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Abstract 

With one million cases diagnosed yearly worldwide, breast cancer is the second most 

common cancer in women. Metastasis to the brain is the leading cause of death in breast 

cancer patients due to the inability of drug treatments to cross the blood brain barrier, 

limiting the efficacy of some forms of chemotherapy. The most common chemokine 

receptor expressed by breast cancer cells is CXCR4, a protein involved in cell migration. 

CXCR4’s ligand Stromal Derived Factor 1 (SDF1-a or CXCL12) is expressed by the tissues 

to which breast cancer migrates, suggesting that the CXCR4/CXCL12 axis plays a role in 

metastasis of breast cancer cells to the brain. Endogenously produced endocannabinoids 2-

arachidonoylglycerol (2-AG) and anandamide (AEA), and synthetic cannabinoids JWH-

015 and Met-F-AEA bind to cannabinoid receptors CB1 and CB2. Cannabinoid receptor 

inhibition by synthetic cannabinoids has been shown to block CXCR4/CXCL12-mediated 

in vitro migration of immune cells. Due to the high expression of CB1 receptor in the brain, 

cannabinoids have the ability to cross the blood brain barrier, implicating their capacity to 

inhibit breast cancer cell metastasis to the brain. Therefore, we explored the ability of 

endogenous and synthetic cannabinoids to inhibit CXCR4/CXCL12-induced in vitro 

metastatic assays using various breast cancer cell lines such as MDA-MB-231/BR3 (that 

specifically metastasizes to the brain), NT2.5 (highly metastatic mouse breast cancer cell 

line), MCF7-CXCR4 (highly expresses CXCR4), and SCP2 (highly metastatic human cell 

line). These cell lines were used to perform various CXCL12-induced invasive assays such 

as wound healing, chemotaxis, and chemoinvasion in the presence of endogenous and 

synthetic cannabinoids. These cannabinoids significantly reduced breast cancer cell 

chemoinvasion, migration and wound healing. Furthermore, delineation of signaling 

mechanisms revealed that cannabinoids may inhibit chemoinvasive properties of breast 

cancer cells by inhibiting CXCL12-induced ERK activity and focal adhesion kinase 

complex formation. These studies suggest that cannabinoids have the potential to inhibit 

metastasis of breast cancer cells to various organs including the brain. With future in vivo 

studies using various animal models, including knock-out mouse models which address 

dosage/targeting issues, endogenous and synthetic cannabinoids could be used to develop 

new therapies for breast cancer growth and metastasis. 
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Abbreviations in order of appearance starting in the Introduction: 

9-tetrahydrocannabinol (THC) 
anandamide (AEA) 
2-arachidonoylglycerol (2-AG) 
fatty acid amide hydrolase (FAAH) 
monoacylglycerol lipase (MAGL) 
(R)-(+)-methanandamide (Met-f-AEA) 
G-protein-coupled receptors (GPCRs) 
polyoma middle T oncoprotein (PyMT) 
extracellular signal-regulated kinases (ERK) 
phosphoinositide 3-kinase (PI3K) 
p38 mitogen-activated protein kinase (p38MAPK) 
protein kinase B (AKT) 
cyclin kinase inhibitor (p27/KIP1) 
cyclin dependent kinase (cdk) 
B cell lymphoma 2 (BCL2) 
BCL2-associated X protein (Bax) 
cyclic adenosine monophosphate (cAMP) 
protein kinase A (PKA) 
Transient receptor potential channel V1 (TRPV1) 
focal adhesion (FA) 
epidermal growth factor (EGF) 
extracellular matrix (ECM) 
focal adhesion kinase (FAK) 
Stromal derived factor-1a (SDF-1a or CXCL12) 
guanosine diphosphate (GDP) 
guanosine triphosphate (GTP) 
adenosine triphosphate (ATP) 
extracellular signal-regulated kinase 1 and 2 (ERK1/2 or mitogen-activated kinases (MAPK)) 
sarcoma tyrosine kinase (src) 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
MAPK extracellular signal regulated kinases (MEK) 
related focal adhesion kinase (RAFTK or PYK2) 
Tyrosine-protein phosphatase non-receptor type 11 (PTPN11 or SHP2)  
casitas B-lineage lymphoma (Cbl) 
mitogen activated protein kinase kinase (MEK) 
NF-κB kinase (IKK) 
NF-κBα (IκBα) 
matrix metalloproteinase 2 (MMP2) 
tissue inhibitor of metalloproteinases 2 (TIMP2) 
urokinase-type plasminogen activator receptor (uPAR) 
endothelial progenitor cells (EPCs) 
C-terminal domain (CTD) 
epithelial to mesenchymal transition (EMT) 
c-terminal truncated cytoplasmic tails (CXCR4-∆CTD) 
epidermal growth factor receptor (EGFR) 
human epidermal growth factor receptor 2 (HER2/neu or ErbB-2) 
transforming growth factor β (TGF-β) 
cellular src (c-src) 
hypoxia-inducible factor 1, α subunit (HIF1a) 
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insulin like growth factor-1 receptor (IGF-1R) 
estrogen receptor (ER) 
tyrosine kinase binding (TKB) 
ductal carcinoma in situ (DCIS) 
progesterone receptor (PR) 
phospho-AKT (pAKT) 
von Hippel Lindau (VHL) 
Vascular endothelial growth factor (VEGF) 
rearranged during transfection/papillary thyroid carcinoma (RET/PTC) 
paired box 3 fusion protein-forkhead box protein O1 (PAX3-FKHR) 
 
Abbreviations in Materials and Methods: 
Dulbecco’s modified Eagle’s medium (DMEM) 
fetal bovine serum (FBS) 
Roswell Park Memorial Institute (RPMI) 
phosphate-buffered saline (PBS) 
bovine serum albumin (BSA) 
fluorescence-activated cell sorting (FACS) 
serum-free medium (SFM) 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) 
optical density (OD) 
radio immuno precipitate assay (RIPA) 
Tris-Buffered Saline Tween-20 (TBST) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  4



Introduction 
In the US heart disease is the leading cause of death followed closely by cancer4. Breast 

cancer in women is the second leading cause of cancer-related death after lung cancer3,5. 

Metastasis to the brain, bones, lungs, lymph nodes, and liver, not the primary tumor within the 

breast, leads to death. Therapies that target the signaling pathways of cell movement and growth 

may inhibit breast cancer metastasis6. Cannabinoids have shown promising anti-cancer effects 

while causing fewer adverse effects than many contemporary chemotherapies such as 

Trastuzumab and Tamoxifen. These drugs increase the risk of cardiac dysfunction and 

endometrial cancer, respectively130,131. Anti cancer properties of cannabinoids were discovered 

over 30 years ago with the observation that THC inhibited lung adenocarcinoma cell growth in 

vivo11. Non-psychoactive analogues of THC are being studied to evaluate their therapeutic 

properties in breast cancer. 

 Cannabinoids fall into three classes: phytocannabinoids, endogenous cannabinoids, and 

synthetic cannabinoids. Phytocannabinoids are plant-derived substances that include 9-

tetrahydrocannabinol (THC) and cannabidiol (all cannabinoids are pictured in Figure 1). 

