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EXECUTIVE SUMMARY 

Highlight* o£ P/io6e I 

The following four points indicate the direction and accomplish­


ments of the first year of project activity.


1.	 In a continuing effort to improve the knowledge of the


aquifer system characteristics> a computer program which


simulates an aquifer using an alternating direction


implicit-iterative procedure has been obtained from the


U. S. Geological Survey. This aquifer simulation model


was utilized as a component in the system identification


effort.


2.	 The search for a real data base for the final implementa­


tion and validation of the models has been very successful.


We have established a working relationship with the Miami


Conservancy District and their staff have expressed its


interest in our research and promised to collaborate and


assist in supplying groundwater and other hydrological data


from the District. This has aided in identifying the model


parameters and in validating and testing the model once


the identification was completed. Furthermore, water quality


models currently under development by the District engineers


should be useful when the validated models are used to derive


improved water management policies.


3.	 Our efforts have focussed on the development of improved


solution methodologies for the identification and optimization


problems. A system identication methodology, applicable to


calibration of confined and unconfined (under certain con­


straints) aquifer models described by parabolic partial


differential equations, has been developed. Work has been


completed on the femulation and coding of a digital computer
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software package capable of estijnating the values of trans­


missivity, as a function of location within the aquifer.


The estimation is based on measured and observed data on


the waterhead and the various flows from and into the aquifer.


The identification methodology has been successfully applied


to the parameter identification of an aquifer model simulating


the behavior of a real aquifer system. The Fairfield-New


Baltimore aquifer in southern Ohio was chosen as the problem


site in collaboration with the Miami Conservancy District.


After several meetings with personnel from the Miami Conser­


vancy District and after the initial stage of data collection


was completed, a two dimensional partial differential equation


model was postulated for the region. Calibration of the model


was pursued using the new system identification methodology


developed in this research. The results are satisfactory and


establish that analytical means, as opposed to simulation by


trial-and-error techniques, are feasible and yield excellent


results. The identification phase has been completed and


will be integrated with the overall ground and surface manage­


ment model in Phase II.


The product of Phase I is a complete, validated aquifer model


which we believe is most valuable to engineers and managers


concerned with groundwater systems. It can be used both


for simulation and/or optimization. In particular it is of


direct value to engineers and analysts wishing to know the


response of the aquifer system to various demands placed upon


it. The model will be fully utilized, of course, for the


conjunctive management of ground and surface water developed


in Phase II of this project. The model is in the form of a


FORTRAN V computer program.




Application o^


This research was conducted in close cooperation with the Miami


Conservancy District, Dayton, Ohio. We expect that our models and


results will be utilized by the above agency as well as others. In


addition, we are closely communicating with the U. S. Geological


Survey, Water Resources Division, in Washington, D. C. Our results


are being evaluated by this agency and we again hope that they will


be utilized successfully.


Wosik RmcuLvung,. and VKOQK^h Contemplated Voting Pka&z II


Phase II will continue the development of the management model


by utilizing the identification and groundwater models developed in


Phase I. This development for the overall optimal conjunctive


management of ground and surface water includes the following:


1.	 Objectives and constraints arising when conjunctive use


of ground and surface water is considered will be formu­


lated. In particular, emphasis will be focussed on the


joint formulation of the system modeling (identification)


and optimization of ground and surface water resources for


their optimal management.


2.	 Alternative courses of action will be identified and formu­


lated mathematically as decision variables within the


model.


3.	 A forecasting subsystem will be developed to provide


estimates of water demands of users for both long and short


term models.


In points 1-3 above, the experience of the Miami Conservancy


District engineers will be most valuable in assuring that the
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management model developed is realistic and useful. Usage data from


that District will serve as input to the forecasting subsystem, and


cost data will aid in establishing objective functions.


Surface water data may have to be augmented from sources other


than the Miami Conservancy District for this project. A decision on


this matter will be made later in Phase II when the inventory and


evaluation of the data available from the District is completed.


4.	 A number of optimization problems will be formulated, whose


solutions should yield improved policies for water manage­


ment. These fall into two categories:


Short term planning model. This has an objective to show


how user demands over a 3-5 year period may be met at


minimal cost.


Long term planning model. This model includes as alter­


natives various capital construction projects for


increasing water supply. It provides information on


which project should be constructed and when and how the


water from these and from existing projects should be


distributed and used. The time horizon is 30-40 years.


5.	 Data on costs, forecasts of demands, and various assumptions


on natural flows into the water resource system will be


gathered or generated. These latter assumptions can be used


to answer questions as to what are the best water management


policies under drought conditions, as well as under normal


inflow conditions. The effects of various assumptions on


industrial and residential growth will also be investigated.


6.	 Solution methods for the joint system modeling and optimization


will be developed, coded, and tested with real data.


7.	 Results will be analyzed, and if indicated the model will be


adjusted and rerun. Here again, close cooperation with the
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Miami Conservancy District will ensure that the final product


is realistic and of value to other areas with real decision


problems.


A report documenting all the research phases and findings will


be made available at the end of Phase II.
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Chapter 1


PROBLEM DEFINITION AND DATA COLLECTION


1.1 Problem Definition


More than half of the water supply of the United States is extracted


directly from groundwater systems. Groundwater also acts as an enormous


regulating reservoir providing for the natural base flows of streams.


Increasingly man-induced recharge is being used to augment natural reple­


nishment of aquifers. In many locations groundwater reserves are utilized


for interim economic development. Aquifers in general are capable of


storing most of the cumulative excess water runoff or of being recharged


with water from other sources for use in water shortage periods. This


often eliminates the need for constructing expensive large dams and


reservoirs.


Groundwater is clearly one of the major elements of our water resources.


Its wise management must be considered a necessity. Key to the optimal


management of this resource for any of its multiple beneficial uses is an


ability to predict with reasonable accuracy the response of the system to


decisions affecting recharge and withdrawals. This in turn is dependent


upon the values of the important parameters such as permeability, specific


yield, transmissivity, etc., as these are distributed over the aquifer


formations in space. Once the physical properties and characteristics of


an aquifer are known, it is possible to apply appropriate physical laws


and to predict the response of the aquifer system to demands placed on it.




Without such knowledge prediction is impossible.


Groundwater should not be considered as an isolated resource, however.


Extensive research has been devoted to the problem of the conjunctive use


of ground and surface water. The overall goal of this study is thus to


develop methodologies for the optimal planning and management of the con­


junctive use of groundwater and surface water facilities by considering


the problem of estimation of physical hydrologic response model parameters


and the optimization of conjunctive water system operation and management


together in an integrated fashion. In addition, multiple system objectives


are to be considered simultaneously.


