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ABSTRACT 
 
 

Trypanosomatids are responsible for causing illness and death among millions of humans 

and animals worldwide.  Two main genera of these unicellular flagellated parasites are 

Trypanosoma, which cause African sleeping sickness and Chagas disease, and Leishmania, 

which cause Leishmaniasis.  The World Health Organization estimates that approximately 400 

million people across the globe are at risk of infections caused by these protozoa.     

In addition to their pathogenic characteristics, trypanosomatids also represent some of the 

earliest mitochondria-containing eukaryotes.  Trypanosomatids exhibit many significant and 

interesting biological processes, such as an extreme degree of RNA editing (as with U insertion 

and deletion in mRNAs) and complete tRNA import into the mitochondria, which is important 

for mitochondrial protein synthesis.  In translation, although there are 61 amino acid codons, 

there is only a small subset of tRNAs to decode them.  As a result, some flexibility is needed to 

allow for a single tRNA to decode multiple codons—as proposed by Francis Crick with the 

Wobble hypothesis in the 1960s (1).  One nucleotide capable of increasing pairing flexibility 

during decoding is the nucleotide inosine, which in the third position of the tRNA anticodon, 

allows recognition of up to three different nucleotides in an mRNA codon: uridine, cytosine, and 

adenosine. The editing event that leads to inosine formation in tRNAs, is catalyzed by a 

heterodimeric enzyme known as ADAT2/3 (adenosine deaminases acting on tRNA).  

Remarkably, inosine is not encoded in DNA and is only found in RNAs as a result of an enzyme-

mediated reaction, which is essential for viability. 

The goal of this project was to analyze the effects various mutations at the anticodon 

stem loop of tRNAThr have on inosine formation at the first (wobble) position of the anticodon of 

tRNAs in Trypanosoma brucei.  We hypothesized that mutations at these positions of the tRNA 
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will decrease deamination efficiency and substrate recognition by ADAT2/3.  Through in vitro 

methods, which include protein-RNA binding assays (band-shift assays) and enzyme kinetics the 

effect of mutations on ADAT2/3 function was evaluated. These results could shed light on how 

ADAT2/3 binds tRNA and catalyzes the conversion of adenosine to inosine.  In addition, these 

observations can also lead to future design of therapeutics against parasites of such major 

medical importance (2).        

  

1. Crick, FH. (1966). Codon—anticodon pairing: the wobble hypothesis. J Mol Biol. 19, 

548-555. 

2. Gerber, A. P., & Keller, W. (1999). An adenosine deaminase that generates inosine at the 

wobble position of tRNAs. Science. 286, 1146-49. 
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CHAPTER 1 

 
Overview of trypanosomatids and RNA editing 

 
1.1 Trypanosomatids 
 
 Trypanosomatids are unicellular eukaryotes that belong to the class kinetoplastida, named 

after the presence of a unique kinetoplast within the mitochondrion.  A kinetoplast, unlike other 

DNA, is comprised of a complex network of interlocked DNA rings and is associated with the 

flagellar basal body (Liu et al. 2005).  Trypanosomatids are responsible for causing a wide range 

of diseases across the globe in both humans and animals.  The two main genera of 

trypanosomatids are Trypanosoma and Leishmania.  Of the genus Trypanosoma, there are two 

species that are medically important for human diseases: Trypanosoma brucei causes African 

trypanosomiasis (sleeping sickness) and Trypanosoma cruzi is responsible for American 

trypanosomiasis or Chagas disease.  The three forms of leishmaniasis (cutaneous, 

mucocutaneous, and visceral) are the result of infection by various species of the genus 

Leishmania.   

 Transmitted by insect vectors, these flagellated parasites cause infection all over the 

world.  However, they are endemic in Africa, Central and South America, Middle East, China, 

India, and the Mediterranean Basin.  The World Health Organization estimates that there are 

over 30 million people infected by trypanosomatids and even more alarming is that over 500 

million are at risk of infection (Table 1.1).   
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Disease Causative 
Agent Vector 

Primary 
Geographic 

Location 

Number 
Currently 
Infected 

Number At 
Risk of 

Infection Per 
Year 

African 
Trypanosomiasis 

(Sleeping 
Sickness) 

Trypanosoma 
brucei 

Tse-Tse 
Fly Africa 1 million 60 million 

American 
Trypanosomiasis 
(Chagas Disease) 

Trypanosoma 
cruzi 

Triatomine 
Bug 

(Kissing 
Bug) 

Central and 
South America 

16-18 
million 120 million 

Leishmaniasis 
(Cutaneous, 

Mucocutaneous, 
and Visceral) 

Leishmania 
(various 

subspecies) 
Sandfly 

Middle East, 
Africa, South 

America, 
China, India, 

and 
Mediterranean 

Basin 

12 million 350 million 

 
Table 1.1: Distribution and scope of trypanosomatid infection. 
 
