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ABSTRACT
We show that a regression of unsmoothed peculiar velocity measurements against peculiar velocities

predicted from a smoothed galaxy density Ðeld leads to a biased estimate of the cosmological density
parameter even when galaxies trace the underlying mass distribution, and galaxy positions and)

m
,

velocities are known perfectly. The bias arises because the errors in the predicted velocities are correlated
with the predicted velocities themselves. We investigate this bias using cosmological N-body simulations
and analytic arguments. In linear perturbation theory, for cold dark matter power spectra and Gaussian
or top-hat smoothing Ðlters, the bias in is always positive, and its magnitude increases with increas-)

ming smoothing scale. This linear calculation reproduces the N-body results for Gaussian smoothing radii
h~1 Mpc, while nonlinear e†ects lower the bias on smaller smoothing scales, and for h~1R

s
Z 10 R

s
[ 3

Mpc, is underestimated rather than overestimated. The net bias in for a given smoothing Ðlter)
m

)
mdepends on the underlying cosmological model. The e†ect on current estimates of from velocity-)

mvelocity comparisons is probably small relative to other uncertainties, but taking full advantage of the
statistical precision of future peculiar-velocity data sets will require either equal smoothing of the pre-
dicted and measured velocity Ðelds or careful accounting for the biases discussed here.
Subject headings : cosmology : theory È galaxies : distances and redshifts È methods : numerical

1. INTRODUCTION

One of the most popular approaches to constraining the
mass density parameter, the ratio of the average matter)

m
,

density to the critical density, is based on comparisons
between the galaxy density Ðeld mapped by redshift surveys
and the galaxy peculiar velocity Ðeld inferred from distance-
indicator surveys (see the review by Strauss & Willick 1995).
While the numerous implementations of this approach
di†er in many details, they are all motivated by the linear-
theory formula for the peculiar-velocity Ðeld,

¿(x)\H0 f ()
m
)

4n
P

d(x@)
(x@ [ x)
o x@[ x o3 d3x@ , (1)

or its divergence,

$ Æ ¿(x)\ [a0H0 f ()
m
)d(x) , (2)

where is the mass density contrast,d(x)4o(x)/o6 [ 1
is the Hubble parameter, and is thef ()

m
)B )

m
0.6, H0 a0present value of the expansion factor (Peebles 1980).2

““ Velocity-velocity ÏÏ comparisons start from the observed
galaxy density Ðeld, predict peculiar velocities via equation
(1) or some nonlinear generalization of it, and compare to
estimated peculiar velocities (e.g., Kaiser et al. 1991 ; Strauss
& Willick 1995 ; Davis, Nusser, & Willick 1996 ; Willick et
al. 1997 ; Willick & Strauss 1998 ; Blakeslee et al. 1999).
““ Density-density ÏÏ comparisons start from the observed
radial peculiar velocity Ðeld, infer the three-dimensional
velocity Ðeld using the POTENT method of Bertschinger &
Dekel (1989), and compare the velocity divergence to the

1 Present Address : Department of Astrophysical Sciences, Princeton
University, Princeton, NJ 08544-1001 ; vijay=astro.princeton.edu.

2 Because galaxy distances are inferred from their redshifts via HubbleÏs
law, uncertainties in and do not introduce any uncertainty in pecu-H0 a0liar velocity predictions ; if one adopts km s~1 distance units in place of
Mpc, then and do not appear in equations (1) or (2).H0 a0

observed galaxy density Ðeld using equation (2) or a nonlin-
ear generalization of it (e.g., Dekel et al. 1993 ; Hudson et al.
1995 ; Sigad et al. 1998 ; Dekel et al. 1999). Because the
radial velocity Ðeld must be smoothed before computing the
three-dimensional velocity Ðeld via POTENT, density-
density comparisons in practice always compare the
smoothed galaxy density Ðeld to predictions derived from
the smoothed peculiar-velocity Ðeld. Velocity-velocity com-
parisons, on the other hand, usually smooth the galaxy
density Ðeld to suppress nonlinear e†ects and shot noise,
but compare the velocity predictions from these smoothed
density Ðelds directly to the estimated peculiar velocities of
individual galaxies or groups. (The spherical-harmonic
analysis of Davis et al. 1996 is an important exception in
this regard.)