Endogenous cannabinoids are produced in our bodies and mediate physiological functions such 

as immune function, analgesia, the inflammation response, and metabolic, reproductive, and 

cardiovascular regulation7,11. The two best-studied endocannabinoids are anandamide (AEA) and 

2-arachidonoylglycerol (2-AG), which are degraded by fatty acid amide hydrolase (FAAH) and 

monoacylglycerol lipase (MAGL) respectively11. These enzymes can be targeted to inhibit the 

break down of endocannabinoids, which could be used for therapueutic purposes. Synthetically 

produced cannabinoids include JWH-133 and JWH-015, and tend to be more potent than 

endogenous cannabinoids104. Due to the instability of AEA, a more stable analogue has been 

synthesized, (R)-(+)-methanandamide or Met-f-AEA and is commonly used in its place. 

Synthetic cannabinoids are further divided into non-classical (CP-55,940) and aminoalkylindole 

(Win55,212-2) subgroups109. Cannabinoids mediate their effects through cannabinoid receptors 

CB1 and CB2, which are heptahelical Gα i/Gαo-protein-coupled receptors (GPCRs), which are 

proteins that span the cellular membrane and act as the mediators between extra- and 

intracellular signaling transduction components104,109. CB1 is primarily located on tissues of the 

central nervous system and its ligands include Met-f-AEA and other cannabinoids with the 

similar hydrocarbon tail structures to those of AEA and 2-AG, but with varied head groups104,112. 
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The other identified cannabinoid receptor, CB2, resides on immune cells104. CB2 receptor 

ligands include JWH-133, JWH-015, and other similarly structured cannabinoids. Cannabinoids 

that have affinities for both CB1 and CB2 are AEA, 2-AG, CP55,940, and Win55,212-2112. The 

structures of these compounds are varied, as shown below. Compared to expression patterns in 

normal tissues, cannabinoid receptors CB1 and CB2 are overexpressed on breast and liver cancer 

cells12,105.   

 

Figure 1. Synthetic, endogenous, and phytocannabinoid structures103,112.  

 

 Cannabinoids such as cannabidiol, JWH-133, and Win55,212-2 inhibit glioma, leukemia, 

breast, prostate, and colon cancer progression106,107. Synthetic cannabinoids have been used to 

inhibit breast tumor growth in vivo using polyoma middle T oncoprotein (PyMT) models12,109. 

Cannabinoids inhibit angiogenesis and arrest the cell cycle, which leads to apoptosis in 

vivo12,113,114. Previous in vitro and in vivo studies indicate that cannabinoids possess both anti- 

and pro-apoptotic effects, but inhibit migration, metastasis, and invasion6,11,12,13.  
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 Inhibition of proliferation, which varies depending on cannabinoid dosage and breast 

cancer cell line treated, is mediated by a variety of well-known protein signaling pathways, 

including extracellular signal-regulated kinases (ERK), phosphoinositide 3-kinase (PI3K), p38 

mitogen-activated protein kinase (p38MAPK), protein kinase B (AKT), and the ceramide 

pathway11,12. These signaling pathways are involved in cell survival, chemotaxis, proliferation, 

and the tendency of cancer cells to favor aerobic glycolysis over oxidative phosphorylation for 

energy production12,22,115. Cannabinoid binding of CB1 or CB2 causes ceramide synthase to 

produce lipid molecules of the cell membrane called ceramides, which activates the ERK 

signaling pathway, leading to cell cycle arrest and apoptosis11. ERK stimulation also activates 

cyclin kinase inhibitor (p27/KIP1), which is involved in cyclin and cyclin dependent kinase (cdk) 

regulation, leading to induction of apoptosis116,117,118. Increased ceramide levels activate 

p38MAPK, which can stimulate cysteine protease activity or trigger the release of cytochrome c 

from the mitochondria to cause apoptosis11. Increased p53 expression contributes to cell cycle 

arrest by downregulating B-cell lymphoma 2 (BCL-2), an anti-apoptotic protein and upregulating 

BCL-2-associated X protein (Bax), a pro-apoptotic protein11,118. Modulation of these proteins 

causes caspase activation, which are cysteine-aspartic proteases responsible for apoptosis and 

inflammation118,119. CB1 and CB2 activation decreases adenylyl cyclase, cyclic adenosine 

monophosphate (cAMP), and protein kinase A (PKA) activity. Downregulation of these proteins 

causes decreased gene transcription and induction of apoptosis116,117,120. Transient receptor 

potential channel V1 (TRPV1) activation increases intracellular hydrogen peroxide 

concentration, calcium levels, and causes cytochrome c dissociation from the mitochondria, also 

leading to apoptosis (Figure 2)11,121.  

JWH-015 and Win55,212-2 inhibit focal adhesion (FA) formation, which is stimulated by 

epidermal growth factor (EGF) and integrin clustering and binding104. FAs regulate apoptosis, 

cell migration, and proliferation, and cause signaling proteins to gather in areas where integrins 

aggregate and bind123.  Integrins are cell adhesion receptors, which mediate many intracellular 

signaling pathways and are involved genetic and autoimmune diseases, as well as cancer 

development124. FAs are the primary links between the cell and the extracellular matrix (ECM), 

formed by focal adhesion kinase (FAK) and vinculin, which connects integrins to the actin 

cytoskeleton122,123. Appropriate regulation of fiber association and disassociation is important for  
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Figure 2. CB1 and CB2 activation can cause apoptosis. 

 

controlling cellular migration and signaling122. FAK is responsible for FA turnover and is 

involved in breast cancer cell invasion and migration110. Inhibition of FAK and vinculin causes a 

significant decrease in normal cell spreading and migration of breast cancer cells110. Actin stress 

fiber formation, also related to focal adhesions, decreases as a result of cannabinoid treatment104.  

The complete mechanism for breast cancer metastasis is little understood, though parts of 

it are well characterized. Chemokines are a superfamily of small molecular weight signaling 

proteins around eight to ten kDa that bind GPCRs to promote cell movement1. They are 

responsible in part for hematopoiesis, angiogenesis, targeted immune cell migration to sites of 

infection, and regulation of cell migration during development14. CXCR4 is the most commonly 

expressed chemokine receptor on breast cancer cells9, including those used in this study15. 

Metastatic breast cancer tissues have been known to express much higher levels of CXCR4 than 

normal breast tissues2,15,16. Stromal derived factor-1a (SDF-1a or CXCL12) is the chemokine 

ligand that binds CXCR4 and is synthesized by the areas to which breast cancer metastasizes 

(Figure 3)125,126.  
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Figure 3. CXCR4/CXCL12-mediated metastasis of breast cancer cells125,126. 