 
 
1.2 Historical overview of RNA editing and modification 
 

RNA editing and modification is a term that encompasses a plethora of molecular 

processes where information content is altered in an RNA molecule far and beyond what is 

encoded in genes.  RNA editing may involve a change of one nucleotide to another. Currently, 

such changes have been identified in messenger RNA (mRNA), transfer RNA (tRNA) and 

ribosomal RNA (rRNA).   

 The first instance of a modified nucleotide was found in DNA by Hotchkiss (1948), 

which was later determined to be 5-methylcytosine (dm5C) by Wyatt in 1950.  Not even a decade 

later, Davis and Allen isolated an isomer of uridine, 5-riboyluracil from RNA, which they termed 

the “fifth ribonucleoside” (1957).  Cohn later termed the nucleotide pseudouridine, abbreviated 
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Ψ (1960).  To date, we know that pseudouridine Ψ is present in every isoacceptor tRNA and 

rRNAs.  Since then, many other instances of RNA editing and modification has been described 

in organisms from all domains of life: Eukarya, Bacteria and Archaea.  

 Benne and colleagues in 1986 discovered a novel and interesting RNA editing process.  

In kinetoplastid protozoa, they demonstrated the insertion and deletion of uridines in 

mitochondrial mRNAs.  These uridines were not genomically encoded and occur in the protein-

coding sequences of the mRNA (1986).  Mechanistically, this RNA editing event is protein-

mediated and involves large multiprotein complexes or editosomes (Stuart 1996).   

 Soon after, another RNA editing event involving the conversion of cytidine to uridine (C 

to U) in the mRNA encoding the apolipoprotein B (apoB) in human cells (Powell et al. 1987; 

Chen et al. 1987).  Adenosine conversion to inosine (A to I) via a deamination reaction was also 

demonstrated in mRNA (Bass and Weintraub 1988; Wagner et al. 1989) in RNA from viruses.   

 

1.3 Applications to tRNA 
 
 Unlike mRNAs, transcripts of tRNA genes undergo extensive processing to become a 

fully functional and mature tRNA for protein translation.  To generate this functionality, 

oftentimes it is necessary to modify or even edit nucleotides of the molecule.  Editing is found in 

all parts of the tRNA structure: the acceptor stem, the D loop, anticodon stem loop and the TΨC 

loop.  One of the first documented cases of tRNA editing is with Acanthamoeba castellanii 

mitochondrial tRNAs.  Lonergan and Gray published data on posttranscriptional single 

nucleotide conversions (U to A, U to G, and A to G) in the acceptor stem of the tRNAs (1993).  

Some of the most heavily investigated tRNA editing events involve the deamination of cytidine 
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to uridine (C to U) in the tRNA backbone in plants (Fey et al. 2002).  Editing of tRNAs is 

generally essential for cell survival.   

 On the other hand, the majority of tRNA modifications are not necessary for cell 

viability.  Currently, there are over 100 posttranscriptional modifications that have been 

identified in tRNA from the Bacterial, Archaeal and Eukaryotic domains.  Most of these 

modifications appear to be important for proper folding and stability of the molecule itself.   

  

1.4 Adenosine to inosine editing at the wobble position 
 

The standard genetic code is composed of 64 different triplets (codons), with 61 of them 

encoding amino acids.  The last three codons signal for translation termination.  As there are 

many more amino acid codons than amino acids themselves, most amino acids are encoded by 

several related codons in what is referred to as degeneracy.  The only exceptions to the 

degeneracy are methionine and tryptophan (Agris 2004).  The mechanism through which an 

organism can read all 61 amino acid codons to for protein translation was first hypothesized by 

Francis Crick in the 1960s with his Wobble Hypothesis (1966).  Now it is widely known that a 

tRNA has the ability to decode multiple codons through flexibility in base-pairing between the 

third position (3’ position) of the mRNA codon and the first position (5’ position) of the tRNA 

anticodon, otherwise known as the wobble position (Table 1.2). 

The nucleotide inosine, when in the wobble position of a tRNA, provides the greatest 

flexibility by allowing the recognition of up to three different nucleotides in an mRNA codon: 

cytidine, uridine, and adenosine.  Not encoded by DNA, this nucleotide is found in RNAs by an 

enzyme-mediated deamination reaction.  Hydrolytic deamination of adenosine by the removal of 

an amino group results in the formation of inosine (Gerber et al. 1999).  In Bacteria, this editing 
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event at the wobble position only occurs with one tRNA—tRNA Arg.    However, in the 

Eukaryotic domain, deamination is present with eight different tRNAs.  In both domains, the 

conversion of adenosine to inosine in tRNA is essential for survival (Gerber et al. 1999; Wolf et 

al. 2002).    