Obtaining the required aquifer system parameter values directly in a


sufficiently dense space-time network, by an extensive data observation


system would be prohibitively expensive. For this reason, most of the


parameter values used are deduced from the behavior of the system rather


than by direct observation. Because of analytical limitations the values


presently being obtained represent essentially an estimate of the parameters


near the well being observed, i.e., a point observation. The aquifer


as a system, however, responds to these values as distributed over the


system, not just in the vicinity of the well. What is needed is an analyti­


cal procedure which will permit a determination of those parameters which


will reflect, through an optimum weighting process, the effect of the distri­


bution of their values as a function of time and space in a way which provides


the most relevant information for the management optimization problems. This


is the approach of the aquifer model investigation.


One of the major objectives of this research is to develop a generalized


analytical procedure whereby the past history of an aquifer or its response




to a future series of planned drafts can be utilized. In particular:


(i)	 To evaluate the basic aquifer parameters as a function


of position.


(ii)	 To optimize this evaluation so that the results have


the maximum relevance to the determination of the


optimum management policy.


The numerical values of the parameters assigned to various points


in the aquifer not only represent an average of the distributed effect


of that parameter but are also properly weighted with regard to the


effect of management decisions regarding extractions and withdrawals.


Phase II of the research plan involves the joint consideration of


the system modeling and optimization of ground and surface water resources


for their optimal management. The identification of aquifer system para­


meters, (e.g. transmissivity and storage functions) as part of system


modeling, has traditionally been considered and treated separately from


the optimization procedure. However, since the unknown aquifer parameters


are used in determining the optimal decision variables as shown in earlier


work, the integrated system identification and optimization will be considered


for the optimal management of ground and surface water. The objectives of


this study are to utilize advanced aquifer system models in a total planning


model which considers the conjunctive effects of ground and surface hydrology,


multiple planning objectives and both long and short-range real water resources


management situations.




The objectives of the research are attained by the following steps:


(i)	 Detailed formulation of the joint system identification


and optimization problem.


Cii)	 Improvement of the aquifer system models previously


developed so as to fit the integrated formulation.


(iii)	 The development of improved solution methodologies for


the identification and optimization problems. (Decomposi­


tion and multilevel techniques will be considered.)


(iv)	 The implementation of the above formulation and solution


to a real ground and surface water system.


The first two steps outlined in the objectives involve the applica­


tion of more realistic mathematical models of aquifers. The forms of the


equations in such models are well known (such as the diffusion equation),


As stated above however, the model parameters such as transmissivity and


storage are distributed (i.e. vary with spatial location) and are usually


unknown. In this research mathematical methods have been applied for


system identification to determine these parameters. The last two steps


use the aquifer parameters obtained above in an optimization scheme whose


results can lead to a policy for better management.


Although such optimization has been proposed previously in the


literature, most such work has not taken into account the distributed


and dynamic character of aquifers. Phase II of this study will involve


the joint consideration of the system modeling and optimization of ground


and surface water resources for their optimal management. By this joint


consideration, shortcomings of previous developments will be overcome.




It should be emphasized that a real ground and surface water resource


system has been selected for study and the above methodology applied to


this system.


1.2 Description of Real Aquifer System: Miami Conservency District


The area modeled for the validation of the identification algorithm


is the Fairfield-New Baltimore area of the Miami Conservency District,


which consists of 32 square miles of the Great Miami River Valley south­


west of Hamilton, Ohio.. The area modeled possesses a sand and gravel


aquifer that is bounded by the bedrock walls of the Great Miami River


Valley. The bedrock walls form the boundary of the aquifer, with the


exception of the west and north, where the boundaries are arbitrary. For


the west boundary the dry fork of the White Water River, located about


two miles west of New Baltimore was selected as the boundary. For the


northern boundary a line through Fair field near the southern city limit


of Hamilton was chosen.


Geologically, the aquifer under study consists of glacial outwash


sands and gravels of the Pleistocene Age, From the hydrogeological point


of veiw, the aquifer area can be conveniently divided into three parts;


these are described as follows.


In the central part of the area the aquifer material consists of


stratified sand and gravel situated 150-200 feet below ground surface.


Widely scattered lenses of clay and silt are also present but are not


of sufficient areal extent to cause any perceptible confining effects. In


the southwest corner area the sand and gravel is only about 80 feet thick,




Along the eastern edge of the area some three square miles consists


of a sancl and gravel aquifer, which is about 100 to 150 feet thick and


is overlain by about 100 feet of clay and silt.


In the western-most portion of the Fairfield-New Baltimore area,


which covers about eight square miles, the aquifer is about 200 feet


thick and is capped with a complex layer of till, silt and clay.


Groundwater occurs under unconfined conditions throughout most of


the area. However, the mathematical condition that the drawdown be small


as compared to the saturated thickness of the aquifer is satisfied. This


condition permits use of the identification technique developed in the


present work.


The hydrologic and geologic characteristics of the Fairfield-New Baltimore


aquifer have been extensively studied and a report [Spieker, 1968] provides


an excellent source of information for the area.


1.2.1 Estimation of the Input-Output Water Balance


Concerning the hydrologic boundaries (i.e., boundary conditions), the


aquifer is bounded by the vertical bedrock wall of the buried Miami Valley.


The permeability of this rock is low, yet it can contribute a significant


amount of water to the system due to the very large contact area; therefore,


a leakage boundary is introduced in the model. A second source of water


is provided by the Great Miami River which traverses the aquifer as shown


(Figure 1.1). The river strongly interfaces with the aquifer and is one


of the most important components of the ground and surface water system.




.84 Ml , 

Fairfield Water WorKs 

• • ' •  . Fairfield 

Proposed Cincinnati 
well field 

EXPLANATION 

-Southwestern Ohio 
Water Co well field 

(2) 

Aquifer test-site 

Valley i)oun»liir.\ 

39" 16' I— Arbitrary model boundarv 

DESCRIPTION OF THE LOWER GREAT MIAMI RIVER VALLEY, OHIO


FIGURE 1.1




The input-output water balance of the aquifer is made up of the


following components:


(i) Recharging of Induced Stream. Infiltration


This is a difficult systems input to estimate. It is a highly variable


quantity whose interaction with the aquifer depends on many factors such as


width and depth of the river, velocity of the streamflow, permeability of


the streambed. The most critical of all these factors is the stream infil­


tration rate under conditions of low streamflow. Two estimates of this


factor have been made for the problem area and based on them a range of


240,000 to 500,000 gpd per acre has been determined as the expected range


of variation for the maximum infiltration rate all year round [Spieker, 1968]


Such a range indicates that the river is a large source of water for the


aquifer; consequently, in the aquifer model the river has been modeled as


a constant head boundary,


(ii) Recharge from Boundaries


The perimeter of the aquifer modeled is 220,000 feet, of which


180,000 feet is along the bedrock valley walls, The permeability has been


estimated to be on the order of 1,5 gpd per sq. ft. These figures, when


multiplied by the total area, yield 6,8 mgd coming from the bedrock forma­


tions into the aquifer. This last figure is used in this study.