The avoidance of smoothing the data is often seen as an
advantage of the velocity-velocity approach, since smooth-
ing a noisy estimated velocity Ðeld can introduce statistical
biases that are difficult to remove. However, in this paper
we show that comparing smoothed velocity predictions to
unsmoothed velocity measurements generally leads to
biased estimates of even when the galaxy positionsf ()

m
),

and velocities are known perfectly. The reason for this bias
is fairly simple : the errors in the predicted velocities are
correlated with the predicted velocities themselves, vio-
lating the conventional assumption that an individual
galaxyÏs velocity can be modeled as a ““ large-scale ÏÏ contri-
bution predicted from the smoothed density Ðeld plus an
uncorrelated ““ small-scale ÏÏ contribution.

Galaxy redshift surveys map the galaxy density Ðeld,
rather than the mass density Ðeld, d(x), so inferencesd

g
(x),

from velocity-velocity and density-density comparisons
often assume a linear relation between galaxy and mass
density contrasts, and therefore constrain thed

g
(x) \ bd(x),

quantity rather than itself. The resultsb 4 f ()
m
)/b f ()

m
)

reported in this paper emerged from a more general investi-
gation of the e†ects of complex galaxy formation models on
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estimates of b (Berlind, Narayanan, & Weinberg 1999 ;
A. A. Berlind, V. K. Narayanan, & D. H. Weinberg, in
preparation). However, the statistical bias in that wef ()

m
)

Ðnd applies even when galaxies trace mass exactly, so here
we focus on this simpler case. (Throughout this paper we
use the term ““ bias ÏÏ to refer to systematic statistical errors
rather than the relation between the distributions of gal-
axies and mass.) We further restrict our investigation to the
case in which galaxy positions and velocities are known
perfectly, ignoring the additional complications that arise in
analyses of observational data.

2. RESULTS

We have carried out N-body simulations of three di†er-
ent cosmological models, all based on inÑation and cold
dark matter (CDM). The Ðrst is an h \ 0.5 model)

m
\ 1,

km s~1 Mpc~1), with a tilted power spectrum(h 4H0/100
of density Ñuctuations designed to satisfy both COBE and
cluster normalization constraints. The cluster constraint
requires (White, Efstathiou, & Frenk 1993), wherep8B 0.55

is the rms linear density Ñuctuation in spheres of radius 8p8h~1 Mpc. Matching the COBE DMR constraint and p8\
0.55 with h \ 0.5 requires an inÑationary spectral index of
n \ 0.803 if one incorporates the standard inÑationary pre-
diction for gravitational wave contributions to the COBE
anisotropies (see Cole et al. 1997 and references therein).
The other two models have and 0.4, with a power-)

m
\ 0.2

spectrum shape parameter !\ 0.25 (in the param-
eterization of Efstathiou, Bond, & White 1992) and
cluster-normalized Ñuctuation amplitude p8\ 0.55)

m
~0.6.

These two models are open models with no cosmological
constant, ". Since " has little or no e†ect on peculiar veloci-
ties at Ðxed our results for the two open models should)

m
,

also hold for Ñat-" cosmologies having the same values of
and the same matter power spectrum. We ran four inde-)

mpendent simulations for each of the three cosmological
models, and the results we show below are averaged over
these four simulations. All simulations were run with a
particle-mesh (PM) N-body code written by C. Park, which
is described and tested in Park (1990). Each simulation uses
a 4003 force mesh to follow the gravitational evolution of
2003 particles in a periodic cube 400 h~1 Mpc on a side,
starting at z\ 23 and advancing to z\ 0 in 46 steps of
equal expansion factor a. We form the mass density Ðeld by
clouds-in-cells (CIC) binning the evolved mass distribution
onto a 2003 grid. We smooth this density Ðeld with a Gauss-
ian Ðlter of radius and derive the linear-theoryÈpredictedR

svelocity Ðeld using equation (1). Finally, we linearly inter-
polate this velocity Ðeld to the galaxy positions to derive
predicted galaxy peculiar velocities, ¿pred.Figure 1 compares the true velocities of particles (¿true)from one of the simulations to the velocities predict-)

m
\ 1

ed by equation (1) from the mass density Ðeld(¿pred)smoothed with Gaussian Ðlters of radius 5, 10, andR
s
\ 3,