 
Breast cancer cell migration and metastasis was significantly inhibited when the 

CXCR4/CXCL12 path was blocked by knocking out CXCL12 production in vivo17. The 

CXCR4/CXCL12 axis is known to activate various signaling pathways34,35,36. CXCR4 is a GPCR 

and has been shown to partially mediate its effects through GPCR pathways37. These 

transmembrane proteins bind heterotrimeric G-proteins composed of Gα, Gβ, and Gγ 

subunits38,39,40. In its basal state, CXCR4 is bound to guanosine diphosphate (GDP), but upon 

binding CXCL12, guanosine triphosphate (GTP) displaces GDP and causes the G-protein to 

form a βγ dimer and α monomer. The Gα subunit is divided into four subfamilies: Gασ, Gαι, 

Gαθ, and Gα12. CXCR4 mediates its functions primarily through Gαι, which inhibits adenylyl 

cyclase, an enzyme that converts adenosine triphosphate (ATP) to cAMP41,42. This conversion 

mediates inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2 or mitogen-

activated kinases (MAPK)), ERK5, and p38MAPK. These proteins are involved in cell 
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proliferation, differentiation, and apoptosis41. Gαι mediates CXCR4 signaling through activation 

of sarcoma tyrosine kinase (src), ERK1/2 and nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB)37,42-45. The src gene has a tendency to become an oncogene and NF-κB 

controls DNA transcription and immune response to infection. The ERK pathway is involved in 

phosphorylation and activation of other cellular proteins and translocation into the nucleus where 

it phosphorylates and activates transcription factors, leading to changes in gene expression and 

cell cycle progression46. CXCL12-mediated activation of MAPK extracellular signal regulated 

kinases (MEK) can inhibit apoptosis by inactivating BCL-243,47. The CXCR4/CXCL12 axis may 

promote cell survival by post-translational inactivation of the cell death machinery and by 

increased transcription of cell survival-related genes. CXCL12/CXCR4-mediated chemotaxis 

and proliferation is also mediated by PI3K, which can be activated both by Gβγ and Gα 

subunits43,48. PI3K can then promote tumor cell survival, proliferation and chemotaxis. CXCR4 

is known to mediate its effects through protein kinase pathways, such as focal adhesion tyrosine 

kinases49,50. The Ganju group has shown that CXCR4-mediated breast cancer cell motility and 

invasion is enhanced through activation of FAK and related focal adhesion kinase (RAFTK or 

PYK2)51. CXCR4 has also been shown to activate components of focal adhesion complexes such 

as Crc and paxilin (Figure 4)51.  

 
Figure 4. CXCR4/CXCL12 signaling mechanisms that regulate chemotaxis and proliferation in tumor cells125.  
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Tyrosine-protein phosphatase non-receptor type 11 (PTPN11 or SHP2) and adaptor-

ubiquitin ligases such as casitas B-lineage lymphoma (Cbl) are downstream targets of CXCR4 

signaling37,51-53. CXCL12 activates PI3K, increasing its association with Cbl and SHP2. 

Inhibitors of PI3K, RAFTK, and SHP2 significantly inhibit CXCL12-induced chemotaxis and 

chemo-invasion37,51,52. Therefore, CXCL12-induced chemotaxis and chemo-invasion may be 

mediated through the activation and formation of multimeric-signaling complex with RAFTK, 

SHP2, and PI3K37,51,52. Formation of this complex would lead to cytoskeletal changes and 

activation of MAP kinases and transcription factors. For instance, CXCL12 treatment of PC-3 

cells leads to mitogen activated protein kinase kinase (MEK), NF-κB kinase (IKK) and NF-κBα 

(IκBα) phosphorylation and nuclear translocation of NF-κB54. Activation of these transcription 

factors enhances expression of metalloproteinases and other proteins, promoting tumorigenesis 

and cancer progression. Additionally, CXCL12 activates matrix metalloproteinase 2 (MMP2) 

and MMP9 in breast and prostrate cancer cells55. Signaling via the CXCR4 pathway 

downregulates tissue inhibitor of metalloproteinases 2 (TIMP2) expression, which can increase 

the invasiveness of prostate cancer cells in the presence of matrix metalloproteinases 56. Serrati et 

al. showed that CXCL12 promotes urokinase-type plasminogen activator receptor (uPAR) 

expression in breast cancer cells with CXCR4,57 which can induce metastasis in vivo58,59. 

CXCL12 also upregulates expression of adhesion molecules such as integrin α4β1 (very late 

antigen-4 or VLA-4), which can enhance cancer cell invasion60,61. The CXCR4/CXCL12 axis 

enhances β3 integrin expression, leading to the activation of αvβ3 receptors which have been 

shown to cause prostrate cancer cell adhesion to bone marrow epithelium62,63. These signaling 

pathways are implicated in CXCL12-mediated chemoinvasion and chemotaxis, potentially 

inducing metastasis (Figure 5).  

CXCR4 contains a short C-terminal domain (CTD) with tyrosine residues that are 

phosphorylated upon ligand binding. CTDs regulate receptor desensitization and down-

regulation64,65. CXCR4 CTD is essential for receptor regulation and epithelial to mesenchymal 

transition (EMT). Aberrant CXCR4 function resulting from c-terminal truncated cytoplasmic 

tails (CXCR4-∆CTD) occurs in various diseases, including warts, hypogammaglobulinemia, 

immunodeficiency, and myelokathexis. Breast cancer cells that overexpress CXCR4 with this 

mutation have altered morphologies, including abnormally high EMT and growth rates64. Such is 

the case for MCF7-CXCR4-∆CTD, a highly invasive breast cancer cell line, as compared to wild 
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type CXCR4 expressing cells. CXCR4-∆CTD cells also showed a decrease in E-cadherin and an 

increase in ERK activation64. These studies indicate that CTD region of CXCR4 is important for 

its regulation, expression and recycling. 

 

Figure 5. CXCL12 released by stromal fibroblasts promotes tumorigenesis in invasive human breast 

cancers127. Stromal fibroblasts secrete CXCL12 to facilitate tumorigenesis via the endocrine effect, in which 

CXCL12 stimulates angiogenesis by recruiting endothelial progenitor cells (EPCs) to the tumor mass, and by the 

paracrine effect, in which cell survival and tumorigenesis is promoted by direct paracrine stimulation of CXCR4 

expressed on the tumor cell surface. 

  

 Various factors regulate CXCR4, including p53, which negatively regulates CXCR4 

expression in breast cancer cells. Downregulation of wild type p53 has been shown to increase 

endogenous CXCR4 expression in breast cancer cells and p53 enhancing drugs, PRIMA-1 and 

CP-31398, reduce expression of CXCR4 at the mRNA and cell-surface level66. Activation of p53 

also inhibits CXCL12 expression in fibroblasts, modulating adjacent cancer cell migration and 

invasion67,68. Recently, it was shown that wild type p53 reduces CXCL12 expression in stromal 
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fibroblasts67,68 and stromal fibroblasts that express mutant p53 overexpress CXCL12, enhancing 

tumor growth in prostrate cancer. Drugs that rescue p53 function may also reduce 

CXCR4/CXCL12-mediated cell proliferation and metastasis.  