(iii). Pumping


Pumping is concentrated in three well fields, namely, the Hamilton south


well field (Fairfield), the Southwestern Ohio Water Co, well field, and




the U. S. Atomic Energy Commission well field. Pumping started in 1943


with eleven wells in Fairfield, These wells were operated from 1943 to


1945. Then, from 1945 to 1952 there was no significant pumping in the


area. In 1,952 Southwestern Co. installed a new well, S-l (Figure 1.1),


This well was pumped from 1952 to 1955 at an average rate of 10 mgd.


In 1955 a second well was installed, S-2 (Figure 1.1), The combined


pumpage of S-l and S-2 from 1955 to 1962 averaged 13,8 mgd. In 1956 the


city of Hamilton installed a new well field (F - 8, F - 10, F - 11)


which was pumped from 1956 through 1962 at an average of 7,5 mgd, The


U. S. Atomic Energy Commission well field, has been pumped at an average


of 1 mgd since 1952.


(iv)	 Initial Conditions


Records of water level in the area were not kept until pumping had


started; therefore, it is difficult to determine the initial conditions


of the system, Spieker [Spieker, 1968] estimated those conditions based


on existing hydrographs of the area, present water levels measurements,


model's results, and river stages. In the present work, initial conditions


for groundwater levels in the area were averaged to 550 ft.


For the Fairfield r-New Baltimore area only four reliable pumping


tests have been performed to determine the aquifer transmissivity.


Locations of test points are shown as T~, T2, T^, T,, (Figure 1,1), The


average storage coefficient has been estimated to be 0,145. This, is the


only available value.


The construction and validation of an aquifer model for the Fairfield-


New Baltimore area is an important step in this project since no prediction


of the real system behavior can be made without such a component.




Chapter 2


MODELING AND IDENTIFICATION OF AQUIFER SYSTEMS


2%.l Introduction


There are numerous approaches to constructing models which


reliably predict the response of an actual groundwater aquifer to a time


history of multiple well pumpages and to estimate natural water inflows


and outflows into and from the system. This chapter is intended to provide


an introduction to various types of such models. It is important to realize


that the predictive ability of a given model is the key feature of value in


water resource planning and management * The fact that the hydrologic


parameters in the model may not directly correspond to the umicroff physical


characteristics of the aquifer soil should not be a disturbing occurence


in such models.


In the following sections and in more detail in the following chapters,


the models devised and validated as part of the OWRR Project Phase I will


be explained and discussed,


2.2 Literature Survey


The ability to forecast water levels and quality distribution in


aquifers is essential for planning groundwater management programs. Mathe­


matical models describing groundwater flows are well established. The


mathematical models are based on the balances of water volumes which result
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in partial differential equations or difference equations, The aquifer


system parameters such as transmissivity and storage coefficient are an


integral part of the equations and .must befaioxa. ia order to predict the


response of the aquifer to various demands placed on it. Since compre­


hensive physical measurements of aquifer parameters are seldom feasible, the


identification of parameter by suitable mathematical formulations is highly


desirable.


The problem of identification of the aquifer parameters is equivalent


to the problem of parameter identification of partial differential equations


(P.D.E.).


Many identification techniques for systems described by ordinary


differential equations (O.D.E,) have been developed and are available.


The same can not be said of the P*D,E, counterpart. The problem occurs


since the theory of P,D.E, is more complex and difficult to apply. Most


P.D.E. of interest in engineering have no analytical solutions, and the


existing numerical techniques to solve them are not completely satisfactory.


In the area of identification of P%D.E,, most techniques focus on the


identification of constant-parameter, one-dimensional equations. Few of


the techniques consider the identification of variable-parameter, one-


dimensional equations, and only very few on the varying-parameter, multi­


dimensional equation case.


The survey of the state-of-the-art in identification of P.D.E. has


been divided in two sections.


(i) & survey of general techniques of parameter identification of


P.D.E,,
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(ii)	 a survey of literature with particular application to


groundwater parameter identification.


(i] The best known technique for parameter identification of P.D.E. is


the transformation of the P.D.E, into a set of O.D.E, followed by


application of quasilinearization, [Bellman § Kalaba, 1969], [Schenke §


Haimes, 1973],


Falkenburg [Falkenburg, 1971] identifies variable parameter one-


dimensional equations by transforming the P.D.E. into an appropriate


integral equation. Using a functional approach, he generates an approximate


solution for the distributed system using the integral equation. This


approximate solution is then used to identify the equation parameters on a


least-square basis. Extensions of this methodology to handle two dimen­


sional P.D.E, have not been devised to date and therefore cannot be applied


for the purposes of this project.


Karplus § Kawamoto [Karplus § Kawamoto, 1966] apply sensitivity


analysis to identify constant parameters in multidimensional P.D.E,


Seinfeld [Seinfeld § Chen, 1971] follows the same approach. The identifi­


cation problem is posed as a minimization problem. The solution of the


P.D.E. is required to match the measured response of the physical system.


The parameters are identified on a least-squares basis using a steepest


descent method. The main drawback of this approach is the slow convergence


rate of the steepest descent method.


Phillipson [Phillipson, 1971] solves the problem of identifying initial


and boundary conditions for systems described by linear parabolic and second


order hyperbolic P.D.E. He casts the problem within a variational framework
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and characterizes extremals of quadratic functionals constrained by P,D.E.


by applying known results from the theory of optimal control of distri­


buted parameter systems developed by Lions [Lions, 1971],


(ii) Trial and error procedures and system simulation have been commonly


used for identifying transmissivity and storage coefficients in groundxvater


system modeling. An RC-Network electric analog to simulate the behavior


of the aquifer system was employed by Spieker [1968] and Bear and Schwartz


[1966] among others. The parameters were determined by trial and error


so that, after each run a better agreement was obtained between water levels


observed in the aquifer at the end of the calibration period and the corres­


ponding values determined from the model, The work of Vemuri and Karplus


[Vemuri § Karplus, 1969] provided an improved method for identifying aquifer


parameters. They used a hybrid computer to obtain optimal values of aquifer


transmissivity. Their model, however, is unable to determine the storage


coefficient except by trial and error.


