is written as: 

<4-8> 

which after some algebra (Bloomfield, 1976) yields: 

^ R cos(wt +V )(1 + 2cos «o) (4.9) 

Therefore the output y. is obtained by multiplying the input by hi + 2cos <*). 

This function is zero for <o = 2TT/3 and obtains the maximum value for w=0. 

Therefore if the input signal consists of a number of cosine terms, the 

frequencies near zero will pass relatively undiminished while the frequencies 

equal to 2 TT/3 will be removed completely. Since any set of data can be 

written as a sum of cosine terms the frequency presentation of the filtering 

procedure becomes obvious. 
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In the first two sections of this chapter the filter characteristics were 

presented in general terms. In the remaining sections the filtering technique 

in relation to turbulence computations will be presented, 

B.	 Filter Performance Criteria 

The numerical computation of turbulent flows requires that the flow 

fieid must be divided into rectangular cells and the velocity field (and contaminant 

concentration) be computed at the nodal points. This velocity field is a gross 

solution over the whole cell. The numerical model cannot consider oscillations 

of scales smaller than twice the cell size. However these smaller scales have 

to be accounted for in some way because otherwise the solution does not conserve 

energy and is therefore erroneous. This necessitates the filtering of the 

equations so that they are written only in terms of large scale components and 

vhich when solved yield the correct spectral structure of the energy cascade. 

The terms which are based on the small scales and which arise from the 

filtration-	 are then modelled. 

The filtration formula used in turbulence computations has, in accord­

ance to Equation (4.5), the following form: 

f (x)(x) == / G (x/ G (x -- xx1) f (*') ^ ;	 (4.10) 

where the integration is over the entire flow volume. Here f (x) is a variable 

that contains all the scales, f (x) represents the largB scales or resolveble 

scales of f (x) (filtered field) and G (x) is a filter function, f (x) now can be 
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decomposed into its resolveble and residual components as: 

f = T + V (4.11) 

where, it should be noted that, f is not the mean used in classical turbulence. 

The filter function G (x) has to satisfy the following two requirements: 

G (x) dx = 1 
(4.12) 

and the first and the second moment of G (x) must exist. 

If these two requirements are not satisfied the filter is not suitable for grid-

based turbulence computations. 

The filters which are used most frequently in turbulence computations 

are described in the next section. 

C. A Review of Filters used in Turbulence 

1. Top-hat Filter 

The top-hat filter is the most commonly used filter in turbulence 

computations. It is usually stated as volume averaging of the N.S. equations. 

The form of this filter is: 

a K - x j < A /2 1-1,2,3 
(5 " *') = ( (4-13) 

0 otherwise 
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3 
A 

-A A/2 AA/2 x.-x! 

The deficiency of this filter is that it does not remove the small scale oscilla­

tions from the filtered field sufficiently. This is shown from the Fourier 

transform of the velocity field (Kwak et el . , 1975, p. 8) 

3 sin (ki A A/2) 
u (k) = n u ( k ) , (4.14) 

A A/2 

where the velocity field is expressed as a function of the wave number, k. 

Equation (4.14) indicates that the filtered field contains oscillatory components 

at all wave numbers, instead of removing the large wave number components. 

This filter has been used by several meteorologists as Smagorinsky, 

et al. (1965), Leith (1965) to predict the general atmospheric circulation. 

Lilly (1967) also used this filter to study numerically simulated small-scale 

turbulence. Deardorff (1970, 1971 and 1973) carried extensive research on 

turbulent channel flows and atmospheric turbulence. Spraggs and Street (1975) 

used the top-hat filter to study thermally influenced hydrodynamic flows. 

l ick (1976) and Paul and Lick (1976), used this filter in Lake Erie circula­

tion models. 
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This filter has been proposed by Leonard (1974) and has been used 

extensivelly at Stanford University by Kwak, et al. (1975), Shaanan, et aL(1975), 

Mansour, et al. (1977) and Ferziger, et al. (1977) in large-eddy simulations of 

turbulence. The Gaussian filter has the following form: 

G(x - x') = W-X -1 I exp["-Y(x - xf/A2] (4.15) 

-1.0A -0.5A 0 0 . 5 A 1.0 A x - x f 

i i 

where Y is a constant and A is the filter length. Filter length twice the grid 

size has been used by all the investigators reported at the beginning of this 

paragraph. 

The Fourier transform of the velocity field is given by (Kwak, et al. 

1975): 

=B (]S)  M (k) e x P ( " 
4Y 

(4.16) 

where a Fourier transform is denoted by the symbol, * 
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which shows that the filtered field becomes very small for large values of the 

wave number, k. The requirements (4.12) also are satisfied and therefore this 

filter has the desired properties and can be used with no major difficulty. Its 

only disadvantage is that it is symmetrical and therefore it can be used only in 

the computation of turbulent flows by using cubical cells. 

3. Sub-Grid Scale Filter 

A generally good filter that cannot be used because it does not fulfil 

the second of the requirements (4.12) is the following (Kwak, et al. 1975): 

3 sin (Xi - i) 
(x - x') - n t (4.17) 

where A A = Vkc and kQ is the cut-off wave number. This filter has the 

desired property that by defining kc properly, the residual field can be sub-

grid scale. However it cannot be used because its second moment involves 

integrals of the form 

00 

/ x2 sin(Trx/AA) 
dx (4.18) 

TT X 
- 00 

which do not exist. 

D. A Filter for Distorted Grid Cells 

Lake turbulence is characterized by horizontal scales which are many 

orders of magnitude larger than the vertical cells. Here cubical cells are 



58 
impractical and therefore the filter (4.15) cannot be used. In this section a 

Gaussian filter which can be used in highly distorted cells is proposed. This 

filter has the following form: 

-xj) = ^ 7  7 expT- Y(Xi-x{)2/Afl (4.19) 

(1=1,2,3 (no summation)) 

where A ., is the filter length in the three directions. To identify this filter it 

is compared with a normally distributed variable y having mean V equal to 

zero, variance equal to a , N(0,a \ and density function given by: 

G (y) = -7^—exp ( - \  - \ ) . (4.20) 
IT O O 

Comparison of (4.19) and (4.20) shows that (4.19) is a Gaussian function with 

mean and variance given by 

2 *? 
V = 0 ; and ° = —*- * (4.21) 

2 Y 

The first and the second moment of (4.20) are given by (Dudewicz, 1976, 

pp. 118-119): 
00 

yG(y)dy = u = 0 (4.22) 

—00 QQ 

<y2) = \y \ (y) dy = a2 + y 2 = a2 (4>23) 

To show the properties of the filter (4.19) it is applied to the velocity 

u(xn,  xo , x .) . The filtered field will be: 
JL it o 
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"T<xi  x i >  A iif • dx! (4.24) 

(i=l, 2,3 (no summation)) 

Letting x. - x! = - £ Equation (4.24) becomes: 

00 2 2 

(4.25) 

- 0 0 

The Fourier transform of Equation (4.25) is given by: 

co 2 2 

7 
oo 

i ­

which is written as: 

00 

U (K.) = u(x. + C ) e i . * 

-oo (4.26) 

The bracketed quantity is the Fourier transform of u (x. + £ .). Therefore, 

Equation (4.26) is written as: 

00 

(4.27) 

— 00 
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Now (Miller p. 160): 

! i 
u (xi + *4> = u (x.) e , and 

therefore Equation (4.27) becomes: 

f°° 2 9 

u(kj) =y2._|_u(x.)Je d£. # (4.28) 
- 00 

After evaluation of the integral (Spiegel, p.98), Equation (4.28) becomes.­

-̂
2
 V

2 4 Y 
eAi

and finally 

A f 2u (ty exp (- -L k.) (4.29) 

Equation (4.29) is equivalent to Equation (4.16). As in (4.16) the 

filtered field approaches zero as the wave number becomes larger. Here, 

however, the direction is also considered. As in Equation (4.16) the filter 

length is obtained as A. = 2 A x., where Ax. is the mesh size. 



CHAPTER V 

DERIVATION OF FILTERED TRANSPORT EQUATIONS 

Complete 3-D computations of turbulent flows require resolution of 

scales down to the Kolmogorov microscale, n = (v>3/e)5. The number of mesh 

points required is Re9/4 , where Re is the Reynolds number (Kwak, et al. 1975, 

Leonard 1974) and exceeds the capability of the largest available computers. 

The solution to this problem is to compute the large scales present which 

contain most of the turbulent energy and are responsible for most of the 

momentum transport. The small scales, which play a very important role in 

the energy dissipation of the large scales are then empirically modeled. As 

in Chapter in, one common method of defining the large scales is by averaging 

over the volume of a cell and accounting for the subgrid scale motions by an 

eddy viscosity model. The nonlinear terms in the Navier Stokes equations 

are left unmodified. In this case the rate of energy transfer from the large 

scales through to the small scales (energy cascade) to dissipation is conducted 

by an artificial eddy viscosity. Lilly (1967) used the above method to study 

the distortion of homogeneous and isotropic turbulence by a strain rate. 

Deardorff (1970, 1971) used the same method to compute a 3-D channel flow 

at large Reynolds numbers, however, he had to decrease the eddy coefficients 

61
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for the subgrid scale motion used by Lilly. That was an indication that too 

much weight was given to the extraction of energy from the large scales due to 

the eddy viscosity. Deardorff (1973) used a more sophisticated 2nd order 

model for the subgrid scale Reynolds stresses. He derived subgrid transport 

equations to study the turbulence in an atmospheric boundary layer. Spraggs 

and Street (1975), also used this method to predict "the temperature regime 

and energy transfer in reservoir and cooling ponds subjected to thermal 

loading". The averaging of their equations was slightly different. Instead of 

grid volume averaging, Schumann's (1973) method, of averaging over the 

surface of grid boxes was used. 

All of the above research was accomplished by the use of classical 

finite difference methods. An alternative way of solving the same problem is 

by the use of spectral methods described by Orszag and Israeli (1975). The 

solution is decomposed by means of Fourier analysis into its spectral compo­

nents and the solution of each of these components is found. The method is 

still in the stage of development but presents some attractive characteristics. 

Boundary conditions can be considered exactly while in finite differences they 

usually lead to loss of accuracy. Also the decomposition of the solution into 

spectral components can be very convenient for turbulence computations. 

The disadvantages of the spectral methods are that they require more 

storage and computer time than the finite difference methods and they can be 

applied only to square geometries. Moreover, they have to date ignored the 

residual stresses resulting from the averaging of the equations. 
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In this chapter the filter derived in Chapter IV, Section D is used in the 

derivation of the filtered equations necessary to study the large scale lacustine 

velocity and concentration fluctuations. Also the assumptions used in lake 

circulation calculations, the residual field model, the equations for the bio­

chemically active source/sink term which is included in the contaminant trans­

port model, and the boundary conditions used are presented. 

