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We study the T=0 crossover from the BCS superconductivity to Bose-Einstein condensation in the attractive
Hubbard Model within dynamical mean field theory �DMFT� in order to examine the validity of Hartree-Fock-
Bogoliubov �HFB� mean field theory, usually used to describe this crossover, and to explore the physics
beyond it. Quantum fluctuations are incorporated using iterated perturbation theory as the DMFT impurity
solver. We find that these fluctuations lead to large quantitative effects in the intermediate coupling regime,
leading to a reduction of both the superconducting order parameter and the energy gap relative to the HFB
results. A qualitative change is found in the single-electron spectral function, which now shows an incoherent
spectral weight for energies larger than three times the gap, in addition to the usual Bogoliubov quasiparticle
peaks.
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I. INTRODUCTION

The problem of the crossover from BCS superconductiv-
ity to Bose-Einstein condensation �BEC� of composite
bosons, where the superconducting coherence length
�roughly the size of the fermion pair binding� is, respectively,
much larger than or much smaller than the average interfer-
mion spacing, has been a problem of great interest from the
very early stages of development of the theory of supercon-
ductivity. It was first addressed in the very early work of
Eagles.1 In 1980 Leggett2 showed, using a variational ap-
proach, that at zero temperature the superconducting BCS
ground state at weak coupling evolves smoothly into a Bose
condensate state of tightly bound “molecules” at strong cou-
pling. Noziéres and Schmitt-Rink3 extended the analysis to
lattice models and to a finite temperature and showed that the
transition temperature Tc between the normal and the super-
conducting state evolves continuously as a function of the
magnitude of the attractive interaction between the fermions.
The discovery of high-Tc superconductors, which are charac-
terized by short coherence length comparable to �but larger
than� the interparticle spacing, led to a resurgence of interest
in the BCS-BEC crossover. A variety of interpolation
schemes between weak and strong coupling developed using
variational methods, functional integrals, and diagrammatic
methods have been explored,4–6 and the existence of
pseudogap anomalies in the normal state of a short coherence
length superconductor has been established in two-
dimensional systems.7,8 Recently it has become possible to
directly realize the BCS-BEC crossover in a dilute atomic
gas of fermions in a trap, by varying their two-body interac-
tion �scattering length� using a Feshbach resonance.9

In this paper we analyze the BCS-BEC crossover in the
attractive Hubbard model using the dynamical mean field
theory �DMFT�10,11 approach. Our goal is to focus on the
intermediate coupling regime U / t�1, where one has no ob-
vious small parameter. Since the DMFT becomes exact in the

limit of infinite dimensions,10,11 we are, in a sense, using the
inverse coordination number of the lattice as the small pa-
rameter. The attractive Hubbard model has been studied re-
cently using DMFT, but primarily in the normal phase12 to
analyze pair formation above Tc and related phenomena. We
focus here on the superconducting phase at zero temperature,
in part because the DMFT method has been much less ex-
plored in broken symmetry phases.

The remainder of the paper is organized as follows. In
Sec. II, we define the model and review the Hartree-Fock-
Bogoliubov �HFB� mean field theory. In Sec. III, we briefly
summarize the DMFT approach in the superconducting �SC�
state and then describe the specific implementation of DMFT
that we use, namely the iterated perturbation theory �IPT�, in
Sec. IV. In Sec. V we present our results for the chemical
potential, energy gap, SC order parameter, density of states,
spectral function, occupation probability, and superfluid stiff-
ness. We discuss how each of these evolves from the weak
coupling BCS limit to the strong couping BEC limit, and to
what extent the quantum fluctuations included in the DMFT
implemented using IPT modify the results relative to HFB
mean field theory.

II. MODEL

We use the simplest lattice model, which exhibits the
BCS-BEC crossover, defined by the Hamiltonian,

H = − t�
ij,�

ci�
† cj� − �U��

i

ni↑ni↓ − ��
i

ni. �1�

The first term describes the kinetic energy of fermions with
nearest-neighbor hopping t, the on-site attractive interaction
�−�U�� induces s-wave, singlet pairing, and leads to a super-
conducting ground state for all n�1, with the chemical po-
tential � determining the filling factor n. �We will not study
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the system with n=1 for which superconducting and charge-
density wave orders coexist�.

