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ABSTRA CT  

Ocean transform faults create segments of the mid-ocean ridge and rise systems.  The transform 

morphology and offset are controlled by spreading rate, temperature, heat flow, and crustal 

strength.  Numerical and analog modeling with modern computational power has made 

significant advances in the understanding of transforms.  Heat distribution numerical modeling 

indicates that most heat is retained in the center of the transforms.  In other modeling of oceanic 

transform faults, the greater part of the deformation made by the fault system to the ridge was in 

the center of the transform zone.  The rheological properties of the mantle and crust is highly 

complex and hinders further numerical modeling with current computation power. 
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INTR ODUC TI ON  

The ocean floor is still a mysterious place, but is becoming better known with modern 

technology advances.  The oceanic crust is characterized by deep trenches and immense ridges of 

underwater mountains.  These ridges are segmented by transform zones that are largely 

enigmatic in their origin since their proposed existence by Wilson (1965).  Progress has been 

made since their discovery and development of ideas on the plate tectonic cycle.  The orthogonal 

faults propagate in the direction of spreading creating strike slip motion between two adjacent 

parts of the crust with different ages (Gerya, 2012; Mauduit and Dauteuil, 1996). 

Larger offsets produce a narrower zone of deformation and more orthogonal attitudes relative to 

the ridge crest (Mauduit and Dauteuil, 1996).  Using plate tectonics and magnetic pole reversals, 

the original rift shape can be configured giving insight into the past bathymetry and processes of 

ridge segmentation.  Buiter and Torsvik (2014) concluded that oceanic transform faults can form 

by the reactivation of sutures or old subduction zone shedding light onto previous tectonic 

settings. 

With steep drop offs, transform faults not only alter the topography of the crust, but can alter the 

circulation pattern of oceans currents (Shannon and Chapman, 1991).  The global effect of 

oceanic transforms on currents on a global scale is not widely understood, and this is an area of 

active research.   

In this paper, I will review major characteristics of oceanic transforms based on observations and 

modeling.  Future research directions will be recommended. 
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GEOLO GI C SE TT IN G  

Ocean Spreading 

The mid-ocean ridge, or rise depending on the ocean, systems are a distinguishing feature of the 

Earth.  A major part of the Wilson Cycle is characterized by ridges, at which new crust is 

created, offset by transform zones. At these constructive boundaries, there is crustal thinning 

(Macdonald et al., 1988).  Although simplified, Figure 1 shows the expansive ridge system 

present on the ocean floor as proposed by Macdonald (1982). 

The overall morphology of the ridge is partially controlled by the spreading rate, causing slow 

spreading ridges, like those in the Atlantic to form deep rift valleys (Macdonald, 1982).  

Intermediate and fast spreading ridges are distinguished by a high point (axial ridge) near the 

spreading axis and smooth descending limbs. 

 

 

 

 

The uneven topography near the ridge axis can be credited to the result of volcanic activity 

(Ballard and Van Andel, 1977) and is typically 1–2 km wide (Ballard and Van Andel, 1977; 

Macdonald, 1982).  Asymmetric spreading at the ridges is the result of asymmetric extensional 

forces pulling the crust apart (Macdonald, 1982).  Axial depths and lithospheric thickness is 

affected by degree of asymmetric spreading of the ridges (Weatherly and Katz, 2010).  The 

complexity of the mid-ocean ridge system adds to the mystery of oceanic transform faults that 

break the ridges into segments of varying length by the lateral offset.  When a ridge is 

segmented, the two sections continue to “evolve independently” (Macdonald et al., 1988).  This 

can result in asymmetrical spreading of the segments causing further offset on the transforms 

(Macdonald et al., 1988).   

Figure 1: taken from Macdonald (1982); Map showing the ridge system on the ocean floor.  

The ridge or rise segments are denoted by their spreading rate.  The highest accreting rises 

are in the Pacific 
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This thesis will explore different models that have been developed to reproduce transform forms 

and characteristics and summarize conclusions about oceanic transform fault properties. 
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METH ODS  

Thermal Influence methodology 

Modeling of transforms constitutes a complex problem involving many different variables 

(Gerya, 2012).  In modern research, numerical computer modeling and wax models are the two 

most common approaches used to understand these large and numerous features.  The most 

important factor controlling transforms is the thermal relationship with the mantle (Behn et al., 

2007).  Four numerical models with different assumptions were explored by Behn et al. (2007).  