The family of enzymes responsible for catalyzing this reaction is called adenosine 

deaminases acting on tRNA (ADATs).  In Bacteria, this enzyme is referred to as TadA or 

ADATa.  Previous studies with Escherichia coli have shown that the TadA enzyme is a 

homodimer made of two identical subunits.  This homodimer, in addition to acting on the full-

length tRNAArg substrate, can also catalyze deamination in a minimized portion (the anticodon 

stem loop mini-helix) of tRNAArg just as efficiently.  However, eukaryotic tRNAs were able to 

be deaminated by TadA if they contained the anticodon stem loop of tRNAArg from E. coli (Wolf 

et al. 2002).  In addition, crystal structure of the ADATa enzyme from Staphylococcus aureus 

has shown that the binding site is the same as the catalytic site that causes deamination of 

adenosine to inosine (Losey et al. 2006).  Wolf and colleagues demonstrated that the tadA gene is 

essential for cell viability in E. coli, which suggests the importance of inosine at the wobble 

position in bacteria (2002).                                                                                                                                         

              

Table 1.2: Wobble base-pairing as described by Francis Crick (1966).   
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In contrast, the ADAT enzyme in eukaryotes is a heterodimer composed of two different 

subunits, ADAT2 and ADAT3.   Previous studies in Saccharomyces cerevisiae have shown that 

the ADAT2 subunit is for catalytic activity, while the ADAT3 subunit is important for 

recognition of the tRNA substrate (Gerber et al. 1999).  Combined together, the ADAT2/3 

enzyme can act on up to eight different substrates.  However, unlike the bacterial TadA, it will 

not deaminate a minimized tRNA substrate (Wolf et al. 2002).  Gerber and Keller showed in 

Saccharomyces cerevisiae that, similar to bacteria, the ADAT2 and ADAT3 genes were essential 

for growth, again stressing the significance of this editing event (Gerber et al. 1999).  Currently, 

no crystal structure exists for ADAT2/3 from eukaryotes, but some initial enzyme mutational 

studies and kinetic analyses suggest that the active site is separate from the tRNA binding site 

(Ragone et al. unpublished results) 

 
 
1.5 In vitro challenges 
 
 There are undoubtedly hundreds of chemical modifications and editing events present in 

vitro that have yet to be characterized by scientists.  These may play an important role in the 

molecular biology of the cell and could be crucial in maintaining homeostasis.  In addition, 

though it is possible to synthetically transcribe and edit tRNAs, it is costly.  As such, it is 

difficult to construct in vitro a system identical to the organism’s system to accurately assess the 

editing and modification states of tRNA.  There is optimism, however, that an editing pathway 

unique to Trypanosoma brucei could be utilized in the future as a target for anti-trypanosomal 

treatments once the modifications and editing events have been characterized.    
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CHAPTER 2 
 
 

In vitro studies for specificity requirements of the Trypanosoma brucei adenosine to inosine 
tRNA editing deaminase ADAT2/3 

 
 
 
2.1 Introduction 
 
  One editing event in T. brucei that has been identified is adenosine to inosine (A to I) 

deamination.  Like other eukaryotes, these flagellated protozoa deaminate A to I at the wobble 

position in up to eight different tRNAs.  Figure 2.1, taken from Losey et al. (2006), illustrates the 

proposed mechanism of hydrolytic deamination.  The active site of the ADAT enzyme contains a 

zinc ion (Zn2+) that is tetrahedrally coordinated to a histidine and two cysteine residues (or three 

cysteine residues as in some cases); the fourth ligand is a zinc-activated water molecule.  Zn2+ 

enables the water molecule to perform a  nucleophilic attack on the carbon at position 6 of the 

adenine ring, forming a tetrahedral intermediate.  The intermediate will then lead to the release 

of ammonia, producing the nucleotide inosine.  A conserved glutamate residue mediates the 

proton transfers during the deamination process (Losey et al. 2006).  
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Figure 2.1: Proposed mechanism of hydrolytic deamination of adenosine to inosine.  A zinc-
bound water molecule attacks at position 6 of the adenine ring yields a hydrated tetrahedral 
intermediate that collapses to expel ammonia and produce inosine.  Taken from Losey, 
Ruthenburg, and Verdine (2006). 

 
 

Rubio and colleagues identified a homolog to the yeast ADAT2/3 in T.brucei (2006).  

When the T. brucei ADAT2/3 was aligned with other known deaminases, it was shown that there 

were a number of conserved residues known to be essential for catalysis of cytosine and 

adenosine deaminase families (Figure 2.2).  TbADAT2 and TbADAT3 both contain the 

conserved histidine and two cysteine residues, however TbADAT3 does not contain the proton-

shuttling glutamate.  This suggests that like Saccharomyces cerevisiae, the ADAT3 enzyme does 

not play a catalytic role, but more of a structural role. 

 The purpose of this project was to identify the specificity requirements for TbADAT2/3 

activity.  This was first done by making mutations in one of the enzyme’s tRNA substrates, 

tRNAThr, and observing effects on deamination activity.  The specificity determinants of the 
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eukaryotic TbADAT2/3 were then compared to its bacterial counterpart, TadA, from Escherichia 

coli.  

         

 

Figure 2.2: Sequence alignment of TbADAT2/3 with other known adenosine and cytidine 
deaminases.  The boxes show the active sites of both the TbADAT2 and TbADAT3 subunits.  
Conserved residues are shown in boldface.  Asterisks denote the conserved residues involved 
with Zn2+ coordination.  Taken from Rubio et al. (2007).   
 
