ASTRONOMY AND ASTROPHYSICS

Atomic data from the Iron Project

VII. Radiative dipole transition probabilities for Fe II*

Sultana N. Nahar

Department of Astronomy, Ohio State University, 174 West 18th Avenue, Columbus, OH 43210-1106, USA Internet: nahar@payne.mps.ohio-state.edu

Received 7 April 1994 / Accepted 13 June 1994

Abstract. Oscillator strengths, line strengths and Einstein Acoefficients are obtained for a large number of dipole allowed $(\Delta S = 0)$ fine structure transitions in Fe II. Spectroscopic energies of the observed fine structure levels are employed in the transformation from LS coupled multiplet strengths to the individual fine structure lines. The transition probabilities are thus significantly improved in accuracy over those obtained with calculated energies. As part of the second phase of the Iron Project the present work is part of the effort to improve the accuracy and the utility of the Opacity Project data. The calculations correspond to a 83-state close coupling calculations for Fe II described by Nahar & Pradhan (1994). Comparison of present oscillator strengths and lifetimes is made with experimental values, and with those calculated by Kurucz; the present values show an overall better agreement with the experimental data. Radiative data is obtained for 21,589 dipole allowed fine structure transitions in Fe II.

Key words: atomic data – plasmas – ultraviolet: general – infrared: genereal

1. Introduction

The atomic radiative data for energy levels, oscillator strengths, and photoionization cross sections for essentially all astrophysically abundant atoms and ions of the Opacity Project (OP) have been calculated in LS coupling (Seaton et al. 1994). The OP calculations are carried out in an *ab initio* manner using the close coupling (CC) approximation and employing the Rmatrix method. The aim of the present work, an extension of the OP (Nahar 1993) and a part of the Iron Project (IP, Hummer et al. 1993), is to provide an extensive dataset for the oscillator strengths (f-values), the line strengths (S) and the spontaneous radiative decay rates (A-values) of fine structure levels for the spectroscopic applications in laboratory and astrophysical plasmas.

While the dominant emphasis of the IP is on collisional processes, it is also envisaged that the accuracy of some of the radiative OP data, particularly for the heavy Iron group elements, would also be improved by the IP effort. Furthermore, the practical utility of the radiative data for a variety of astrophysical and laboratory applications would be enhanced by extending the LScoupling data to include fine structure and using observed spectroscopic energies rather than the calculated ones. With respect to the first criterion, in a recent study we described new OP calculations for Fe II (Nahar & Pradhan 1994, NP) that differ considerably from the earlier work of Sawey & Berrington (1992). The extension of the Fe II calculations to fulfill the second criterion forms the basis of the present report. In principle the fine structure should be considered by a complete treatment of the relativistic effects, in an intermediate coupling scheme, as well as electron-electron correlation effects that manifest themselves as configuration interaction, which for a system as complex as Fe II can be quite extensive. However, at the present time it is beyond the scope of current computational resources to carry through a full Breit-Pauli R-matrix calculation for the 83-state close coupling expansion used by NP (1994), that was necessary to adequately represent the electron correlation effects in Fe II. On the other hand, it is expected that the relativistic effects for Fe II should be relatively less important than an accurate representation of the correlation effects (although for higher ion charges this may not be the case).

In an earlier study of a similar nature (Nahar 1993), we considered the dipole allowed ($\Delta S = 0$) transitions in Si I and Si-like ions and found very good agreement with experimental data (usually within the experimental error bars) for the oscillator strengths of a number of fine structure transitions. Fe II is considerably more complex; however, preliminary work reported by NP (1994) showed that the results obtained appear to be of higher accuracy than the data available from Kurucz (1981, and private communication) for most of the transitions studied, when compared with the experimental data compiled and evaluated by the National Institute of Standards and Technology

^{*} Table for complete data for Fe π transition probabilities are only available from in electronic form: see the editorial in A&A 1992, Vol. 266, No. 2, page E1.

Table 1. Calculated and measured lifetimes, τ , of Fe II levels

State	J	$ au(\mathrm{ns})$				J	$ au(\mathrm{ns})$			
		Present	Expt.	Kurucz			Present	Expt.	Kurucz	
$\overline{z^6 P^0}$	7/2	3.884	$3.73(.06)^{a}, 3.8(2)^{b},$	3.28	z^6F^0	5/2	3.063	$3.3(2)^{c}, 3.33(9)^{d}$	2.93	
			$3.5(3)^{c}, 3.73(5)^{d}$		z^6F^0	3/2	3.078	$3.3(2)^{c}, 3.34(10)^{d}$	2.94	
$z^6 P^0$	5/2	3.844	$3.79(0.12)^{a}, 3.7(2)^{b}$	3.26	z^6F^0	1/2	3.081	$3.3(3)^{c}$	2.94	
			$3.5(3)^{c}, 3.83(7)^{d}$		$z^4 P^0$	5/2	3.250	$3.43(.09)^{a}$	2.97	
$z^6 P^0$	3/2	3.819	$3.71(.12)^{a}, 3.6(2)^{b}, 3.4(3)^{c}$	3.25	$z^4 P^0$	3/2	3.241	$3.44(.11)^{a}$	2.96	
$z^6 D^0$	9/2	3.460	$3.7(.2)^{\rm b}, 3.7(2)^{\rm c}, 3.7(6)^{\rm d}$	3.41	$z^4 D^0$	7/2	2.476	$3.02(.07)^{a}, 3.1(2)^{b}$	2.43	
$z^6 D^0$	7/2	3.487	$3.75(20)^{b}, 3.8(3)^{c}, 3.68(7)^{d}$	3.43	$z^4 D^0$	5/2	2.496	$3.1(.08)^{a}, 3.1(2)^{b}$	2.44	
$z^6 D^0$	5/2	3.499	$(3.7(.2)^{b}, 3.8(3)^{c}, 3.63(8)^{d})^{d}$	3.44	$z^4 D^0$	3/2	2.494	$3.0(2)^{b}$	2.43	
$z^6 D^0$	3/2	3,498	$3.7(.2)^{b}, 3.7(2)^{c}, 3.83(10)^{d}$	3.45	$z^4 D^0$	1/2	2.498	$2.9(2)^{b}$	2.42	
$z^6 D^0$	1/2	3.492	$3.8(.2)^{b}, 3.8(3)^{c}, 3.76(10)^{d}$	3.45	$z^4 F^0$	9/2	3.471	$3.87(.09)^{a}, 3.7(2)^{b}$	3.34	
$z^6 F^0$	11/2	2.982	$3.2(.2)^{b}, 3.3(2)^{c}, 3.19(4)^{d}$	2.83	$z^4 F^0$	7/2	3.435	$3.63(.11)^{a}, 3.6(2)^{b}$	3.22	
$z^6 F^0$	9/2	3.024	$3.2(.2)^{b}, 3.24(6)^{d}, 3.4(2)^{c}$	2.89	$z^4 F^0$	5/2	3.417	$3.75(.14)^{a}, 3.7(2)^{b}$	3.26	
$z^6 F^0$	7/2	3.034	$3.3(2)^{c}, 3.26(10)^{d}$	2.92	$z^4 F^0$	3/2	3.422	$3.7(2)^{b}$	3.3	

^a Guo et al. (1992), ^b Hannaford et al. (1992), ^c Schade et al. (1988), ^d Biemont et al. (1991).

(NIST; Fuhr et al. 1988). Presently the available data for Fe II derives mainly from two sources: Kurucz (1981) and Fawcett (1988), both of which employ a semi-empirical method due to Cowan (1968). Ekberg & Feldman (1993) also have obtained transition probabilities for 550 transitions based on measured values from various published reports. The present work is a completed account of the work initiated by NP (1994) for a relatively large dataset of Fe II transition probabilities.

The present calculations are carried out through algebraic transformation of the LS multiplet strengths calculated in the close coupling approximation, and observed energies for the fine structure levels which are known to a much higher precision than the calculated energies are used. The dipole allowed transitions ($\Delta S = 0$) are considered for all LS terms for which a partial or complete set of fine structure levels have been observed. The present work employs the level energies of Fe II from Johansson (1978) and 193 (769–576) unpublished levels (Johansson, private communication, 1992). The 265 LS terms observed correspond to 3109 LS multiplets with 21589 fine structure transitions, thus providing a reasonably comprehensive dataset for Fe II for practical applications.