A unique analytic approach for the identification of aquifer parameters


through application of decomposition and multilevel optimization techniques


was developed by Haimes et al IHaimes^ 1967]^ JHaimes, Perrine and Wismer, 1968] ,


[Wismer, Perrine and Haimes, 1970]. These investigations involved integral


solutions to the flow problem together with decomposition of the aquifer system


into a set of independent subsystems. Each of the subsystems was described


by a one dimensional partial differential equation with constant parameter.


This approach is attractive because of its relative simplicity; however, it


may suffer from limited applicability.


Yeh and Tauxe [Yeh and Tauxe, 1971], applied the technique of quasi-


linearization to identify the parameters of a homogeneous and isotropic confined
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aquifer system. A further extension of this model to a finite leaky


aquifer system was studied by Marino and Yeh [Marino £ Yeh, 1973]%


The applicability of quasilinearization to groundwater modeling and


identification is very limited due to problems of high dimensionality


and small region convergence,


Kleinecke [Kleinecke, 1971]? applied a linear programming to


determine groundwater model parameters, A large set of linear equations


results from writing the water-balance equations for each cell of a multi­


cell aquifer model for which data on water levels are available,


Unfortunately, this approach has been found to be very sensitive to


errors in measurement [Kleinecke, 1971].


2.3 Aquifer Models


2.3,1 Introduction


The objective of this section is to introduce the aquifer model to be


used in this work. The model presented is the well known nonlinear partial


differential equation which describes unsteady groundwater flow* The


equation is based on Darcy*s law and the law of conservation of mass.


Since no analytical solution exists for the continuous model? the P,DtE,


is discretized and put into form amenable to numerical solution. The alter­


nate implicit direction method, [Peaceman and Rachford, 1955], is applied to


solve it. Finally, a discussion on the model calibration or aquifer model


identification problem is presented.
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2,3.2 Aquifers


An aquifer Is a geologic formation or stratum that can store and


transmit significant quantities of -water. Under appropriate hydraulic


gradients this water can be extracted and used for various purposes.


Aquifers can also be regarded as underground storage reservoirs which


are replenished by natural and artificial inputs. From a systems


viewpoint, an aquifer can be viewed as a black box with an input and an


output. The hydrologic input is composed of subsurface inflows and


percolation from streambeds, irrigation, artificial recharge and precipi­


tation. The hydrologic output is composed of subsurface outflows,


effluent streams, pumpage, and losses such as evapotranspiration and


leakage. Aquifers are classified as either confined (artesian) or


unconfined (phreatic) aquifers, A confined aquifer is bounded above


and below by impervious formations. An unconfined aquifer has a water


table as an upper boundary and an ijnpervious formation as a lower


boundary.


The physical properties of aquifers are described by such parameters


as: hydraulic conductivity (K), which indicates the ability of the


aquifer material to conduct water; storativity (S), which measures the


storage capacity of the aquifer, etc. For detailed discussion on


aquifers the reader is referred to [Bear, 1972], and [Walton, 1970].
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Confined and unconfined aquifer systems can be classified as follows:


Confined Aquifers:


Class No. 

I  T [ ^ + ^ | ] - s | | • Q(x,y,t) 

m Klfe»||) * ly 0»|*)l - s|ff| • Q(x,y,t)


- S $ • QC*,y,t)


v I f * • « H i + 1 [* • •» If] - s ( x^ If 

Unconfined Aquifers:


Sx dy 

111
= s " ̂  + 4 

S> + ly [(k-h)  $1 " S  I f 

v 
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K^L(h-d)||] +|- [(h-d)||]} = S(x,y) §£+ Q(x,y,t)


Q(x,y,t)


where


T(x,y,t) - Aquifer's transmissivity, over space and time,


IC(x?y) - Hydraulic conductivity, over space,


S(x,y) - Storativity of an aquifer.


b(x,y) - Aquifer thickness,


P(x,y,t) - Piezometric head.


Q(x,y,t) - Vertical outflow (inflow if negative),


d(x,y) - Elevation of aquifer bottom.


h(x,y,t) - Elevation of water table.


Each of the above classes of aquifer systems is characterized by its


associated parameters. The following tables summarize the variations in


the system parameters.


Confined Aquifers:


Class No. b(x,y) K(x,y,z) T(x,y,z) S(x,y, 

I CONST. CONST. CONST. CONST. 

II CONST. d(x,y) Ttx,y) CONST. 

III Kx,y) CONST. CONST. 

IV b(x,y) K[x,y) CONST. 

V b(x,y) KCx,y) S(X,Y) 



1

2

3

4

5
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UNCONFINED AQUIFERS


Class No. dCx?y) K(x,y,z) T(x,y,t) S(x,y, 

I CONST. CONST. CONST. CONST. 

II CONST. CONST. CONST. 

III CONST. K(x,y) T(x,y) CONST. 

IV CONST. K(x,y) CONST. 

V CONST. KCx,y) s Cx,y) 
VI d(x,y) CONST. S (x,y) 

VII d(x,y) K(x,y) S(x,y) 

2.3.3 A Continuous Aquifer Model


Aquifer models are vital tools in the planning of groundwater management


programs. They help the decision maker to forecast aquifer water levels


and quality distributions resulting from alternative policies without


having to run expensive and impractical real tests. The following


are some important points that must be taken into account i$ien selecting


a models [Schenke and Haijnes, 1973J ,


- Modells goals and assumptions


. Geologic and hydrologic properties of the real system,


. Information available to calibrate the model.


. Amount and accuracy of input data.


. The system1 s output data.
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Point 4 refers to the fact that a very sophisticated model is of


little value if the accuracy of the input data is poor, whereas point


5 stresses the importance of having the system^ output data to check for


accuracy of the model response.


There are several mathematical models in the literature, all of


which are based on Darcy*s law and the law of conservation of mass.


Single cell models assume that average conditions describe the entire


aquifer. Partial Differential Equation models apply the laws of physics


which describe the flow of fluids through porous media, to derive dynamic


equations relating aquifer water levels or pressures to forcing functions


and aquifer parameters. Finite difference models are either discrete


approximations of P.D.E. models or sets of algebraic equations resulting


from physical considerations similar to the ones leading to P,D,E.


models. Both P.D.E. and discrete models are used in this work. The


continuous model will be used in the theoretical developments whereas


the discrete model is used in numerical computations. The P.D.E. model


is stated below.


The flow in the aquifer is assumed to be essentially horizontal,


since the thickness of the aquifer is small compared with horizontal


dimensions. If the aquifer properties are nonhomogeneous, isotropic


and confined, then the application of Darcy*s law and the law of


conservation of mass leads to the following relation;


£ • Q
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where


T - T(x3y) -- Non-homogeneous transmissivity (ft/sec)


h = h(x,y,t) -- Hydraulic head (ft)


S = S(x,y) -- Coefficient of storage (dimensionless)


Q = Q(x,y,t) -- Pumping rate per unit area (ft/sec)


Equation [2.1) relates changes of water head to pumping in a


confined aquifer, (eventually Q could include recharge terms and leakage


terms).