 

2.2 Methods 

2.2.1 Recombinant protein expression and isolation 

 The genes encoding ADAT2 and ADAT3 were cloned from T. brucei cDNA into an 

expression vector.  The construct was then transformed into Escherichia coli cells.  In a one liter 

culture, the cells were induced with IPTG overnight.  Cells were harvested and lysed; the 

resulting supernatant was then applied to a TALON Superflow affinity resin.  ADAT2/3 was 

eluted, concentrated and purified (Rubio et al 2007).   
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2.2.2 In Vitro editing assays 

 The tRNAs were transcribed in vitro with internally incorporated [α-32P]-ATP.  For the 

editing assays, the tRNAs were incubated with either Trypanosoma  brucei ADAT2/3 (at 27˚C) 

or Escherichia coli TadA (at 37˚C).  After incubation, the reactions were purified with phenol 

and digested with Nuclease P1 to generate 5’-monophosphates.  Then, the 5’-monophosphates 

were separated by one-dimensional thin layer chromatography (TLC).  The TLC was visualized 

by PhosphoImager and the radioactive adenosine (pA) and inosine (pA) monophosphates were 

quantified.  The precise pI and pA spots were identified by running an unlabeled IMP and AMP 

along side the reactions as a marker.  To determine the percentage of adenosine to inosine 

deamination, the relative fraction of adenosine to inosine was established by dividing the amount 

of radioactivity in the pI spot by the sum of the radioactivity in the pA and pI spots.  The specific 

percent conversion at a single site (the wobble position) was then determined by normalizing the 

amount of radioactivity at position 34 to the total number of labeled adenosines in the tRNA 

(n=13).  Specific yield of pI was then calculated by dividing the percent total by the relative 

percentage at one site.   
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2.3 Results and Discussion 

2.3.1 Different tRNAs are deaminated with comparable efficiency 

 TbADAT2/3 can recognize and deaminate eight different tRNA substrates.  The first aim 

of this project was to compare how different tRNA substrates are deaminated.  Two different 

tRNAs, tRNAThr(AGU) and tRNAVal(AAC), were used for in vitro studies (Figure 2.3).  

Uniformly labeled with [α-32P]-ATP, these tRNAs were incubated at 27˚C for one hour with 

increasing concentrations of the TbADAT2/3 recombinant protein (0.05, 0.25, 0.5, 1.25 and 2.5 

μg).  Analysis showed that there was no significant difference in inosine formation at the wobble 

position between the two different tRNAs, suggesting that TbADAT2/3 can deaminate at least 

two different tRNAs with comparable efficiency (Figure 2.4).    

 

 
Figure 2.3: Secondary structure of the wild type tRNAThr(AGU) and tRNAVal(AAC) from 
Trypanosoma brucei.  Both tRNAs deaminate at position 34 to form inosine, as shown by the 
arrows.  In addition, Rubio and colleagues discovered in TbtRNAThr(AGU) C to U deamination 
at position 32.    
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Figure 2.4: In vitro testing of deamination efficiency of wild type tRNAThr(AGU) and 
tRNAVal(AAC) from Trypanosoma brucei. (A) TLC analysis of the two tRNAs incubated with 
increasing amounts of TbADAT2/3. As negative controls, lanes 1 and 7 did not contain 
TbADAT2/3. (B) A plot of the percentage of conversion of A to I at position 34 versus amount 
of protein. 
 
 
 
 
2.3.2 Trypanosoma brucei tRNAThr(AGU) helices are not substrates for TbADAT2/3   
 
 The tRNA secondary structure is composed of primarily four parts: the acceptor stem, the 

D arm, anticodon stem loop, and the TΨC arm (Figure 2.5).  To assess if any particular region of 

the tRNA may be influential in the ability TbADAT2/3 to catalyze hydrolytic deamination of 

adenosine to inosine at the wobble position, various substrate mutants were created using 

different regions of the tRNA (Figure 2.6).  Four different mutants were tested. Incubation of the 

protein with Mutant A (composed of the acceptor stem and the TΨC arm) showed no enzymatic 

activity.  No inosine formation was observed when Mutant B (TΨC arm and the anticodon stem 

loop), Mutant C (D arm and acceptor stem) and Mutant D (D arm, anticodon stem loop and TΨC 

arm) were incubated with TbADAT2/3.  Individual components or combinations of different  
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parts of the tRNA structure were not enough to convey specificity for TbADAT2/3.  Even with 

the majority of the tRNA present in Mutant D (missing the acceptor stem), the tRNA adenosine 

deaminase was unable to recognize and perform the reaction on the substrate.  The data suggests 

that the TbADAT2/3 cannot use a minimized tRNA of any sort as substrates and that a full-

length tRNA is necessary for deamination activity.   