 The CXCR4 pathway shows crosstalk with other receptors including epidermal growth 

factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2/neu or ErbB-2) and 

transforming growth factor β (TGF-β), which regulate tumor growth and metastasis. Activation 

of CXCR4 enhances ovarian cancer cell EGFR phosphorylation, promoting EGFR trans-

activation69,70. CXCL12-induced cellular src (c-src) activation may cause this change69. CXCL12 

has also been shown to activate src kinase, which trans-activates HER2/neu in breast cancer 

cells44. HER2/neu enhances CXCR4 expression, promoting growth and metastasis in lung and 

breast cancer cells44,71,72. EGFR activation in non-small lung cancer cells increases hypoxia-

inducible factor 1, α subunit (HIF1α) expression, which increases CXCR4 expression73. In the 

highly invasive and metastatic breast cancer cells MDA-MB-231, CXCR4 formed a complex 

with insulin like growth factor-1 receptor (IGF-1R), which activates CXCR4 signaling to 

enhance cell migration and chemotaxis74. Crosstalk between CXCR4/CXCL12 and TGF-β1 

induces and sustains fibroblast differentiation into myofibroblasts, promoting tumor growth and 

metastasis in breast cancer cells75. Several studies have suggested that there is crosstalk between 

estrogen receptor (ER) and CXCR4 signaling. For instance, enhanced CXCR4 signaling causes 

ER-positive breast cancer to become resistant to endocrine therapy76 and CXCR4 over-

expression in ER-positive MCF7 cells enhances hormone independence77. 

 Cbl, a 120 kDa protein that contains a tyrosine kinase binding (TKB) domain, becomes 

phosphorylated at its tyrosine residue in the presence of CXCL12 in breast cancer cells58. This 

protein is an adaptor molecule which can bind to various proteins78,79 and negatively regulates 

signaling via ubiquitination and degradation of activated receptor tyrosine kinases80. The C-

terminal region of Cbl has a proline-rich domain that binds SRC homology 3 (SH3) domain-

containing proteins and a group of tyrosine residues that bind SH2 domain-containing 

proteins81,82,83. Some SH3 domain-containing proteins that bind Cbl may also bind components 

of lipid rafts, thereby mediating chemotaxis84,85,86. Cbl regulates cell movement in response to 

integrin engagement and is involved in the functional organization of the actin cytoskeleton87,88. 

Cbl also interacts with proteins, which co-localize to actin structures and modulate cytoskeletal 
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responses89. Cbl deficiency in primary macrophages and osteoclasts has been shown to inhibit 

cell migration, further suggesting its role in cell migration90,91,92. 

 CXCR4 is the most commonly overexpressed chemokine receptor in several human 

cancers including breast, ovarian, melanoma, and prostrate cancers, among others. Various 

tissues normally express CXCR4, including bone marrow, blood, spleen, thymus, lymph nodes, 

pituitary and adrenal glands1,36. Immunohistochemical analysis reveals that CXCR4 expression is 

extremely low or absent in normal breast epithelium, while over 90 % of specimens with atypical 

ductal hyperplasia tested positive for CXCR479,80. CXCR4 is also present in ductal carcinoma in 

situ (DCIS) and approximately 75 % of biopsy specimens of invasive ductal carcinoma, meaning 

CXCR4 expression in these tissues may be a precursor of invasive ductal carcinoma and atypical 

ductal hyperplasia57. High levels of CXCR4 expression has been correlated with decreased 

overall survival of patients in breast cancer,80,81 the transition from atypical hyperplasia to 

invasive cancer,82 and breast cancer metastasis to the lymph nodes83. Poor prognosis in triple 

negative breast cancer patients, or those whose cancers do not express ER, Her2/neu, or 

progesterone receptor (PR), is related to high CXCR4 expression84. 

 The CXCR4/CXCL12 pathway is involved in several aspects of breast cancer 

progression including metastasis, the release of cancer cells into the surrounding vasculature or 

lymphatic system85,86,87. Metastatic cells travel to the capillary beds of distant organs where they 

become embedded to form new masses86,87. This process commonly leads to death in breast 

cancer patients. During metastasis, there are several mechanisms in place to regulate tumor cell 

trafficking86,87. One such pathway is the CXCR4/CXCL12 axis, which mediates organ-specific 

targeting of metastatic breast cancer cells to tissues that secrete high levels of CXCL12, the 

lymph nodes, bone, liver, lung, spleen and brain (Figure 4)90. Prostate, small cell lung cancer, 

thyroid, liver, neuroblastoma, and hematological cancers also metastasize to these organs36,89. 

Muller et al. reported that CXCR4 neutralizing antibodies significantly limited metastases to 

lymph nodes and lung in vivo90. This observation suggests that the CXCR4/CXCL12 pathway 

helps regulate metastasis of breast cancer cells. Liang et al. reproduced these results by using 

siRNAs to block CXCR4 expression at the mRNA level, which decreased breast cancer cell 

invasion in vitro and inhibited metastasis in vivo92. Additionally, CXCR4 overepxression on 

cancer cells has been shown to significantly increase the bone metastasis in vivo. According to Li 

et al., HER2/neu expression enhances inhibition of CXCR4 degradation, which would promote 
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breast cancer metastasis72. Cancer cells expressing both CXCR4 with EGFR/HER2/neu enhance 

selective metastases to the bone marrow. Both HER-2 dependent and independent factors elevate 

phospho-AKT (pAKT) and CXCR4 levels, and activate the HER-2/CXCR4/AKT signaling 

pathway in primary breast tumors, which may contribute to bone metastasis94. The 

CXCL12/CXCR4 pathway may also be involved in the metastasis of prostrate and breast cancers 

to the bone95. CXCR4/CXCL12 signaling stimulates MMP expression and enhances integrin 

activity55,63,96. Conditions that are known to induce metastasis such as hypoxia have also enhance 

CXCR4 expression97. HIF1, which is normally stimulated by hypoxia, but in many cancers is 

found to be constitutively active, also increases CXCR4 expression. Inactivating mutated von 

Hippel Lindau (VHL) tumor suppressor gene, which normally targets HIF1 for degradation, 

upregulates CXCR4 in adrenal cell carcinomas98. Vascular endothelial growth factor (VEGF) 

and NF-kB activation have the same effect during breast cancer progression and metastasis45,99. 

Oncoproteins such as rearranged during transfection/papillary thyroid carcinoma (RET/PTC) 

enhance the ability of breast cancer cells to transform by upregulating CXCR4100. The paired box 

3 fusion protein-forkhead box protein O1 (PAX3-FKHR) also increases CXCR4 expression in 

rhabdomyosarcoma, stimulating migration and cell adhesion101. In vivo and in vitro 

neutralization of the CXCR4/CXCL12 signaling leads to a significant inhibition of 

metastasis42,59,60. In prostate and pancreatic cancers, the CXCR4/CXCL12 axis promotes tumor 

cell transendothelial chemotaxis45,102. VEGF, which is involved in angiogenesis and survival of 

metastatic breast cancer cells, also increases CXCR expression, which promotes their 

chemotaxis62. Breast cancer cells from mammary fat pad xenografts express high levels of cell-

surface CXCR4 and show increased CXCL12-induced chemotaxis64. Lung metastases have 

increased CXCR4 expression and migration towards CXCL1264. These studies suggest that the 

CXCR4/CXCL12 pathway is involved in tumor cell trafficking and metastasis regulation to 

various specific tissues. 