The primary difficulty encountered in the present work is the LS term identification of the large number of computed terms of Fe II, and to establish the correspondence with the measured spectroscopic levels and energies. The theoretical and computational work is described in Sect. 2. A sample of the present extensive data set is provided in Sect. 3, with a discussion of related uncertainties.

2. Summary of theoretical work and computations

The LS multiplet strength, S, which is independent of the energy difference between the transitional states is obtained from the calculated LS oscillator strength, f_{if} , as

$$f_{if} = \frac{E_{fi}}{3g_i} \boldsymbol{S} \,, \tag{1}$$

where $E_{fi} = E_f - E_i$ is the transition energy and $g_i = (2S_i + 1)(2L_i + 1)$ is the statistical weight of the initial state. Energies are in Rydberg units throughout unless specified otherwise. In terms of dipole length and velocity operators

$$D_L = \sum_n r_n , \quad D_V = -2 \sum_n \nabla_n , \qquad (2)$$

where the summation is over all atomic electrons, the line strength is given by

$$\boldsymbol{S}_{L} = \left| \left\langle \psi_{f} \right\| \boldsymbol{D}_{L} \left\| \psi_{i} \right\rangle \right|^{2} , \qquad (3a)$$

in the 'length form' and

$$\boldsymbol{S}_{V} = \boldsymbol{E}_{fi}^{-2} \left| \left\langle \psi_{f} \right\| \boldsymbol{D}_{V} \left\| \psi_{i} \right\rangle \right|^{2} , \qquad (3b)$$

in the 'velocity form' respectively.

The fine structure line strengths, S_{JJ} , of the LS multiplet strength, S_{LS} , is obtained for the allowed transitions ($\Delta J = 0, \pm 1$) through the algebraic transformation,

$$S_{JJ} = C_{Al}(J_i, J_f)S_{LS} / \left[(2S_i + 1)(2L_i + 1)(2L_f + 1) \right]$$
(4)

where values of coefficients $C_{Al}(J_i, J_f)$ are obtained from Allen (1976). The above expression satisfies the conservation condition

$$S_{LS} = \sum_{J} S_{JJ} \,. \tag{5}$$

The fine structure f-values (oscillator strengths) are then obtained using $E_{J_f J_i} = E_{J_f} - E_{J_i}$, where E_{J_i} and E_{J_i} are now the *observed* energies, as

968

Table 2. Calculated and observed (Johansson 1978)^a energies of Fe π terms. An * next to an energy means the set of observed levels for the term is incomplete. The degeneracy symbol for each state is chosen for convenience as explained in the text

State		E(Ryd)		State		E(Ryd)	
		Obs.	Cal.			Obs.	Cal.
Octets							
3d ^{5 6} S4s4p ³ P ⁰	$z^8 P^0$	0.70972	0.7783	3d ⁵ 4s ⁷ S5s	a ⁸ S	0.25023	0.2457
3d ⁵ 4p ²	a ⁸ P	0.21567	0.2742	3d ⁵ 4s ⁷ S4d	a ⁸ D	0.19213	0.2300
Sextets							
$3d^{5}4s^{2}$	a^6S	0.97721	0.9951	3d ^{5 5} D6d	c ⁶ G	0.15148*	0.1550
$3d^{5} {}^{5}D4d$	b^6S	0.41061	0.4128	$3d^{5} {}^{5}D4p$	$z^6 P^0$	0.79726	0.8111
$3d^{5} {}^{5}D5d$	c^6S	0.22638	0.2388	$3d^{5}$ ⁶ S4s4p	$v^6 P^0$	0.62392	0.6594
$3d^54s^7S5s$	d ⁶ S	0.21835	0.2117	$3d^{5}$ ⁶ S4s4p	x^6P^0	0.46709	0.4785
3d ^{5 5} D4d	a ⁶ P	0.42130	0.4219	3d ^{5 4} P4s4p	$w^6 P^0$	0.37553	0.3966
3d ^{5 5} D5d	b ⁶ P	0.23987	0.2438	3d ^{5 5} D5p	$v^6 P^0$	0.35631	0.3581
$3d^54p^2$	c ⁶ P	0.14166	0.1834	3d ^{5 4} D4s4p	$u^6 P^0$	0.32751	0.3443
3d ^{6 5} D4s	a ⁶ D	1.18591	1.1782	3d ^{5 5} D6p	$t^6 P^0$	0.21058	0.2126
3d ^{5 5} D5s	b ⁶ D	0.47640	0.4687	3d ^{5 5} D4p	$z^6 D^0$	0.83695	0.8466
3d ^{5 5} D4d	$c^6 D$	0.42604	0.4273	3d ^{5 4} P4s4p	$y^6 D^0$	0.38557	0.4120
$3d^{5}$ ⁵ D6s	d^6D	0.25937	0.2555	3d ^{5 5} D5p	$\mathbf{x}^{6}\mathbf{D}^{0}$	0.37896	0.3789
3d ⁵ ⁵ D5d	e ⁶ D	0.23633	0.2422	3d ^{5 4} D4s4p	$v^6 D^0$	0.33345	0.3478
$3d^{5}4p^{2}$	f^6D	0.21862	0.2713	3d ^{5 5} D6p	$\mathbf{u}^{6}\mathbf{D}^{0}$	0.21765	0.2197
3d ^{5 5} D7s	g ⁶ D	0.16227	0.1638	3d ^{5 4} F4s4p	$t^6 D^0$	0.20451	0.2116
$3d^{5}4s^{7}S4d$	$\tilde{h}^{6}D$	0.12955	0.1446	3d ^{5 5} D4p	$z^6 F^0$	0.80542	0.8177
3d ^{5 5} D4d	a ⁶ F	0.43250	0.4312	3d ⁵ ⁴ G4s4p	$v^6 F^0$	0.39240	0.3756
3d ^{5 5} D5d	b ⁶ F	0.24042*	0.2454	3d ^{5 5} D5p	x^6F^0	0.36766	0.3675
3d ^{5 5} D6d	c ⁶ F	0.15354*	0.1568	$3d^{5}$ ⁴ D4s4p	$w^6 F^{()}$	0.34940	0.3756
3d ^{5 5} D4d	a ⁶ G	0.42021	0.4223	3d ^{5 4} F4s4p	$v^{6}F^{()}$	0.21856	0.2275
3d ^{5 5} D5d	b ⁶ G	0.23492	0.2417	3d ^{5 5} D6p	u ⁶ F ⁰	0.21207	0.2146
Quartets							
~ 3d ^{6 5} D4d	a^4S	0 40848	0 4142	3d ^{6 5} D5n	$v^4 P^0$	0 35518	0 3575
3d ⁷	$a^{4}P$	1.06566	0.9846	$3d^{6} {}^{3}P4n$	$1^{4}P^{()}$	0.35510	0.3348
3d ^{6 3} P4s	h ⁴ P	0.99450	0.9313	$3d^{5}4s^{5}P4n$	$t^4 \mathbf{P}^0$	0.32856	0.3340
$3d^{6} {}^{3}P4s$	$c^4 P$	0.73596	0.5515	$3d^{5}4s^{5}D4n$	s ⁴ P ⁽⁾	0.26375	0.2558
$3d^{5}4s^{2}$	d^4P	0.66603	0.6331	$3d^{5}4s^{3}D4p$	$r^{4}P^{()}$	0.21916*	0.2338
3d ^{6 5} D4d	o ⁴ P	0.38709	0.0551	3d ^{6 5} D6n	$a^{4}P^{0}$	0.20937	0.2129
3d ^{6 3} P5s	f ⁴ P	0.38709	0.2832	$3d^{6} {}^{3}P5n$	$n^4 P^0$	0.19511	0.1868
3d ⁶ ³ P4d	σ ⁴ Ρ	0.23441	0.2052	$3d^{6.5}D4n$	$z^4 D^0$	0.78197	0.1808
3d ^{6 5} D5d	вı h ⁴ P	0.21510	0.2200	$3d^{6} {}^{3}P4n$	$v^4 D^0$	0.62132	0.7896
$3d^54n^2$; ⁴ P	0.11286*	0.1231	$3d^{6} {}^{3}F4p$	v^4D^0	0.61370	0.5857
$3d^{6} {}^{5}D4s$	a ⁴ D	1 11388	1 1060	$3d^{6} {}^{3}D4n$	$w^4 D^0$	0.52817	0.3057
$3d^{6} {}^{3}D4s$	h^4D	0.90338	0.8499	$3d^{6} {}^{3}P4n$	$v^4 D^0$	0.32017	0.4902
$3d^{6}Ae^{2}$	$c^4 D$	0.50558	0.6101	3d ^{6 5} D5p	$^{4}D^{0}$	0.36336	0.3401
3d ^{6 5} D5e	d^4D	0.05750	0.0171	$3d^{6}{}^{3}E4n$	$t^4 D^0$	0.34316	0.3100
$3d^{6} D 3d^{6}$	e ⁴ D	0.41638	0.4335	$3d^{5}4s^{5}P4n$	s ⁴ D ⁰	0.31457	0.2952
3d ^{6 5} D6s	f ⁴ D	0.25338	0.4225	$3d^{5}4s^{5}D4n$	$r^4 D^0$	0.29153	0.2752
$3d^{6} {}^{3}P4d$	α ⁴ D	0.2000	0.2001	$3d^{5}4e^{3}F4n$	$a^4 D^0$	0.20133	0.1984
$3d^{6}$ ⁵ D5d	5 D h^{4} D	0.27970*	0 2404	$3d^54s^3D4n$	$n^4 D^0$	0 21354+	0.2129
$3d^{6}$ ³ F4d	i ⁴ D	0.23233*	0.2404	$3d^{6.5}D6n$	$^{P}D^{0}$	0.21308+	0.212)
3d ^{6 3} D5s	1 ⁴ D	0.20100*	0.1240	3d ^{6 3} P5n	$n^4 D^0$	0.18767+	0.1802
$3d^{6} {}^{3}G4d$	у D 12 ⁴ D	0.12004	0.1800	$3d^{6}{}^{3}F5n$	$m^4 D^0$	0.18737	0.1502
3d ^{6 5} D7e	χ.υ 1 ⁴ Π	0.20003	0.1608	$3d^{6.5}D/m$	$7^{4}F^{()}$	0.10237*	0.7968
$3d^7$	3 ⁴ E	1 16768	1 021	3d ^{6 3} E4n	$v^{4}F^{0}$	0.78223	0.7900
3d ⁶³ E4a	аг 6 ⁴ Б	0.00106	0.0227	3d ⁶³ C4n	уГ у ⁴ Б ⁽⁾	0.02342	0.5947
3d ⁶³ E4s	ог с ⁴ Б	0.20100	0.9527	3d ^{6 3} D4n	$w^4 F^0$	0.50542	0.5045
$3d^5/e^2$	сг 1 ⁴ Е	0.75209	0.0402	3d ^{6 5} D55	wг ν ⁴ Е ⁰	0.32907	0.3007
Ju 48	u r	0.52051	0.4004	Ju DJh	A T.	0.50201	0.5054