A. Statement of theNavier-Stokes and Transport Equations: 

The equations used in this work are the conservation of momentum 

equations (Navier Stokes equations) and the transport equation. The complete 

equations are given by (Schlichting 1968, Hinze 1975): 

x - Momentum: 

rr * h <uu> + h 

v  ( • ! » • . » ! « + . £ « , (5.X) 
3 2 33 x 3y °3 z 

y - Momentum: 

3 v 3 3 3 *  3 P 

_ _ + (vu) + _  . (vv) +-yi(rw) + fti = " i  T 

3 / 
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z - Momentum: 

( 5 3 ) 
3x 3 z 

Continuity; 

3 u 3 v 9 w 
3 x 3 y 3 z 

Transport: 

L£. + -L.(cu) +

3t 3x 3y 3z 3 x M 3 x


(5 4- > 

where; 

u(x, y, z, t) = velocity in x-direction;


V(x,y,z,t) = velocity in y-direction;


w(x,yfz,t) = velocity in z-direction;


P(x,y,z,t) = pressure;


p = density;


f = Coriolis parameter;


g = acceleration of gravity;


y = molecular viscosity
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c(x,y,z,t) = concentration; and


t = time#


B.	 Assumptions Used in Circulation Calculations; 

Equations (5.1) to (5.4) are solved using the following assumptions: 

(1) Shallow water; according to this assumption the vertical scale 

is negligible in comparison to the horizontal scale (D/L« 1). As a result 

variations in the vertical velocity are small compared to the gravity term and 

the vertical momentum equation reduces to a hydrostatic pressure change. 

In this work D/L = 0*009 and therefore it is reasonable to make this assump­

tion. The shallow water assumption has been used extensivelly in lake and 

ocean modeling (Liggett 1970, Haq and Lick 1975, Crowley 1968, Bryan 1967, 

Gedney and Lick 1972, Simons 1971, 1972, Paskausky 1971, Leendertse 1970, 

Sheng and Lick 1975, Paul and Lick 1976). The advantage of this assumption 

is that the order of the system of Equations (5.1) to (5.4) is reduced and thus 

the computer time required for its solution decreases appreciably. 

(2) Rigid lid assumption; according to this assumption used by 

Bryan (1969), Liggett (1969,1970), Bennett (1974) Jlaq and Lick(1975),Lick(1976), 

Paul and Lick(1976),Sheng and Lick(1975) a slippery rigid lid, allowing hori­

zontal motions but no vertical motions, is put at the surface of the water. 

The free surface displacement is estimated by computing the pressure under 

the rigid lid and relating it hydro static ally to the free surface. This assump­



66 

tion can be used when the ratio 

is very small (Ball 1965, Bennett 1974). Here, L i s  a horizontal character­

istic length, f is the Coriolis parameter, g is acceleration of gravity and D 

is a vertical characteristic length. This ratio is the square of the ratio of 

the fundamental seiche period to the inertial period. In this work, using 

f = 1(T4 sec"1 (Great Lakes region), implies g = 0,0002, and therefore a 

rigid lid can reasonably be assumed. The advantage of this assumption 

is that the surface gravity waves and the numerical instabilities associated 

with them are eliminated. Therefore,larger time steps are permitted in the 

numerical computation of hydrodynamic flows. A thorough analysis of the 

rigid lid assumption is given by Lick (1976) and Haq and Lick (1975). 

(3) Coriolis effects are neglected. As in Boyce (1974), when the 

inertial period T . = 2 ir/f is larger than a characteristic time scale the 

Coriolis force is considered unimportant in the dynamics of the phenomenon 

in question. A typical inertial period is T. - 17,5 hours while the total time 

over which computations were made in this work is no more than 6 hours. 

Thus it is assumed that the Coriolis force can be omitted. 

(4) The flow field is considered homogeneous in temperature. 

Stratification complicates the analysis,, therefore, at this time no temperaUure 

effects are included. 
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(5) The molecular viscous terms are very small in comparison 

with the turbulent stresses and therefore are omitted. 

(6) The transport model includes a source/sink term which 

accounts for biological growth or decay. A sinking velocity (ws) is added to 

the vertical fluid velocity to account for gravitational particle settling-

C. Derivation of the Filtered Equations; 

Using the assumptions described in the previous section the equations 

for the filtered field are the following (x-direction is positive northward, y-

direction is positive eastward and z-direction is positive downward): 

x - Momentum: 

v - Momentum: 

z - Momentum: 

12. = pg (5.7) 
dZ 

Continuity; 

_!!+ Al + I  I =o (5.8) 
3 3 3 
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Transport; 

•ft" 

where overbars denote filtered quantities. In the previous equations the 

following relationships have been used (Kwak, et al. 1975): 

3f _ j3j[ 
3 x 3X 

and 

I f 9 f 
3 t at 

The terms which need special attention are the double correlations 

uu, uv, uw, vu, w  , vw, cu, cv andc(w+Wg). Considering that each variable 

consists of a filtered and a residual component (Chapter IV) then two typical 

terms uv and uc are written as: 

uv = (u + uf)(v+vf) = uv + uv! + u!v + u V uv + Ruv ;and 
(5.10) 

cu = cu + cu! + c'u + cfuf = cu + T (5.11) 

In the above equations 

R = uvf + ufv + uV f and 
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Tu = cuT + c'u + c V 

represent the residual field contribution to the advection term. The term-PRUV 

is called the residual or Reynolds stress • The treatment of Ruv and  Tu will be 

discussed in Section E of this chapter. The terms which need further 

clarification are; uv and cu. First uv is considered: 

=
(x ) dx (5.12) f 

00 

uv (x) is localized by using a Taylor series expansion (Leonard 1974, Kwak, 

et aL 1975). Equation (5.12) is then written as: 

• *) = J w (x0 ,yo ,zQ ,t) G ( ^ - x)dx +Jf% w (x - - x)dx 

V 

•A (z  zo)  G 3 (z  "  z ) d z ~ o

2 

£ 3 x uv (x - x /  G  ! (xo - x)dx 

T^2 2 
- ^ W (y - y0)^ G2 (y0 - y)dy 

2 

^ uv (z - zo)
2  G3 (z0 - z)dz + higher order terms 

3 z (5.13) 
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where G (2^ - x) is the 3-D filter and Gp G2, G3 are the filter components 

in x, y, z direction respectively. 

Using Equations (4.12),(4.22) and (4.23), Equation (5.13) becomes 

9 f> 9 

A Zu 2 A 2 

uv = 5v + — — « (uv) + -2--L_ (uv) + —--^— (Hv) (5.14a) 
4Y 3XZ 4Y 3y2 4Y  3 z Z 

If a symmetrical filter was used, Equation (5.13) would be written as: 

2 
A 

uv = uv + —— V2 (uv); (5.14b) 

where Â  is the filter length. 

The second order terms in (5.14b) are called the Leonard terms 

2  , 2 

while - P^A /̂ Y —2_ (uv) are called the Leonard stresses. These terms 

are very important in extracting energy from the large scales (Leonard 1974) 

and are included when the largB scale motions vary in a non-negligible way 

over an averaging volume. The residual field terms play a reduced role in 

the dissipation of large scales energy. 

Similarly as Equation (5.14) was derived cu is written as: 

A 2 A 2 A 2 
9 a s a 

(cu) + ^ - i - (ci) + jf - 2  _ (̂ {i) (5.15) 
ay 4 T az^ 

Eq^oations (5.5) through (5.9) can now be written, as: 
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x - Momentum: 

+ -J- f uu + Ik -I.2 
3t 3X I 4Y , 2 

2
3 ' uV.+ Jll— (uv) + — 
y \ 4Y 3 x 2 4Y 

9 a2 

r i -2— (uw) +( )  —^ -^-55 (uvv)( ) 7^ (uw) J 
3 z 4Y 3 x

2 44 Y 3 y3 y
2 2 

4 Y / 

p 3x 3 x uu 3 y 'TIV a z uw 
(5.16) 

v - Momentum: 

2 2 
A 2 A 2ay _a_ 

3t 3 x 

vv 4 Y 3 y * 32 

A2 2 A2 2 A 2 2 

4Y 7777 ~h 

JL J 3x vu " 3 y vv 3z (5.17) 
P 3y 
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Hydrostatic Pressure: 

4 ? = pg (5-18> 

Continuity: 

3 y 3 v ' 

Transport: 

8 ? a  A i a2 A9  a 2 A<* a2 

- ~ + -r5- cu + T-i  - ^ v(cu) + x-2- - 2̂ l (cu) + -rf- —^9v (cu)9x 3X 4 Y  7 ^  ' 4 y 3 y  ' 4Y 3 %2  ' 

2 2 2 
A 2 A 2 A 2 

47  ̂ 2 W + 5T  i ^ W - T7 TT2 

2 « 2 
Ajj  2 A22 2 

s + - —  (5 (w + ws+ -f-f c (w +%v+%v)c (w ) + — —- -S-S— (5 (w + w))) + - j  ) + - j  -- - * 5  - (c (w + ws)) 

Tv + T i  T * + s (5-20) 

D. Residual Field Model; 

Most of the energy cascade process occurs through the Leonard's 

terms while the residual stresses play a secondary role. They can be 
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modelled as in Lilly (1967), Deardorff (1970, 1971), Spraggs and Street (1975) 

or Kwak, et al. (1975). By partial analogy to the molecular case 

=Rij " f  R kk  5 i j  -KSTj ; (5.21) 

where: 

Sjj = (|B_ + p . ) . (5.22) 
J 3XJ 3xt 

S.. is called the strain-rate tensor, K is an effective viscosity (eddy 

viscosity) associated with the residual field and 

— Rkk & • * i s c a r r i e d t o allow the left hand side of Equation (5*21) to

3 J


become zero when the indices are contracted (Hinze 1959f p.21). 

The residual fluxes Tj = cu! + cfu + c'u.1 are modelled by 

T, = JL -LL. ; (5.23) 
1 Pr 3X 

where the eddy diffusivity is related to the eddy viscosity by a turbulent 

prandtl number (Pr). 

The eddy viscosity is computed as in Smagorinsky, et al. (1965). The 

fundamental assumption is that an inertial subrange exists which encompasses 

the grid interval. As it is discussed in Chapter in, Section A.7, the largest 

scaie3 where an inertial subrange exists were found to be 500 to 5000 m. 

Therefore by using a relatively small grid 100 m the assumption of the 

existence of an inertial subrange is not bad. 
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A dimensional analysis is now applied for the determination of K. 

Expressing K as a function of the rate of energy dissipation, e and a repre­

sentative filter length A > here taken to be as in Deardorff (1970, 1971) 

)3 

the eddy viscosity K is expressed as: 

K =  c 4 / 3 e V 3 A 4 / 3 ( 5 2 4 ) 

As in Deardorff (1970), in homogeneous and isotropic turbulence, which is the 

case in the inertial subrange 

3 8 ^ a u 
K -J^{TT+ T^ (5*25) 

j j i 

3y setting (5.25) to (5.24) one obtains: 

1/2 

and therefore K is expressed in terms of filtered quantities. The constant c 

has to be determined (Chapter VIII,Section A). 
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The right hand side of (5.26) is rewritten in averaged quantities as: 

K = JLlL ( JiL
 vvax 3x ax 3 y  3 y 3 z a z 3 x ' 

JLL JLY 3 v . 3 v . 3 
3x x 3x 3 y ' 3 y x 3y 3y z 3y 

w ( 3 w JLZ 
3 y l 3y 

3 V 
= (C ^> 2 +  o 2 ) 3X 

1/2 

(5.27) 

E. Equations for the Biological Model; 

The contaminant transport model also includes a biochemically active 

source/sink term (S). The model includes four species (phytoplankton, 

zoo plankton, oxygen and nutrients) and benthos. The equations used are given 

in Smarkel (1978) and are as follows: 

C — ux  F2 N (5.28). 
O +K0 N+K n P + K 

Zooplankton: 

s = O+Kc 
Z - KdZ (5.29) 
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Oxygen: 

S = N P - Y  J K P Y K Z 
O +K, 

Ypd "x Kn+N pd pr zd d 

- Y
pd <Y " 

P i 
z " A¥ 

B (5.30) 

Nutrients: 

O N
S = 

O+K 

K 
(5.31) 

Benthos: 

3t 
P ­

K Q +  O 
K b r  B ­

K 

Ko + O 
(5.32) 

where: 
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P = Phytoplankton concentration; 

Z = Zooplankton concentration; 

O = Oxygen concentration ; 

N = Nutrient concentration ; and 

B = Benthos concentration • 

The rest of the symbols are rate coefficients and are defined in the 

list of symbols. 