 Metastatic cells generally have dysfunctional growth regulation mechanisms, undergo 

cell adhesion alterations, and migrate to distant organs via the blood and lymphatic vessels, 

leading to secondary tumor formation that represents the most devastating feature of breast and 

other cancers. Tumor cell motility is one of the most important features of the transition to 

metastasis37,38,39. Molecules that have been shown to enhance tumor cell motility including 

chemokines are implicated in the development of metastatic lesions38,39,40,41,42. Dr. Ganju’s 
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research group has shown that non-psychoactive cannabinoids, analogues of THC, inhibit 

metastasis CXCL12-induced chemotaxis of immune cells109. These and previous findings 

suggest that the CXCR4/CXCL12 pathway is modulated by activation of the cannabinoid 

system. Thus, we are analyzing the potential of endogenous and synthetic cannabinoids to inhibit 

CXCL12-mediated migration, invasion, growth, and metastasis by studying cannabinoid-induced 

protein signaling, and focal adhesion formation in various breast cancer cell lines. We have 

found promising results from in vitro studies using these compounds and are continuing to study 

the mechanisms of inhibition. 

 

Materials and Methods 

Cell Culture  

 To analyze the effect of cannabinoids on breast cancer, we used various breast cancer cell 

lines, including human and mouse-derived cells that have high metastatic potential. MDA-MB-

231 is a human breast cancer cell line that metastasizes to different organs, where as MDA-MB-

231/BR3 is a brain-specific derivative of MDA-MB-231 that has been shown to specifically 

metastasize to the brain. SCP2 is also a derivative of the MDA-MB-231 cell line that has a high 

metastatic potential compared to MDA-MB-231. NT2.5 is a mouse-derived mammary cancer 

cell line also known as MMTV-neu that is highly metastatic. MCF7-CXCR4 is a human breast 

cancer cell line that overexpresses the CXCR4 receptor.  

MDA-MB-231, MDA-MB-231/BR3, NT2.5, and SCP2 cells were cultured in complete 

medium (Dulbecco’s modified Eagle’s medium (DMEM), 10% heat inactivated fetal bovine 

serum (FBS)*, 1% penicillin-streptomycin). MCF7-CXCR4 cells were cultured in complete 

Roswell Park Memorial Institute (RPMI) medium. Cells were split every 18 – 24 h, depending 

on the growth rate of the cell line.  

*FBS was heated to 60 oC for 30 min to inactivate proteins that might interfere with cell 

culture or any assays that FBS is used in. 

Cannabinoid Treatment 

Cells were incubated (37 oC and 5 % CO2 humidified environment) in DMEM or RPMI 

without FBS or penicillin-streptomycin (serum-starved) and incubated with various 

concentrations of JWH-015, Met-f-AEA, 2-AG, WIN-55,212-2, or ethanol (vehicle) for 4 to 24 
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h. The CXCR4 ligand CXCL12 (100 ng/mL) was used as a chemoattractant for metastasis and 

invasion studies, and as a stimulant for signaling studies.  

FACS Analysis 

 Before analyzing the effect cannabinoid treatment on CXCL12-mediated tumor 

promotion of breast cancer cells, we analyzed the cell surface expression of chemokine receptor 

CXCR4 and cannabinoid receptor CB2 using fluorescence-activated cell sorting (FACS). CB2 

expression was determined because the cannabinoids we used for the other assays in this study 

are CB2 ligands. 

 MCF7-CXCR4, SCP2, and NT2.5 cells were washed twice with phosphate-buffered 

saline (PBS) and blocked (incubated) for 30 min in PBS with 3 % bovine serum albumin (BSA). 

Cells were then stained using anti-CB2 antibody or anti-CXCR4 antibody for 1 h and washed 

three times in iced PBS with 3 % BSA. Cells were then incubated for 30 min with fluorescein-

labeled secondary antibody in PBS with 3 % BSA before washing three times in the PBS-BSA 

solution. Cells were transferred into 500 L PBS and analyzed by flow cytometry. 

Transwell Migration Assays 

 Metastasis and invasion can be modeled in vitro by a transwell migration assay. After 

overnight serum starvation and treatment, cells are loaded into transwell plates and incubated for 

6 to 24 h to determine the effects of the drug on metastasis and invasion. A transwell plate is a 

24-well plate that has inserts for 12 wells which, when dropped into the wells, create two 

chambers per well that are separated by a membrane attached to the removable insert. Medium 

with or without chemoattractant is added to the bottom chamber, and cells are added to the top 

chamber. After an appropriate amount of time, which depends on the invasive nature of the cells, 

adherent cells can be fixed to the membrane, stained, photographed, and counted. Suspension 

cells that have migrated will be floating in the bottom chamber at the end of the assay and can be 

counted using a hemacytometer.  

 Cells were treated 12 h in serum-free medium (SFM) containing AEA, 2-AG, or vehicle 

were allowed to migrate through semi-permeable polycarbonate membranes of transwell 

migration plates (BD Biosciences). The upper chambers contained 1.5 x 105 cells per well (150 

µL of 1x106 cells/mL) suspended in SFM and the bottom chambers contained 600 µL SFM with 

100 ng/mL CXCL12. Cells adherent to the membrane were stained, photographed (Zeiss), and 

manually counted at the end of the migration.  
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Scratch Wound Healing Assay 

 An important mechanism in the progression of breast cancer is its metastasis to the brain, 

bone, lung, stromal tissue, lymph nodes, spleen and liver. The CXCR4/CXCL12 pathway 

appears to be involved promoting breast cancer cell movement to specific tissues90. Metastatic 

breast cancer cells express much higher levels of CXCR4 than do normal mammary cells, and 

the tissues that secrete CXCL12 are those to which the cancer cells metastasize2,15,16. 

Cannabinoids inhibit breast cancer cell migration in vivo and in vitro 6,11,12,13 and cannabinoid 

receptors are expressed on the breast cancer cell surface12,105. We investigated the ability of 

cannabinoids to inhibit CXCL12-induced breast cancer cell metastasis and invasion using a 

scratch wound healing assay. This experiment simulates an environment in which breast cancer 

cells have the opportunity to metastasize and invade by closing a wound. After creating a wound, 

the wound closure in presence or absence of cannabinoids could be compared to evaluate how 

much cannabinoids inhibited wound healing. 

 Cells grown in 6-well plates to 100 % confluence were serum starved overnight and 

scratched with a sterile 200 µL pipet tip to create a wound. Cells were washed with SFM and 

treated with 10 M synthetic and endogenous cannabinoids in SFM in the absence or presence of 

100 ng/mL CXCL12 for up to 24 h. Photographs were taken at the beginning and end of wound 

healing (Zeiss) and wound closure was quantitated using ImageJ.  

Cell Viability 

 After testing the ability of cannabinoids to block metastasis and invasion, we chose to 

investigate the cytotoxicity of these compounds on breast cancer cells. Inhibition of metastasis 

and invasion, simulated by the scratch wound healing and migration assays, could have been 

caused by a number of possible signaling cascades, including induction of apoptosis. To 

determine cytotoxicity of these compounds, an MTT assay was performed. MTT or 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide is a clear yellow dye that, once added to 

viable cells, is metabolized by a mitochondrial enzyme, yielding a dark blue formazan 

compound. This compound is dissolved to a homogenous mixture by addition of the proprietary 

color development solution. The optical density (OD) can be measured at 570 nm and used to 

determine a ratio of viable to non-viable cells11.  