The simplest mean-field description of this system uses
the Hartree-Fock-Bogoliubov �HFB� theory leading to the
following self-consistent equations for the “gap” � and � at
a temperature T�1/ �kB��:

1

�U�
= �

k

tanh��Ek/2�
2Ek

�2�

and

n = 2�
k
�1 −

�k

Ek
tanh��Ek

2
	
 . �3�

We use standard notation, where �k is the band dispersion for
the fermions and Ek=��2+�k

2, with �k��k−�− �U�n /2. As is
well known4–6,13 at T=0, the solution of these equations
leads to a BCS superconductor in the weak coupling �U� / t
�1 limit, to a BEC of hard core bosons in the opposite
extreme �U� / t	1, and interpolates smoothly in between.
However, the finite temperature solutions of these equations
for �U� / t	1 yields a Tc��U�, not the BEC transition tem-
perature scale expected to be of order t2 / �U�, and the HFB
approach therefore does not constitute an interpolating ap-
proximation at finite temperature.

The DMFT is one of the simplest schemes that has the
potential to overcome some of these limitations of simple
HFB theory. As we discuss in the following sections, the
lattice dependence of quantities that arise in the DMFT is not
via the momentum k but only via the band dispersion �k, and
hence we can make the replacement

�
k

→ d�
��� , �4�

where 
��� is the �bare� band density of states �DOS�. The
implementation of the DMFT is often simplest on a Bethe
lattice with a large coordination number z→�, for which


��� =
�4t2 − �2

2�t2  �2t − ���� , �5�

if the bare hopping is normalized as

t →
t

�z
. �6�

We conclude this section by calculating the effective two-
body interaction or the low-energy scattering amplitude. This
will give us a clear idea about the regime of �U� / t, where we
expect the corrections to HFB at T=0 to be the most severe,
and it will also emphasize the similarity between the con-
tinuum Fermi gases often studied theoretically �and now ex-
perimentally� and the lattice model studied in this paper. The
low-energy scattering is described by the real part of the T
matrix Re T��→0� for the two-body problem in vacuum,
i.e., for two fermions in an otherwise empty lattice. This is
the analog of the well-known three-dimensional “scattering
length” for the case of the Bethe lattice studied in this paper.
As shown in Fig. 1, for �U� / t�2 the attractive interaction is

not sufficient to cause a two-body bound state in vacuum,
and �U� / t=2 is the threshold for bound state formation at
which the scattering amplitude diverges.14 We also note that
at �U� / t=2 the effective interaction diverges, i.e., one reaches
the unitary limit, even though bare �U� is in the intermediate
coupling regime. We expect that the deviations from the
HFB theory will be maximal in the vicinity of �U� / t=2,
where the system is effectively very strongly interacting.

III. DYNAMICAL MEAN FIELD THEORY

To explore the intermediate coupling regime, we use the
dynamical mean field theory �DMFT� approach,10,11 which
reduces a lattice problem with many degrees of freedom to
an effective single-site problem by “integrating out” all the
fermionic degrees of freedom except those at one site—the
“impurity site”—and retaining the effects of this only in the
form of a self-consistently determined bath with which the
“impurity site” hybridizes. This retains nontrivial local quan-
tum fluctuations missing in conventional mean field theories
and the description can be shown to be exact in the limit of
large dimensionality. Since there are many excellent reviews
of DMFT, we will only outline the elements of the technique
in order to introduce our notation and to indicate the changes
in the standard formalism necessitated by the presence of the
superconducting long-range order.

To take the superconducting order �with singlet pairing�
into account, we use the Nambu formalism with the spinors
�k

†��ck↑
† ,c−k↓� and the matrix Green’s function

Ĝ�k,�� � − �T���k,���†�k,0�� = �G�k,�� F�k,��
F†�k,�� − G�− k,− ��

	 ,

�7�

where F�k ,���−�T� ck↑���c−k↓�0�� satisfies F�−k ,−��
=F�k ,��. We will denote all Nambu matrices by a “hat” on
top. In this formalism, the interaction effects are described in
terms of the self-energy matrix,

FIG. 1. The real part of the T matrix T��→0� for the two-body
problem is plotted as a function of the attraction �U� / t between two
fermions in an otherwise empty Bethe lattice of infinite connectiv-
ity. �U� / t=2 is the threshold for the formation of a bound state in
vacuum.
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�̂�k,i�n� = � ��k,i�n� S�k,i�n�
S��k,− i�n� − ���k,i�n�

	 , �8�

where �n= �2n+1�� /� are fermionic Matsubara frequencies.
In the limit of infinite dimensions, it can be shown that the

self-energy is purely local, i.e., is k independent �see Ref.