F. Summary of the Filtered Equations: 

Using the relationships (5.21) and(5*23) for the residual stresses and 

fluxes and dropping over'bars the equations for the filtered field are the 

following: 

Continuity: 

fi • H • & - • 
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x - Momentum: 

3U . » / "\  8
2  * ?  ~ 2 4 ?  ' 2


3 t 3 X \ 4 Y


4 32 A2 32 4 32


3y  l u v + 4 7 "  ̂ <uv> + 4 T 7 ? (UV) + 4 T  ̂  (UV)'


2 A2 2 A2 2


A - r w + 4 T i 7 < u w ) + " ^ ^ (uw) + "^ 

3 ,^ , 8 u 3 u u 3 /Tr , 3 u 3 v


(5.34) 

v - Momentum: 

3t 3x I 4 y a r ' 4Y 

( 
2 2 2


A 2 A 2 A 2


v v + — 1 - ^ - (vv) + — - V (vv) + — ^ - ^ (vv)l 
4Y  3 x 2 4Y 9 y 2 v ; 4Y 3 z 2 v 'J


2 2 2

I A,  o 2 A« a2  Ao  a 2 

3 / 1 3 . . 2 3 . . 3°

3z I 4 Y


3 (K (2*_ + _


3 2 8  Z + ^(5.35)




79 
Hydrostatic Pressure: 

- .	 , (5.36) 
3 z 

Transport; 

Pr	 3c , 3 
3 t 3 x 

3 / ! 3 2 3 
- (cv + T7~Tf (cv) + 7 T " V <cv) 

L2 2 
3	 JL 

3 x ay 

(K + s 
3 z 3 z (5.37) 

where K is given by Equation (5.27). 

G. Non Dimensionalization; 

As in Paul and Lick (1976) the following variables are used to non­

dimensionalize Equations (5.33).through (5.37). 
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u* u * v 

w* • w X  * X 

bo~ 

y* 
bo 

z* 

P* t* 
bo 

3 
"Ho" 

c* c 

where: 

Uo 

ho 

H 

M 

e 

reference velocity; 

horizontal reference length; 

vertical reference length; 

characteristic eddy viscosity; 

reference concentration; 

= Reynolds number; and 
H 

= Froude number. 
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Using the above variables and dropping asterisks, Equations (5.33) through 

(5.37) become: 

Continuity: 

3
3
 u 

x 3  y 
3_w_
3 z 

= (5.38) 

x

3

 ­ Momentum: 

u 
3x Iuu a2

2 
A 2  ­ 2 

iuv
\

 + —— 
 4 Y 

a2  A 2  a2 

JL_. (uv) + —-fc-;,
3X2

 4 Y ay2 
 (uv) + 

(
\
 < 
 4Y 

3P 
3x 

3U.>
3x' '

 + _ 3  _ 
 3 y (K 

3 Z 3 
(5.39) 
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y ­ Momentum; 

_i_
3x

 (uv
\

 + —I 
 4Y ; 

2 4 Y 3 y  Z 4 Y 
(uv)j 

3 y

3z 

\

(
\

 4Y 

* 
 4 Y 

3X 

32 

4 ^ 3 y  2 

A2 32 

4Y 3y2 

a2

3y2

 A3  a 
2

 4
 T  3 z

2

4Y 3Z2 

\ 

7 

•] (5.40) 

Hydrostatic Pressure; 

3 P 
F2 
r 

(5.41) 
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Transport: 

/ A? 2 A^ 2 AS a 2 \Pr 3 1 3 x (cu) + ^ 2 (cu) + ^ J j - (cu) + 
\ 3 x jy 

a2 • 4 a2 \ — i - £  - (cv) + "4 (CV> + 77 ^2 H4 Y Y 3x 3y  * Y 3z / 

3 / A l  a 2 

3T\ ( C ( W (w 
(c 

3x 

A 
(5.42) 

In the momentum equations the terms (__2_) a n  d (——) are b 3y 

dropped because they are small comparing to the terms -?*L and JLL 

respectively 

In the above equations the eddy coefficient, K, is written as: 

K = (CA) 
X 3 y 

( b 0 »y h0 
(5.43) 
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H. Boundary Conditions 

The following boundary conditions are used for the momentum and 

transport equations. 

1) Momentum Equations 

Surface:


Wind dependent stresses, T , T are imposed as:


T - i3L

wx - 3 z z=0


T - 3 V 

wy " Tz* 2=0 

Solid boundaries:


u = 0


v = 0


w = 0


2) Transport Equation 

Boundaries: 

No flux through boundaries is allowed. 

Bottom: 

No diffusive flux is allowed. 



CHAPTER VI 

NUMERICAL SOLUTION 

Equations (5.33) to (5.37) are solved numerically by a new version of 

the time splitting procedure originally developed by Paul and Lick (1973,1976). 

Here the second order corrective terms which result in the equations by the 

filt ering procedure require a fourth order overall spatial accuracy. Therefore 

Paul and Lick's model was rederived to incorporate this high spatial accuracy. 

The solution of equations (5.33) to (5.36) requires that a new equation for the 

pressure, P, be derived from continuity and solved. For increased accuracy, 

this equation is formulated numerically. 

In this chapter the spatial differencing, the time marching procedure 

and the pressure field solution technique are discussed. 

A. Grid Layout 

The staggered grid mesh developed in Los Alamos Laboratories (Welch, 

et al. 1966) was used in this work. According to this the horizontal velocities 

are defined at nodal points, the vertical velocities are defined at half nodal points 

in the vertical and half nodal points in the horizontal except for the surface 

where the vertical velocities are defined at nodal points in the vertical and half 

nodal points in the horizontal. The concentration is defined at half nodal 

85
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points in the horizontal and nodal points in the vertical and the surface 

pressure is defined at half nodal points in the horizontal. The advantage of 

this scheme is that, when written in this fashion, mass and momentum are 

conserved over a cell. Typical horizontal and vertical arrangements are 

shown in Figure 6.1, also typical nodal cells are shown in.Figure 6.2. The 

indices used are k, m, n in x, y, z direction respectively Horizontal and 

vertical planes indicating the numbering of the cells are shown in Figures 

6.3 and 6.4. 

Iri the nutnertcal solution of the equations, variables are sometimes 

needed at points where they are not defined. In this case theĵ  are computed 

as simple averages of the neighboring values. 

B. Spatial Differencing Procedures 

The inertial terms in Equations (5.33) to (5.37) contain terms of the 

form Uj Uj and second order differential Leonard terms of the form 

—IL _ . Uj Uj . As mentioned in Chapter V these terms are very

y axk


important and they always have to be included in the mathematical modeling 

of any turbulent flow- Their presence, however, necessitates the use of a 

high accuracy differencing scheme for the first order differential terms of 

the form —̂L u. u. A conventional second order differencing scheme 
3x. I j 

includes Leonard-like second order terms as its truncation error, and 

therefore it is not sufficient when the Leonard terms are included. Another 
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reason for the use of a high order differencing scheme is the need for resolv­

ing wave numbers up to the Nyquist frequency, ir/A. ir/A is the maximum 

wave number that can be represented in a grid of size, A . (Bloomfield 

1976, p.29). 

A fourth order accurate scheme (Collatz 1961, p. 538, Kwak, et al. 

1975) is used for the first order differential terms. Since the Leonard and 

the residual stress terms are second order differentials they can be approxi­

mated by second order differencing scheme to give fourth order accuracy. 

Therefore, a fourth order accuracy for the first order differentials and a 

second order accuracy for the second order differentials derives fourth 

order overall accuracy. 

The fourth order accurate scheme used here is derived from the 

second order operator applied over one and two mesh spaces as follows: 

iJL = i  " n + 1 "  " n " 1 - 1 ^+2 - "n-2 
3x 3 2AX 3 

or 

. . . ^ 
2 " 8 Hi-1 + 8 "n+1 " "n+2) <( 

The ability of Equation (6.1) to resolve high wave number components is 

presented by Kwak, et al. (1975) and Mansour, et al. (1977). This is as 

follows: suppose u(x) is represented by a discrete Fourier expansion as: 
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u(x) = 
n l 

where; 

n± = - N / 2 , 0 , 1 N / 2 - 1 

N = number of nodal points in x direction and the wave number in 

x direction, kj is given by: 

k i " TfT  n i (6-3> 

Consider now that u(x) is given by a single Fourier component as: 

u(x) = u ^ )  e l k l X (6.4) 

Substituting Equation (6.4) into Equation (6.1), the Fourier transform of 

3u/ax is the following: 

au 1  " 2 i k i AX o -lkiAx ikxAx -2ikiAx . „
- i i i - = — ± — ( e -1 - 8 e l + 8 e x  - e x ) u ( k i ) 
3 x i 2 A x v ' v i ; 

or 

-a i = ik; G(k) (6.5) 
ax i -1 
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where: 

g-£ (8 sin kxAx - sin 2k1Ax). (6,6) 

kf is a modified wave number. 

If a second order differencing scheme is used: 

and the modified wave number is: 

'i = -± Bin (k^ Ax) (6.8) 

The exact Fourier transform of 3u/ 3x is given by: 

(6.9) 

where k is given by Equation (6.3). Comparison of k^ k^and k1^ is shewn 

in Figure 6.5. The improvement of fourth order over the second order 

differencing scheme is obvious• 

Equation (6.1) cannot be used directly in this model because the first 

order terms contain double velocity correlations of the form u. u. . An 

equivalent to Equation (6.1) numerical scheme that is also energy and 

momentum conservative (Kwak, et al. 1975) is used in this work. For a 

typical term 3/3x (uv) this scheme is derived as follows: 
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Fi<mre 6.5 Comparison of Modified Wave Numbers (After Kwak, et a l . , 1975) 
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2 Ax 
3uv 4 auvl 1 ^uv (6.10) 
d X 3 3x I 3 3x 

Ax J2AX 

where ax and ^ u  v I denote central differencing over one and 
oX I 

two mesh spaces. 

3uv is written as: 

guv 1 (uv) " V 
n-H 

3x 2 2 Ax 2AX 2 Ax or 

Ax

( u v )n+l " ( u v ) n - l +  V v n + 1 " vn-l>


(6.11) 
| 

Similarly 3UV is written as: 
ax | 

2 AX

(uv)n+2 " u / * *  2 ;  v»-2 * v > + 2 ­


4 Ax 4 Ax 4AX or 

auv 
8 A7 <uv>n+2 " <uv)n-2 

(6.12) 

Substitution of Equations (6.11) and (6.12) into Equation (6.10) gives: 
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3 uv if 

T T = 3"Sr [<uv>n-KL - < u v ) n - l 

Un(Vn+2"Vn-2> 

(6.13) 

Equation (6.13) is a five-node scheme and cannot be used for the nodal 

points which are located one cell behind or one cell ahead of a wall. For these 

nodes an unsymmetric fourth order scheme is used (Kollatz 1961, p. 538). 