^a Observed energies include unpublished level energies of Fe II

(Johansson, private communication, 1992).

970

Table 2. (continued)

State		E(Ryd)		State		E(Ryd)	
		Obs.	Cal.			Obs.	Cal.
3d ^{6 5} D4d	e ⁴ F	0.40242	0.3933	3d ⁵ 4s ⁵ G4p	u^4F^0	0.34810	0.3618
3d ^{6 3} F5s	f^4F	0.28108	0.2401	3d ^{6 3} F4p	$t^4 F^0$	0.33817	0.2981
3d ^{6 5} D5d	g ⁴ F	0.24320	0.2377	$3d^{5}4s^{5}D4p$	$s^4 F^0$	0.29237	0.2822
3d ^{6 3} P4d	h ⁴ F	0.24256	0.2188	$3d^54s^3D4p$	r^4F^0	0.23314	0.2367
$3d^{6}$ ³ H4d	i ⁴ F	0.23240*	0.2007	3d ^{6 5} D6p	$a^4 F^0$	0.21278	0.2133
$3d^{6} {}^{3}F4d$	i ⁴ F	0.21661	0.1875	$3d^{5}4s^{3}F4p$	$p^4 F^0$	0.20141	0.2022
$3d^{6} G4d$	k ⁴ F	0.18585	0.1695	$3d^{6}$ ³ F5p	$o^4 F^0$	0.18529	0.1664
3d ^{6 5} D6d	1^4 F	0.14940*	0.1396	$3d^{6} G^{3}G^{5}p$	$n^4 F^0$	0.16697	0.1575
3d ⁶ ³ D4d	m ⁴ F	0.14146*	0.1158	$3d^{6} {}^{3}H4p$	z^4G^0	0.63548	0.6168
3d ^{6 3} G4s	a ⁴ G	0.95495	0.9168	3d ⁶ ³ F4p	v^4G^0	0.60678	0.5844
$3d^54s^2$	b ⁴ G	0.69523	0.6913	$3d^{6} G^{3}G4p$	x^4G^0	0.59033	0.5723
3d ^{6 5} D4d	c^4G	0.41310	0.4195	b3d ^{6 3} F4p	w^4G^0	0.36944	0.3475
3d ^{6 3} G5s	d ⁴ G	0.25241	0.2403	$3d^54s^5G4p$	v^4G^0	0.33203	0.3085
3d ^{6 3} H4d	e ⁴ G	0.24387	0.2112	$3d^54s^3F4p$	u^4G^0	0.20868*	0.2115
3d ^{6 5} D5d	f^4G	0.23088	0.2389	$3d^54s^3G4p$	t^4G^0	0.20038	0.1948
a3d ^{6 3} F4d	g ⁴ G	0.23107	0.1946	3d ⁶ ³ H5p	s^4G^0	0.18833	0.1588
3d ^{6 3} G4d	h^4G	0.20197	0.1830	$3d^{6} {}^{3}F5p$	r^4G^0	0.16926	0.1498
3d ^{6 5} D6d	i ⁴ G	0.14662	0.1538	$3d^54s^5F4p$	a^4G^0	0.16594*	0.1777
3d ^{6 3} H4s	a ⁴ H	0.99415	0.9631	3d ⁶ ³ G5p	p^4G^0	0.14292*	0.1402
3d ^{6 3} H5s	b ⁴ H	0.29368	0.2404	3d ^{6 3} H4p	z^4H^0	0.63434	0.6193
3d ^{6 3} H4d	c ⁴ H	0.24399	0.2104	$3d^{6} {}^{3}G4p$	$v^4 H^0$	0.58358	0.5669
3d ^{6 3} Fa4d	d ⁴ H	0.22898	0.1939	$3d^54s^5G4p$	x^4H^0	0.34980	0.3693
3d ^{6 3} G4d	e ⁴ H	0.20181	0.1830	$3d^54s^3I4p$	w^4H^0	0.23439	0.2606
3d ^{6 3} H4d	a ⁴ I	0.24146	0.2106	3d ⁵ 4s ³ G4p	$v^4 H^0$	0.19810	0.2010
$3d^{6}$ ³ G4d	b^4I	0.20019	0.1812	3d ⁵ 4s ³ G4p	u^4H^0	0.18413*	0.1380
3d ^{6 3} H4d	a ⁴ K	0.24407	0.2120	3d ⁶ ³ H5p	t^4H^0	0.17227	0.1821
3d ^{6 3} P4p	z ⁴ So	0.64601	0.6075	3d ⁶ ³ G5p	$s^4 H^0$	0.14892*	0.1455
3d ^{6 3} P4p	v ⁴ So	0.36382	0.3144	3d ^{6 3} H4p	$z^4 I^0$	0.62942	0.6194
$3d^54s^5P4p$	x ⁴ So	0.29358	0.2718	$3d^54s^3I4p$	$v^4 I^0$	0.25027	0.2810
3d ^{6 3} P5p	w ⁴ So	0.20214	0.1919	3d ^{6 3} H5p	$\dot{x}^4 I^0$	0.19004	0.1751
3d ^{6 5} D4p	$z^4 P^0$	0.75942	0.7706	$3d^54s^3H4p$	$w^4 I^0$	0.16756*	0.1444
3d ^{6 3} P4p	$y^4 P^0$	0.63549	0.5997	3d ⁵ 4s ³ I4p	z^4K^0	0.25488*	0.2852
$3d^54s5S4p$	$x^4 P^0$	0.55889	0.5729				
3d ^{6 3} D4p	$w^4 P^0$	0.53329	0.5009				
Doublets	_						
$3d^6a^1S4s$	a^2S	0.85046	0.7887	3d ⁶ b ³ P4p	$v^2 P^0$	0.32364*	0.2902
$3d^7$	a ² P	1.02079	0.9148	3d ⁵ 4s ³ P4p	$u^2 P^0$	0.30280*	0.2533
3d ⁶ a ³ P4s	$b^2 P$	0.95123	0.8763	3d ⁵ 4s ³ D4p	$t^2 P^0$	0.22047	0.2001
3d°b3P4s	c ² P	0.69194	0.5975	3d°a 3P4p	$z^2 D^0$	0.62921	0.5944
3d ⁶ 3P5s	$d^2 P$	0.28433	0.2750	3d°a3F4p	$y^2 D^0$	0.57815	0.5498
3d ⁶ ³ P4d	e ² P	0.23174	0.2095	3d ⁶ ³ D4p	$x^2 D^0$	0.51023	0.4747
3d°a'F4d	f ² P	0.20457*	0.1648	3d°a1D4p	$w^2 D^0$	0.47336	0.4134
3d'	a ² D	0.99985	0.8896	3d ⁶ F4p	$v^2 D^0$	0.42364	0.3630
3d ^o 3D4s	$b^2 D$	0.85980	0.7966	3d°b3P4p	$u^2 D^0$	0.34674	0.2851
3d ⁶ a ¹ D4s	c^2D	0.84174	0.7565	3d ⁶ b ³ F4p	$t^2 D^0$	0.32672*	0.2698
3d′	d^2D	0.75326	0.6128	3d ⁵ 4s ³ P4p	$s^2 D^0$	0.27478*	0.2521
3d° 3P4d	e^2D	0.23069*	0.2108	3d ³ 4s ³ D4p	$r^2 D^0$	0.25592	0.2379
3d°a ³ F4d	f ² D	0.21085	0.1754	3d° 3P5p	$q^2 D^0$	0.19703*	0.1840
3d° 3D5s	g²D	0.19066	0.1316	3d°a3F4p	$z^2 F^0$	0.60334	0.5794
3d° 3G4d	hźD	0.18526	0.1646	3d° °G4p	y ² F ⁰	0.55523	0.5278
3d°a3F4s	$a^{2}F$	0.93960	0.8905	3d°a¹G4p	$x^2 F^0$	0.52418	0.4907
3d'	b ² F	0.89883	0.7842	3d [°] ³ D4p	$w^2 F^0$	0.49955	0.4606
3d° ¹ F4s	c ² F	0.78035	0.6907	3d°a¹D4p	v ² F ⁰	0.47920	0.4212
3d°b3F4s	d ²F	0.68951	0.5997	3d° 'F4p	$u^2 F^0$	0.40136	0.3411