15 h~1 Mpc (Figs. 1aÈ1d, respectively). The points in Figure
1 show one Cartesian component of the particlesÏ velocities.
If we make the assumption, common to most velocity-
velocity comparison schemes, that each galaxyÏs velocity
consists of a large-scale contribution predicted from the
density Ðeld plus an uncorrelated small-scale contribution,
then the best-Ðt slope of the relation should¿true[ ¿predyield the parameter in this case with thef ()

m
), f ()

m
)\ 1,

scatter about this line yielding the dispersion of the small-
scale contribution. However, it is clear from Figure 1 that

this slope increases systematically with increasing (WeR
s
.

note that the best-Ðt line, which minimizes ; o ¿true[ ¿pred o2,
is shallower than the line one would naively draw through
these data points by eye, since it is vertical scatter rather
than perpendicular scatter that must be minimized.)

The Ðlled points in Figure 2 show the estimated asf ()
m
)

a function of for the (circles) andR
s

)
m

\ 1 )
m

\ 0.2
(squares) cosmological models. The solid lines show the true
value of In both cases, the estimated value of isf ()

m
). f ()

m
)

quite sensitive to the smoothing scale : it is slightly under-
estimated at small scales, but increasingly overestimated at
large scales. The model yields similar results, so we)

m
\ 0.4

do not plot it separately. We also investigated simu-)
m

\ 1
lations with a factor of 2 lower force resolution (2003 force
mesh instead of 4003) and found identical results, so even at
small smoothing scales our results are not a†ected by the
simulationsÏ limited gravitational resolution. The break-
down of linear theory at small scales is not surprising ;
however, the systematic failure of this method at large
smoothing scales has not, to our knowledge, been pre-
viously discussed. The dependence of the estimated onf ()

m
)

the smoothing scale used for velocity predictions is our
principal result.

We can understand the origin of the large-scale bias in
by considering the case in which galaxy peculiarf ()

m
)

velocities are given exactly by linear theory. In this case,

¿true(x) \ (2n)3@2H0 f ()
m
)
P

eik Õ x id
k

k
o k o2 dk , (3)

where are the Fourier modes of the density Ðeld, and thed
kintegral extends over all of k-space. Predicted velocities,

however, are estimated from the density Ðeld smoothed
with a window function, W (r), of characteristic scale R

s
.

Therefore,

¿pred(x) \ (2n)3@2H0 f ()
m
)
P

W3 (kR
s
)eik Õ x id

k
k

o k o2 dk , (4)

where is the Fourier transform of the window func-W3 (kR
s
)

tion. The error in the predicted velocity of a galaxy at posi-
tion x is therefore

*¿(x) \ ¿true[ ¿pred
\ (2n)3@2H0 f ()

m
)
P

[1[ W3 (kR
s
)]

] eik Õ x id
k

k
o k o2 dk . (5)

Note that in equation (4) we have deÐned to be the¿predvelocity that would be predicted assuming the correct value
of In practice, since we do not know the value of)

m
. f ()

m
)

beforehand, we derive its value from the slope of the ¿trueversus relation (this is equivalent to assumingf ~1¿predwhen computing)
m

\ 1 ¿pred).If were uncorrelated with then the slope of the*¿ ¿pred,versus relation would be an unbiased estima-¿true f ~1¿predtor of However, if is positively correlated withf ()
m
). *¿

then the slope of the relation is no longer since¿pred, f ()
m
),

points preferentially scatter above the line for positive ¿predand below the line for negative This steepening of the¿pred.relation is just the behavior seen in Figure 1.¿true[ ¿predEquations (4) and (5) show that and will be corre-*¿ ¿predlated as long as some Fourier modes contribute to both
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FIG. 1.ÈTrue velocities of particles from an CDM, cosmological N-body simulation, compared to the velocities predicted by linear theory from)
m