The geometry of the aquiferTs boundary, the intial head, and the


boundary conditions complete the mathematical statement of the aquifer


model.


Equation (2.1) also describes phreatic aquifers when the drawdown


is small compared to the saturated thickness. Thus, by analogous develop­


ment and with Dupuit!s approximations [Jacob, 1950] result in:
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where K = K(x,y) is the hydraulic conductivity of the aquifer [ft/sec)


averaged over the aquifer depth. Equation (2,2) relates changes of water


head to pumping in an unconfined aquifer..


Equation (2.1) is well suited for the aquifer underlying the Fairfield-


New Baltimore area, because the unconfined aquifers in the region satisfy


the condition that drawdown is small compared to the saturated thickness.


Since no analytical solution to equation (2.1) exists, a finite


difference model is used for the numerical computations.


2.3.4 A Discrete Aquifer Model


There are several ways of discretizing equation (2*1) using finite


difference methods, [Ritchmeyer, 1967]. The main method is to


replace the domain of the independent variables (x,y,t) by a finite set


of points {x.,y.,t }. The discretization process is accomplished by


superimposing a grid, whose shape is usually rectangular in order to


obtain simple equations. The water head is required to satisfy difference


equations obtained by replacing partial derivatives with difference


approximations. There are two types of finite-difference schemes; explicit


and implicit.


In an explicit scheme, the water head at grid point (x.,y.) at time


t -j is calculated explicitly in terms of known values of the head (at


surrounding grid points) at time t . In an implicit scheme the water head


at grid point (x.,y.) at time t +- is a function of faiown and unknown values


of the head at time t and t -,, respectively.
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Explicit schemes are easy to solve, but they impose severe require­


ments on the grid sizes and time steps to control stability problems. A


typical time step constraint is given by, [Bear, et al, 1972] ;


At < S (Ax«Ay)2 (2.3)

~ 2T (Ax2 + Ay2)


where At is a time step, Ax*Ay is the area of a grid cell, S is storage


and T is transmissivity. Condition (2.3) imposes a small time step,


expecially in confined aquifers with a small storage coefficient and a


large transmissivity. For problems extending over large values of time,


this could result in an excessive amount of computation.


The implicit method overcomes the above difficulties at the expense


of a somewhat more complicated calculational procedure. It generates a


large set of simultaneous equations which are solved with iterative


techniques that may also be time-consuming. However, the implicit schemes


are unconditionally stable, and the size of the time step is limited only


by considerations of convergence rate and accuracy.


The ALtemate Implicit-Direction (A. I«D.) method, [Peaceman and


Rachford, 1955], avoids these disadvantages and yet still manages to use


a system of equations with tridiagonal coefficient matrices instead of


a single five-triagonal matrix resulting from the implicit method* Matrices


can be inverted directly using Thomas' algorithm [Peaceman § Rachf ord, 1965].


Essentially the A.I.D, method employs two difference equations which are


used in turn over successive time^-steps, each of duration equal to half


of the step size. The first equation is implicit only in the x - direction
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and the second is implicit only in the y - direction. In this study,


the alternate implicit direction method is used in the finite difference


approximation of aquifer model. Application of the A.I.D, method to


equation (2.1) can easily be developed.


For simplicity T and S are assumed constants and Q zero. Then,


equation (2.1) becomes


T 32h (2.4)

S dx 3t


The time interval At is divided into halves. In the first time sub-interval,


32h

— j is replaced by a second difference approximation evaluated in terms of

^ 2

the unknown values of the water head h, whereas —~2  is replaced by a second


ay


difference approximation in terms of known values of h. The following


equation is obtained:


^ (2.5)


where h- .v denotes the water head evaluated at the grid point at time k.


Ak denotes time interval* Equation (2.5) is implicit in the x direction.


For the second time sub-interval,  —8h S is replaced by a seconddif­


ference approximation in terms of unknown values of fcu The rest of the


substitutions are similar to those leading to (2.5), The following
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e q u a t i o n i s o b t a i n e d : 

T 2 
(AX) [ h .L  , . , . A l e - 2 h . -,  x A k  x h . ^ , M _,_ Ak] 

 l- l jk + y - ljk + Y~ + i+ljk + y -

T 2

<Ay)


Ak " hijk + m C2.6) 

Equation (2.6) is implicit in the y direction.


Each grid point generates two equations similar to (2,5) and C2*6).


A set of row grid points generates a set of coupled equations implicit


in the x direction which can be arranged as folloxvs, [Peaceman. and Rachford,


1955]:


(Boundary Points) B1h1 + C1h7 = D-,

XX 1 Z X


(Interior Points) A.h. - + B.h. c-h-o.i = D- 2 < i < n -1 (2.7)

1 X"~X I X — X X^ X X — *-""••


•Boundary Points) A
n
h
n_i

 + B
n
h
n
 =  D

n


where A, B., C,D are constants and the subscripts denote row points, A


similar equation can be obtained for a set of column grid points.


For a given tome step k + Ak, a solution h. .i+ ,i is obtained as


follows:


1. Solve equation (2.7) for every row (x direction in the grid).


The result is an intermediate solution h-.- Akm

xjx-ty­
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2.	 Using the partial result in 1, above, solve an equation


similar to [2,7) for every column (y direction). The result


is h.., .,


The sizes of the time steps and spatial increments in equation


(2.5) are determined by considering trade-offs between convergence and


computational efficiency. Experience indicates the size for each case.


To complete the discretization of equation (2.1) the boundary


conditions should be properly handled. Some techniques are considered


below:


1.	 For a grid size on the boundary, a grid refinement is usually


desirable to follow closely the geometry of the aquifer


boundary; however, this destroys the computational simplicity


of equation (2.7). A tradeoff between accuracy and computa­


tional efficiency leads to steps 2 through 4 below,


2.	 Impervious boundaries, for example, can be handled by setting


T=0 at those grid points which lie outside the boundary.


3.	 Constant head boundary nodes are handled ^v assigning an


initial constant waterhead.


Finally, the assumption that T and Q are constant is dropped and


the complete discrete version of equation (2.1) is obtained by following


similar steps to those leading to the discretization of (2.4). The


equation, implicit in the x direction, is
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* **


(2.8)


.. nl + [T.. + T.T - P - I^]h..T
13-Ik L ij_ 13 13 J 13k


The equation^ implicit in the y direction, is


Ak 
P' ̂ f
 Ak


Tijhi3+lk + Ak (2,9)


lj . P - . Ak


T


-Ti3hi+ljk


where?