Table 2. ((continu	ed)
------------	----------	-----

State		E(Ryd)		State		E(Ryd)	
		Obs.	Cal.			Obs.	Cal.
3d ⁵ 4s ²	e ² F	0.44525	0.4881	3d ⁶ b ³ F4p	t ² F ⁰	0.32340	0.3180
3d ⁶ a ³ F5s	f ² F	0.27294	0.2314	3d ⁵ 4s ³ G4p	$s^2 F^0$	0.31193	0.2582
3d ^{6 3} H4d	g ² F	0.23866	0.2066	3d ⁶ b ¹ G4p	r^2F^0	0.28847*	0.2350
3d ⁶ a ³ F4d	h ² F	0.22186*	0.1920	3d ⁵ 4s ³ D4p	$q^2 F^0$	0.24883	0.2101
3d ^{6 3} G4d	i²F	0.18195	0.1519	3d ^{6 3} F5p	$p^2 F^0$	0.17192	0.1417
3d ⁷	a ² G	1.04319	0.9380	3d ^{6 3} H4p	z^2G^0	0.62299	0.6072
3d ^{6 3} G4s	b^2G	0.91126	0.8667	3d ⁶ a ³ F4p	y^2G^0	0.59778	0.5713
3d ⁶ a ¹ G4s	c^2G	0.88459	0.8307	3d ⁶ ³ G4p	x^2G^0	0.54810	0.5262
3d ⁶ b ¹ G4s	d ² G	0.65527	0.5513	3d ⁶ a ¹ G4p	w^2G^0	0.52343	0.4883
$3d^54s^2$	e ² G	0.47524	0.4459	3d ^{6 1} F4p	v^2G^0	0.42770	0.3710
3d ^{6 3} G5s	f^2G	0.24403	0.2310	3d ⁶ b ³ F4p	u^2G^0	0.34802	0.2886
3d ^{6 3} H4d	g ² G	0.23335	0.2008	3d ⁵ 4s ³ G4p	t^2G^0	0.28166	0.2741
3d ⁶ a ³ F4d	\tilde{h}^2G	0.21543	0.1849	3d ⁶ b ¹ G4p	s^2G^0	0.28044	0.2090
3d ^{6 3} G4d	i ² G	0.18960	0.1638	$3d^54s^3F4p$	r^2G^0	0.18128*	0.1823
3d ⁷	a ² H	1.00242	0.9222	3d ⁶ ³ H5p	q^2G^0	0.18530	0.1452
3d ^{6 3} H4s	b ² H	0.95046	0.8958	3d ⁶ ³ F5p	p^2G^0	0.17293	0.1399
$3d^54s^2$	c ² H	0.48592*	0.4588	3d ⁶ ³ G5p	o^2G^0	0.14285*	0.1310
3d ^{6 3} H5s	d ² H	0.28571	0.2324	3d ^{6 3} H4p	$z^2 H^0$	0.59326	0.5772
3d ⁶ a ³ F4d	e ² H	0.22486	0.1917	$3d^{6} G^{3}G^{4}p$	$y^2 H^0$	0.57244	0.5581
3d ^{6 3} H4d	f^2H	0.22313	0.1896	3d ⁶ a ¹ G4p	x^2H^0	0.53175	0.5012
3d ^{6 3} G4d	g ² H	0.18885	0.1625	$3d^{6}$ ¹ I4p	w^2H^0	0.51836	0.4880
3d ^{6 1} I4s	a^2I	0.88997	0.8470	$3d^54s^3G4p$	$v^2 H^0$	0.31358	0.3181
3d ^{6 3} H4d	b ² I	0.23571	0.2061	3d ⁶ b ¹ G4p	u^2H^0	0.29589	0.2394
3d ^{6 1} I5s	c^2I	0.19970	0.1374	3d ⁶ 4s ³ I4p	$t^2 H^0$	0.21616	0.2158
3d ^{6 3} G4d	d ² I	0.19454	0.1786	3d ^{6 3} H5p	$s^2 H^0$	0.18007	0.1370
3d ^{6 3} H4d	a ² K	0.24006*	0.2092	3d ⁶ ³ G5p	$r^2 H^0$	0.14510	0.1415
3d ⁶ a ³ P4p	z²So	0.58600	0.5491	$3d^{6} {}^{3}H4p$	$z^2 I^0$	0.62049	0.5575
3d ⁶ b ³ P4p	y^2 So	0.37864	0.3210	$3d^{6}$ ¹ I4p	$y^2 I^0$	0.51565	0.4927
$3d^54s^3P4p$	x ² So	0.24228	0.2123	3d ⁵ 4s ³ I4p	$\mathbf{x}^2 \mathbf{I}^0$	0.19454	0.2054
3d ⁶ a ³ P4p	$z^2 P^0$	0.59897	0.5633	3d ⁶ ³ H5p	$w^2 I^0$	0.18664	0.1231
3d ^{6 3} D4p	$v^2 P^0$	0.52276	0.4852	$3d^{6}$ ¹ I4p	$z^2 K^0$	0.54065	0.5211
3d ⁶ a1S4p	$\mathbf{x}^{2}\mathbf{P}^{0}$	0.49460	0.4429	$3d^64s^3I4p$	$y^2 K^0$	0.22043	0.2409
3d ⁶ a ¹ D4p	$w^2 P^0$	0.46880	0.4130	1	-		