10�, so that �̂= �̂�i�n�. Furthermore, the SC order parameter
can be chosen to be real in a uniform system, which implies
that S�i�n�=S��−i�n�. Hence, using the Dyson equation, the
full Green’s function for the lattice can be written as

Ĝ−1�k,i�n� = �i�n + � − �k 0

0 i�n − � + �k
	 − �̂�i�n�

= �i�n + � − �k − ��i�n� − S�i�n�
− S�i�n� i�n − � + �k + ��− i�n�

	 .

�9�

Thus, in DMFT the k dependence in Ĝ−1�k , i�n� enters only
via the dispersion �k.

The local self-energy is itself obtained from an effective
single site problem that can be regarded as arising from in-
tegrating out fermionic variables on all sites except one. The
effective action for this single-site problem within the DMFT
approximation is given by

Sef f = − 
0

�

d�
0

�

d�� �†���Ĝ−1�� − ��������

− �U�
0

�

d� n↓���n↑��� . �10�

Here the host �matrix� Green’s function Ĝ is not the nonin-
teracting local Green’s function, as it includes the effects of
the fermionic degrees at other sites that have been integrated
out in the presence of interactions, i.e., it includes �local�
self-energy corrections at all these other sites, and needs to
be determined by a triangle of self-consistency relations, as
described below.

The first of these relations comes from the requirement
that the “impurity” Green’s function for the single-site prob-
lem should be the same as the local Green’s function of the
lattice, so that

Ĝ�i�n� = �
k

Ĝ�k, i�n� . �11�

This gives the diagonal and off-diagonal components of the
impurity Green’s function as

G�i�n� = 
−�

�

d� 
���
�1 − �

��1 − ����2 − �� + S2�i�n�
, �12�

and

F�i�n� = S�i�n�
−�

�

d� 
���
1

��1 − ����2 − �� + S2�i�n�
.

�13�

Here �1� i�n+�−��i�n� and �2� i�n+�+��−i�n�. For the
case of the semicircular DOS of Eq. �5�, the integrals can be
evaluated in closed form as

G�i�n� =
2�1

x1 − x2
� 1

x1 + �x1
2 − 4t2

−
1

x2 + �x2
2 − 4t2
 ,

�14�

F�i�n� =
S�i�n�
x1 − x2

� 1

x1 + �x1
2 − 4t2

−
1

x2 + �x2
2 − 4t2
 ,

�15�

with x1,2��2−�1±���2+�1�2−4S2�i�n� /2.
The second relation comes from the Dyson equation con-

necting the full Green’s function Ĝ at the impurity site, the

host Green’s function Ĝ, and the self-energy �̂, typically
used in reverse, in the form

Ĝ−1�i�n� = Ĝ−1�i�n� + �̂�i�n� . �16�

The final relation comes from the solution for the self-
energy of the impurity problem defined by �10�, i.e., the de-
termination of

�̂�i�n� = �̂�Ĝ�i�n�� , �17�

from a knowledge of the host Green’s function. This is the
task of the “impurity solver,” and is typically the hardest step
in the triangle of self-consistency. In this paper, we use iter-
ated perturbation theory �suitably extended to deal with the
broken symmetry associated with the superconducting
ground state, as described in the following section� as the
impurity solver.

IV. ITERATED PERTURBATION THEORY

We adapt the iterated perturbation theory �IPT�, originally
developed for the paramagnetic phase of the repulsive Hub-
bard model,10,15 to the SC phase of the attractive Hubbard
model. IPT is an approximate technique, which is much sim-
pler than the more accurate but elaborate alternate methods
such as quantum Monte Carlo,16 exact diagonalization,17

numerical renormalization group,18 local moment
approximation,19 etc. IPT gives semi-analytical results that
can be directly and easily continued to the real frequency
domain. It has been well studied in the context of the DMFT
of the Mott transitions in the repulsive Hubbard model,10,15

where it gives results in complete qualitative agreement with
the more accurate methods mentioned above, and only quan-
titative disagreement typically no more than 10%–20% in the
transition temperatures and critical values of U /W; see, e.g.,
the comparison of results obtained using different impurity
solvers by Bulla et al.18 One can reasonably expect similar
levels of qualitative and quantitative correctness in the
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present context, in general. If qualitative changes are likely,
this is commented on at appropriate places in the paper.

In the form in which we use it here,20 IPT rests on the

following ansatz for the self-energy as a functional of Ĝ:

�̂IPT��+� = �̂HFB + Â�̂�2���+� . �18�

Here �̂HFB is the Hartree-Fock-Bogoliubov �HFB� self-

energy as in Eq. �19� �see Ref. 21�, �̂�2� is the second-order
perturbation theory result �in powers of �U�� but calculated in
terms of the Hartree-corrected host Green’s function �see Eq.