 

 
                     (A)                   (B) 

                   
Figure 2.5:  Two representations of tRNA structure. (A) Schematic of the tertiary structure of a 
tRNA. (B) The corresponding secondary tRNA structure with the same color-coding as with the 
secondary structure.  Taken from Weaver (2002).   
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Figure 2.6: Schematic of the secondary structure of tRNAThr(AGU) and the substrate mutants. 
The acceptor stem was shown in red; green represents the D arm; the anticodon stem loop is 
illustrated in yellow; blue corresponds to the TΨC arm.  Mutant A was composed of the acceptor 
stem and the TΨC arm.  The TΨC arm and the anticodon stem loop made up Mutant B.  Mutant 
C was derived by combining the D arm and the acceptor stem.  Mutant D was constructed with 
the D arm, the anticodon stem loop and the TΨC arm (missing the acceptor stem).   
 
 
 
2.3.3 Anticodon stem loop determinants for deamination activity 
 
 The tRNA anticodon stem loop contains the adenosine that undergoes inosine formation.  

Because the anticodon stem loop is positioned in the catalytic site, nucleotides in this portion of 

the tRNA may contact the protein in the catalytic pocket or may be important for binding 

recognition.  Three mutant threonyl tRNA constructs were created with mutations in the 

anticodon stem (Tag 22), at the anticodon loop at position 37 (Tag 23) and at position 38 (Tag 

24) of the Trypanosoma brucei threonyl tRNA(AGU) (Figure 2.7).  These “tagged” tRNAs were  
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then used to assess whether or not particular residues in the anticodon stem loop were important 

for deaminase activity.   

 In the same assay used to test the different T. brucei tRNAs, the wild type tRNAThr, Tag 

22, Tag 23 and Tag 24 tRNAs were uniformly labeled with [α-32P]-ATP.  They were then 

incubated with TbADAT2/3 enzymes for various times: 5, 15, 30, 45 and 60 minutes.  The 

percent deamination of adenosine to inosine at the wobble position was determined in the 

method described above (Figure 2.8).  The results showed that changes in the anticodon stem 

(Tag 22) do not affect the enzyme’s ability to deaminate the substrate, as the activity levels did 

not differ from wild type threonyl tRNA(AGU).  In addition, a change to guanosine at position 

37 does not appear to affect activity (Tag 23) but the change was from a purine to another purine.    

However, the nucleotide at position 38 (Tag 24) decreased activity drastically as compared to 

rest of the constructs.  While the wild type tRNAThr, Tag 22 and Tag 23 maximally deaminates 

around 60%, Tag 24 yields about 20% deamination activity.  This suggests that the mutation at 

position 38 (A to C) altered the structure of the anticodon stem-loop and impaired the ability of 

TbADAT2/3 to catalyze the deamination reaction.  The change from a purine nucleotide (A) to a 

pyrmidine (C) in this Tag mutant may have destabilized tRNAThr(AGU).  However, another 

possibility for the decrease in deamination activity may be the result of a combination of effects 

of both mutations at positions 37 and 38.  The two changes together may have affected the 

overall stability of the secondary and tertiary structure of the threonyl tRNA.        
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Figure 2.7: Secondary structure of Trypanosoma brucei tRNAThr(AGU) anticodon mutant 
constructs.  Changes in the anticodon stem are highlighted in gray.  Anticodon loop changes are 
shown in red. 
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Figure 2.8: Effect of anticodon stem loop mutations on TbtRNAThr(AGU) deamination.  
Reactions were incubated with no enzyme (NE) as a negative control and for increasing amounts 
of time: 5, 15, 30, 45 and 60 minutes.   
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2.3.4 Comparison of the sequence determinants for TbADAT2/3 versus the bacterial EcTadA 
 

The next step of the project was to compare the eukaryotic and bacterial tRNA adenosine 

deaminase systems from T. brucei and E. coli respectively.  The T. brucei tRNAThr(AGU) and 

the E. coli tRNAArg(ACG) were used for these studies (Figure 2.9).  Various mutations were 

made in the two tRNAs in different regions.  The mutants were then assessed to see how the 

changes affect activity in both TbADAT2/3 and EcTadA.  These experiments were dependent on 

the fact that the EcTadA cannot deaminate tRNAThr(AGU) and TbADAT2/3 cannot deaminate 

the tRNAArg(ACG).  The objective was to determine which specific nucleotide positions are 

important for each enzyme’s ability for substrate recognition and subsequent deamination.   

 

                        

Figure 2.9: Secondary structures of Trypanosoma brucei tRNAThr(AGU) and Escherichia coli 
tRNAArg(ACG).  The alignment of the tRNAs shows that the only major difference between the 
two nucleotides that may be important for contact with the ADAT enzymes are the nucleotides at 
position 26 and 44 (shown in blue). 
 
 
 

The first set of studies involved making mutations at different positions in the 

TbtRNAThr(AGU) to the corresponding nucleotides of EctRNAArg(ACG).  The nucleotide 
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changes were made based on a comparison of the two tRNAs (Figure 2.9).  The major difference 

between the two nucleotides were those at positions 26 and 44—just outside of the anticodon 

stem loop.  Other differences were present in the base-pairing nucleotides from various arms, but 

these were not investigated as specific residues in these regions most likely would not contact the 

protein directly to affect deaminase activity.  Indeed, as shown with Tag 22 in Figure 2.8, the 

base-paired nucleotides in the anticodon stem did not seem to be important for specificity with 

TbADAT2/3.  Figure 2.10 illustrates the results of mutational studies with TbtRNAThr.  When 

positions 26 and 44 (Mutant 1) were changed to A and C respectively, deamination activity by 

ADAT2/3 was completely abolished as compared to deamination of the wild type tRNAThr.  