\ 1,
the mass-density Ðeld after it is smoothed with Gaussian Ðlters of radius 5, 10, and 15 h~1 Mpc (panels a, b, c, and d, respectively). The points showR

s
\ 3,

one Cartesian component of the particlesÏ velocities. Solid lines show the relation ¿true \¿pred .

integrals, which happens for any smoothing function other
than a step function in k-space.

We can quantitatively understand this bias by consider-
ing how is measured. For an ensemble of N pointsf ()

m
)

the slope of the best-Ðt line (assuming(¿true,i, f ~1¿pred,i), isS¿trueT \ S¿predT \ 0)

slope \ ; ( f ~1¿true,i Æ ¿pred,i)
; ( f ~2¿pred,i Æ ¿pred,i)

\ f ()
m
)

(1/N) ; [(¿true,i [ ¿
predi

)
] ¿

predi
] (¿

predi
Æ ¿

predi
)]

(1/N) ; (¿pred,i Æ ¿pred,i)

\ f ()
m
)
A
1 ] S*¿ Æ ¿predT

S¿pred Æ ¿predT
B

. (6)

Equation (6) shows how a nonzero cross-correlation
between and changes the measured slope of the*¿ ¿predvelocity-velocity relation. We can compute this e†ect in the

linear regime for a given power spectrum of density Ñuctua-
tions, P(k), and window function, Using equationsW3 (kR

s
).

(4) and (5), we have

S*¿ Æ ¿predT
S¿pred Æ ¿predT

\ /0= W3 (kR
s
)[1[ W3 (kR

s
)]P(k)dk

/0= W3 2(kR
s
)P(k)dk

. (7)

For Gaussian and top-hat window functions and a range of
CDM power spectra, we Ðnd that the bias given by equa-
tion (7) is always positive and is always an increasing func-
tion of The dashed lines in Figure 2 show the slopeR

s
.

computed (from eqs. [6] and [7]) using the linear mass
power spectra of the simulations and the same Gaussian
window functions that were used to measure ( Ðlledf ()

m
)

symbols). The striking similarity on large smoothing scales
between the N-body data and this linear-theory calculation
supports our conclusion that the large-scale bias is indeed
caused by the cross-correlation between and which,*¿ ¿pred,in turn, is caused by the comparison of a smoothed predic-
tion to unsmoothed data.
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FIG. 2.ÈEstimates of from the slope of the relation between truef ()
m
)

galaxy velocities and velocities predicted by linear theory from the
smoothed density Ðeld, as a function of the smoothing radius, for CDMR

s
,

models with (circles) and 0.2 (squares). Points represent the mean)
m

\ 1
result of four simulations of each model, and error bars show the uncer-
tainty in the mean derived from the dispersion among the simulations.
Filled symbols show the estimated when the density Ðeld isf ()

m
)

smoothed with a Gaussian Ðlter of radius Open symbols show theR
s
.

estimated when the density Ðeld is smoothed with a sharp low-passf ()
m
)

k-space Ðlter (with a cut at where is the radius of a Gaussian Ðlterkcut), R
sthat falls to half its peak value at Dashed lines show the linear-k \ kcut .theory prediction of the bias in the estimates of (eqs. [6] and [7])f ()

m
)

from comparing smoothed velocity predictions to unsmoothed velocity
measurements. Solid lines show the true values of f ()

m
).