�24��; and Â is to be determined, as described below �see Eq.
�28��. All the calculations we report and discuss in this paper
are done at T=0, and we work directly in real frequency
�+=�+ i0+.

The IPT ansatz is constructed so that20 it
• reproduces the leading-order terms for the self-energy

in the weak coupling limit �U� / t�1,
• is exact in the atomic limit t / �U�=0, and
• reproduces the leading-order terms for the self-energy

in the large-� limit for all �U� / t, which ensures that some
exact sum rules are satisfied.

Thus IPT is expected to provide a reasonable interpolating
scheme between the weak and strong coupling limits.

The HFB self energy is given by

�̂HF = − �U�
n

2
�̂z − ��̂x. �19�

Here �̂z and �̂x are Pauli matrices in Nambu space. The filling
factor n=���c�

†c�� and �= �U��= �U��c↓c↑�, with � being the
superconducting order parameter, are obtained from the full
Green’s function within IPT as

n = −
2

�


−�

0

Im G��+�d� , �20�

� = −
�U�
�


−�

0

Im F��+�d� . �21�

The diagonal and off-diagonal components of the second-

order self-energy �̂�2� are given by

��2��t� = − U2�G̃11�t�G̃22�− t�G̃22�t� − F̃0
†�t�G̃22�− t�F̃0�t�� ,

�22�

and

S�2��t� = − U2�F̃0�t�F̃0�− t�F̃0
†�t� − G̃11�t�F̃0�− t�G̃22�t�� .

�23�

Here G̃11, G̃22, F̃0
†, and F̃0 are components of the Hartree-

corrected host Green’s function matrix

�G̃11��� F̃0���

F̃0
†��� G̃22���

	−1

= �G0��� F0���

F0��� − G0
��− �� 	

−1

− �̂HFB.

�24�

The subscript 0 has been added in order to distinguish the
components of the host Green’s functions that arise in the
specific context of the IPT approximation to the impurity
problem.

Each of the terms in �22� and �23� is the product of three
factors of the form

H�t� = h1�t�h2�− t�h3�t� , �25�

where each hi is either G̃11, G̃22, F̃0
†, or F̃0. Using the spectral

representation for each Green’s function we obtain for the
Fourier transform,

H��+� = − 
−�

�

�
i=1

3

d�i 
̃i��i�
N��1,�2,�3�

�+ − �1 + �2 − �3
, �26�

where 
̃i��i�=−Im�hi��i
+�� /� and N��1 ,�2 ,�3� is a thermal

factor,

N��1,�2,�3� = f��1�f�− �2�f��3� + f�− �1�f��2�f�− �3� ,

�27�

involving the Fermi function f����1/ �1+exp�����
=1− f�−��.

The matrix Â in �18� is fixed by demanding that �̂IPT��+�
is “exact” in the large � limit up to order 1 /�. As shown in

Appendix A, we find Â to be proportional to the identity
matrix �̂0 in Nambu space and given by

Â = �U2n0

2
�1 −

n0

2
	 − �0

2
−1�U2n

2
�1 −

n

2
	 − �2
�̂0,

�28�

where �̂0 is the identity matrix. Here n0 and �0 denote the
fictitious “filling factor” and “gap function” values evaluated
for the Hartree-corrected host Green’s function, i.e.,

n0 = − 2/�
−�

0

Im G̃11��+�d� , �29�

and

�0 = − �U�/�
−�

0

Im F̃0���d� . �30�

In the atomic limit, as discussed in Appendix B, we find
that the second-order self-energy vanishes. Thus, the IPT
self-energy for t /U=0 is simply the HFB self-energy. We
show in Appendix B that the HFB result is exact at zero
temperature in the broken symmetry phase for t /U=0, and
thus our ansatz for the self-energy is exact in the atomic
limit.

V. RESULTS

We have solved the DMFT equations within the IPT ap-
proximation as follows. For a given �U� / t and n, we start
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with a guess for the self-energy �̂��+� and the chemical po-
tential �. With this self-energy as input, we compute the full

local Green’s function Ĝ��+� using analytically continued
form of eqs. �14� and �15� at T=0. Then we use the Dyson

equation �16� to determine the host Green’s function Ĝ. Next
we use the IPT ansatz �18�–�24� to determine the �new� self-

energy in terms of Ĝ, using new values of parameters �, �0,
and n0. Finally, we obtain the new chemical potential by
solving the filling constraint equation �20� using the Broyden
method.22 We then iterate the whole procedure until a self-
consistent solution is reached, i.e., convergence in the self
energy matrix is achieved.