This scheme is as follows: 

Wall 1 cell behind: 

l - 1 O un + 1 8 u n + l " 6 u n + 2 + W (6.14) 

Wall 1 cell ahead: 

1 O u n " 1 8 u n - l + 6 "n-2 " un-3) 

For a typical term s}±L this scheme is written in an equivalent to Equation 
gX 

(6.13) form as follows: 

Wall 1 cell behind: 
dtiV = —=— I - 3 (uv) - 10 (uv) + 18 (uv) - 6 (uv) 
3 x 24 Ax I n-1 n n+1 fn+2 

+ (uv>n+3 + % <"3vn-l - 1Ovn + 1 8 vn+l ~ 6 vn+2 +vn+3> 

+ vn ( " 3 u n - l - 1Oun + 1 8 un+l " 6un+2 + "n+3) (6­
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Wall 1 cell ahead: 

-~- = — 7 - I 3 (uv) , , + x  - 18 (uv) , + 6(uv)v 10 (uv)  x  „
3x 24 Ax * 'n+1  'n  7i-l  'n-2 

+ 6 v n-2 

+  v 1Ou  1 8 un <3un+l + n " n - l + 6 u n - 2 " V-3) 

Equations (6* 16) and (6,17) cannot be applied for nodes lying on the 

boundaries because they extend one node beyond the boundary. This does not 

create a problem in the horizontal direction and also in the bottom boundary 

of the vertical direction since velocities are zero on the solid boundaries. 

Therefore, the solution domain extends only to one node before a solid 

boundary. However, in the surface where the terms - l - (wu) and ,? (wv) 

need to be evaluated (6.16) caanot be applied. Instead a second order 

unsymmetric scheme is used (Kollatz 1961, p 538). For one variable, w, 

this is written as: 

Boundary behind: 

if 

Boundary ahead: 

If " TirPw
k "  4Vi + "W <6 1 9> 
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An equivalent to Equation (6.16) scheme is written as: 

Surface boundary: 

3z 4Ah" 14(wu)i - (wu)k+2 

uk(4wk+l~wk+2) (6.20) 

where w
surface is set to zero because of the rigid lid assumption. For the


Leonard term the second order central differencing scheme (6.3) is used.


A typical Leonard term is written as:


2
3 uv 2 

3 uv 9 uv 
4 Y 3x 4Y 

3x 2 
n+1 n-lJ 

where is written as; 
3x 

-32- + u + V (6.21) 
3X 

The familiar second order scheme is used for the last two terms in (6.21), 

2 

" 2 v (6.22) 
ax ax n 

When the term (6.21) needs to be evaluated on the wall unsymmetric second 

order differencing schemes are used (Kollatz 1961, p. 538). 
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Wall behind: 

17 ~ ¥ " Vn+2 (6.23) 

H 2 <2vn " 5 v n + l + 4 v n + 2 
(6.24) 

3x Ax 

Wall ahead: 

- ^ - = - i — (3v - 4v n-1- + 4v 4v n-
(6.25) 

3x 2 Ax 

5 v n- l " 4vn-2 
vn-3> (6.26) 

3 x Ax 

For the residual field terms (6.3) and (6.22) are used. A typical term is 

written as; 

V — V U ~ U \ 
,n-l +  m-l,n\ 

2Ax 2Ax 2Ay j 
m,n-t-l m,n- m+l.n

Ax Ax 2Ay 

2 Ay 

Km.n+l"Km.n- / v 
n+1

—V
 m,n-l

 U
 nn-l.n

 —U
 m-l.ni 

 \ 

2Ax 2 Ax 2Ay y 
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vm,n+l "2 vm.n + vm,n-l 
A x Ax 

,  um+l,n+l ~um-l,n-H~  u m+l ,n- l* 
A A 

4 Ay 

As mentioned in the Grid Layout section, the concentration is defined 

at half nodal points in the horizontal and nodal points in the vertical. This 

necessitates a special treatment of the boundary points and also of the points 

which are one node away from a boundary. The latter will be considered first. 

The fourth order accurate symmetric differencing scheme (6.13) extends 

two nodes in each direction beyond the point where a term needs to be evaluated. 

Therefore, it cannot be used to evaluate the term ^ (ujc)in the first node 

away from the boundary node. For these nodes the unsymmetric fourth order 

schemes (6.16), (6.17) are used. Because of the special arrangement of the 

concentration nodes the solution domain extends over all the nodal points. (In 

contrast the momentum equations solution domain starts from the second node 

and ends at the node before the last one in each horizontal direction). Therefore, 

in order to incorporate the correct boundary conditions it is better to look upon 

fluxes at the boundary points instead of considering strict mathematical 

approximation of each term. Consider, for example, the flux in x-direction: 

2 2 2 
4 i 2  69 2 Lt a2 

|£ i £ £ -JLcu • - j | JL. cu) (6.28) 
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In the first nodal point the following equation is considered: 

3F 
Ax	 *m+^,n+l *nw-i,n 

A2 2 

AX KJ " ((cu) 
2 

dX 

nl 4 y it I 

(6.29) 

Similar Equations apply to all the boundaries. The equations used are summariz­

ed as in Table 6.1. 

C.	 Time Marching Procedure


A first order accurate time marching scheme is used:


u	 (6.30) 
at 

Even though Equation (6.30) is not compatible with the 4th order overall spatial 

accuracy, it is used because of its stability especially in long time computations. 

In shallow water basins the size of the time step is very much limited by the 

small vertical scale. To overcome this problem an implicit vertical diffusion 

scheme is used in this work. According to this scheme Equations (5.35) to 

(5.36) are formulated and solved as follows; 
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Table 6.1 Equations Used in the Numerical Model 

Term Interior Surface Node before boundary node 
the boundary 

node 
6.13 6.16,6.17 velocity^ 

1=1,2 -3=1,2 

6.13 6.16,6.17 6.29


j =1,2


6.13 6.20 6.17 velocity=0 

i=l,2 - j =3 

cu. 6.13 6.29 6.16,6.17 6.29


j  =3


Leonard terms 6.3	 6.23,6.24 
6.25,6.26 

Residual field 6.3,6.22 6.3,6.22 
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IT- " (6.32) 

P s is the surface pressure and G(u) and F(v) contain the rest of the terms for 

the x-momentum and y-momentum equations respectively. When discretized 

the left hand sides of (6.31) and (6,32) are solved implicitly for new values at 

time L+l while the right hand side are formulated from information at time L* 

The formulation of (6.31) and (6.32) requires that: 

(1) the horizontal velocities be split into two components, the first to be solved 

implicitly and the second explicitly; and (2) consistent with number 1, an 

equation for pressure be formulated from (6.31) and (6.32). The velocity split 

and the pressure equation formulation are presented in the next section. 

D. Pressure Field Solution Technique 

The solution of Equations (5.33) to (5.36) requires one more equation 

for the pressure, P. Because of the shallow water assumption and the result­

ing hydrostatic pressure relation, this pressure equation must be based on 

vertically averaged velocities. The normal procedure, as described in Liggett 

(1970), is to vertically average Equations (5.34) and (5.35) and to differentiate 

the resulting two equations with respect to x and y respectively. These two 

resulting equations are added together and the result is required to satisfy the 

vertically integrated continuity equation. The resulting equation is a Poisson 
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type pressure equation. In this work the same procedure is used in the splitting 

procedure but for higher accuracy, instead of using (5.34) and (5.35), the finite 

differenced form of them is used. The divergence is obtained numerically and 

the final equation is in finite difference form instead of differential form. 

This concept was first used in lake models by Dr. J. F. Paul at the EPA Great 

Lakes Research Laboratory, Grosse He, Michigan and is extended to the 

fourth order problem herein as follows: 

Equations (6.31) and (6.32) are written with vertical diffusion solved 

implicitly in time as: 

Surface; 

L+l L L+l L+l 
u L+l


At <ir>2 — Kk+1/2 
k+1 

Az


(6.33) 

and 

L+l L+l

V - V L+l


At ho A z 
Kk+l/2 k+1 k


Az


* 
(6.34) 

where; 
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L+l 3U 
L+l L+l _ 3v 

L+l 
, and 

wx 2=0 \vy 3z z=0 

L indicates the time step. 

For the Interior: 

k K , ruL + 1L+1 - uL
Kk+l/2 <uk+l \At 

- Kk_i/2 (6.35) 

and 

L+l L 
v k  v k L+l - Kk+l/2 (vk+l 

At Az 

= F
L
 (v( )) - <6.36) 

Equations (6.33) to (6.36) are rewritten at the surface as: 

L+l, 
po 2 2 U1 k+1 

VAT ho' J~£ L+l L + l I 
v k A z rk+l 

°kCu) 1 
Uk

L 
g
L+l 3P s /3x 

Fhv, At 
q
L+l 

3Ps/ay 
(6.37) 
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where; 

L+l 2 L+l 
* K,,  T _ , and 

K L + 1 

h 
Kk TT w x 

o 

For the Interior (1 < k < KLM): 

L+l 
uk-1 

o A z 
L+l (*••• ho 

(K
k+1/2 

,L+1
*k 

+ K, ; and
L+l 

•feffl Gk
L 

(u) 

r T 
F k

L
 < v ) 
 ! A t 

o &z 

3  P s / 8x 
(6.38) 

where: KLM indicates the node before the last one. 
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For k = KLM: 

L + 1 u 

ho n ' 
Kk-l /2 

v
Vi 

L +  1 (AT (Kk+l/2 
k-1 

\ L + 1 

>) L+l 

uk s (6.39) 
L 

Equations (6.37) to (6.39) are written as: 

A uL+l G + U - s (6.40) 

L+l A v F + V - (6.41) 
ay 

where A is a tridiagonal array, (*, Û , F_, V_ are vectors and I is a unit 

vector. Since the equations for u^+ 1 and v ĵ+1 are linear, u^*+1 and 

L + are written as: 
k 

L+l 
u (6.42) 

v 
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+ v£ ; (6.43) 

Such that: 

G_ + U ; (6.44) 

(6.45) 

F_ + V. ; and (6.46) 

A v " = -Hi 1

k 3x "


P P 
The solution for u, and v£ is obtained as: 

;  ( 6*4 8 ) ^

rr ; <6-49> 

where \ satisfies 

A 2 = 1 • (6.50) 

To obtain the equation for the pressure, Equations (6,40) and (6.41) are 
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integrated over the vertical coordinate using the following summation scheme 

KLM 

where B. is (6.40) or (6.41) and 

A z/2 : k = 1 

Az : K k < K L M . 