I.. denotes the iteration parameter at the i — § 3 — node at the ~


iteration and is defined as


2xml

exp 

In -lJ (2.10)




X = the number of iteration parameter desired,


x = the larger of the total numberthe larger of the total number of rows or total


number of columns of the grid.


2

T ' ' = rc [T + T + T 1


2xm L i - 1/2 j i + 1/2 j ij + 1/2J


Computational details on how to use equations (2.8) and (2*9) to


forecast water levels are given in Appendix A, A digital program im­


plementing these equations is presented there«


where .1= 1-1/2, 1 = 1 + 1/2 and similar expressions for j_, J


P ­


Assumptions made to simplify the formulations above were:


AX = AY, S = constant


To increase accuracy, transmissivity is expressed in half-node expansions: 

T. ... + T..


iJ 2


T.. . + T-.

3-3-1 J-J


Similar expressions apply for T*. and T.?-?%
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Equations (2,8), (2.9) are similar to (2,5), (2,6), except for the


that known values have been arranged on the right-hand side of the


)T equations.


The iteration parameter 1̂ -. was introduced in eqns, (2,8) and (2,9)


iprove the accuracy of the A, I.D. method by cycling the solutions


JI a time step until the difference (hP^.+i - h.1^-) for all i


*s becomes less than a convergence factor, [Bredehoeft § Pinder, 1970]


Rubin, 1968].


) The Aquifer Identification Problem


To use the models described by (2.1) and (2.7) in order to forecast


:er water levels, the following information should be obtained;


1. The transmissivity function T


2. The storage function S


3. The forcing function Q


4. The aquifer initial conditions CLc.)


5. The aquifer boundary conditions (b.c,)


rmination of the above five types of input data or parameters comprises


iquifer system identification problem. Identifying each of these


s of information represents a difficult problem. For example, identifying


quires the determination of pumpage and recharge patterns, rain infiltra­


, river, lakes, percolation, leakages, losses, in order to make a


r-balance of the total water input into the aquifer. Conditions (i.c.,b«c.)


similar level of involvement is the determination of the aquifer initial


boundary. In the literature, this latter problem is called the state
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identification problem. A solution approach to this problem is presented


by Phillipson [Phillipson, 1971]„ Transmissivity and storage are highly


variable discrete distributed parameters. This is largely due to the


great variety of geological materials and structures forming an aquifer.


Such irregularities pose serious problems to the identification of


aquifer model transmissivity and storage or, as it is known in the


literature, the aquifer identification problem.


Generally speaking, the above five types of information are related


to each other and can be considered as a single problem composed of many


subproblems. The identification model addresses itself to a


single sub-problem, i.e., to identify the aquifer model transmissivity


function. It is assumed that storage, i.e., b.c, and Q are already


known. The problem is stated as follows:


Given the aquifer initial and boundary conditions, given the storage


coefficient, given well pumpage records and an associated historical record


of water levels in the aquifer, estimate the value of T (aquifer model


transmissivity) on the basis of these records, using curve fitting criteria.


Some of the factors which complicate the solution to this problem are:


1.	 The historical records do not cover an entire basin, and, as


a consequence, an overall distributed parameter function is


being estimated from non-uniformly distributed data.


2.	 Initial and boundary conditions are difficult to determine.


3.	 Great difficulties are involved in the accurate estimation of


the input function Q. Most of the aquifer water sources are


random variables.
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4. Considerable noise is associated with the data measurements.


Of necessity, certain simplifications such as the assumptions of


noise less data measurements, that boundary conditions are given, and that


the aquifer water balance has been estimated, have to be made if insight


is to be gained into the problem- The developments in following chapters


should be judged bearing these simplifications in mind.


2.4 Aquifer System Identification


The identification problem in groundwater hydrology involves deter­


mining the distribution of parameters which characterize an aquifer


from observations of pumping and recharge rates, flows at boundaries, and


water levels. Most aquifers are heterogeneous. Thus, a realistic repre­


sentation must include distributed parameters characterizing the nonmaZ


The basic flow equations which characterize the system model are


well established. Darcy's Law describes the slow flow of an incompressible


fluid through the porous medium. Usually the gradients involved are small,


and when continuity is imposed on a confined aquifer or reservoir system,


linearization can be employed. The result, is that the transient pressure


response of the system can be described by the diffusion equation (2.1).


Only two space dimensions are considered because with typical systems


vertical flow seldom is important. Waterhead is denoted by h, and Q


represents a source strength (production rate per unit area). The co­


efficients in the equation characterize the porous medium. Transmissiyity,
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T(x,y), is a measure of the ease with which fluid moves through the system,


The storage function, S(xsy), is a measure of system capacity. Both are


spatially distributed parameters.


At this point appropriate boundary conditions, including production


rates, and values for T and S must be specified to be able to predict


future system response. A difficulty, of course, is that detailed know­


ledge of the variation of T(x,y) and S(x,y) is not available. On the


hand, waterhead and time data, h and t, respectively, can be obtained by


observing the system at specified locations. Thereby, an inverse problem


in the aquifer description is created; given some function


F(hobseived "h ( T > S ) calculated^ h w raust T m d S be chosen s0 that F


is minimized? A solution to the inverse problem enables one to accurately


predict system response to future modes of operation.


Thus, it is assumed that a useful description of the system is given


by specifying a number of transmissivity and storage values: T* and S.


which will minimize an appropriate criterion function.


Two basically different approaches may be utilized to achieve useful


representations for the spatial distribution of properties in the system.


One approach is to subdivide the basin into a finite number of areas of


specified geometry, each of which is assumed to be homogeneous with


respect to transmissivity and storage. The simplest such case is the


analysis of a lumped system, for which the entire aquifer is considered


to be homogeneous with respect to these characteristics. The second


approach defines aquifer properties through a functional relationship


which provides the spatial variation.




32


There are many ways in which each of these two basic approaches


can be implemented. Using the first approach, areas can be defined


as rectangular spaces (the typical grid for a discretization)> other


polygons, wedge-shaped areas converging at the center of a well field,


annular rings centered on individual wells, or less regular geometries


defined by geological boundaries, for aquifer subsystems. The complexity


of the identification problem is determined in this instance largely


by the number of such distinct spatial regions considered and hence


the number of parameters to be identified. A second factor to be con­


sidered, which may be far from trivial, is whether or not the aquifer


simulation problem implied by the geometrical configuration is tractable.


In the second approach, the infinity of mathematical functions which


might approximately represent transmissivity and storage can be reduced


to a polynomial representation. In this instance the complexity of the


identification problem largely rests upon the degree of the polynomial


selected, and thus the number of coefficients which must ultimately be


determined.