Equation 1 below was used by Behn et al. (2007) to calculate the dependence of viscosity on 

temperature.  All models followed a 100 km deep scenario across a 150 km transform fault but 

different in other variables for model 1 viscosity was held constant, in model 2 viscosity was 

variable depending on temperature, model 3 had a temperature dependent viscosity with a fault, 

and model 4 had a correction for friction and a maximum viscosity (Behn et al., 2007). 

    𝜂 =  𝜂0exp [
𝑄0

𝑅
(

1

𝑇
−

1

𝑇𝑚
)]    (1) 

In equation 1, 𝜂 represents temperature-dependent viscosity, 𝜂0 is a constant 1019 Pa·s (viscosity 

of normal mantle), R is the gas constant, and Q0 is the activation energy (250 kJ/mol) chosen for 

the model (Behn et al., 2007).  In model 3, an area with a width of 5 km was weakened to create 

a brittle zone targeted for fault deformation (Behn et al., 2007).  This area was modeled with a 

lower viscosity.  Lower viscosities allow for increased mantle upwelling (Behn et al., 2007).  In 

model 4, produced by Behn et al. (2007), accounted for “visco-plastic rheology” using equation 

2 and a maximum viscosity. 

    𝜏𝑚𝑎𝑥 = 𝐶0 + 𝜇𝜌𝑔𝑧     (2) 

In equation 2, C0 is defined as cohesion, z as depth, 𝑔 as acceleration due to gravity, 𝜌 as density, 

and 𝜇 as the coefficient of friction (Behn et al., 2007). Without the predefined fault zone, a larger 

area is subject to deformation.   

Lithosphere Strength methodology 

In an experiment carried out by Dauteuil et al. (2002) producing a physical model, oceanic 

spreading boundaries were simulated by superimposing a brittle layer over a ductile layer 

representing the rheologically different layers of the lithosphere.  The brittle layer was 

represented as sand, and silicone putty was used to for the viscous layer (Dauteuil et al. 2002).  

As illustrated in Figure 2, the starting length of the transform was 25 cm before the alterations 

and deformation caused in the experiment.  The putty was spread over two different areas 

simulating different conditions within the crust.  Three different conditions were tested including 

no putty (FT1), thin wedge of putty in a small area (FT2), and finally a wedge of putty over a 

larger area near the divergent zone and on the transform zone (FT3) as shown in Figure 2 

(Dauteuil et al. 2002).  These physical models were non-accretion of crust models meaning there 

was no addition of material to the spreading axis or transform.  The spreading rate used in each 

experiment was 4 cm hr−1 and stopped when an offset of 2cm was reached (Dauteuil et al. 2002).  

At 4 cm hr−1, this spreading rate is very rapid compared to real-world ridge spreading rates 

(Müller et al. 2008).  
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Similar experiments were performed by Marques et al. (2007) investigating crustal response and 

deformation to spreading.  Similar to the experimental set-up of Dauteuil et al. (2002), in the 

fifth model considered by Marques et al. (2007), a putty of polydimethylsiloxane (PMDS) was 

used to line a preformed transform.  The ridges were separated for 90 minutes and there was 

continual offset on the transform (Marques et al. 2007). 

 

Figure 2: from Dauteuil et al. (2002); This figure shows a schematic of the top view experiment.  The 

divergence was produced by pulling the two sheets away in opposite directions. 

 

Figure 3: from Dauteuil et al. 2002; A basic overview of the setups showing the putty arrangement 

differences. 
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RESUL TS  

Thermal Structure 

In the models calculated and produced by Behn et al. 

(2007), the distribution of heat across the transform 

boundary was represented in four ways.  The temperature 

was highest in the center of the transform in models 3 and 4 shown in Figure 5 (Behn et al. 

2007). The 600 C isotherm was noticeably closer to the surface than predicted with the half-

space model as was the 1200 C isotherm in the center of the transform shown in Figure 4c.  In 

models 1 and 2, the center of the transform has a lower temperature than that of models 3–4 but 

shows a greater distribution of the heat in the crust away from the ridge axis (Behn et al. 2007).  