However, these changes did not rescue activity with TadA.  This implies that these nucleotides 

just outside of the anticodon stem loop may be important for contact with the TbADAT2/3 

protein.  Mutant 2 additionally changed the threonyl tRNA anticodon AGU to the tRNAArg 

anticodon ACG.  As expected, TbADAT2/3 was unable to deaminate this mutant, but inosine 

formation was possible with EcTadA to some degree.  The entire anticodon stem loop from 

TbtRNAThr was replaced by the EctRNAArg anticodon (Mutant 3), which again yielded no 

production of inosine with TbADAT2/3.  However, EcTadA was able to deaminate to an even 

greater degree than with Mutant 2.  When replacing the AGU anticodon with the E. coli ACG 

anticodon (Mutant 4), as expected, TbADAT2/3 was unable to produce inosine at position 34.  

Incubation with EcTadA resulted in a comparable deamination efficiency to the previous two 

mutants.  These results suggest that TbADAT2/3 requires a greater degree of specificity for its 

substrate than EcTadA, which seems to only require the anticodon nucleotides.  The next two 

mutants focused on one nucleotide change each in the anticodon positions 35 and 36.  Mutant 5, 

U36G, was unable to be deaminated by either TbADAT2/3 or EcTadA.  The change to C from G 
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at position 35 in Mutant 6 demonstrated the same results.  The last mutant to be tested was just a 

minimized threonyl tRNA substrate of just the anticodon stem loop.  Neither the T. brucei nor 

the E. coli enzyme could catalyze deamination on this substrate.  In summary, for TbADAT2/3 

activity, the nucleotides immediately 5’ and 3’ to the anticodon stem loop appear to be essential 

for deamination.  EcTadA however requires only needs the anticodon sequence ACG in a full-

length tRNA to be form inosine at the wobble position.   
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Figure 2.10: Comparison of TbADAT2/3 and EcTadA specificity determinants with 
TbtRNAThr(AGU).  TbADAT2/3 requires a greater deal of specificity than EcTadA.  The 
substrates were incubated for one hour.  EcTadA reactions were incubated at 37˚C and 
TbADAT2/3 reactions were tested at 27˚C, the optimal temperature for each enzyme. 
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 To determine is the sequence determinants were similar in the bacterial system, changes 

were then made to the arginyl tRNA(AGU) from E. coli using the same strategy as above (Figure 

2.11).  Mutant 1 (A26G, C44A) was not enough to recover deamination activity with 

TbADAT2/3, but did not abolish activity when incubated with EcTadA (unlike its threonyl 

counterpart).  However, EcTadA activity with Mutant 1 decreased sixty percent.  Again, this 

suggests that the nucleotides at these positions are important for deaminase activity, though less 

so than with its T. brucei equivalent.  Mutant 2 involved the change of the anticodon from ACG 

to AGU.  These mutations completely abolished activity with EcTadA.  Not surprisingly, 

ADAT2/3 was unable to deaminate this substrate.  No inosine was formed in Mutant 3 (which 

contained the mutations at positions 26 and 44 and the anticodon) with either system’s 

deaminase enzyme.  Mutant 4, which was the anticodon stem loop only of EctRNAArg, was 

deaminated by EcTadA to some degree; incubation of this mutant with ADAT2/3 showed no 

deamination activity.  The results from with the arginyl tRNA mutants suggest that even though 

the nucleotides just outside of the anticodon stem loop are important for EcTadA activity, they 

are less of a determinant for deamination than with TbADAT2/3.   The mutations made were not 

enough to rescue TbADAT2/3 activity.   
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Figure 2.11: Comparison of TbADAT2/3 and EcTadA specificity determinants with 
EctRNAArg(ACG).  TbADAT2/3 requires a greater deal of specificity than EcTadA.  The 
substrates were incubated for one hour.  EcTadA reactions were incubated at 37˚C and 
TbADAT2/3 reactions were tested at 27˚C.     
 
 
 
2.4 References 
 
 
1. Gerber AP, Keller W (1999). “An Adenosine Deaminase that Generates Inosine at the Wobble 
Position of tRNAs.” Science 286: 1146-1149. 
 
2. Losey HC, Ruthenberg AJ, Verdine GL (2006). “Crystal structure of Staphylococcus aureus 
tRNA adenosine deaminase TadA in complex with RNA.” Nat Struct Mol Biol 13: 153-159. 
 
3. Rubio MA, Pastar I, Gaston KW, Ragone FL, Janzen CJ, Cross GA, Papavasiliou F, Alfonzo 
JD (2007). “An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U 
deamination of DNA.” Proc Natl Acad Sci USA 104, 7821-7826.  