In the course of this work several approaches to the identification


problem have been carefully reviewed and considered. Some are the out­


growth of earlier work by the present authors and some are primarily the


result of efforts by other investigators. In the following sections of


this report, both the philosophy and physical reasoning underlying behind


these alternatives and the selection from them is given. The new model


which was developed during this study is presented in Chapter 3%
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2.4.1 Model One


Consider the characteristics of a typical large aquifer. Quite


often fluids are produced through a cluster of wells located near its


center. Starting from any established initial condition, over reasonably


large periods of tine no effect of system boundaries is likely to be


felt. The system is large in area compared to its vertical dimensions,


and hence can be represented as an infinite two-dimensional system con­


taining a cluster of wells in a region of prmary interest, [Haijnes, 1967]


and [Haimes et al, 1968], In the complex domain, coordinates for N


producing wells [see Figure 2,1) are as follows:


Zi = x± e \ i = l,2,,.,,N j - vCT C2.ll)


Water stored in the region midway between two producing wells could


flow to either. Actually, at any time, there exists a line lying between


any pair of producing wells across which no flow occurs • On opposite


sides of this line flow will occur toward different wells of the pair*


Thus, when one considers a well cluster in a large aquifer, at the edge


of the well cluster each such line extends out toward the infinitely


distant boundary. Mathematically, the effect of each such nno flaw1' line


is exactly the same as if the line constituted an impermeable physical


boundary CSee Figure 2,2), Also, because of convergence effects, system


behavior as reflected by head measurements in the producing wells, is deter­


mined largely by the hydraulic properties of the aquifer near the production


well. Thus the sensitivity of the response to system properties at large distance
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from the well cluster is small.


Viewed together, these properties of the system suggest that a


very simple model might prove useful for computing the hydraulic charac­


teristics of the aquifer in the vicinity of each producing well, A


logical decision is to represent the no-flow line between wells as if


it were an impermeable boundary which for the simplest applicable


geometry is a straight line. (While a more realistic model would bound


each segment by an arbitrary curve, the resulting model would be in­


tractable.] But two such boundary lines? on opposite sides of a


single well, will intersect to form a wedge. And so, for our cluster


of wells in an infinite aquifer, we arrive at the following analytically


tractable yet reasonable model. The aquifer is divided into N wedge-


shaped homogeneous regions, each enclosing a single producing well


(see Figure 2,1 for four producing wells), (A trivia,! extension could


include several wells within a single region.) The regions are separated


by N straight, impermeable boundaries radiating from the origin at


azimuths by N straight, impermeable boundaries radiating from the orgin


at azimuths a.. Hence 0. < a- < 8.+1, i = 1?2,,,,,N? where 8*j •* = 6-p


No a ptvLoHM knowledge of the location of effective flow boundaries


between wells is possible. Thus, the response of the system will be


permitted to select the optimal location of each such no-flow line between


wells. Optimal values of transmissivity and storage coefficient also will


be selected within each region.


Each wedge of the aquifer lying between no-flow boundaries, can be


treated as separate sub-system. The location of the boundaries, however,
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affects more than one well, and thus links the several subsystems into


a total aquifer system, A mathematical solution for the response of


the system results when the continuous line source solution is


applied, Boundary conditions for a single wedge-shaped subsystem are


satisfied approximately by employing a finite number of image wells,


where Z. ,, k = 1,2, ,nu, restricted to even integers, is the number


of images corresponding to the ith production well. Note that k =* 1


refers to the producing well* The system, of producing and image wells


extends throughout the entire plane of the aquifer, also the following


relation must be met:


?<7T

a i " ai~l + 27T 5i,i = iT i = l,2,...,N (2.12)


where


6. , is the kronecker delta and a = ou.


The parameters which represent transmissivity and storage generally


will change abruptly on crossing a "boundary/1 This is no real limitation


to the identification scheme, however, once the logical basis for the


choice of the model is understood and accepted. Parameters determined in


this way represent effective values, established on the basis of system


response, within a defined spatial region. Near-well regions have a


disproportionate influence on the results obtained, and so the results


might be expected to vary from segment to segment. A strength of the


model is that detailed geometry is actually determined by system behavior.


Representative model geometry is illustrated in the figures.
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2.4.2 Model Two


The second basic system model which has been considered takes


particular advantage of the fact that waterhead response is more strongly


influenced by near^well properties than by those further away [Wismer,


Perrine § Haimes, 1970]* In addition, early response is controlled solely


by near-source properties, and as time goes on properties further out


are reflected with gradually diminishing importance. Accordingly, a use­


ful conceptual model starts by specifying annular regions concentric


with each well, such that constant effective parameter values can be used


within each region. An external region, outside the last defined ring


around any well, must extend to the system boundaries (or to infinity) „


This external region is common to all wells. Thus, at some distance


from any one well a set of uniform system properties, common to all


subsystems, is assumed. This model geometry is illustrated in Figure 2.3.


This aquifer model has several unique characteristics. Concentric


rings around any one well, with defined effective properties, also


form part of the external region surrounding the outer ring of any one


other well. Thus, to the extend that each ring contributes a measure


to the overall effective average properties of the system, the parameter


values obtained are not single-valued. In other words, in a way which one


might expect to be much like the observed response of the actual aquifer,


any one well "sees11 the detailed variation in properties immediately


surrounding a second well only as part of the distant, system-average


properties. The subsystems represented by individual wells again are
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MODEL TWO GEOMETRY


FIGURE 2.3
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related in a simple way. In this instance they are linked by the


common external region, and its common set of properties.


Another important characteristic becomes apparent when fluid is


removed at a constant rate. At any time there is a radial distance


from each well beyond which measurable reduction in waterhead has not


yet occured, and over most of the region out to this point, waterheads


fall almost uniformly with time, after an initial transient period.


This characteristic leads to important simplifications in actual solu­


tion of the differential equations required to simulate the aquifer using


this model.


2.4.3 Model Three


The first two modeling approaches described above both represent


subdivisions of the aquifer into spatially defined regions within


which properties such as transmissivity and storage are uniform., The


present model represents the other approach, in which aquifer properties


are defined in space by means of a functional relationship. Because a


very substantial part of this year's progress has been made using such


a model, and it will be thoroughly described in subsequent portions of


the report, no details are presented.