 MDA-MB-231 and brain-specific MDA-MB-231/BR3 cells were treated with 1, 5, 10, 

and 20 µM AEA, 2-AG, or vehicle and plated in 96-well flat-bottom plates. Each concentration 
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was tested in duplicate or triplicate and enough wells were filled to test cytotoxicity over a five 

day period. To prepare reagents, 10 mL pH 7.4 PBS must me mixed with 1 vial MTT (50 mg 

MTT/vial). Cells were allowed to incubate in a 37 oC, humidified, 5 % CO2 environment for 24 

h before "day 1" cells were tested. MTT was added (0.01 mL) to the wells to be tested and 

allowed to incubate 4 h before adding 0.1 mL color development solution (isopropanol with 0.04 

N HCl). Optical density can be read within an hour at a test wavelength of 570 nm and a 

reference wavelength of 630 nm (Chemicon)11. This procedure was repeated over five days. 

Cell Stimulation 

 There are many well-characterized signaling pathways that are altered with the onset and 

progression of breast cancer. To fully understand the causes and effects of cancer, it is crucial to 

know all of the pathways involved in cancer pathogenesis. As such, we studied the underlying 

mechanism of cannabinoid inhibition of invasion, metastasis, and migration, by measuring breast 

cancer cell protein expression changes in response to cannabinoid treatment and chemokine 

stimulation. After stimulation, cells were lysed and protein expression was measured by Western 

blot. 

 Cells were grown in a monolayer to 70 - 80 % confluence and incubated in SFM 

containing 10 μM JWH-015 or vehicle. Medium with cannabinoid or control was removed, cells 

were washed with SFM, and stimulated with 100 ng/mL CXCL12 for 0, 5, 15, 30, and 60 min. 

Immediately after stimulation, cells were placed on ice, washed twice with ice cold PBS (1X), 

and either lysed or stored in -80 oC until lysis. 

Protein Isolation and Western Blotting 

 After stimulation, plates of cells were placed on ice for lysis. Excess media was taken off 

and 150 μL ice-cold radio immuno precipitate assay (RIPA) lysis buffer* containing phosphatase 

and nuclease inhibitors was added to each plate. After 5 to 15 min, lysed cells were scraped off 

of the plate and transferred to Eppendorf tubes on ice. Tubes were rotated for 30 min at 4 oC, 

centrifuged at 12,000 RPM at 4 oC, and the pellet was discarded. Remaining lysate was 

transferred to new Eppendorf tubes on ice for immediate protein estimation or stored at -20 oC 

for later protein estimation. 

Protein estimation was done according to modified version of the Microplate Assay 

Protocol (Bio-Rad)12: add 25 μL reagent S to 1 mL reagent A and vortex at RT. Prepare 4 

concentrations BSA protein standard (1.52 mg/mL protein) by serial dilution to get 1.52 mg/mL, 
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0.76 mg/mL, 0.38 mg/mL, and 0.19 mg/mL BSA, and set aside on ice. Pipet 25 μL of the reagent 

A and S mixture into a sufficient number of wells in a 96 well, flat bottomed plate. Add 5 μL of 

standards and samples in duplicate to each well. Add 200 μL reagent B to each well and set the 

plate aside with shaking at RT for 10 to 20 min. Read absorbance of each well at 645 nm, 

making a standard curve with the standard samples. The volume of each sample to be prepared 

for resolution on the gel can be estimated by dividing the desired amount of protein (ng) by the 

value of the optical density.  

A final amount of 50 ng protein was prepared according to manufacturer’s instructions 

(Invitrogen)128: add the calculated volume for each sample to be resolved on the gel in an 

Eppendorf tube and add a corresponding amount of Novex® Tricine SDS Sample Buffer (2X) 

and NuPAGE® Reducing Agent (10X). The total volume should be no more than 60 μL for a gel 

with 10 wells. Boil samples for 5 min. At this point, samples can be stored in -20 oC for later use 

or run immediately. 1X running buffer was prepared from NuPAGE® MES Buffer (10X) and 

add 500 μL NuPAGE® Antioxidant for every 1 L buffer. Enough buffer was added to the 

running chamber so that all compartments are connected by liquid. Denatured samples and 8 μL 

Precision Plus Protein Dual Color Standard (BioRad) were loaded into a pre-cast 4 - 12 % Bis-

Tris polyacrylamide gel and run at no more than 180 V until the running dye reached the bottom 

of the gel cassette. The Bio-Rad Semi-dry Transfer Cell system was used to transfer separated 

proteins to a nitrocellulose membrane at 16 V for 40 min for 1 blot or 1 h for 2 blots. The 

membrane was blocked using 5 % non-fat dry milk in Tris-Buffered Saline Tween-20 (TBST) 

for 30 min. Primary antibodies were incubated overnight at 4 oC with shaking and secondary 

antibodies were incubated for 2 h at RT with shaking.  

*RIPA buffer is prepared using the following recipe129: 150 mM sodium chloride, 1.0% 

NP-40 or Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulphate), and 

50 mM Tris, pH 8.0. 

Immunofluorescence Microscopy 

 Focal adhesions (FAs) regulate apoptosis, cell migration, and proliferation123. Proper FA 

turnover time, mediated by FAK and vinculin function, is important in normal cellular migration 

and signaling110,122. Thus, we analyzed the effect of cannabinoids on CXCL12-mediated stress 

fiber formation. Stress fibers are associated with FAs and are also an indication of altered 

cellular interactions104. 
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 MCF7-CXCR4, SCP2, and NT2.5 cells were incubated overnight on tissue culture-

treated chamber slides with 20 µm JWH-015 or vehicle in SFM and stimulated for 3 h with 100 

ng/mL CXCL12. Cells were washed and fixed using 4 % paraformaldehyde, treated with 0.2 % 

Triton in PBS to permeabilize, and incubated in 3 % BSA in PBS to block. Cells were then 

stained green for vinculin. Stress fiber and focal adhesion formation was visualized using a 

confocal microscope. 

Statistical Analysis 

 Student‘s two-tailed t test was used to compare vehicle and cannabinoid-treated groups. 

A p-value of less than 0.05 was considered significant. On graphs, * denotes p < 0.05, and ** 

denotes p < 0.01 in comparison to vehicle.  

 

Results 

Chemokine and cannabinoid receptors are expressed in breast cancer cells 

 The CXCR4/CXCL12 axis has been implicated in breast cancer cell metastasis. Previous 

experiments have shown that cannabinoids inhibits of breast cancer cell migration, invasion, 

proliferation, and metastasis6,11,12,13. Before testing the effect of cannabinoids on CXCL12-

mediated breast cancer progression, we analyzed the expression of chemokine receptor CXCR4 

and cannabinoid receptor CB2 on the surface of MCF7-CXCR4, SCP2, and NT2.5 cells. CB2, 

and not CB1, expression was confirmed because the cannabinoids used are CB2 agonists with 

the exception of Met-f-AEA, which was used sparingly. 

As shown in figure 6, both CXCR4 and CB2 are expressed on the surface of MCF7-

CXCR4, SCP2, and NT2.5 cells. 