 23



 
4. Rubio MA, Ragone FL, Gaston KW, Ibba M, Alfonzo JD (2006). “C to U Editing Stimulates 
A to I Editing in the Anticodon Loop of a Cytoplasmic Threonyl tRNA in Trypanosoma brucei.” 
J Biol Chem 281, 115-120. 
 
5.  Weaver, RF. Molecular Biology.  New York. McGraw-Hill, 2002.   
 
6. Wolf, J, Gerber AP, Keller W (2002). “tadA, an essential tRNA-specific adenosine deaminase 
from Escherichia coli.” The EMBO Journal 21, 3841-3851. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 24



CHAPTER 3 
 
 

Creation of a tRNA over-expression system to assess editing states of tagged threonyl 
tRNAs in vivo 

 
 
 

3.1 Introduction 
 
 The previous studies tested the effects of tRNA mutations on ADAT2/3 using in vitro 

methods.   To assess the editing state of mutant tRNAs in vivo, the tagged tRNAs will be 

introduced into T. brucei.  Tag 22, Tag 23 and Tag 24 (Figure 2.7) will be produced at high 

levels in T. brucei using the expression vector pLEW100, which can then be edited and modified 

by the parasite’s cellular machinery, particularly by endogenous ADAT2/3.  Once introduced 

into T. brucei, total RNA from the cells will be isolated and then analyzed to evaluate the ability 

of ADAT2/3 to deaminate these mutants in vivo.  Figure 3.1 illustrates the process for creating 

the over-expression system.  The tagged tRNAs will be ligated into pLEW100 and electroporated 

into T. brucei.  Once the cells recover, total RNA will be isolated from the cells and the goal is to 

determine the ability of endogenous ADAT2/3 to catalyze the formation of inosine at the wobble 

position.   

 
 
3.2 Methods 
 
3.2.1 Vector selection 
 
 Numerous vectors are available for over-expression in T. brucei.  However, two of the 

more common over-expression plasmids used in T. brucei studies are pLEW82 and pLEW100 

(Figure 3.2).  Both vectors utilize a tetracycline (Tet) to induce expression (Figure 3.3).  The 

pLEW82 plasmid is set up so that the gene of interest is under the control of an endogenous T7 
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promoter and Tet operator.  Two T7 terminators are present at the end of the coding region to 

ensure efficient termination.  Using this system, pLEW82 has demonstrated the highest 

expression levels of known expression vectors for T. brucei (Wirtz et al. 1999).  The presence of 

multiple resistance markers for ampicillin (AmpR) for Escherichia coli selection and phleomycin 

(Phleo) for selection in T. brucei allow for effective selection during cloning and transfection for 

the cells that contain the plasmid construct.  The plasmid pLEW100 also contains resistance 

markers for ampicillin and phleomycin.  However, expression of this vector is under the control 

of a dual-promoter system.  The selectable marker is under the control of a constitutive T7 

promoter.  A Tet-regulated PARP promoter drives expression of the gene of interest. 

                                           

Figure 3.1: Schematic of the tRNA over-expression plan.  Once the plasmid is electroporated 
into T. brucei cells, total RNA will be isolated.  cDNA copies of the tRNAs are  then sequenced 
to assess the editing state of the RNA.   
 

 A first-generation inducible expression vector, pLEW82 utilizes a single Tet-responsive 

T7 promoter to drive expression of the experimental gene and at the same time expressing the 

drug-resistance marker gene.  The use of a dual-promoter however is more strongly regulated; 
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plasmid expression or “leakiness” without induction by tetracycline addition is much less with 

pLEW100 than with pLEW82.   
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Figure 3.2: Schematic of the over-expression vectors.  (A) The pLEW100 vector is under the 
control of a dual-promoter (T7 and PARP promoters.  (B) The pLEW82 vector is controlled by a 
single T7 promoter.  In both expression vectors, the luciferase gene is replaced by the gene of 
interest.   
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Figure 3.3: Schematic of the Tet-regulator system.  Under normal conditions, the Tet Repressor 
binds to the Tet operator and prevents expression of the gene of interest.  However tetracycline, 
when added, will bind to the Tet Repressor and prevent it from blocking gene transcription.   
 
 
 
3.2.2 Cloning 
 
 In order to clone the tagged tRNA (Tag 22, Tag 23, and Tag 24) into a Trypanosoma 

brucei cell line, the following cloning plan was used.  pLEW100 was digested with BamHI and 

HindIII to release the luciferase gene from the original plasmid.  After digesting the tagged 

constructs with the same enzymes, they were then ligated into the expression vector so that its 

expression will be under the control of the PARP promoter.  The constructs were then 

transformed into Escherichia coli DH5α competent cells.  To confirm that the constructs were 

taken up the E. coli and that they contained the correct tagged tRNAs, the plasmids were isolated 

from the E. coli cells and were sequenced.  Once verified that the tagged tRNAs were 

successfully ligated in, 200 milliliters of the correct clones were grown, midi-prepped and run 

through a QIAGEN column to extract purified plasmid DNA.   
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3.2.3 Transfection 
 
 Following isolation of purified plasmid DNA, Trypanosoma brucei cells were prepared 

for electroporation.  Electroporation is a process where a current passes through the cells’ 

membrane to allow for uptake of the plasmid.  The vector carries an antibiotic gene (in this case 

Phleo), which allows for growth of positively transformed cells.  100 μg of each plasmid DNA 

construct were used for the transfection.  After the electroporation, the T. brucei cells were 

recovered over a period of a few weeks to allow incorporation and expression of the plasmid and 

recovery from the electroporation process.     