 $f_{JJ}(J_f, J_i) = S_{JJ}E_{J_fJ_i} / [3(2J_i + 1)] .$ (6)

The fine structure oscillator strengths, f_{JJ} , can also be obtained directly from the *LS* oscillator strength, f_{LS} , as (Seaton et al. 1994)

$$f_{JJ}(n_f SL_f J_f, n_i SL_i J_i) = f_{LS}(n_f SL_f, n_i SL_i)(2J_f + 1)(2L_i + 1) \\ \times W^2(L_f L_i J_f J_i; 1S)$$
(7)

where $W(L_f L_i J_f J_i; 1S)$ is a Racah coefficient. The above fine structure *f*-values satisfy the conservation sum

$$\sum_{J_i J_f} (2J_i + 1) f_{JJ} (n_f S L_f J_f, n_i S L_i J_i)$$

= (2S + 1)(2L_i + 1) f_{LS} (n_f S L_f, n_i S L_i). (8)

The improvement in accuracy through the use of observed energies cannot be achieved by splitting of LS oscillator strengths

through Eq. (7), which is used only for transitions between two LS states where one or both states have an incomplete set of observed fine structure levels, and for transitions between high angular momenta states (higher than $H \leftrightarrow I$) for which the values of $C_{Al}(J_i, J_f)$ are not available.

The radiative transition probability, A_{fi} , from higher state f to lower state i can be obtained, in atomic unit, as

$$A_{fi}(a.u.) = \frac{1}{2} \alpha^3 \frac{g_i}{g_f} E_{fi}^2 f_{if} , \qquad (9)$$

where α is the fine structure constant and g_f is the statistical weight of the final state, and in c.g.s. unit of time as

$$A_{fi}(s^{-1}) = \frac{A_{fi}(a.u.)}{\tau_0},$$
(10)

where $\tau_0 = 2.419 \, 10^{-17}$ s is the atomic unit of time. The total radiative probability for the state *f* is given by

$$A_f = \sum_i A_{fi} , \qquad (11)$$

© European Southern Observatory • Provided by the NASA Astrophysics Data System

1995A&A...293..967N

Table 3. f-, S-, and A-values for transitions in Fe II. E_i and E_f are the energies in cm⁻¹ for the initial and final levels except for the first line where the term energies are Rydberg units. EDIFF is the transition energy in Rydberg

Transition	E_{c}	Er	EDIFE	0:	<i>a</i> .	f; ,	S	0::
Transition	(cm^{-1})	(cm^{-1})	(Rvd)	g_i	g_J	Jij	5	(s^{-1})
		(em)						
z8Po → a8Pe	0.7097	0.2157	4.94E-01	24	24	6.697E-01	9.760E+01	1.313E+09
	52965 820	107219 500	4 94F-01	10	10	4 088E-01	2.481F+01	8 026E±08
	52965 820	106836.000	4.91E-01	10	8	2 584F-01	1.579E+01	6.252E+08
	52582 510	107219 500	4.912-01	20	10	2.304E-01	1.579E+01	5 210E+08
	52582.510	107219.500	4.98E-01	0	10 Q	2.004E 02	1.017E+00	4 112E+07
	52582.510	106404 020	4.940-01	0	6	2.094D-02	1.0172 ± 00 $1.572E\pm01$	9.112DT07
	52302.310	100404.920	4.90E-01	0 6	o o	3.213E-01	1.572E+01	6.270E+00
	52299.390	100830.000	4.97E-01	0	0	4.541E-01	1.372E+01	0.439E+08
	52299.390	106404.920	4.93E-01	0	0	2.3/0E-01	8.0/3E+00	4.040E+08
a6Se → z6Po	0.9772	0.7973	1.80E-01	6	18	4.336E-02	4.337E+00	3.760E+06
	23317.633	42658.224	1.76E-01	6	8	1.887E-02	1.928E+00	3.531E+06
	23317.633	43238.586	1.82E-01	6	6	1.458E-02	1.446E+00	3.859E+06
	23317.633	43620.957	1.85E-01	6	4	9.906E-03	9.638E-01	4.085E+06
a6Se → y6Po	0.9772	0.6239	3.53E-01	6	18	1.610E-02	8.204E-01	5.381E+06
	02217 622	60171 615	2 54E 01	6	o	7 1725 02	2 6465 01	5 4160 106
	23317.033	62040.025	3.34E-01	6	0 6	7.172E-03	2.725E 01	5.265E+06
	23317.033	62049.023	3.33E-01	6	4	2.502E-03	1.82217.01	5.224E+06
	23317.033	61974.933	3.52E-01	0	4	3.308E-03	1.823E-01	5.334E+00
a6Se \rightarrow x6Po	0.9772	0.4671	5.10E-01	6	18	1.712E+00	6.039E+01	1.192E+09
	23317.633	79331.500	5.10E-01	6	8	7.612E-01	2.684E+01	1.195E+09
	23317.633	79285.110	5.10E-01	6	6	5.704E-01	2.013E+01	1.192E+09
	23317.633	79246.170	5.10E-01	6	4	3.800E-01	1.342E+01	1.189E+09
a6Pe \rightarrow y6Do	0.4213	0.3856	3.57E-02	18	30	2.768E-06	4.182E-03	1.704E+01
	84266 556	88614 517	3 96E-02	8	10	2 302E-06	1 394E-03	2 323E+01
	84266 556	88209 453	3.59E-02	8	8	5.982E-07	3 996E-04	6 203E+00
	84266 556	88059 381	3.46F-02	8	6	9.571E-08	6.644E-05	1.225E+00
	8/326 012	88209.453	3.40E-02	6	8	1.406E-06	7.156E-04	1.061E±01
	84326.012	88050 381	3.40E_02	6	6	9.660E-07	5.111E.04	8 980E±00
	84326.912	87964 650	3.30E-02	6	1	3.081E-07	1.673E-04	0.980E+00 4.070E±00
	84120.712	89050 381	3.32E-02	4		7 184E 07	1.073E-04	4.079E+00
	84424.374	87064 650	3.316-02	4	4	1.040E.06	2.002E-04	4.222E+00
	84424.374	87635.920	2.93E-02	4	2	6.800E-07	2.788E-04	9.359E+00
a6De \rightarrow z6Po	1.1859	0.7973	3.89E-01	30	18	1 263E-01	2 926E+01	2.555E+08
		011710	0.072 01	00		112052 01	21/202101	2.00011-00
	0.000	42658.224	3.89E-01	10	8	1.264E-01	9.752E+00	1.917E+08
	384.790	42658.224	3.85E-01	8	8	4.487E-02	2.796E+00	5.348E+07
	667.683	42658.224	3.83E-01	6	8	9.882E-03	4.648E-01	8.716E+06
	384.790	43238.586	3.91E-01	8	6	8.145E-02	5.006E+00	1.330E+08
	667.683	43238.586	3.88E-01	6	6	7.706E-02	3.576E+00	9.315E+07
	862.613	43238.586	3.86E-01	4	6	3.766E-02	1.170E+00	3.007E+07
	667.683	43620.957	3.91E-01	6	4	3.958E-02	1.820E+00	7.307E+07
	862.613	43620.957	3.90E-01	4	4	8.866E-02	2.731E+00	1.081E+08
	977.053	43620.957	3.89E-01	2	4	1.263E-01	1.950E+00	7.661E+07