From equation (7), it is evident that the linear-theory
cross-correlation between and will be zero if there is*¿ ¿predno smoothing at all, or if the smoothing function is a step
function in k-space, in which case the product W3 (kR

s
)[1

is always zero. The open symbols in Figure 2[ W3 (kR
s
)]

show the results of a velocity-velocity analysis of the same
simulations, with the linear-theory velocities now predicted
from a density Ðeld smoothed with a sharp, low-pass
k-space Ðlter. SpeciÐcally, we set to zero all Fourier modes
with and plot the new estimates of at thek [ kcut, f ()

m
)

values of for which a Gaussian Ðlter falls to half its peakR
svalue at (i.e., Using the sharpk \ kcut e~k2cutR2s @2\ 0.5).

k-space Ðlter causes the bias to vanish completely on large
scales, yielding estimates of that are correct and inde-f ()

m
)

pendent of smoothing length. This result further supports
our interpretation of the cause of the large-scale velocity-
velocity bias.

Figure 2 shows that is underestimated at smallf ()
m
)

scales in the N-body simulations. The linear-theory bias
discussed above and shown by the dashed line in Figure 2 is
always positive. Therefore, there must be a countervailing
e†ect that biases estimates in the opposite directionf ()

m
)

on small scales. In highly nonlinear regions of the density
Ðeld, such as the cores of galaxy clusters, linear-theory
velocity predictions have large errors. However, errors
caused by virial motions are uncorrelated with the predict-
ed velocities because these virial motions have random
directions. Such errors add random scatter to the velocity-

velocity relation, but they do not change its slope. In mildly
nonlinear regions of the density Ðeld, on the other hand,
galaxy velocities still follow coherent Ñows, but these Ñows
may no longer be accurately predicted by linear theory. In
the case of a galaxy falling toward a large overdensity,
linear theory will correctly predict the direction of motion,
but it will overestimate the infall speed because it incorrect-
ly assumes that the overdensity has grown at the linear-
theory rate over the history of the universe, while in reality
the overdensity grows to large amplitude only at late times,
when it becomes nonlinear. In such regions, will be*¿
opposite in sign to causing an anticorrelation between¿pred,the two quantities. The opposite happens in underdense
regions, but since fewer galaxies reside in these regions and
the velocity errors are smaller in magnitude, the net e†ect is
still an anticorrelation between and*¿ ¿pred.In order to show how these di†erent e†ects come into
play, we adopt a Ñuid-dynamics description and divide an
individual galaxyÏs velocity into a mean Ñow, and a¿6 ,
random ““ thermal ÏÏ velocity, r, so that Here¿true \¿6 ] r.

is the average velocity of galaxies at spatial position x,¿6 (x)
and therefore by deÐnition. Let denote theSr Æ ¿6 T \ 0 ¿linvelocity predicted in linear theory from the unsmoothed
density Ðeld (eq. [1]). Equation (5) applies to the case where
the velocity Ðeld is exactly linear, but more gen-¿true\ ¿lin,erally,

¿true \ ¿6 ] r

\ ¿pred ] (¿lin[ ¿pred) ] (¿6 [ ¿lin) ] r , (8)

and therefore,

*¿ \ ¿true[ ¿pred \ (¿lin[ ¿pred) ] (¿6 [ ¿lin)] r . (9)

This equation shows the three possible sources of error in
the smoothed linear theory prediction of galaxy velocities.
The Ðrst term represents the e†ect caused by comparing a
smoothed quantity with an unsmoothed quantity in linear
theory, and is given by equation (5). The second term rep-
resents the inadequacy of using a linear-theory velocity esti-
mator in regions where nonlinear e†ects are important. The
third term represents errors caused by galaxiesÏ random
thermal motions.

As shown in equation (6), the bias in depends on thef ()
m
)

cross-correlation of these errors with ¿pred,

S*¿ Æ ¿predT \ S(¿lin[ ¿pred) Æ ¿predT

]S(¿6 [ ¿lin) Æ ¿predT]Sr Æ ¿predT . (10)

The Ðrst term is positive and causes an overestimate of
for nearly all smoothing functions. Our calculation off ()

m
)

this e†ect via equation (7) shows that it is zero for no
smoothing and increases monotonically with smoothing
scale. We have argued above that the second term is gener-
ally negative and causes an underestimate of Sincef ()

m
).