After cancelling the terms of opposite sign, the following equations are 

obtained: 

Vk £ 
K 

(6.52) 

(6.53) 

where : 

S = Lz * (KLM - 1/2) , and 

b ° ' 2 1 K 
— KKLM+l/2 

The numerical divergence of Equations (6.52) and (6.53) is now obtained 

considering that Equations (6.52) and (6.53) are evaluated at points (m,n) 
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while the pressure is evaluated at points (m+l/2, n+l/2). The resulting two 

equations are added together as follows: 

<6-52)m+l,n+l + (6.52)m>n.n - ( 6 . 5 2 ) m + l n - (6.52)m>n 

Ax 

(6.53)m+i>n.n + (6.53)m+1)I1 - (6.53)m<n.i.1 - ( 6 . 5 3 ) m n 

Considering now the summed continuity equation: 

uk,m,n+l " uktm,n + uk,m+l,n+l 
Wki,m+l/2,n+l/2 2-> \ 

uk,m+l, n 

2Ax 

k,m+l,n "  vm,m,n vk,m+l,n+l 

2Ay 

Vk,m,n+1 

2 Ay 

(6.54) 

and using Equations (6.42), (6.43),(6.48) and (6.49) the following equation is 

obtained for the pressure: 



I l l 

2 Q s 
T wki,m+l/2,n+l/2 KLM' 3x 

3 P 
s 

m,n+l m+l,n 

3 P 
(S - R > )
1 Ax 

KLM; 3 x m,n 

3 p^ 3 P 
s


KKLM* 3  y 
m + 1 > n m,n+l


KLM; 3y A y 
(6.55) 

m,n 

In deriving (6.55) the corrective procedure of Hirt and Harlow (1967) has been 

used for the term _L_ (w (z=0)). According to this procedure this term is 

written as a simple backward time difference with the present time level set to 

zero. This is necessitated by the fact that some non zero value for the vertical 

velocity is computed at the surface. This contradicts the rigid lid assumption 

and has to be accounted for in order to prevent it from growing in time. 

Equation (6.55) gives the pressure field in the interior. Near boundaries 

the appropriate 3p /3x or 3Pg/3y are replaced by the appropriate 



112 
summed equation for up or  v P Therefore, the momentum equations are 

used to derive boundary conditions for the pressure equation. The summed 
T> 

equation for u is written as: 

= A
" k 

Y 

p 
while the summed equation for v is written as: 

p	 - * T » VvL+1 

At	 " ^ k

(6.57) 

Thus whenever near a wall, (6.56) or (6.57) evaluated along the wall is 

substituted in (6.55). 

E. Computational Sequence 

1.	 It is assumed that initial conditions are known* 

2.	 Concentrations are computed by solving Equation (5.37) by 

implicit vertical diffusion scheme. 

3* The convective and horizontal viscous terms are calculated. 

4.	 The u^ and v^ velocities (Equations (6.44) and (6.46)) are 

calculated at each nodal point. 
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5. The pressure field is solved (Equation (6.55)). 

6. The u, and vP velocities (Equations (6.45) and (6.47)) are 

computed and hence the horizontal velocities ur and  v L +  1 

(Equations (6.42) and (6.43)). 

7. The vertical velocities are calculated by vertically integrating 

the continuity equation, 

8. The present step is complete. 



CHAPTER VII 

MODEL IMPLEMENTATION 

As mentioned in the introduction, existing lake transport models 

generally fail to predict the correct velocity field (Allender, 1976). The basic 

reason for this is that these models are structured poorly i . e .  , they employ 

poor averaging procedures and use poor eddy viscosity representations. In 

addition faulty verification procedures are used by attempting to predict point 

to point field data and neglecting the overall stochastic character of the turbu­

lent flow field. In this report the main objective is to develop a mathematical 

model which, by using relatively coarse grids, is able to predict the correct 

energy cascade process on the turbulent flow field. In this way more confidence 

can be placed in the computed values of the averaged quantities. The equations 

for this model and their numerical representation have been presented in 

Chapters V and VI. In the remainder of this thesis the application of this 

model will be demonstrated and the suggested formulations justified. 

There are basically six problems which were investigated. The effect 

on the cascade process of the following four processes was investigated: 

(a) basin size; (b) wind shear; (c) time step; and (d) non-filteration of the 

equations The two additional problems are the effect of the proper turbulent 
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field on the transport of: a) a passive contaminant; and b) a biochemically 

active contaminant. To address these problems the following input para­

meters, as defined in Chapter V, Section F are required: horizontal reference 

length, bo; vertical reference length, ho; reference velocity, uQ; characteristic 

eddy viscosity, AR; and the reference concentration,  cM. Also the Reynolds 

number, Re; the Froude number, Fr; and the Prandtl number, Pr; have to be 

calculated. After these parameters are defined the following quantities will 

have to be specified: grid sizes (Ax, Ay, Az); filter lengths (A , A A ); the 
X & O 

value of the filter constants ; the residual field coefficient, c; the size of the 

time step, At; and the surface wind shear. 

In the remainder of this chapter four sections are presented which 

describe the model input and output procedures: (a) basin selection and input 

parameters; (b) surface wind shear specification; (c) the statistical pre­

paration of the results; and (d) a summary of the computer runs. 

A. Basin Selection and Input Parameters 

Three basins are used to examine and verify the developed model, all 

are rectangular and without any sharp boundaries. The reason for the selec­

tion of these simple basins is that more research is required for the correct 

representation of irregular solid boundaries. Therefore for this stage simple 

basins were chosen. It is desired for the grid cells to be included in the 

inertial subrange so that the eddy viscosities can be computed as in Chapter V, 

Section D. As the field data show (Chapter in, Section A.7) scales of 100 m 
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were found in the inertial subrange- Therefore, it was decided to limit the 

horizontal grid size around 100 m. Table 7.1 shows the dimensions and the 

input parameters of the three basins. 

Table 7 1 Basins and Input Parameters 

BASIN 1


Length = 1700 m, Width = 900 m, Depth = 16 m


b 0 = 1700 m, ho = 16 m,  u o = 0.1 m/sec . 

AH = 0,1  m 2 /sec , Re = 1700, Fr = 799* 10"5 

Dx = 100 m, Dy = 100 m, Dz = 2 m 

BASIN 2 

Length = 1360 m, Width = 900 m, Depth = 16 m 

b o = 1360 m, ho = 16 m, u0 == 0.1 m/sec 

AJJ = 0.1 mVsec, Re = 1700, 

Dx = 80 m, Dy = 80 m, Dz = 2 m 

BASIN 3 

Length = 2040 m, Width = 1080, Depth = 16 m 

b0 = 2040 m, hQ = 16 mf  uo == 0 .1 m/sec 

A = 0.1  m 2 / sec , Re = 2040, Fr = 799*10~5 

xl 

Dx = 120 m, Dy == 120 m, Dz = 2m 
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The transport equation was solved by assuming uniform initial conditions 

of the contaminants throughout the basin. The quantity CM in this equation 

takes the following values depending on the species it represents (phytoplankton, 

zooplankton, oxygen and nutrients) (Smarkel, 1978)* 

Phytoplankton: CM = 1 gr/m3 

Zooplankton: C^ = 0.4 gr/m 

Oxygen: C^ = 13.1 gr/m3 

Nutrients: Cj^ = 0.013gr/rn 

The values of the filter lengths, A ,̂ A 2 , Ag » are specified in Chapter 

IV, Section D as: 

A1 = 2Ax ,  A2 = 2Ay , Ag = 2AZ. 

The value of the coefficient, Y, is specified by Kwak, et al. , (1975) as y = 6 

It was found that a time step greater than 2 minutes causes a numerical 

instability in the model predictions, therefore DT = 2 minutes was chosen for 

most of the runs (Table 7.2). 

B. Surface Wind Shear Specification 

To check the ability of the mathematical model to predict the correct 

energy cascade process,, turbulence has to be generated in the flow field, 

Kwak, et al. (1975), Shaanan, et ah (1975), Mansour, e ta l . (1977) and 

Ferziger, et al. (1977) mathematically created a spectrally correct initial 

field and studied how the mathematical model predicted its decay in time. In 

this report it is desired to check if the model is able not only to maintain but 
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to predict the correct cascade process. Therefore, the initial field is set to 

zero and the turbulence is transferred through the surface boundary by a wind 

shear. It is recognised that solid boundaries are of equal importance in 

introducing turbulence into the flow field. However, the correct treatment of 

rough boundaries is out of the scope of this thesis. It was assumed that the 

wind field over the lake has a fully developed three-dimensional character. 

Therefore, according to Kolmogorovfs theory its power spectrum should have 

a slope of -5/3. It was also assumed that the power spectrum of the wind 

shear will present the same -5/3 slope as the wind spectrum. This generated 

the need of creating a wind shear field whose power spectrum would decay as 

-5/3. It was found that under certain conditions a 1-Lag Markov model can be 

formulated which satisfies the -5/3 slope. Therefore, the wind shear is 

assumed to have the following form: 

where 

=  p l Ti-1 + *i aV(l-Pi> and (7.1) 

T. = wind shear at time level i;


T = mean wind shear;


P = 1 - lag correlation coefficient;


a
2 = variance of T». and


is a rahdom variable given by: 
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c o  s (27TK2) . (7.2) 

In Equation (7,2) 

R3 = - 2 1og(R1) (7.3) 

and Rj, Rg are random numbers. Experimentation showed that when Rj =0*5 

and a 2 = 1 the power spectrum of T ! would have a -5/3 slope. This is shown 

in Figure 7.1 where 140 values were generated using a time step of 2 minutes. 

The power spectral density is computed as described in the next section using 

70 lags. 

It was decided to avoid highly complicated nonhomogeneous turbulence, 

therefore Equation 7 1 was applied at all surface nodal points independently at 

each direction. In this way a homogeneous field was generated at the surface. 

Additionally, it is understood that it is not possible for homogeneous conditions 

to exist in a closed basin, expecially near the boundaries. This was resolved 

as it is in the field by selecting the sites for data aquisition at the center of the 

basin and assuming local isotropy. However, it should be mentioned that even 

at the center of the basin homogeneity is a rather big assumption. It is used 

only because of its relative simplicity, and its analogous use in the acquisition 

of data to be used for comparison purposes. 

C. Statistical Preparation of the Results 

The model was run for about 120 to 140 time steps (Table 7.2) after the 

value of the mean velocity reached a more or less steady state. Time traces 

of the velocities and concentrations at the center of the basin and at several 
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different depth levels were stored. These traces were detrended and the 

power spectral density was computed by using the subroutine BMD02T of the 

BMD computed package (DLxon, 1974). This subroutine was modified to compute 

the Fourier transform of the autocorrelation instead of the Fourier transform 

of the autocovariance as it was originally written. The number of lags used 

for the computation of the autocorrelation coefficient was one half or smaller 

of the number of points in each trace. (Table 7.2)# It was considered that this 

would give a correct value of the autocorrelation coefficient even for large 

lag times. The computed time spectra were converted to wave number spectra 

by using Taylor's frozen turbulence hypothesis which is permitted since 

u!/u. << 1. Using this technique three one-dimensional wave number spectra 

were computed at each of the observed nodal points. The three-dimensional 

wave number spectra were computed as in Tennekes and Lumley (1972, p. 250) 

by adding the three one-dimensional energy spectra. In order to smooth the 

spectrum the power spectral density at wave number, k, was integrated over 

the points between the cells of radius (k + 2 kj) and (k - 2 kj), where k^ is 

the wave number in x-direction. The concentration spectra were similarly 

computed. 

D. Summary of Runs 

All the computer runs made are summarized in Table 7.2 where the 

following information is included: 
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Column 1. Number of computer run 

Column 2, Column 3. Indicate if filtered or unfiltered model is used. 

Column 4, Column 5. Indicates if this run is a circulation or transport run. 