Table 3.	(continued)
----------	-------------

Transition	Ei	Er	EDIFF	ai	Q F	fif	S	aii
	(cm^{-1})	(cm^{-1})	(Ryd)	31	3)	505		(s^{-1})
a6De \rightarrow z6Do	1.1859	0.8369	3.49E-01	30	30	2.936E-01	7.572E+01	2.872E+08
	0.000	38458 081	3 50E 01	10	10	2 4005 01	2.055E+01	2 3685+08
	0.000	38660.043	3.52E-01	10	8	5.484E-02	4 670E+00	6.834E+07
	384 790	38458 981	3.47E-01	8	10	6 751E-02	4.670E+00	5 222E+07
	384.790	38660.043	3.49E-01	8	8	1.313E-01	9.036E+00	1.283E+08
	384 790	38858 958	3.51E-01	8	6	9.477E-02	6 487E+00	1.248E+08
	667 683	38660.043	3.46F-01	6	8	1 248E-01	6.487E+00	9.010E+07
	667.683	38858 958	3.48E-01	6	6	5.017E-02	2 595E+00	4 881E±07
	667 683	39013 206	3.40E-01	6	1	1.176E-01	6.058E+00	1.730E±08
	862 613	38858 058	3.46E.01	4	6	1.748E 01	6.058E+00	1.122E+08
	862.613	20012 206	2 4 9 E 01		4	2 219E 02		2 124E+06
	862.613	39013.200	3.40E-01	-+ /	4	1 144E 01	2.0385.00	2 2225-08
	002.013	39109.307	3.49E-01	4	2 A	1.144E-01	3.936E+00	2.232E+08
	977.033	39013.200	3.47E-01	2	4	2.273E-01 6 520E-02	3.936E+00	6.323E±07
	911.055	59109.507	5.4712-01	2	2	0.52012-02	1.1201.+00	0.5252407
a6De \rightarrow z6Fo	1.1859	0.8054	3.80E-01	30	42	3.976E-01	9.404E+01	3.302E+08
	0.000	41968.046	3.82E-01	10	12	3.425E-01	2.687E+01	3.353E+08
	0.000	42114.818	3.84E-01	10	10	5.270E-02	4.120E+00	6.235E+07
	0.000	42237.033	3.85E-01	10	8	4.251E-03	3.314E-01	6.323E+06
	384.790	42114.818	3.80E-01	8	10	2.888E-01	1.823E+01	2.683E+08
	384.790	42237.033	3.81E-01	8	8	9.678E-02	6.090E+00	1.131E+08
	384.790	42334.822	3.82E-01	8	6	1.220E-02	7.657E-01	1.909E+07
	667.683	42237.033	3.79E-01	6	8	2.431E-01	1.155E+01	2.102E+08
	667.683	42334.822	3.80E-01	6	6	1.313E-01	6.224E+00	1.520E+08
	667.683	42401.302	3.80E-01	6	4	2.271E-02	1.075E+00	3.957E+07
	862.613	42334.822	3.78E-01	4	6	2.031E-01	6.448E+00	1.553E+08
	862.613	42401.302	3.79E-01	4	4	1.610E-01	5.105E+00	1.853E+08
	862.613	42439.822	3.79E-01	4	2	3.139E-02	9.941E-01	7.238E+07
	977.053	42401.302	3.77E-01	2	4	1.747E-01	2.776E+00	9.996E+07
	977.053	42439.822	3.78E-01	2	2	2.200E-01	3.493E+00	2.522E+08
$z6Do \rightarrow a6Pe$	0.8369	0.4213	4.16E-01	30	18	6.753E-02	1.462E+01	1.562E+08
	38458.981	84266.556	4.17E-01	10	8	6.782E-02	4.874E+00	1.186E+08
	38660.043	84266.556	4.16E-01	8	8	2.419E-02	1.397E+00	3.356E+07
	38858.958	84266.556	4.14E-01	6	8	5.341E-03	2.323E-01	5.509E+06
	38660.043	84326.912	4.16E-01	8	6	4.338E-02	2.502E+00	8.046E+07
	38858.958	84326.912	4.14E-01	6	6	4.114E-02	1.787E+00	5.672E+07
	39013.206	84326.912	4.13E-01	4	6	2.013E-02	5.849E-01	1.838E+07
	38858.958	84424.374	4.15E-01	6	4	2.099E-02	9.098E-01	4.360E+07
	39013.206	84424.374	4.14E-01	4	4	4.706E-02	1.365E+00	6.473E+07
	39109.307	84424.374	4.13E-01	2	4	6.709E-02	9.748E-01	4.594E+07
$z6Do \rightarrow a6Fe$	0.8369	0.4325	4.04E-01	30	42	4.966E-01	1.105E+02	4.660E+08
	38458 981	82853 659	4.05E-01	10	12	4.257E-01	3.157E+01	4.664E+08
	38458 981	82978.677	4.06E-01	10	10	6.546E-02	4.841E+00	8.655E+07
	38458 981	83136 488	4 07F-01	10	8	5 284F-03	3.894F-01	8.795E+06
	38660 0/2	82078 677	4 04E-01	2	10	$3.604E_{-01}$	2 142F±01	3 777F±08
	38660.043	83136 / 82	4 05E-01	o Q	۵۲ ۵	1 208E-01	7 156F100	1 594E±08
	38660.043	83308 104	4.00E-01	0 8	6	1.525E_02	8 9985-01	2 704 F±07
	38828 020	83136 / 20	4 03E 01	0 6	Q Q	3 0/3E 01	1 358E±01	2.704E+07 2.984E+08
	38858.958	83308.194	4.05E-01	6	6	1.646E-01	7.314E+00	2.169E+08

974

1995A&A...293..967N

Table 3. (continued)