Within this self-consistency loop the evaluation of n and
� using eq. �20� and �21� �and similarly for n0 and �0� in-
volves integrals with singular integrands: the functions
Im G��+� and Im F��+� have square root singularity at a gap
edge �=Eg which is not a priori known. We fit these func-
tions in a small neighborhood of the gap edge to the form
K /��−Eg, where the fits determine the gap in the spectrum
Eg. Then the singular part of integral near the gap edge is
easily evaluated analytically and the part away from the sin-
gularity evaluated numerically using Gaussian quadrature.

All of the results reported in this paper have been ob-
tained at a fixed density of n=0.5 �quarter filling� in order to
avoid special features that arise at half-filling. �At half-
filling, corresponding to n=1, charge density wave order be-
comes degenerate with SC order and the Hamiltonian has
SU�2� symmetry, and is, in fact, isomorphic to the repulsive
Hubbard model, which has been well studied within DMFT.�
We expect similar results for n�1.

A. Chemical potential

Figure 2 shows the chemical potential � tuned to obtain
n=0.5 at T=0. We see that it decreases monotonically as a
function of �U� / t and the system becomes nondegenerate
with an increasing attraction between the fermions. For �U�
�3.5t the chemical potential goes below the bottom of the
band.

B. Density of states

The single-particle density of states �DOS� N���,

N��� = −
1

�
Im G��+� , �31�

is plotted in Fig. 3 for various values of �U� / t. We observe a
spectral gap �Eg� in the single particle DOS, which increases
with U � / t, as shown in Fig. 4, where the gap, as obtained
within the HFB theory, is also shown for a comparison.

For weak coupling, the HFB spectral gap has the form
t exp�−�t /2�U��, characteristic of BCS theory, while for a
large attraction it approaches the binding energy of the com-
posite bosons being proportional to �U� /2. The differences of
the DMFT result for the energy gap from the simple HFB
estimates will be discussed below. Near the gap edge the
DOS has a square root singularity characteristic of an s-wave
superconductor. But the DOS far from the gap edge does not
simply look like the noninteracting semicircular DOS of the
Bethe lattice �as would be the case in weak coupling BCS
theory�. The structure at larger energy values comes from the
� dependence of the self-energy, as we discuss below.

FIG. 2. The chemical potential � / t as a function of �U� / t for
n=0.5 and T=0 within IPT �filled circles� and HFB theory �full
line�.

FIG. 3. Single-particle density of states �per unit energy per unit
area� for n=0.5 and T=0 within IPT for the Bethe lattice of infinite
connectivity.

FIG. 4. The spectral gap in the single-particle density of states
for n=0.5 and T=0 as a function of �U� / t within IPT �filled circles�
and HFB theory �full line�. Note that the spectral gap within IPT is
suppressed as compared to that obtained from HFB theory.
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C. Order parameter and energy gap

The superconducting order parameter is calculated using

� = �c↓c↑� = − 1/�
−�

0

Im F��+�d� ,

and plotted in Fig. 5. We see that, as expected, the quantum
fluctuations included in DMFT suppress the order parameter
below its HFB mean-field value. The effect of quantum fluc-
tuations in the intermediate coupling regime can be seen
more clearly in Fig. 6, where we plot the fractional deviation
of the DMFT order parameter and the energy gap from their
corresponding HFB values. For small to intermediate values
of the coupling U� t, the quantitative differences are quite
large, with the HFB results being larger than the DMFT ones
by more than 100%.

D. Spectral function

Another important quantity of interest is the one-particle
spectral function,

A��,�� = −
1

�
Im G��,�+� , �32�

where G is the “11” component of the Nambu matrix Green’s
function for the lattice obtained by inverting Eq. �9�, and is
given by

G��,�+� =
� + � − � + �*�− �+�

D��,��
, �33�

with

D��,�� = �� + � − � + �*�− �+���� − � + � − ���+��

− S2��+� . �34�

Since we are working within the DMFT framework, we have
traded the k label for the energy label �.

Quite generally, we expect that the spectral function will
be of the form

A��,�� = Z+�����w − E� + Z−�����w + E� + Ainc��,��
�35�

where Z±��� are the coherent spectral weights in the Bogo-
liubov quasiparticle/quasihole excitation poles at energies
±E���, and Ainc is the incoherent part of the spectral function.
We recall that in simple BCS-HFB mean field theory Z±
= �1±� /E� /2, where �=�−�− �U�n /2 and E=��2+�2 and
Ainc=0. In contrast, as shown in Fig. 7 the DMFT result for
A�� ,�� not only has sharp delta function peaks at ±E corre-
sponding to the Bogoliubov excitations, but also has a broad
incoherent part. The weight in the coherent excitations Z+
+Z−�1 and the deficit from unity is contained in Ainc. All of
this is a consequence of the frequency-dependent self-energy,
as shown below.