Column 6, Number of Basin as in Table 7.1 

Column 7. Size of time step 
Column 8, Column 9, Column 10. Indicate the mean shear stress applied 

in x and y direction and the corresponding wind speed. 

Column 11, Column 12, Column 13. Indicate if the transport run is for a 
passive contaminant or for the complete biological model 
and the Prandtl number (Pr) used. 

Column 14. Indicates how many steps were used for the computation of 
the spectra. 

Column 15. Indicates the number of the lags used for the computation 

of the spectra. 

It must be also noted that in Run 7 the wind field was set to zero after 

the 25 time step. Before this step the wind field of Run 1 was used. Also in 

Run 12 the deterministic part in Equation (7.1) was set to zero. 



Table 7.2 Summary of Computer Runa 

l a g s ft a H ! a a l_ ^6 ^6 a g> a

I X X 1 120 4 4 6.1 120 50 

2 X X 2 45 4 4 6.1 120 60 

3 X X 3 120 4 4 6.1 140 60 

4 X 1 120 4 4 6.1 120 50 

5 X X 1 90 11 11 10.1 150 75 

6 X X 1 30 4 4 6.1 480 190 

7 X X 1 120 0 0 0 40 25 

8 X X 1 120 4 4 6.1 X 1.0 120 50 

9 X X 1 120 4 4 6.1 X 1.5 120 50 

10 X X 1 120 4 4 6.1 X 2.0 120 50 

11 X X 1 120 4 4 6.1 X • 1.0 120 50 

12 X  X . I 90 4 4 6.1 140 70 



CHAPTER VIE 

RESULTS 

In the previous chapter the basins, the input information, and the 

method of spectra computation were presented. In this chapter the results 

obtained will be shown. The chapter is divided into 5 parts. First, the opti­

mization of the residual field coefficient c is presented. Second, computational 

performance details of the model are presented. The third and fourth parts 

display results for the averaged quantities and also the computed velocity and 

concentration spectra. Finally preliminary observations of the results are 

presented. 

A, Optimization of the Residual Field Coefficient, c 

The residual field model (5.26) requires that the coefficient, c, be 

determined. This coefficient controls the size of the eddy viscosity, K and 

through that the size of the residual stresses. As mentioned in Chapter V, 

Section C, the tesitiual stresses in addition to the Leonard Stresses control 

the energy cascade process. Even though the residual stresses play a 

secondary role in this process their size (through the coefficient, c) has to 

be determined carefully. Large values for the coefficient, c, will overestimate 
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the role of the residual stresses while small values will underestimate them. 

In either case the subgrid scale continuous cascade features are destroyed. 

One method of determining the value of the coefficient, c, is that 

followed by Kwak, et al. , (1975). According to this method the value of c is 

decided by the slope of the energy decay curve. However, the slope of this 

curve is the primary way of deciding on the worth of our circulation model. 

Therefore, it was decided to compute the size of the coefficient, c, independent­

ly of the slope of the cascade process. 

The method of Spraggs and Street (1975) was used for the determination 

of c. According to this method the coefficient is determined once and this 

value is used in all subsequent computer runs without any new adjustment. 

Accordingly the circulation model was run in Basin 1 for a sufficient number 

of time steps and the maximum eddy viscosity was plotted as a function of time 

step. The results are shown in Figure 8.1. It was found that the value c=0.001 

was very smalL The maximum eddy viscosity kept increasing until the 49th 

time step when the solution turned unstable and the program was interrupted. 

On the other hand the value of c=0.05 was very large because the solution turns 

unstable at the 5th time step. The results for c=0.01, c=0,008 and c=0.005 

are shown in Figure 8.1, The values of c=0.01 and c=0.008 were considered 

large because of the erratic initial behavior of the corresponding curves. The 

value of c=0.005 was chosen because of the smooth transition of the maximum 

eddy viscosity coefficient to a relativelly stable value. This value was used in 

all the computer runs made. The obtained results follow. 
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B. Program Performance Results 

All the computer runs were made on the IBM 360/178 computer of The 

Ohio State University. It must be noted that in this computer the specified 

storage does not affect the cost of the program. The cost depends directly on 

the execution time which is a function of the number of computations. There­

fore, not too much care was taken to reduce the storage of the programs. The 

computational details are summarized below for a 9x10x18 grid* 

Storage 

Circulation Program: 760 K 

Transport Program: 720 K 

CPU Time Per Computational Step (approximately) 

Circulation: 1.7 sec. 

Transport (passive contaminant, one equation): 1.5 s e  c 

Transport (complete biological model, four equations): 5.4 sec. 

The total real time of calculations varied from approximatelly 2 to 5 hours_ 

C, Predicted Results-Averaged Quantities 

In this section typical results for the averaged quantities are presented. 

They consist of the output of Run 1 (Table 7. ^. Figures 8.2, 8.3, 8.4, 8.5 

and 8. 6 show typical velocity fields for five different layers at the 80th time 

step. U and V vertical profiles are shown in Figures 8.7 and 8.8. Also the 

vertical velocities at an zy plane at the center of Basin 1 are presented in 

Figure 8.9. All these results are indicative of the circulation pattern in the 

lake as depicted by Liggett (1970) and Lick (1976). 



128 

VELOCITY FIELD flT DEPTH=0.000 
FILTERED, TIME STEP=80 

SCRLE: 

HIND 100 M 30 CM/SEC 

Figure 8.2 
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Figure 8.4
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T Scale: 20cm/sec 

Figure 8.9 Vertical Velocities at Basin Center for Basin 1, Run 1 
and Time Step=45 
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D. Predicted Results - Turbulence Spectra 

In this section the velocity spectra, the passive contaminant spectra, 

and the biochemically active contaminant spectra are presented. In the next 

section preliminary interpretation of the results will be made. The discussion 

of the results will follow this chapter 

1) Velocity Spectra 

a) Spectra at Different Depths 

Here the spectra obtained from Run 1 are presented. The 

objective of this run is to examine the energy spectra and its variation 

with depth. They are shown in Figures 8.10, 8,11 and 8.12. 

b) Spectra with Different Basins 

The results from Runs 2 and 3 are presented in Figures 8.13 

through 8.18 and display the spectrum from basins of different size. 

c) Spectra with Different Shears 

Here the results of Runs 5 and 7 are presented. The objectives 

of these runs were: (1) to see how a high shear affects the velocity 

spectra, and (2) to examine how a die-away wind field affects the 

spectra. Figures 8.19 through 8.24 detail these results. 

d) Spectra with Different Time Step 

The spectra obtained from Run 6 are shown in Figures 8.25 

through 8.27. The objective of this run was to determine the influence 

of time step size on the velocity spectra. 
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Figure 8.21 Energy Spectrum; Depth=0.5; Run 5 
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Figure 8.25 Energy Spectrum; Depth=0.125; Run 6 
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e) Spectra with no Deterministic Structure in the Surface 

Boundary Condition 

The results of Run 12, where the deterministic part of Equa­

tion (7.1) was set to zero, are presented in Figures 8.28, 8.29 and 

8.30. The objective of this run v/as to examine how the velocity spectra 

are influenced by a wind shear whose spectral density curve does not 

decay as -5/3 (Figure 7 1). 

f) Spectra with no Filtration 

The objective of this run was to see if just the fourth order 

differencing scheme was responsible for the improved prediction. 

Filters were made inoperable by setting the filter .lengths to zero 

resulting in a model similar to Bedford and Shah's (1977) but in fourth 

order differences. The results of this run are shown in Figures 8.31 

and 8.32. 

2) Passive Containment Spectra 

a) Spectra at Different Depths 

The concentration spectra of Run 8 are presented in Figures 

S.33 through 8.35. 

b)	 Spectra with Different Prandtl Number 

The spectra of Runs 9 and 10 are shown in Figures 8.36 through 

8.41. With the results of Run 8 they demonstrate the effect of Prandtl 

number on the computed spectra. 
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3) Biochemically Active Contaminant Spectra 

The concentration Spectra of the complete biological model are shown 

in Figures 8.42, 8.43 and 8.44. 

E.	 Preliminary Observations of the Results 

1)	 Velocity Spectra 

The following are observed in Figures 8.10 through 8.32. 

i  . Common characteristic of all circulation runs except Run 4 

(no filtration) and Run 7 (no wind) is the -3 slope of the spectrum. 

**• The maximum length scales where the -3 slope is observed 

vary from run to run and they also depend on the depth where the spectra 

are obtained. These scales are summarized in Table 8.1. It can be 

seen that there is a general decrease of the maximum scale with depth, 

i i i  . There is generally an increase in the size of scales where a -3 

slope exists when going from smaller to larger Reynolds number 

(smaller to larger basin). This is shown in Figure 8.10 through 8.18 

and also in Table 8.1. 

iv. There is a shift of the spectral density curve to the smaller 

wave numbers going from a weak to a strong wind. This is shown from 

comparison of Figures 8,19 through 8.21 (Run 5) with Figures 8.10 

through 8.12 (Run 1) and also Table 8.1. 

v. Comparison of the same runs as in 4 indicate that there is an 

upward movement of the curves to higher levels of energy going from a 

weak to a strong wind. 
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Table 8.1 Maximum Length Scales (m) where a -3 Slope is Observed. Concentration Runs 
Include also the Maximum Scale whore the Tail End Changes Slope. 

•8 Run #1 Run #2 Run #3 Run #5 Run #6 Run #7 Run #8 Run #10 Run #11 
g Tail Tail Tail Tail 

2 120 52 126 419 63 120 57 120 57 120 57 120 57 

3 63 31 63 179 31 63 30 63 30 63 30 63 30 

5 37 21 52 125 18 37 25 37 21 37 21 37 21 
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vi . Figures 8.22 — 8.24 demonstrate that when the wind field dies 

away the slope of the spectral density curve approaches -5/3. 

v i i  . There is no effect on the slope of the spectra when a small time 

step is used (Run 6f Figures 8.25 — 8.27, Table 8.1). However, a 

comparison of Run 6 with Run 1 (mild wind) shows that the -3 slope 

starts at a smaller scale in Run 6 than in Run 1. 

v i i i  .	 Figures 8.28 to 8.30 show that it is not required for the wind 

shear spectral density curve to have the form shown in Figure 7.1, in 

order for the velocity spectra to show a -3 slope. No matter what the 

form of the energy input is the flow field adjusts itself to a two-dimen­

sional character. 

ix. Figures 8.31 and 8.32 indicate that when an unfiltered model is 

used the cascade process is not represented correctly. At a length 

scale of about twice the grid size the energy drain to smaller scales 

becomes erratic and incomplete. 

2) Concentration Spectra 

i . Comparison of Figures 8.10 — • 8.12 (Run 1) with Figures 8*33 

to 8.44 (concentration spectra) and also Table 8.1 indicate that there 

is a range of scales where both the velocity and concentration spectra 

follow more or less the same -3 slope. 

i i  . All the concentration spectra separate from the corresponding 

velocity spectra at small length scales (Table 8.1) showing a very 

characteristic end tail. 
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i i i  . Comparison of runs with different Prandtl numbers indicate 

that this end tail is more well defined at larger Prandtl numbers, 

iv. Comparison of Figures 8.42 to 8.44 (Biologically active 

contaminant) with Figures 8.33 to 8.35 (passive contaminant) indicate 

that there is no significant difference at the shape of the corresponding 

spectra. 

v. Comparison of the same runs as in 4 indicate that the variance 

in the second and third nodes is lower for the phytoplankton than for the 

passive contaminant. 