In model 3, where viscosity was temperature dependent and there was a 5 km width of lower 

viscosity crust, there was a higher temperature distributed across the transform, but this model 

still closest relates to 1 and 2.  The magnitude and temperature of heat upwelling in model 4 is 

Figure 4:  from Behn et al. (2007).  (A)Graph showing the 
relationship between depth and temperature at the center of 

the transform Graph B shows the magnitudes stress relative to 

depth at the center of the transform.  The bottom figure is a 

cross section illustrating the 600 C and 1200 C isotherms 

position across the transform connecting the two ridge 

segments. 

Figure 5:  from Behn et al. (2007); Cross 

sections of 3D numerical experiments 

showing temperature distribution (right) 
and strain (left).  Note significant difference 

in mantle upwelling in D. 
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visible in Figure 4D by Behn et al. (2007) showing cooling at the ridge terminations seen in 

natural transforms.    

 

Deformation Structure 

 

The different experiments produced 

superficially very similar looking 

results.  In FT-1 shown in Figure 6 

from Dauteuil et al. (2002), the 

deformation is defined by two oblique 

strike-slip faults almost parallel to the 

preformed transform.  Normal faults 

are also formed and connect with the 

horizontal offsetting faults through 

what Dauteuil et al. (2002) call 

“horsetail pattern” faults.  In 

comparison to FT-2 and FT-3, FT-1 

produces deeper deformation, reaching 

1.2 cm into the 3 cm deep sand 

(Dauteuil et al. 2002).  FT-2 and FT-3 

had deformation only reaching 0.8 cm 

and 0.7 cm, respectively (Dauteuil et 

al. 2002).  The surface is more clearly 

distorted in the latter two models with 

widths of a few centimeters in the 

center of the transform (Dauteuil et al. 

2002). 

 

During the experiment conducted for 

FT-2 two sets of faults developed; the 

first set with trends 30 relative to the 

transform and the second set trending 

15 relative to the transform (Dauteuil 

et al. 2002).  This model also exhibits 

horsetail faults which produce the 

largest amount of vertical 

displacement (Dauteuil et al. 2002).  

During FT-3, the first set of faults 

propagating primarily altered the 

inside corners of the ridge-transform 

boundary (Dauteuil et al.2002).  The 

faults trend at a higher angle than that of 

the two previous models. 

 Figure 6: from Dauteuil et al. (2002) showing the different 

orientations of faults propagation in the experiment.  The 
width of the deformation clearly differing from FT-1 to FT-2 

to FT-3. 
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SUMMAR Y A ND CON CLUS IO NS  

Spreading Rate 

The attitude and form of oceanic transform faults depend on many properties.  Important 

properties affecting the morphology of the fault include spreading rate and mantle viscosity 

(Gerya, 2010; Dauteuil et al., 2002; Weatherley and Katz, 2010).  Gerya (2010) states that high 

viscosity mantle material produces high angle faults.  High angle faults are more orthogonal to 

the ridge direction.  Slow spreading ridges are dominated by transform zones that are narrow, 

deep, and likely to fill with sediments as shown in Figure 7 (Dauteuil et al., 2002).  Fast 

spreading ridges as seen in the Pacific on the East Pacific Rise (EPR), have wider transform 

zones as is also shown in Figure 7 (Dauteuil et al., 2002; Gerya, 2012).  Dauteuil et al. (2002) 

found that the Tjörnes Fracture Zone in the northern Atlantic has a significantly wide 

deformation zone for the spreading rate and segment length.  This fracture zone lies on top of a 

hot spot causing the area to be hotter and therefore weakening the crust (Dauteuil et al., 2002).  

The Tjörnes Fracture Zone is an outlier on the graph from Dauteuil et al. (2002) that illustrates 

the correlation between accretion rate and width of deformation (Figure 8).  Crust that is younger 

is hotter 

consequently 

causing the crust 

to be weaker and 

distributing the 

deformation across 

a larger area 

(Dauteuil et 

al.,2002; Gerya, 

2010; Behn et al., 

2007).  This agrees 

with the 

conclusion of 

Dauteuil et al. 

(2002) that the 

lithosphere is 

weaker when there 

is a viscous layer 

present as shown 

in their 

experiment. A 

similar explanation 

applies to the 

Azores fracture zone (Dauteuil et al, 2002).  