The imaginary part of the �diagonal� self-energy is plotted
in Fig. 8. It vanishes at low energies �����3Eg� since there
are no final states available for a scattering event. In this
regime, from Eqs. �32� and �33� it follows that

FIG. 5. The superconducting order parameter � for n=0.5 and
T=0 within IPT �filled circles� and HFB theory �full line�. Note that
the order parameter within IPT is suppressed as compared to that
obtained from HFB theory.

FIG. 6. � �=�HFB−�IPT where �HFB is the SC order parameter
within HFB theory and �IPT is the same within IPT. �Eg

= �Eg�HFB− �Eg�IPT where �Eg�HFB is the spectral gap within HFB
theory and �Eg�IPT is the same within IPT.

FIG. 7. The spectral function A�� ,�� for n=0.5, T=0, and �U�
=2.5t as a function of � for various values of �=�−�+����=E�.
Note that A�� ,�� not only has coherent delta function peaks �which
are shown by arrows with the corresponding weights� but also has
broad incoherent parts that start appearing for ��3Eg. For �U�
=2.5t, Eg=0.57t.
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A��,�� = �� + � − � + ��− ���� �D��,��� , �36�

with D�� ,��= ��+�−�+��−�����−�+�−�����−S2���,
since ���� and S��� are now real. The quasiparticle excita-
tion energies are the two symmetrically placed zeros at �
= ±E of D, which is an even function of �. Thus, the exci-
tation energies are given by

D��, ± E� = 0, �37�

and the residues at the Bogoliubov quasiparticle poles are
then reduced compared to their HFB values and are given by

Z±��� = �±E + � − � + ���E���� �D

��
�� = ± E�� .

�38�

The imaginary part of the �diagonal� self-energy becomes
nonzero for ��3Eg, as shown in Fig. 8. This can be seen to
arise from the form of the second-order self-energy of Eq.
�22�, because in a system with a gap, final states for scatter-
ing an injected particle off a particle-hole pair are avaliable
only if the incident particle has ��3Eg. We should note,
however, that the 3Eg value of the threshold is likely an
artifact of DMFT/IPT, which ignores collective excitations.
It is well known13 that in finite dimensions this model has a
linearly dispersing sound mode and scattering of a one-
particle excitation off such a collective mode should lead to
nonzero Im ���� above Eg, and not 3Eg.

In any case, within IPT, the structure of the self-energy
leads to the incoherent spectral weight in A�� ,�� above three
times the gap. The reduction of the coherent quasiparticle
weight and the transfer of spectral weight to the incoherent
part of the spetral function are thus features related to the
�-dependent self-energy and are missing in simple HFB
mean field theory.

E. Occupation probability

We next calculate the analog of the momentum distribu-
tion within the DMFT, namely the occupation probability
n��� of an energy level � given by

n��� = 
−�

0

A��,��d� . �39�

This is plotted in Fig. 9 for various values of �U� / t.
Within the HFB approximation, n��� has the following

simple form:

n��� = Z−��� =
1

2
�1 −

�

E
	 . �40�

It is easy to see that in the weak coupling limit n��� looks
like a slightly broadened Fermi function, dropping from 1 to
0 over an energy scale of order �; its width hence increases
monotonically with �U� / t. As one begins to form more and
more tightly bound pairs, higher � states need to be involved
in the pairing and eventually the system becomes nondegen-
erate even at T=0, as already argued from the chemical po-
tential. Note that n��� within IPT is always less rounded than
that within HFB because quantum fluctuations reduce the
gap in the single-particle DOS relative to the HFB value.

We find that the exact sum rule �−�
� n���
0���d�=n /2 is

satisfied in our IPT calculation within the estimated numeri-
cal errors �0.4%–2%�.

F. Superfluid stiffness

We can also estimate an upper bound on the superfluid
stiffness Ds, which is the strength of the delta function in the
real part of optical conductivity:

FIG. 8. The imaginary part of self-energy ������� for n=0.5,
T=0, and �U� / t=2.5 as a function of �. Note that ������� becomes
nonzero only for ��3Eg. For �U�=2.5t, Eg=0.57t.