this e†ect arises from nonlinearity in the density Ðeld, it
should dominate on small scales and vanish with increased
smoothing of the density Ðeld. Finally, the third term is
equal to zero, because the thermal velocities have random
directions. A combination of the Ðrst two terms of equation
(10) explains the scale dependence of estimates inf ()

m
)

Figure 2. For large smoothing of the density Ðeld, the Ðrst
term dominates and we overestimate whereas forf ()

m
),

small smoothing the second term dominates and we under-
estimate The estimate of is unbiased at thef ()

m
). f ()

m
)



No. 2, 2000 BIASED ESTIMATES OF )
m

541

smoothing scale where these two e†ects cancel, but this
scale should itself depend on the speciÐcs of the underlying
cosmological model. The numerical results in Figure 2
conÐrm this prediction : the estimate is unbiased atf ()

m
)

h~1 Mpc in the model (withR
s
\ 5 )

m
\ 0.2 p8\ 1.44 ;

squares) and at h~1 Mpc in the model (withR
s
\ 4 )

m
\ 1

circles). The smoothing scale for unbiased esti-p8\ 0.55 ;
mates could also depend on the assumed relation between
galaxies and mass, a point we will investigate in future
work. It is therefore not possible to remove this bias simply
by choosing the right smoothing scale in a model-
independent way.

If we had adopted a higher order perturbative expansion
for predicting velocities from the smoothed density Ðeld,
then equation (10) would still hold, with replaced by¿linthe perturbative prediction in the absence of smooth-¿per,ing. The Ðrst term on the right-hand side would still be
positive, since some Fourier modes would contribute to
both and The second term could be posi-(¿per [ ¿pred) ¿pred.tive or negative, depending on the approximation and the
smoothing scale. However, while a higher order approx-
imation might reduce the magnitude of the second term
relative to the linear approximation, it would not necessar-
ily reduce the net bias in since this depends on thef ()

m
),

relative magnitude and sign of the Ðrst two terms.

3. DISCUSSION

The implications of our results for existing estimates of
(or, more generally, of b) are probably limited. Asf ()

m
)

already mentioned, density-density comparisons via
POTENT are not inÑuenced by the e†ects discussed here,
because they compare density and velocity divergence Ðelds
smoothed at the same scale. The analysis of Davis et al.
(1996), a mode-by-mode comparison of density and velocity
Ðelds, is also not a†ected, since the two Ðelds are again
compared at the same e†ective ““ smoothing ÏÏ. If the

observed velocities are unsmoothed, a comparison in which
velocities are predicted using a truncated spherical harmo-
nic expansion of the density Ðeld (e.g., Blakeslee et al. 1999)
may behave rather like our sharp k-space Ðlter analysis
(Fig. 2, open symbols), since for a Gaussian Ðeld the di†erent
spherical harmonic components are statistically uncor-
related (A. Nusser 1999, private communication ; Fisher et
al. 1995). Among recent velocity-velocity studies, our pro-
cedure here is closest to the VELMOD analyses of Willick
et al. (1997) and Willick & Strauss (1998), who used a 3 h~1
Mpc Gaussian Ðlter to compute the predicted velocity Ðeld.
These authors chose their smoothing scale partly on the
basis of tests on N-body mock catalogs, and our results in
Figure 2 suggest that biases in should indeed be smallf ()

m
)

for this smoothing. It therefore appears unlikely that the
e†ects discussed here can resolve the discrepancy between
recent estimates of (or b) from velocity-velocity andf ()

m
)

density-density comparisons (e.g., Willick et al. 1997 versus
Sigad et al. 1998). However, we have shown that the disap-
pearance of the bias in at the 3 h~1 Mpc smoothingf ()

m
)

scale occurs because of a cancellation between positive and
negative biases, and that the scale at which this cancellation
occurs depends at least to some degree on the underlying
cosmological model. As improvements in observational
data reduce the statistical uncertainties in peculiar-velocity
data, control of the systematic uncertainties that arise from
comparing smoothed velocity predictions to unsmoothed
data will become essential to obtaining robust estimates of
the density parameter.
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