 
 
3.3 Results and Discussion 
 
 To observe the effects of mutant tRNAs in vivo, the tagged tRNAThr mutants (Tag 22, 

Tag 23, Tag 24) were over-expressed in Trypanosoma brucei to assess the editing and 

modification states of the mutant tRNAs in vivo by T. brucei cellular machinery, especially by 

ADAT2/3.  Previously, it was shown that changes in the anticodon loop did not affect 

deamination activity (Figure 2.8).  As such, these mutations effectively created a “tag” to 

differentiate the endogenous tRNAs from the tRNAs introduced by over-expression and can be 

used as a sequence tag for reverse-transcription analysis.   

Earlier research with pLEW82 has demonstrated high levels of over-expression.  

However, Wirtz and colleagues demonstrated that regulation of the dual-promoter constructs 

(pLEW100) was better than the original single-promoter system (pLEW82) with respect to 

background expression in the absence of tetracycline (Wirtz et al. 1999).  As such, pLEW100 

was selected for over-expression of the tagged tRNAs.   
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The plasmids have been electroporated twice and are in the recovery phase of the second 

electroporation.  Before the cells are grown in the antibiotic to select for positively transfected 

cells, they are first grown in plain media until the cell density is optimal for growth in the 

selective media with Phleo.  The entire process takes weeks to complete.  Once the cells recover, 

total RNA will be isolated from the T. brucei cells.  From the total RNA, a cDNA copy of the 

tRNAThr mutants will be made from using reverse-transcriptase, and then will be amplified by 

PCR.  These PCR products will then be purified, cloned and sequenced to assess the editing state 

of the tRNAs from the endogenous ADAT2/3. 
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CHAPTER 4 
 
 

Conclusions and Future Work 
 
 
 

As Trypanosoma brucei and other trypanosomatids have a profound effect on both 

human health and global economy, it is important to look for possible targets for therapeutics 

against these parasites.  Because of the editing and modification events that exist in vivo in T. 

brucei, there is potential for discovering a unique biological process that can serve as an ideal 

drug target.  Identification and characterization of these editing and modification events can lead 

to the development of a therapeutic that can specifically target and kill the parasite without 

having any adverse effects on the human or animal host. 

The T. brucei ADAT2/3 enzyme can act on up to eight different tRNA substrates.  It was 

found that it could deaminate at least two of the tRNAs with comparable efficiency in vitro 

(Figure 2.4).  With TbtRNAThr(AGU) in particular, several conclusions can be made.  The first 

conclusion that can be drawn is that the full-length tRNA is necessary for in vitro hydrolytic 

deamination of adenosine to inosine at the wobble position (Figure 2.6).  Second, changes to the 

anticodon stem and to position 37 do not appear to affect enzymatic activity.  Mutation of the 

tRNA nucleotide at position 38 affected deamination most likely by changing the anticodon loop 

structure of the tRNA (Figure 2.8).   

The eukaryotic and bacterial ADAT specificity determinants were then compared using 

T. brucei and Escherichia coli as representatives for each domain, respectively.  The 

observations suggest that the TbADAT2/3 enzyme requires a greater deal of specificity than 

EcTadA.  EcTadA, when acting on a full-length substrate, only requires the correct anticodon 

sequence for deamination.  In addition, the nucleotides just 5’ and 3’ to the anticodon stem loop 
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appear to be important for activity, though more so with TbDAT2/3 than EcTadA (Figure 2.9 

and 2.10). 

The aim of this study was to elucidate what nucleotides and/or regions of the tRNA that 

are important for recognition and deamination by TbADAT2/3 to produce inosine at position 34.    

Although this data gives a good indication of the requirements of tRNA for activity, further 

studies must be performed to determine if the mutations made during this study affect catalysis 

or impacts substrate recognition and binding (and thus impairing the deamination reaction).  In 

addition, in vivo studies should be made with the tRNA mutants to find out if other components 

of T. brucei cellular machinery may contribute to the editing event.   

With the establishment of an expression vector, once electroporation is completed, 

analysis of tRNA must be made to assess the editing states of the tagged tRNAs in comparison 

with the wild type tRNAThr(AGU).  The findings may yield insight on how the tRNAs are edited 

in vivo and also may identify additional unique modification and editing events in hopes of 

finding a novel editing mechanism that is unique to Trypanosoma brucei.  These distinctive 

events can then be further investigated as the target for anti-trypanosomal therapeutics.   
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