The interpretation of these observations and the discussion of the 

results are presented in the next chapter. 



CHAPTER IX


INTERPRETATION AND DISCUSSION


In the previous chapter some preliminary observations were made about


the results. This chapter is devoted to interpreting and discussing


these results and is therefore divided into two parts„ In the first part


interpretations will be made and supported by available field data. In


the second part some of the more characteristic featrues of the model


will be discussed. Also an answer to a problem called "paradox of


plankton" which is often encountered in limnology will be suggested.


A. Interpretation


One of the first observations from the circulation runs (except the


ones with no wind and filtration) is that there is a range of scales


where the spectrum follows a -3 slope. As in Chapter III* Section A.8 this


is a characteristic of 2-D turbulence or non-equilibrium flows. Mathe­


matically, two-dimensionality can be expected in all of the basins where


the nodel was tested since in all of them the ratio of the vertical


to horizontal length is very small. Two-dimensionality is observed in


shallow regions of lakes and also in atmospheric turbulence. Typical


lake two-dimensional turbulence is shown in Figure 9.1 as reproduced
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from Palmer (1973). It indicates the energy spectrum at 5.3 m below the 

surface in 9 m of water. Figure 9.2 is indicative of large scale atmospheric 

kinetic energy spectral distribution. In both of these figures the range of 

scales with the -3 slope is very characteristic. 

It was observed that the maximum length scales where a -3 slope exists 

varies according to the depth where the spectrum is obtained and also according 

to the size of the basin. There is generally a size decrease with depth of the 

scales where a -3 slope is observed and also a decrease of the scales going 

from a large to a small basin. They are both expected. The decay of the 

mean velocity with depth involves turbulent components of smaller scales. 

These in turn result in a shift of the enstrophy subrange to the smaller scales. 

On the other hand larger basins involve larger eddies. Therefore, the scales 

where a -3 slope is observed are generally larger in the large basins. 

It was observed that a strong wind has two effects on the spectral 

density curves. The first is that there is a shift of the curves to larger length 

scales and secondly an upward movement to higher levels of energy. The shift 

of the curves to larger length scales has been observed by Lemmin, et al.9 

(1974). Figure 9.3 details five spectra for a period of time during which the 

wind was blowing for the first three spectra and then not for the last two. 

The movement of the curves to the larger scales during increasing wind is 

characteristic and supports the results obtained in the thesis. 

Lemmin also observed another interesting phenomenon in the same 

paper. Figure 9.4 indicates a sequence of four curves obtained during a 
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diminishing wind field. It is seen that a -3 slope turns to a -5/3 (two-dimen­

sionality to three-dimensionality) at the end of the wind shearing process. 

This phenomenon as determined in the calculation is observed in Figures 8.22 

through 8.24. This interpretation is compromised by the structure of the model 

and the statistical procedure used to obtain the spectra. Only 40 values were 

used for the computation of the spectra. In the rest of the runs at least 120 

values were used. The low number of data points was required because of the 

rapid instantaneous response of the model to the change in boundary condition. 

It is apparent that the resulting transition to the -5/3 slope was very fast 

(80 minutes only). This can be explained by the rigid lid assumption which is 

used in this model. According to this assumption any surface boundary con­

dition change is transmitted instantaneously to the whole flow field. This is 

discussed further in the next section. 

The results of Run 12 suggest that the spectral density of the wind 

shear does not have to follow a -5/3 slope in order for the model to predict a -3 

velocity field. The velocity spectra obtained are independent of the shape of the 

surface boundary condition. In any surface disturbance the basin, as it should, 

adjusts itself to a two-dimensional flow field. This should become an item of 

further study It was observed that when an unfiltered model (Figure 8.31, 

8.32) was used the cascade process had an erratic character. Comparison 

with the filtered model indicates that the energy does not drain smoothly to the 

smaller scales. Actually it accumulates at the large scales until a point where 

the spectral density curve abruptly drops to small levels of energy. This is 
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a deficiency of the unfiltered model which mates questionable the whole trans­

port process predicted by it. It should be mentioned here that to date all exist­

ing transport models are unfiltered models* The results obtained here indicate 

that these models need to be revised. 

There are many field data indicating that concentration spectra are 

similar to velocity spectra. Figures 9.5 and 9.6 borrowed from Leigh-Abbott 

and Coil (1978) are indicative of typical chlorophyll spectra in Lake Tahoe. 

Figure 9,7 indicates the temperature and chlorophyll a spectra in North 

Atlantic taken by Fasham and Pugh (1976), Figure 9.8 is borrowed by Powell, 

et aL (1975) and it shows the chlorophyll and the current spectrum in Lake 

Tahoe. According to the authors there is a range of scales where turbulence 

directly governs the distribution of organisms. For length scales of about 100m 

or larger the diverging shape of the two spectra indicates that biological proces­

ses are the dominant factor contributing to the observed chlorophyll variance. 

Finally Figure 9.9 is a theoretical chlorophyll spectrum obtained by Denman, 

et ah (1977). It indicates that for wave numbers greater than k^ (wave number 

depending on the dissipation rate and phytoplankton grouth rate) the chlorophyll 

spectrum follows the velocity spectrum. Figures 8.10 through8#,12 (velocity 

spectra), Figures 8*33 — 8#44 (concentration spectra) and Table 8.1 indicate 

that generally the concentration spectra are consistent with the field data 

observations in the slopes of the spectra and also the length scales• The -5/3 

slope of Figures 9,8 and 9.9 does not indicate any difference because these 

figures represent fully three-dimensional conditions while the predicted 
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spectra are two-dimensional. The characteristic feature of the concentration 

spectra, is the end tail separation (Table 8.1). This becomes more noticeable 

with increasing Prandtl numbers. Figure 9.10 indicates chlorophyll a spectra 

observed by Fasham and Pugh (1976) in North Atlantic indicating this end tale 

shift. Figure 9.11 also shows theoretical velocity and temperature spectra 

for Pr ^ 1 obtained by Monin and Yaglom (1975) . It is seen that at small 

scales there is a characteristic slope change of the temperature spectrum. 

As Monin and Yaglom explain this change in slope is due to the fact that at 

these scales molecular viscosity plays an appreciable role while thermal 

diffusivity still has no effect on the temperature spectrum. 

It was observed that the biologically active contaminant spectra (Figures 

8.42 — 8.44) and the passive contaminant spectra (Figures 8.33 through8.35) 

do not show any significant difference in their shape as expected. This is 

attributed to the fact that the time of comparison did not exceed four hours. 

Total times of at least a few days would be required for differences to be 

shown. However, that long total times were out of the scope of this thesis. 

The major reason is that times of four hours were sufficient for a study of the 

influence of the velocity spectra which was where most of the effort was 

expanded. However, there is a difference between the passive and the active 

contaminant spectra. The variance level for the active case at the second and 

third nodes is reduced in comparison to the passive case. It seems that a 

biologically active contaminant has a special property not present in a passive 

contaminant, which supresses the variance in lower levels. 
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Figure 9 • 10 Chlorophyll a Spectrum (after Fasham and Pugh, 1976) 

Figure 9,11 Schematic Space of the Velocity and Temperature Spectra 
for Pr ^ 1 (after Monin and Yaglom, 1975) 
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The last section is devoted to extending these results and pointing


out the implications these results have for numerical analysis.


B* Discussion


In this section some of the results will be critically reviewed,


some of the assumptions used in the construction of the three-dimensional


model will be questioned, some characteristics of the model will be pointed


out. Finally an explanation to the observed phytoplankton problem


called the "paradox of the plankton,fl will be suggested.


It was mentioned in the previous section that all the spectra obtained


in this thesis follow a -3 slope indicating two-dimensionality or sheared


flows. It was justified by the fact that the ratio of the vertical to


horizontal scale is very small and that a shear is present. This can


indeed be true but the depth of the basin itself (16m) suggests that a


three-dimensional field could and should exist. Actually Palmer (1973) has


shown that the velocity spectrum at 5.8m of 22m depth of water shows a


characteristic -5/3 slope. One of the possible explanations why a -3 slope


is consistently obtained here is that the shallow water assumption (Chapter


V, Section B) is used in the derivation of the filtered tranpsort equations.


According to this assumption the vertical velocity component is diminished in


comparison to the horizontal velocity components. Therefore, it is not rea­


sonable to expect the shallow water equations to produce a fully three-


dimensional character under shear. However, these equations are very com­


monly (Table 2.1) used even in deep basins. The results obtained here suggest
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that one must be very careful in using these equations especially if the objective 

is to obtain a statistically correct, three-dimensional velocity field. 

Another assumption used in the derivation of the transport equations is 

the rigid lid assumption. According to this assumption any surface pressure 

change is transmitted instantaneously to the whole velocity field. This is reflect­

ed in the surprisingly fast change of the spectrum to a -5/3 slope when the wind 

is exhausted. This suggests that the rigid lid assumption can cause an erratic 

response of the flow field to any external condition. However, this requires 

more research since as was mentioned in the previous section the number of 

points used in the computation of the spectra is rather small. This in turn 

might affect the slope of the computed spectrum. 

In all of the computer runs here, spectra were computed away from 

solid boundaries. There are basically two reasons for this. The first is that 

Taylor }s frozen turbulence hypothesis would not apply close to the boundaries 

(Chapter IE, Section A#5). Therefore all the computations, based on this assump­

tion, would be wrong. The second reason is that the boundary conditions used 

are not correct, in the sense that they do not consider the boundary layer 

formation. Future research in the determination of boundary conditions could 

possible allow the examination of spectra closer to walls provided that different 

method will be found for their computation. 

Table 8. 1 shows that the maximum scales where a -3 slope was observed 

range from 419m in Run 5 to 18m in Run 6. This indicates that perhaps smaller 

grids should be used in order for the cells to be included in this range of 
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scales. However, the relatively coarse grid of 100m allowed a very reason­

able representation of the cascade process which did not violate either the 

shape or slope of the theoretically expected spectra. Therefore, a smaller 

grid is not recommended. Although mesh refinement would undoubtedly 

improve the behavior of the model, it would increase the cost a great deal. 

Consequently it would be very uneconomical to use the model in larger basins. 

Two characteristics of the model should be mentioned here as improve­

ments to be considered in future modeling efforts. These are: (1) The 

computation of the eddy viscosity as a function of grid size; and (2) Model 

verification by statistical methods. As it was mentioned in Chapter n, the 

great majority of transport models use arbitrarilly defined and tuned eddy 

viscosities. In this thesis they are computed based on the volume of the cell 

and on theoretical energy conservation considerations of the inertial subrange 

(Chapter V, Section D). The use of these coefficients requires the determina­

tion of one scalar coefficient. This coefficient is computed just once, and this 

value is used in all the computer runs made. This has enormous implications' 

for modelers who now must tune, adjust and recalculate to achieve proper 

answers. 