FIG. 9. The occupation probability n��� of an energy level � for
n=0.5, T=0 for various values of �U� / t obtained within IPT �full
curve� and HFB approximation �dashed curve�. The top right panel
shows n��� for �U�=0.75t and the top left panel shows n��� for
�U�=1.0t. Note the � scale over which these are plotted are different.
The bottom panel shows n��� for �U�=1.5t, 2.0t, 3.0t, and 4.0t,
starting from bottom to top.
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Re ���� = Ds� ��� + Re �reg��� . �41�

The Kubo formula for the superfluid stiffness23 can be writ-
ten as

Ds

�
= − �Kx� − Re �T �qx = 0,qy → 0,� = 0� , �42�

where the kinetic energy −�Kx� is the diamagnetic response
of the system to the vector potential and the transverse
current-current correlation function �T is the paramagnetic
response. It is easy to see that �T�0, so that Ds����Kx��.
Thus the kinetic energy gives an upper bound to the super-
fluid stiffness, and in fact we may use it to provide a rough
estimate of Ds �although, as emphasized in Ref. 24, there is
no reason to assume in general that for a lattice model, Ds is
identical to ���Kx��, even though this equality holds within
simple BCS-HFB theory.� In Fig. 10 we plot the superfluid
stiffness Ds as a function of the attractive interaction. We find
that it is of order t in weak coupling, but decreases mono-
tonically with �U� / t reaching �t2 / �U� in the strong coupling
limit, which reflects the increasing effective mass of the hard
core lattice bosons in the large �U� limit.

VI. CONCLUSIONS

In this paper we have studied the crossover from BCS
superconductivity to BEC at T=0 in the attractive Hubbard
model using dynamical mean field theory �DMFT�, imple-
mented using the iterated perturbation theory �IPT� scheme.
Our main goal was to explore the DMFT approach in a bro-
ken symmetry state, which has received less attention than
the paramagnetic phase, within a simple, easily imple-
mented, semianalytic scheme, and to see how the quantum
fluctuations included in this framework modify the Hartree-
Fock-Bogoliubov �HFB� mean field results. For the most part
we found that HFB is qualitatively correct but overestimates
the SC order parameter and energy gap. In the intermediate
coupling regime, the quantitative changes can be quite large.
The frequency-dependent self-energy of DMFT leads to the
appearance of incoherent contributions to the single particle
spectral function at energies larger than three times the gap,

and the consequent reduction in the coherent spectral weight
in the Bogoliubov quasiparticle/quasihole poles in the spec-
trum.
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APPENDIX A: LARGE-� LIMIT

In this appendix we will first determine the large � limit

of the self-energy and then use it to fix the parameter Â in
our IPT ansatz �18�. The �→� limit can be obtained by a
moment expansion of the Green’s function,

G��+� =
1

�+�M�0� +
M�1�

�
+

M�2�

�2 + . . . 
 , �A1�

which follows from the spectral representation

G��+� = 
−�

� 
G���d�

�+ − �
, �A2�

and the definition of the nth moment of the density of states,
M�n�=�−�

� 
G����n d�.
To evaluate the moments, it is useful to go to a Hamil-

tonian formulation for the single site impurity problem,
which requires introducing auxiliary degrees of freedom to
describe the “bath.” For the superconducting phase of the
negative U Hubbard model, one possible choice for the im-
purity Hamiltonian is:

Himp = − ��
�

c�
† c� − �U�n↑n↓ + �

k�

�kfk�
† fk�

+ �
k�

Vk�c�
† fk� + fk�

† c�� + D�
k

�fk↑
† f−k↓

† + f−k↓fk↑� ,

�A3�

which describes the impurity c� coupled to a superconduct-
ing bath of f fermions. Here Vk is the hybridization param-
eter that allows fermions to hop between the bath and the
impurity site and the D term represents s-wave pairing of the
f’s.

Using the spectral representation, the moments can be
written in terms of commutators ��,�� and anticommutators
��,�� involving the c’s and the impurity Hamiltonian:

M̂��
�0� = ��c�,c�

†�� = ���, �A4�

M̂��
�1� = ���c�,Himp�,c�

†�� , �A5�

and

M̂��
�2� = ����c�,Himp�,Himp�c�

†�� , �A6�

FIG. 10. Upper bound on the superfluid stiffness Ds for n=0.5,
T=0 as a function of the coupling constant �U� / t within IPT �filled
circles� and HFB theory �full line�.
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where � ,�= ↑ ,↓. An explicit evaluation of these commuta-
tors leads to the results

M̂�1� = �− � − �U�n/2��̂z + ��̂x, �A7�

M̂�2� = ��2 +
�2��U� + U2�n

2

�̂0. �A8�

The host Green’s function Ĝ is obtained from the impurity
Hamiltonian setting U=0, and its large � limit is