Cannabinoids inhibit CXCL12-induced migration 

 THC and non-psychoactive synthetic and endogenous cannabinoids have been implicated 

in the reduction of breast cancer metastasis. The Ganju group has previously shown that 

CXCL12 induces chemotaxis/chemoinvasion of breast cancer cells6. We analyzed the effect of 

endogenous and synthetic cannabinoids on CXCL12-mediated chemoinvasive properties of 

CXCR4 expressing MCF7-CXCR4 and highly invasive breast cancer cell lines SCP2, MDA-

MB-231, MDA-MB-231/BR3, and NT2.5.  

CXCL12-mediated migration of wild type MCF7-CXCR4 and SCP2 cells was 

significantly inhibited by 20 μM JWH-015 (Figure 7 A, B). Statistical analysis gave p values of 
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0.036 and 0.048 for MCF7-CXCR4 and SCP2 cells, respectively. AEA (20 μM) inhibited 

CXCL12-induced migration of MDA-MB-231 cells by up to 40 % as compared with vehicle-

treated cells (Figure 7 C). Concentrations of 20 μM AEA and 2-AG inhibited CXCL12-induced 

migration of MDA-MB-231 and brain specific MDA-MB-231/BR3 cells by approximately 30 % 

(Figure 7 D, E, F). Statistical analysis by two-tailed equal variance t-test: * p < 0.05, and ** p < 

0.01 in comparison to vehicle. CXCL12-mediated migration of NT2.5 cells was inhibited by 10 

μM JWH-015 (data not shown).  

These studies suggest that both endogenous and synthetic cannabinoids have the 

capabilities to inhibit CXCL12-induced migration and chemoinvasion of various breast cancer 

cell lines. 

NT2.5 

NT2.5 SCP2MCF7‐CXCR4 

MCF7‐CXCR4  SCP2

CXCR4 

CB2 

 

Figure 6: CXCR4 and CB2 are expressed on the surface of MCF7-CXCR4, SCP2, and NT2.5 cells. 

MCF-7/CXCR4, SCP2 and NT2.5 cells were washed twice with phosphate-buffered saline (PBS) and blocked 

(incubated) for 30 min in PBS with 3 % bovine serum albumin (BSA). Cells were then stained using anti-CB2 

antibody or anti-CXCR4 antibody for 1 h and washed three times in iced PBS with 3 % BSA. Cells were then 

incubated for 30 min with fluorescein-labeled secondary antibody in PBS with 3 % BSA before washing three times 

in the PBS-BSA solution. Cells were transferred into 500 mL PBS and analyzed by flow cytometry for surface 

expression of cannabinoid receptor CB2 and chemokine receptor CXCR4. 
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Figure 7. Cannabinoids inhibit CXCL12-mediated migration of breast cancer cells. (A) MCF7-CXCR4 and (B) 

SCP2 cells were treated overnight with 20 µM JWH-015 or ethanol (vehicle) in serum-free medium (SFM). (C) 

MDA-MB-231 and (D) MDA-MB-231/BR3 were treated with various concentrations of AEA or vehicle. (E) MDA-

MB-231 and (F) MDA-MB-231/BR3 were treated with various concentrations of 2-AG or vehicle. NT2.5 cells were 

treated with 10 µM JWH-015 or vehicle (data not shown). Cells were allowed to migrate through semi-permeable 

polycarbonate membranes of transwell migration plates (BD Biosciences). The upper chambers contained 1.5 x 105 
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cells per well (150 µL of 1x106 cells/mL) suspended in serum-free media and the bottom chambers contained 600 

µL serum-free media with or without 100 ng/mL CXCL12. Cells adherent to the membrane were fixed and stained 

using HEMA stain. Membranes were photographed (Zeiss) and cells were manually counted at the end of the 

migration. Statistical analysis by two-tailed equal variance t-test: * p < 0.05, and ** p < 0.01 in comparison to 

vehicle. 

 

Cannabinoids inhibit CXCL12-induced invasive properties 

 Cannabinoids have been reported to inhibit the migration and wound healing abilities of 

breast cancer in vitro and in vivo12,13,113,114. The CXCR4/CXCL12 axis appears to induce 

migration of cancer cells which express CXCR4 to tissues that secrete CXCL1290,125. The wound 

healing assay simulates an environment in which cancer cells can metastasize and invade into the 

surrounding area. We first evaluated metastasis and invasion of MDA-MB-231 in the absence of 

CXCL12. Then, we analyzed CXCL12-mediated metastasis and invasion of MCF7-CXCR4, 

SCP2, and NT2.5 cells.  

Upon visual inspection of wound closure in Figure 8 (A), it is apparent that 10 μM Met-f-

AEA and a combination of 10 μM JWH-133 and Met-f-AEA inhibit wound healing/invasion of 

highly metastatic MDA-MB-231 cells. CXCL12-mediated wound healing/invasion of MCF7-

CXCR4, SCP2, and NT2.5 cells was inhibited by 10 μM JWH-015 (Figure 8 B, C, D).  

These studies suggest that synthetic cannabinoids have the capabilities to inhibit 

CXCL12-induced wound healing/invasive properties of various breast cancer cell lines. 

Cannabinoids are not cytotoxic 

 In some cases, cannabinoids have been found to exert either anti- or pro-apoptotic effects 

on cancer cells11,12. It is important to verify whether inhibition of CXCL12-mediated migration, 

metastasis, and invasion was caused by cannabinoid crosstalk with the CXCR4/CXCL12 

pathway or by cannabinoid cytotoxicity. For this reason, we analyzed proliferation of breast 

cancer cells treated with cannabinoids over a period of five days using the MTT assay.  

 Neither AEA nor 2-AG in a concentration of up to 20 μM had cytotoxic effects on MDA-

MB-231 and MDA-MB-231/BR3 using the MTT assay (data not shown). OD was measured and 

no significant induction of apoptosis resulted from endocannabinoid treatment.  
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Figure 8. Cannabinoids inhibit CXCL12-mediated wound healing/invasion of breast cancer cells. Cells were 

grown to 100 % confluence in complete medium in six-well plates and scratched with a 200 mL pipet tip to create a 

wound. (A) MDA-MB-231 cells were treated overnight with 10 µM JWH-133, a combination of 10 µM JWH-133 

and 10 µM Met-f-AEA, or vehicle in SFM. (B) MCF-7/CXCR4-WT, (C) SCP2, and (D) NT2.5 cells were treated 

with 20 µM JWH-015 or vehicle with or without CXCL12 (100 ng/ml). Photographs (Zeiss) were taken at the 

beginning and end of wound healing (after 18 or 24 hrs) and wound closure area was quantitated using ImageJ.  