Transition	E_i	E_f	EDIFF	q_i	q _f	fif	S	aji
	(cm^{-1})	(cm^{-1})	(Ryd)	0-	0,	0.13		(s^{-1})
	20050 050	02450 675	4.0612.01	6	4	2.951E.02	1 262E 00	5 6750 107
	20012 206	83439.073	4.000-01	0	4	2.631E-02	1.203E+00	3.073E+07
	39013,200	82450 675	4.04E-01	4	4	2.349E-01	5.008E+00	2.224E+08
	20012.200	82558 512	4.05E-01	4	4	2.025E-01	1.169E+00	1.046E+08
	20100 207	82450 675	4.00E-01	4	2 1	3.931E-02	1.100E+00	1.0406+08
	39109.307	03439.073	4.0415-01	2	4	2.19/E-01	3.202E+00	1,441E+00
	39109.307	05550.545	4.036-01	2	2	2.771E-01	4.1046+00	5.051E+08
a4Pe \rightarrow z4Po	1.0657	0.7594	3.06E-01	12	12	8.383E-02	9.855E+00	6.315E+07
	13474.411	46967.444	3.05E-01	6	6	5.849E-02	3.449E+00	4.376E+07
	13474.411	47389.779	3.09E-01	6	4	2.538E-02	1.478E+00	2.921E+07
	13673.185	46967.444	3.03E-01	4	6	3.738E-02	1.478E+00	1.842E+07
	13673,185	47389.779	3.07E-01	4	4	1.121E-02	4.380E-01	8.504E+06
	13673.185	47626.076	3.09E-01	4	2	3.529E-02	1.369E+00	5.427E+07
	13904.824	47389.779	3.05E-01	2	4	6.961E-02	1.369E+00	2.603E+07
	13904.824	47626.076	3.07E-01	2	2	1.402E-02	2.738E-01	1.063E+07
a4De \rightarrow z4Po	1.1139	0.7594	3.54E-01	20	12	1.421E-01	2.406E+01	2.391E+08
	7055 200	16967 111	3 56E 01	Q	6	1 4265 01	0.624E+00	1 030E 108
	8301 038	40907.444	3.50E-01	6	6	1.420E-01	9.024E+00	1.930E+08
	8680 454	40907.444	3.40E 01	4	6	4.229E-02	2.105E+00	4.198L+07
	8080.404	40907.444	2.55E 01	4	4	0.990E-03	5.400E-01	4.5000+00
	0391.930 9690 454	47309.119	3.33E-01	4	4	9.970E-02	3.033E+00	1,316E+06
	0000.434	47309.779	3.33E-01	4	4	7.344E-02	2.3006+00	1.162E+07
	8840.708	4/389.779	3.51E-01	2	4	2.34/E-02	4.010E-01	1.103E+07
	8080.454	47020.070	3.55E-01	4	2	5.930E-02	2.005E+00	1.2008+08
	8840.708	4/020.0/0	3.33E-01	2	2	1.181E-01	2.005E+00	1.1858+08
a4Fe \rightarrow z4Do	1.1677	0.7820	3.86E-01	28	20	8.545E-02	1.861E+01	1.430E+08
	1872.567	44446.878	3.88E-01	10	8	8.595E-02	6.646E+00	1.299E+08
	2430.097	44446.878	3.83E-01	8	8	1.209E-02	7.576E-01	1.423E+07
	2837.950	44446.878	3.79E-01	6	8	8.120E-04	3.855E-02	7.032E+05
	2430.097	44784.761	3.86E-01	8	6	7.332E-02	4.559E+00	1.170E+08
	2837.950	44784.761	3.82E-01	6	6	2.061E-02	9.703E-01	2.418E+07
	3117.461	44784.761	3.80E-01	4	6	1.682E-03	5.317E-02	1.299E+06
	2837.950	45044.168	3.85E-01	6	4	6.390E-02	2.991E+00	1.139E+08
	3117.461	45044.168	3.82E-01	4	4	2.370E-02	7.443E-01	2.779E+07
	3117.461	45206.450	3.84E-01	4	2	5.948E-02	1.861E+00	1.406E+08
a4Fe → z4Fo	1.1677	0.7822	3.85E-01	28	28	4.314E-02	9.401E+00	5.148E+07
	1872.567	44232 512	3.86E-01	10	10	3.956E-02	3.075E+00	4735E+07
	1872 567	44753 799	3.91F-01	10	8	3 624F-03	2 782F-01	5 556F+06
	2430 097	44232 512	3.81F_01	8	10	4 416F-03	2.782E-01	4 118F±06
	2430.097	44753 700	3.86E_01	0 8	20	3 201 E-02	2.702E-01 2.048E±00	3 933E107
	2430.007	45070 870	3 805-01	Q Q	6	5 8268 02	2.0+0E+00 3 508F-01	9.255E+07
	2430.097	14752 700	3 875 01	0 6	Q Q	7 63/E 02	3 5085 01	6 710E+06
	2037.930	44133.199	3.82E-01	0 6	0 6	2 065E 02	1 386E-01	3.528E±07
	2037.330	45079.079	3 87E 01	0 A	0 A	2.703E-02	2 686E 01	1.041E+07
	3117 461	45070 870	3872-01	0 1	4	8 560E 02	2.0000-01	6 707E+04
	3117.461	45280 801	3.84E-01	- 1	1	3 441 F-02	1 07/ 1 07	4 082E+00

1995A&A...293..967N

Transition	E_i	E_f	EDIFF	g_i	g_f	f_{if}	S	a_{ji}
	(cm^{-1})	(cm^{-1})	(Ryd)					(s^{-1})
a4Fe \rightarrow z4Go	1.1677	0.6355	5.32E-01	28	36	8.807E-02	1.390E+01	1.558E+08
	1872.567	60625.449	5.35E-01	10	12	8.269E-02	4.634E+00	1.587E+08
	1872.567	60807.230	5.37E-01	10	10	5.728E-03	3.199E-01	1.327E+07
	1872.567	60956.781	5.38E-01	10	8	1.683E-04	9.378E-03	4.899E+05
	2430.097	60807.230	5.32E-01	8	10	7.838E-02	3.536E+00	1.425E+08
	2430.097	60956.781	5.33E-01	8	8	9.316E-03	4.192E-01	2.129E+07
	2430.097	61041.748	5.34E-01	8	6	2.578E-04	1.158E-02	7.876E+05
	2837.950	60956.781	5.30E-01	6	8	7.823E-02	2.659E+00	1.322E+08
	2837.950	61041.748	5.30E-01	6	6	9.427E-03	3.199E-01	2.130E+07
	3117.461	61041.748	5.28E-01	4	6	8.735E-02	1.986E+00	1.303E+08
a2Se \rightarrow z2Po	0.8505	0.5990	2.51E-01	2	6	1.317E-02	3.141E-01	2.229E+06
	37227.326	64834.073	2.52E-01	2	4	8.780E-03	2.094E-01	2.232E+06
	37227.326	64806.487	2.51E-01	2	2	4.386E-03	1.047E-01	2.225E+06
a2Se \rightarrow y2Po	0.8505	0.5228	3.28E-01	2	6	1.123E-01	2.056E+00	3.229E+07
	37227 326	73189,110	3.28E-01	2	4	7 486E-02	1.371E+00	3.229E+07
	37227.326	73187.280	3.28E-01	2	2	3.743E-02	6.853E-01	3.228E+07
a2Pe \rightarrow z2So	1.0208	0.5860	4.35E-01	6	2	1.706E-01	7.063E+00	7.772E+08
	18360.646	66248.660	4.36E-01	4	2	1.712E-01	4.709E+00	5.239E+08
	18886.780	66248.660	4.32E-01	2	2	1.694E-01	2.354E+00	2.534E+08
$a2Pe \rightarrow z2Do$	1.0208	0.6292	3.92E-01	6	10	3.666E-01	1.685E+01	2.709E+08
	18360.646	61093.413	3.89E-01	4	6	3.282E-01	1.011E+01	2.665E+08
	18360.646	62125.600	3.99E-01	4	4	3.734E-02	1.124E+00	4.771E+07
	18886.780	62125.600	3.94E-01	2	4	3.689E-01	5.618E+00	2.300E+08
$a2De \rightarrow z2Po$	0.9999	0.5990	4.01E-01	10	6	4.079E-02	3.052E+00	8.775E+07
	20516.960	64834.073	4.04E-01	6	4	4.109E-02	1.831E+00	8.074E+07
	21308.040	64834.073	3.97E-01	4	4	6.726E-03	2.035E-01	8.500E+06
	21308.040	64806.487	3.96E-01	4	2	3.361E-02	1.017E+00	8.483E+07
a2De \rightarrow z2Do	0.9999	0.6292	3.71E-01	10	10	2.059E-03	1.667E-01	2.272E+06
	20516.960	61093.413	3.70E-01	6	6	1.917E-03	9.333E-02	2.106E+06
	20516.960	62125.600	3.79E-01	6	4	1.404E-04	6.667E-03	2.433E+05
	21308.040	61093.413	3.63E-01	4	6	2.014E-04	6.667E-03	1.418E+05
	21308.040	62125.600	3.72E-01	4	4	1.860E-03	6.000E-02	2.067E+06
a2De \rightarrow z2Fo	0.9999	0.6033	3.97E-01	10	14	2.723E-02	2.060E+00	2.456E+07
	20516.960	64286.345	3.99E-01	6	8	2.608E-02	1.177E+00	2.500E+07
	20516.960	64425.408	4.00E-01	6	6	1.308E-03	5.886E-02	1.683E+06
	21308.040	64425.408	3.93E-01	4	6	2.698E-02	8.240E-01	2.230E+07

1995A&A...293..967N

and the lifetime of state f can now be obtained as

$$\tau_f = 1/A_f \,. \tag{12}$$

Conservation of the total LS multiplet strength, S_{LS} , with the sum of fine structure components, Eq. (5), is checked for each LS transition if splitting is carried out through line strength, Eq. (4), and the discrepancy is found to be usually less than 0.01%. Conservation of the total LS multiplet oscillator strength is checked with the sum of fine structure components, Eq. (8), if splitting is carried out through oscillator strength, Eq. (7), to ensure that there is no discrepancy beween the two values.