Ĝ−1��+� � w+�̂0 + �� − �
k

Vk
2/�	�̂z. �A9�

Using the Dyson equation, the large � limit of self energy is
then found to be

�̂��+� = �̂HFB +
U2n�1 − n/2�/2 − �2

�+ �̂0. �A10�

We must now find the large � limit of IPT self-energy,
and compare it with the exact �→� result �A10� derived

above. Begin with the diagonal component of �̂�2����, given
by

��2���+� = U2
−�

�

�
i=1

3

d�i
g1��1,�2,�3�N��1,�2,�3�

w+ − �1 + �2 − �3
,

�A11�

where

g1��1,�2,�3� = 
̃11��1�
̃22��2�
̃22��3� − 
̃ f��1�
̃22��2�
̃ f��3� .

�A12�

Here 
̃ii���=−1/� Im G̃ii��+� with i=1,2 and 
̃ f���
=−1/� Im F̃0��+�. In the large � limit it suffices to keep
terms up to order 1 /�. We thus get

��2���+� �
1

�+�U2n0

2
�1 −

n0

2
	 − �0

2
 . �A13�

Next, consider the off-diagonal component of �̂�2����,

S�2���+� = U2
−�

�

�
i=1

3

d�i
g2��1,�2,�3�N��1,�2,�3�

w+ − �1 + �2 − �3
,

�A14�

where

g2��1,�2,�3� = 
̃ f��1�
̃ f��2�
̃ f��3� − 
̃11��1�
̃ f��2�
̃22�p3� .

�A15�

It is easy to check that in the large � limit S�2� vanishes up to
order 1 /�.

Comparing the large � limits of the IPT ansatz �̂HFB

+ Â�̂�2���� and the exact self-energy �A10�, we find

Â = �U2n0

2
�1 −

n0

2
	 − �0

2
−1�U2n

2
�1 −

n

2
	 − �2
�̂0.

�A16�

APPENDIX B: ATOMIC LIMIT

In this appendix, first we first solve the attractive Hubbard
model exactly in the atomic limit t /U=0 and then show that
our IPT ansatz for self-energy is exact in this limit. In the
atomic limit one can drop the hopping term in the Hubbard
Hamiltonian �and also the hybridization term in the impurity
Hamiltonian�, so that

H = − �U�n↑n↓ − ��n↑ + n↓� . �B1�

The various sites decouple and so we have dropped the site
label. The four states are �0�, �↑�, �↓�, and �↑↓�, with corre-
sponding energies 0, −�, −�, and −2�− �U�.

To study the broken symmetry phase, we introduce a pair-
ing field h,

H = − �U�n↑n↓ − ��n↑ + n↓� − h�c↑
†c↓

† + c↓c↑� , �B2�

and finally take the h→0 limit. The T=0 equations for the
filling factor and order parameter are given by

n =
2

1 + �h/��2 and � =
− �U�h/�

1 + �h/��2 , �B3�

where �= �−�2�+ �U��−��2�+ �U��2+4h2� /2 is the lowest ei-
genvalue of the Hamiltonian. We thus find that in the h→0
limit we get the atomic limit solution: �=−�U� /2 for any
filling n and �= �U��n�2−n� /2.

Now consider the HFB equations in the atomic limit at
T=0,

n = 2�1 +
� + �U�n/2

��� + �U�n/2�2 + �2
 �B4�

and

1

�U�
=

1

2��� + �U�n/2�2 + �2
. �B5�

The solution of these self-consistent equations is �=−�U� /2
and �= �U��n�2−n� /2, which shows that HFB theory is ex-
act in the atomic limit at zero temperature.

Finally, we will show that the second-order self-energy
vanishes in the atomic limit. The Hartree corrected host
Green’s function,

G̃ˆ −1�w+� = Ĝ −1�w+� − �̂HFB, �B6�

reduces in the atomic limit to

G̃ˆ −1�w+� = w+�̂0 + �� + �U�n/2��̂z + ��̂x. �B7�

It can be checked that the full Green’s function in the atomic

limit is identical to this, which means that �̂�2���� vanishes.
Alternatively, one can calculate the density of states corre-

sponding to G̃ˆ 0, which are given by
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̃11�w� = �1 − n/2���w − �U�/2� + �n/2���w + �U�/2� = 
̃22�− ��
�B8�

and


̃ f�w� = − �/�U����w − �U�/2� − ��w + �U�/2�� , �B9�

and substitute these in the expression for the �̂�2���� and
check that all the components of second-order self-energy
matrix vanish in the atomic limit.
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