The second characteristic lies in the concept of model verification. As 

mentioned in Chapter II, all the existing transport models use faulty verifica­

tion procedures by trying to predict the field data of a predominajitly random 

process. In this thesis a statistical verification procedure is suggested as an 

alternative. This is a more reliable approach and it is much easier to collect 
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data, as it requires no more than velocity histories at certain points in the 

lake for preliminary model verification. Once known the statistics can be used 

to generate monitoring sites for long term data collection* 

The results obtained here suggest an answer to a limnological problem 

that Hutchinson (1961) calls nthe paradox of plankton" For details on this 

phenomenon the reader is referred to Richerson, et aU, (1970), Plattf et aU 

(1970), Platt (1972), Platt and Filion (1973), Steele (1974), Denman (1976), and 

Denman and Platt (1976). The "Paradox of Plankton" relates to the fact that the 

examination of a small volume of water yields some tens of phytoplankton 

species while according to the competitive exclusion principle (Hutchinson, 

1961) there should be only one species. One of the assumptions of the com­

petitive exclusion principle is that the competing species are at equilibrium and 

that conditions do not change very rapidly. Therefore, there is enough time 

for the superior competitor to cause the extinction of the others. However, as 

it was pointed by Hutchinson (1961) and it is also concluded from the compari­

son of the velocity and concentration spectra this is not the case. Turbulence 

is very important in any biological process. Even though the total time the 

complete biological model run was not long enough it can be speculated from 

Figures 8.42 — 8.44 that plankton is not allowed in one place for a long time. 

Turbulence causes a rapid succession of conditions at each place. No organism 

is allowed to stay in one place a long time in order to cause the extinction of 

the others. Therefore, the assumption of equilibrium might not hold. 

In the next chapter the major conclusions of this report are sum­

marized. 



CHAPTER X 

CONCLUSIONS 

The major conclusions of this report are the following: 

(1) The computation of detailed turbulent lake transport processes requires 

that the equations be filtered. Unfiltered equations, the normal model struc­

ture, predict an erratic cascade process which makes the predicted flow field 

questionable. 

(2) Very small computational cells are not required for the prediction of 

the correct energy cascade process in a turbulent flow field. A cell size of 

100m has been shown to be very sufficient. 

(3) The relatively coarse grid of 100m is very effective in preserving the 

correct statistical characteristics of the turbulent flow field. 

(4) The shallow water equations must be used with caution. The predicted 

energy cascade process always has a -3 slope which may suggest accelerated 

no a-equilibrium conditions or the presence of 2-D turbulence. Two-dimen­

sional conditions may be appropriate for very shallow basins, but for basins 

even as deep as 16m such an assumption is unrealistic. This suggests that in 

these basins the full 3-D Navier-Stokes equations must be used. 

193 
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(5) The rigid lid assumption results on instantaneous response of the flow 

field to any external condition. The instantaneous response is unrealistic in 

its representation of the collapse of a 2-D wind sheared velocity field to a 3-D 

unstressed situation and therefore this formulation will not permit sound 

calculation of this type of process. 

(6) The eddy viscosities must be computed considering the volume of the 

computational cell and the theoretical consideration of the inertial subrange. 

Arbitrarily defined eddy viscosities will lead to erratic results and are no 

longer necessary. This results in a much reduced need for tuning in model 

calculations. 

(7) The verification procedure of a transport model by predicting field data 

must be augmented by additional and fundamental verification of the statistics. 

Turbulence is a predominantly random process. Therefore, only statistical 

verification procedures should be used. Only after this verification, can field 

data be properly taken and prepared for model verification. 

(8) There is a range of scales (Table 8.1) where the concentration spectra 

follow the corresponding velocity spectra. At small scales (Table 8,1) the 

concentration spectra show a characteristic separation tail which is more 

intense the larger the Prandtl number. 

(9) Far the time periods the model was tested the passive contaminant and 

the active contaminant spectra did not show any significant difference in their 

shapes. The only difference is that the variance level for the active conta­

minant at the second and third nodes is lower than the variance of the passive 

contaminant. 
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Two cases of the Fourier transform will be considered. The first one is 

when the data are given in a continuous form with respect to the independent 

variable, 6 (  6 = time or space variable) and the second when tte data are given 

at discrete points. The interest in turbulence computations lies primarily in 

the discrete case. However, since the discrete fourier transform is an 

extension of the continuous case both are presented here. For details on the 

derivations the reader is referred to Jenkins and Watts (1968), Stanley (1975) 

and Bloomfield (1976). 

a) The Continuous Fourier Transorm 

Let a function f(e) have a period or wavelength of 0 and be defined in 

the interval - 0/2 to 0/2. The complex (or exponential) Fourier series expan­

sion for this function is given as: 

f(6) = ^ J W . (A.I) 

where;  0 / 2 

F(m) = " i /  f (6)e 3 h d6 . (A.2) 

-0 /2 

Additionally the following terms are defined: 

— is the fundamental radian frequency ( 6 = time variable) or wave number


(9 = space variable)•


m is an integer defining the order of the harmonic.


8 
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Expansions (A. 1) and (A.2) are valid if the following Dirichlet conditions hold 

(Miller, p. 83): 

a. f(o) never becomes infinite; 

b. f( e) has at most a finite number of maxima and minima; and 

c. f(9) has at most a finite number of discontinuities. 

The set of coefficients F(m) is often called the Fourier spectrum or spectrum 

off (8) 

The Fourier transform is a special case of the Fourier series expan­

sion (A. 1) and (A.2). It applies when the spectrum of a non-periodic signal is 

desired. This non-periodic signal may be thought as arising from a periodic 

signal in which the period of wavelength 0 is allowed to increase without limit. 

In this case the fundamental frequency or wave number 2 */© approaches 

zero and therefore the spectrum F(m) is a continuous function of frequency or 

wave number Equations (A. 1) and (A. 2) are now written as: 

00 

f(9) = / F(u>)ejw° da) (A.3) 

— oo 

where; 
00 

F ( J ) = / f (8)e *w de , (A.4) 
/ ­

- 00 

and u is the continuous radian frequency or wave number F(w) is defined as 

the Fourier transform of f( e) f and f(o ) is the inverse Fourier transform of 

F( e). Physically the Fourier transform represents the distribution of signal 

strength with frequency or wave number, <*> 



198 
b) The Discrete Fourier Transform 

Consider that the function f(6) is not continuous in e but is defined at 

N discrete intervals of length A. Consider also that the frequency, u , is 

defined at discrete intervals, Q . Then Equations (A.3) and (A.4) are written 

as: 

f(nA) = J L y > m f i ) e j 2 i r m n n A ;and (A.5) 
N £ ' 

m 

(A.6) 
n 

Equations (A. 5) and (A.6) are called a discrete Fourier transform 

pair 
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The power spectrum, as it is discussed in Chapter in is the Fourier 

transform of the autocorrelation function. Therefore, an understanding of the 

autocorrelation function is very important in the study of turbulence. 

Consider a signal f(e), generated by a random process. The covariance 

of this series is defined as: 

Cov = E >(f(8 . ) - f ) (f( 6.) - f)i ; (B.I) 

where, E denotes expected value and f is the ensemble mean. Assuming that 

f is zero, (B. 1) is written as: 

Cov = E ^f(8j) HQ^} . (B.2) 

In a stationary (if 9 is time variable) or a homogeneous (if 8 is space variable) 

random process the covariance will depend only on the time or distance of 

separation, r. Equation (B.2) is then written as: 

Cov (r) Jf(8)f(e+r)|  (B.3) = E >f(8)f(e +r)}

or 

Cov (r) = lim -±- I f(e) f( 9 + r) d 8 . (B.4) 

-0/2 
For the discrete case of f(e) given at n discrete intervals (B.4) is written as: 

n-T 
= ^ 2 > 9 ) f ( e + T ) T = 0 , 1 , 2 , . . . (B.5) 

6=1 
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where T denotes the number of lags. Equation (B.5) is the computational 

form of (B.4). By definition, Cov (0) is the variance of the random process. 

The ratio of Cov (x )/Cov (0) is called the autocorrelation function. It describes 

the general dependance of the data at one time or region in space upon the 

data at another time or region in space. Deterministic data will have a 

persistent autocorrelation function over all lags in contrast to random data 

where the autocorrelation function approaches zero for a large number of lags. 

Therefore, autocorrelation analysis is used to detect a random from a determin­

istic process. Figure B. 1 borrowed from Bendat and Piersol (1966) shows 

this property of the autocorrelation function. In this figure R (T) denotes the 

autocorrelation function and T is the time displacement or lag. Figure B. la 

is a deterministic wave, Figure B. lb is a deterministic wave plus a random 

noise, Figure B. lc is a narrow-band random noise and Figure B. Id is a 

completely random process. 

For more details on the autocorrelation function the reader is referred 

to Jenkins and Watts (1968) and Bendat and Piersol (1966). 
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Figure B  . 1 Autocorrelation function plots (autocorrelograms). (a) Sine wave. 
(b) Sine wave plus random noise, (c) Narrow-band random noise. M) Wide-band 
random noise, (after Bendat and Piersol, 1966) 
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Stationarity and ergodicity are two concepts.used very widely in the 

discussion of turbulent flows and their comprehension is necessary in the 

understanding of turbulence. 

Consider an experiment which is performed under identical conditions 

N times and recorded as a function of time, t. Let the k • experiment be 

denoted as: fk(t) where k=l,N. If the value of the experiment is recorded at a 

time t then the arithmetic mean over all experiments is computed as: 

N 

N  k k=l

After a sufficiently large number of experiments, N, the mean, y (t), will start 

oscillating around a constant value, P (t). This dynamic stability of the mean 

indicates that the collection of identical experiments constitutes a statistical 

ensemble. The value over which the arithmetic mean oscillates (y (t)) is called 

the probability mean. Consider now that the autocorrelation function is defined 

over the same number of experiments, N, that the probability mean was defined, 

i .e . 

N 
R(t,t-T) = J L £  f k ( t ) f k ( t+T) . (C.2) 

Then if the value of V(t) and R(t, t+T) vary as t varies the process is called 

nonstationary If the value of v (t) and R(t, t+T ) do not vary as the time, t, 

varies then the process is called weakly stationary or stationary. When all the 

higher order moments and joint moments are time invariant, as well, then the 
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process is called strongly stationary. Usually when a process is weakly 

stationary it is considered as strongly stationary (Bendat and Piersol, 1966, 

P-ll). 

Ergodicity is also a very important concept in the description of any 

set of random data. The need for this concept arises from the inability to 

repeat the same experiment more than once. In this case the probability mean 

and the autocorrelation function as defined above cannot be obtained. Instead 

the mean and the autocorrelation have to be obtained over the one experiment 

as: 

1 n 

= lim n 2 fi » a n d <c-3) 

n-x 
Rk(t) = lim—L^ V f(t)f(t+x) . x = 0,1,2, (C.4) 

n 1- fei 

If the process is ergodic then the mean and autocorrelation defined by Equations 

(C.3) and (C.4) equal the probability mean, y (t) , and the autocorrelation 

function defined defined by Equation (C.3). Therefore, ergodicity if it exists 

allows the results of one experiment to replace the ensemble results. This is 

very important in geophysical flows where the lack of repetition makes the use 

of probability averaging impossible. 
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The computer pograms used in this research were initiated


for analytical purposes and in themselves are not the end


products of this research. Therefore, the program listings


and brief operating notes are available to the serious reader


upon written request and at a cost necessary to cover only


reproduction and mailing charges. Address inquiries to:


Dr. K. W. Bedford

Department of Civil Engineering

The Ohio State University

2070 Neil Avenue

Columbus, Ohio 43210
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