The radiative calculations for Fe II for the OP were carried out (NP, 1994) in the close coupling (CC) approximation employing the *R*-matrix method using a 83 state expansion for the target. The calculations resulted in 743 bound states below the ionization threshold and over 19000 oscillator strengths in LS multiplet among these states. Present calculations correspond to processing of only 3109 transitions, a small fraction of the total number of bound - bound radiative data computed for FeII. The major effort in the present work involved in the identification of the calculated states, correlating them with the observed energies, and sorting out the corresponding f-values from a large number of transitions obtained from the close coupling calculations. The calculated energies are not necessarily in the same sequence, because of unobserved levels in between, and are not in the same order as the observed set of LS terms. Being a complex system of 25 electrons with considerable correlations effects. Fe II gives rise to many energy levels that are closely spaced. Identification of these states required consistency checks of the effective quantum numbers of the Rydberg series of states belonging to the Fe III core states and percentage contributions of the contributing channels (NP 1994). A code ELEVID is developed specifically for the identification of states. The code also processes the data for calculated energies and oscillator strengths (that is stored encoded in separate files), and to correlate and sort out the transitions of interest.

The fine structure splitting is carried out from the calculated f-values obtained in the length form only. As explained in the earlier work (Nahar 1993), in the R-matrix calculations the wave functions in the asymptotic region are better represented than in the inner region, and the dipole matrix elements in the length form are weighted more towards the asymptotic region and therefore more accurate than the velocity form. The LSmultiplet f-values and A-values presented in this work correspond to observed LS term energies, obtained through statistical average over the fine structure energies.

Some explanation is necessary for transitions between terms having incomplete sets of observed fine structure levels. The measured energies (Johansson 1992) correspond to a large number of levels, 769 in total belonging to 265 LS terms. Not all the LS terms have complete set of observed fine structure levels. Another code JJTOLS carries out a check for completeness of the set of observed fine structure levels which in general is not specified in the observed energy Table (JJTOLS also computes the oscillator strengths and other quantities). For all transitions

up to angular momenta $H \leftrightarrow I$, the transition energy between one or both unobserved levels is obtained from the values of f_{JJ} , Eq. (7), and S_{JJ} , Eq. (4), to calculate the transition probability, and for transitions beyond $H \leftrightarrow I$, the transition energy is approximated to ΔE_{LS} for unobserved levels.

3. Results and discussion

As the main aim of the present work is to make available an extensive amount of data for transition probabilities in Fe II, it is necessary to also assess the uncertainties in the theoretical calculations as compared with other reliable measurements and theoretical calculations. Detailed checks and comparison of the f-values obtained from the close coupling calculations are carried out in the earlier work (NP 1994) and it is found that, on the whole, present values are in better agreement with the experimental values in the NIST compilation (Fuhr et al. 1988) than those by Kurucz (1981).

The other check for the f-values is carried out through a comparison with the lifetimes of the atomic levels, τ , which can be measured usually with higher precision than the transition probabilities. The computed lifetimes were compared earlier (NP 1994) with the available experimental data; however, since the work was not complete, some of the contributing Avalues from higher levels were not included in the calculated lifetimes. Table 1 presents the revised lifetime values with more contributing levels of Fe II obtained using the additional transition probabilites from the present work, and compares these with the experimental ones (Guo et al. 1992; Hannaford et al. 1992; Schade et al. 1988; Biemont et al. 1991), and with those calculated by Kurucz. Present lifetimes are obtained from allowed transitions only, whereas the Kurucz values consider forbidden transitions as well (though the contribution is small). It can be seen from the Table that the present calculated lifetimes for all the levels agree better with the measured values than the Kurucz data. As the lifetime of a given level involves contributions from several transitions, the good agreement with experiment indicates an improved accuracy in comparison with the earlier works.

It is necessary to designate the multiplet energies in order to tabulate the results. Table 2 presents the observed Fe II LS terms in symmetry order, with even parity terms followed by the odd parity terms and the energies obtained from statistical averaging over the fine structure levels. The degeneracy symbol for each term does not necessarily match the observed one. The notation for degeneracy, in alphabetical order for the even terms and antialphabetical order for the odd terms, of the same symmetry is chosen for convenience of identification, and is used throughout for specification of transitions. An asterisk next to the energy of a LS term corresponds to an incomplete set of observed fine structure levels for that term.

Table 3 presents a small sample, taken from the complete table, of the computed f-, S- and A-values for transitions between the lowest few terms of total angular momenta belonging to the four spin symmetries, octet, sextet, quartet and doublet.

The first line of each transition in Table 3 corresponds to LSmultiplet f-, S- and A-values, followed by the individual fine structure components. As mentioned earlier, observed energies are used for calculations of the f- and A-values; in the case of unobserved fine structure levels, calculated energies are used. On the first line, the energies of the LS terms are expressed in Rydberg units whereas the level energies are expressed in cm⁻¹ units. The transition energy between the levels is given in Rydberg units. The g_i and g_f are the statistical weight factors of the initial and final levels respectively. There are a few transitions in the complete Table for which no f- and A-values are obtained. These correspond to transitions between two closely spaced LS terms where the initial term has a lower energy but a few of its fine structure levels lie high above the dipole allowed levels of the higher term. In addition to the transition probabilities, the Table contains all the LS terms considered with explicit configurations and energies. It also contains a FORTRAN program that can read the transition probabilities and calculate the lifetime of a LS term or a fine structure level.

4. Conclusion

The oscillator strengths, line strengths, and transition probabilites for transitions among dipole allowed fine structure levels of Fe II are obtained as a part of the Iron Project. These values provide an extensive dataset for astrophysical applications involving the analysis of Fe II spectra. A comparison with available experimental values shows better agreement than currently available data. The present transition probabilities are now being utilized in astrophysical models for spectral intensities of Fe II lines.

The radiative work reported herein required about 500 CPU hours on the Cray Y-MP in Columbus, Ohio. Considering the complexity of the work, it is estimated that the relativistic Breit-Pauli calculations with full intermediate coupling would require several times the CPU time and memory used in the present computations.

The complete Table of 3109 LS multiplets and 21 589 fine structure transitions may be obtained electronically via e-mail from nahar@payne.mps.ohio-state.edu.

Acknowledgements. The author would like to thank Professor Anil K. Pradhan for suggestions and comments. The work was carried out on the Cray Y-MP at the Ohio Supercomputer Center in Columbus, Ohio. The work was supported by NASA (NAGW-3315) under the Long Term Space Astrophysics (LTSA) program and by a fellowship awarded by the College of Mathematical and Physical Sciences at the Ohio State University.

References

- Allen C.W., 1976, Astrophysical Quantities, 3rd Edition Athlone Press, London
- Biémont E., Baudoux M., Kurucz R.L., Ansbacher W., Pinnington E.H., 1991, A&A 249, 539
- Cowan R.D., 1968, J. Opt. Soc. Am. 58, 808
- Ekberg J.O., Feldman U., 1993, ApJS 86, 611
- Fawcett B.C., 1988, At. Data Nucl. Data Tables 40, 1
- Fuhr J.R., Martin G.A., Wiese W.L., 1988, J. Phys. Chem. Ref. Data 17, Suppl. 4
- Guo B., Ansbacher W., Pinnington E.H., Ji Q., Berends R.W., 1992, Phys. Rev. A 46, 641
- Hannaford P., Lowe R.M., Grevesse N., Noels A., 1992, A&A 259, 301
- Hummer D.G., Berrington K.A., Eissner W., et al., 1993, A&A 279, 298 (IP)
- Johansson S., 1978, Physica Scripta 18, 217 (private communication, 1992)
- Kurucz R.L., Semiempirical calculation of gf values: Fe II, Smithsonian Astrophysical Observatory Special Report 390 (Cambridge, 1981); *f*-values given in this paper correspond to his most recent calculated gf values, obtained from him by private communication 1991
- Nahar S.N., 1993, Physica Scripta 48, 297
- Nahar, S.N., Pradhan A.K., 1994, J. Phys. B 27, 429 (NP)
- Sawey P.M.J., Berrington K.A., 1992, J. Phys. B 25, 1451
- Schade W., Mundt B., Helbig V., 1988, J. Phys. B 21, 2691
- Seaton M.J., Yu Y., Mihalas D., Pradhan A.K., 1994, MNRAS 266, 805 (OP)