Spreading rate also has other effects on oceanic transforms.  Spreading rate of the ridge is related 

to the segment length (Fox and Gallo, 1984; Carbotte and Macdonald, 1994).  In the Pacific, 

where spreading rates are on average higher than those in the Atlantic, the segments separated by 

transforms are hundreds of kilometers long (Fox and Gallo, 1984).  Transform faults breaking up 

the Mid-Atlantic Ridge are discernibly more abundant and segment lengths are shorter (Fox and 

Figure 7: From Dauteuil et al. (2002), shows the differences of the deformation 
patterns depending on the spreading rate.  The residual heat from the faster 

accreting ridges weaken the lithosphere allowing for a larger area of deformation. 
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Gallo, 1984; Carbotte and Macdonald, 1994).  Spreading rate changes can cause transform faults 

to nucleate or cause offset (Gerya, 2012).  Offsets on oceanic transform faults are different from 

those along continental transform faults like the San Andreas Fault (Behn et al., 2002).  Oceanic 

transforms experience a larger amount of aseismic offset (Behn et al., 2002, 2007).  Behn et al. 

(2002) found that only 5% of shear strain is released from locked, mechanically coupled 

segments.  The remaining strain is thought to be released through aseismic creep or slow low-

magnitude earthquakes (Behn et al., 2002).  However, there are some transforms that produce 

earthquakes with larger magnitudes.  The Charlie-Gibbs transform zone in the Atlantic has 

produced a series of relatively large earthquakes since 1923 (Aderhold and Abercrombie, 2016).  

In 2015, the Charlie-Gibbs set off a Mw 7.1 earthquake (Aderhold and Abercrombie, 2016).  The 

Charlie-Gibbs is an outlier in terms of oceanic transform seismic activity.  

Thermal Distribution and Morphology 

The limbs of slow spreading ridges are cooler at a given distance from the ridge axis as they have 

greater ages.  Transforms propagating from slower spreading ridges are more stable than those of 

faster accreting ridges (Mauduit and Dauteuil, 1996).  This is because the deformation is focused 

on the center of the transform (Dauteuil et al., 2002), and the transforms hold the most heat in 

this central area due to increase mantle upwelling (Behn et al., 2007).  As stated earlier, the 

warmer the lithosphere, the weaker it is.  The rheology of the crust is controlled mainly by the 

temperature relating to the crustal thickness and magma injection (Behn et al., 2007).  The 

Figure 8: Taken from Dauteuil et al. (2002). Plots of various transform faults comparing spreading 

rate to width/offset.   
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strength of the crust is constrained by the heat flow and composition (Dauteuil et al., 2002), 

while shape changes can be initiated by mantle dynamics and asthenospheric flow (Weatherly 

and Katz, 2010).  The morphology of transform fault is very complex due to the three-

dimensional variables of the asthenosphere, gravity, and rheology.   

Oceanic Ridges spread at variable different rates, but the rates of those of the Atlantic cluster 

between two and four centimeters per year as illustrated in Figure 8 from Dauteuil et al. (2002).  

Ridge migration causes mantle upwelling and melting or an increase in temperature (Weatherly 

and Katz, 2010).  This change causes the crust to weaken.  The thermal distribution change, from 

the flow of the asthenosphere, across the transform fault then causes the deformation to be more 

wide-spread as seen in Figures 6 and 7.   
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REC OMME NDA TI ONS  FOR  FUT URE WOR K  

Transform faults are still a mysterious aspect of Earth Sciences.  These large features below the 

ocean’s surface affect plate tectonics and even ocean currents.  With new technological 

advances, numerical modeling is becoming more sophisticated.  Many unanswered questions 

remain to be researched on transform faults: What exactly causes transform fault nucleation?  

Does transform fault bathymetry cause other effects on ocean currents or ocean life?  Can the 

geometry and attitude of a transform fault be controlled and predicted using different rheological 

and temperature variables? Does the Charlie-Gibbs have a higher fault coupling due to 

intratransform spreading?  Does the Charlie-Gibbs have higher fault coupling from the 

reactivation of suture?  How will the stability of oceanic transforms be affected by future seismic 

activity? 
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