 

JWH-015 modulates CXCL12-induced ERK signaling  

 CXCL12 has been shown to activate various signaling pathways including ERK 

pathways. ERK kinases have been shown to be phosphorylated upon activation. In order to 

determine if cannabinoids inhibit CXCL12-induced migration through the through inhibition of 

the ERK pathway, we analyzed the effect of cannabinoids on ERK phosphorylation by Western 

blot using pERK-specific antibodies.  
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Figure 9: CB2 receptor activation downregulates ERK phosphorylation. SCP2 cells were grown in a monolayer 
to 70 - 80 % confluence and incubated in SFM containing 10 μM JWH-015 or ethanol. Medium with cannabinoid or 
control was removed, cells were washed with serum-free medium, and stimulated with 100 ng/mL CXCL12 for 0, 5, 
15, 30, and 60 min. Proteins were resolved by Western blot.  
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As shown in figure 9, JWH-015 inhibited CXCL12-induced phosphorylation of ERK, 

however there was no effect on ERK total protein content, indicating that cannabinoids 

specifically inhibit ERK phosphorylation and not protein expression. 

Cannabinoids inhibit CXCL12-mediated stress fiber formation in breast cancer cells.  

 Stress fibers are associated with focal adhesions (FAs), which are links between the actin 

cytoskeleton and extracellular matrix of cells. These structures help regulate cell migration and 

proliferation123. Focal adhesion kinase (FAK) and vinculin are responsible for correct FA and 

stress fiber formation, and can be used as markers of altered cellular migration and 

signaling110,122. We analyzed the effect of synthetic cannabinoids on CXCL12-mediated breast 

cancer stress fiber formation by visualizing vinculin through a confocal microscope.  

As shown in figure 10, JWH-015 inhibited stress fiber formation in SCP2 and NT2.5 

cells after stimulation with 100 ng/mL CXCL12. Stress fibers are seen in green as a result of 

anti-vinculin staining and visualization with a confocal microscope. 

 

Vehicle 

JWH‐015 

CXCL12              0 min                            30 min

SCP2 
B

Vehicle

JWH‐015

    CXCL12          0 min                            60 min 

A  NT2.5 

 

Figure 10. CB2 receptor specific ligand inhibits CXCL12-mediated formation of focal adhesions in breast 

cancer cells. SCP2 and NT2.5 cells were treated with 20 µm JWH-015 or ethanol overnight and stimulated with 

CXCL12. Cells were stained for Vinculin (green) and stress fiber and focal adhesion formation was visualized using 

a confocal microscope.  
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Discussion 

Breast cancer remains a leading cause of death among women worldwide12. Breast cancer 

metastases to the brain, bone, lung, stroma, and liver not the primary tumor in the breast, lead to 

death90. The role of cannabinoids in the treatment of breast cancer is not well known. In previous 

experiments cannabinoids have shown promising anti-cancer effects. THC has been used in vivo 

to inhibit lung adenocarcinoma growth11. JWH-133 and Win55,212-2 have been shown to inhibit 

glioma, leukemia, breast, prostate, and colon cancer progression106,107 and breast tumor growth in 

vivo using polyoma middle T oncoprotein (PyMT) models12,109. Enzymes that degrade 

endogenous cannabinoids could be targeted to inhibit breakdown of AEA and 2-AG to exploit 

their therapeutic potential. Inhibition of FAAH, which breaks down AEA and MAGL, which 

breaks down 2-AG may have minimal side effects compared to current popular breast cancer 

treatments including Tamoxifen and Trastuzimab11. These drugs are known to increase the risk 

of endometrial cancer and cardiac dysfunction, respectively130,131. Although cannabinoids have 

been shown to block metastasis, the mechanism is unknown, but could be through the 

CXCR4/CXCL12 mechanism. In this study, our focus was to understand more about the effects 

of endogenous and synthetic cannabinoids on CXCL12-mediated invasive properties of various 

highly metastatic breast cancer cell lines. 

The CXCR4/CXCL12 axis appears to mediate cancer cell migration to specific organs 

and tissues90,125. Metastatic breast cancer tissue expresses CXCR4 in much higher levels than 

normal breast tissue does2,15,16. CXCL12, the only known CXCR4 ligand, is secreted by the 

tissues to which breast cancer metastasizes90. In vivo CXCL12 knockout models show 

significantly decreased breast cancer cell migration and metastasis17. In our studies, we have 

confirmed that breast cancer cell lines MCF7-CXCR4, SCP2, and NT2.5 express cannabinoid 

receptor CB2 and chemokine receptor CXCR4. CB2 expression was verified because the 

endogenous and synthetic cannabinoids used in this study, with the exception of Met-f-AEA, are 

CB2 ligands. CXCL12-mediated migration of MCF7-CXCR4 and SCP2 is inhibited by the 

synthetic cannabinoid JWH-015. Endogenous cannabinoids AEA and 2-AG inhibit CXCL12-

mediated breast cancer cell migration of MDA-MB-231 and brain-specific MDA-MB-231/BR3. 

Additionally, wound healing/invasion of MDA-MB-231 was inhibited by Met-f-AEA and a 

combination of Met-f-AEA and JWH-133. CXCL12-mediated metastasis and invasion of MCF7-

  28



CXCR4, SCP2, and NT2.5 was inhibited by JWH-015. The concentrations of synthetic and 

endogenous cannabinoids used to inhibit breast cancer progression in vitro were not cytotoxic.  

CXCR4/CXCL12 signaling axis has been shown enhances migration of breast cancer 

through activation of various signaling pathways including ERK kinase11. In our studies, we 

have shown that synthetic cannabinoids inhibit CXCL12-induced activation of ERK by 

inhibiting phosphorylation of ERK without affecting its total protein content. In addition, we 

have also shown that cannabinoids may also inhibit stress fiber formation, which have been 

shown to play an important role in regulating cell migration/invasion/adhesion104,110. These 

properties have been shown to play an important role in metastasis of breast cancer cells123. 

Stress fibers are also associated with focal adhesion (FA) complex formation, which are 

the primary links between the cellular actin cytoskeleton and the extracellular matrix 

(ECM)122,123. FAK and vinculin are responsible for formation and turnover rate of FAs and are 

important for the regulation of migration, invasion, and proliferation104,110,123. Inhibition of this 

protein and vinculin causes a significant decrease in normal cell spreading FAK downregulation 

inhibits migration of breast cancer cells110. Function of these proteins can be monitored to 

evaluate altered cellular behavior. CXCL12-mediated stress fiber formation in SCP2 and NT2.5 

cells was inhibited by JWH-015.  

Due to the presence of cannabinoid receptors on the brain, cannabinoids have the ability 

to cross the blood brain barrier, and could potentially be used to inhibit breast cancer metastasis 

to the brain. Based on this and previous studies, cannabinoids are a desirable addition to current 

therapies, as they can be endogenously produced and they show promising anti-cancer 

properties. In future endeavors, more detailed analyses of cannabinoid-mediated effects on 

CXCL12-induced signaling mechanisms, especially modulation of FAK, RAFTK, PI3K, needs 

to be carried out. These studies will help us understand the molecular mechanisms underlying 

cannabinoid-mediated effects on growth and metastasis of breast cancer cells. In vivo studies are 

necessary to validate the results found in this study and to evaluate the effect of cannabinoids and 

CXCL12 on angiogenesis, tumor formation, and tumor spread. To better determine the clinical 

possibilities, in vivo models addressing cannabinoid receptor tolerance as well as drug dosage 

and targeting should be explored. These studies represent the beginning stages of a potential 

addition to current therapies used against breast cancer. 
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