2.4.4 Commentary on Model Selection


In the above discussion the need for several simulation models was


considered. It might be well asked why not proceed simply to determine
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which model is ubest,n and then exploit that model to increase our


knowledge of the groundwater system*


There are a number of reasons for the approach which has been


taken. First of all, to establish which modeling approach is tfbestu


would require establishing restrictive criteria on which the determina­


tion would be based. Should the criterion for model selection be based on


the simulative computational efficiency? The details which can be pre­


sented? The simplicity of the identification procedure? The flexibility


of the model to changes and adaptation? Each may lead to a different


conclusion and all such considerations are of importance,,


There are over-ridihg factors which would dictate consideration of


at least several class-representative models. Almost any model likely


to yield useful results will tend to be complex, and require substantial


computational requirements when ultimately used as part of an optimum


management scheme. For this reason every effort should be made to


keep the model as simple as possible. Conversely, any model for which


results can be obtained with reasonable limits on computer time will


necessarily be an oversimplified representation of the real system,.


Thus, we always tend to seek more detailed views of the subject aquifer


which utilizes more efficient computational techniques.


In this situation the ubestt! result may achieved by joint use


of two basically different models? each computationally efficient through


the identification process and resting on sound physical groundst As an


analogy, consider the problem of defining the topography of a mountain.


Two conventional photographs^ one from the front and one from the side,
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together provide much more information than either by itself, and yet the


two together are much more readily obtained than any three-dimensional


representation we can construct*


In a completely parallel way? a very substantial increase in


information obtained may accrue from the simultaneous use of several


simple aquifer models. One would expect that these benefits would also


ijnprove subsequent optimization of aquifer management,


As an example , consider an aquifer in which transmissivity shows


a distinct trend in a specified direction. At the same time, three


distinct lobes of altered transmissivity immediately surround the well


field. In addition, the directional trend in transmissivity shown by


the lobes is the opposite of the superimposed, groundwater basin-wide


trend. Choosing to model the system using Model One, the existence of


and direction of the lobes altered transmissivity are correctly identi­


fied, but the over-riding trend is missed entirely. Use of Model Three,


on the other hand, readily picks up the trend but misses critical detail


near the well field,, At the same tdjne? any one function flexible


enough to encompass all this variation would lead to an impossibly complex


system identification problem*


The obvious conclusion is that there is much to be gained from a


thoughtful investigation of several models within a study such as


this. In the past year, primary emphasis has necessarily been placed


on only one approach. Including the work planned under Phase II, the


total project will include consideration of all alternatives discussed


within this section.




Chapter 3


GR01M3WATER IDENTIFICATION MODEL - MODEL 3


3.1 Introduction


The groundwater identification model and solution algorithm developed


in this research project were first tested on a simplified finite dimen­


sional example problem referred to as problem B. Implementation and


testing of the algorithm on a real aquifer were then performed successfully


using data from the Miami Conservency District in Dayton, Ohio. The solu­


tion of the model identification problem is referred to in this report as


the identification algorithm (I,A,)» The development of this algorithm


constitutes the main objective of this chapter.


The structure of Chapter 3 includes a formal, brief statement of the


identification problem presented in Section 3.2, In Section 3,3 a simpli­


fied problem (Problem B) is formulated for the groundwater transmissivity


identification problem. The reduction in dimensionality (from an infinite


dimensional space to an Euclidean space) is achieved by assuming a known


transmissivity function where specific parameter must be identified.


The problem formulation is carried over within a static optimization


framework. This results in the minimization of a nonlinear function subject


to a nonlinear constraint.


In Section 3.4 the static optimization problem is approximately solved


by using the approach developed in Appendix: A, First a quadratic problem


which approximates the original one is studied. Then, in Section 3.5, the


43




44


idea of approximating the original problem by a successive set of quadratic


approximations is implemented by using Marquardt!s Algorithm [Marquardt, 1963]


Section 3.6 summarizes the main ideas of Chapter 3 and Appendix A


by discussing the similarities and differences between the simplified and


real (complicated) identification problems.


3.2 Statement of the Model Identification Problem


The model of concern is described by equation (2.1)? repeated for


convenience below:


(3.1)


h(x,y,o) = hQ (3,2)


3h I = *, and/or h(x,y,t) I = h, (3,3)

3n~ rl  r 2 l


where Q e R


where (3.2) is the initial condition of the system, (3,3) the boundary


conditions, which may be constant flow and/or constant head, r-, and


r7 denote the boundary geometry, R is the domain of (3tl)-(3t3) defined


as Qx[0,T], where Q, is the aquiferTs area, and t represents time. It


is assumed that all parameters and functions in the model are known


except for T(x,y), the models transmissivity function. Initial and


boundary conditions are also assumed Ioiawn.«
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The model described by (3.1)-(3.3) is not completely determined


because the function T(x,y) is unknown; therefore, the question arises


as how to determine T(x,y). The identification of the function T(x,y)


for a specific aquifer system is, of course, known as a parameter


identification, system identification, parameter estjjnation, or model


calibration. The goal is to find that T(x,y) for which both the response


of the real system and the model under the same input is as llclose" as


possible (usually closeness is measured by a least-squares norm). The


response of the model will never exactly match that of the real system


because of the many assumptions required in developing the model • After-


all an aquifer model is only a simplification of a complex reality.


In groundwater studies the analyst is usually supplied with an


arbitrary input-output historical record and his solution approach has


to be flexible enough to adjust to the information available. Subsequently,


in designing a calibration method he must seek a technique applicable to


any arbitrary input information,- deterministic inputs, and noise corrupted


outputs. It is advantageous if the method would not put any restrictions


either on the number of test wells required or on their placements,


These attributes were considered in developing the calibration tech­


nique discussed in this chapter; however, it is felt that more computational


experience will be necessary before one is able to determine the minimum


levels of information required and possible accuracy restrictions ionposed


on the number and placement of test wells.


A least-squares norm of the output error, namely the error between


observed and calculated waterheads, is selected as a loss function. This
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norm is mathematically tractable and possesses some desirable properties,


such as assigning equal weights to both positive and negative deviations


and penalizing large errors .with large weights.


Now the parameter identification problem (P.I,P.) ca*1 be formulated•


Given (i) a class of systems described by equation (3,1)-(3,3), input-


output information denoted here by Q(x?y,t) (mainly pumping and recharge)


and h(x,y,t) (real aquifer output), respectively, and (iii) an output


error criterion defined by


J (T) = ' ' [h(x,y,t;T) - hCx,y,t)]2dtdfl (3,4)

1
 o fi


where h(x,y,t;T) is the model (waterhead) output for a given o function


T(x,y) and h(x,y,t) is the aquifer observed output (waterhead) *


The parameter identification problem, is to minimize (3*4) with respect


to T(x,y), To complete the foimulation of the problem it is necessary


to define the functional space where T(x?y) is to reside. Initially, T will


be limited to the space of positive real functions and possibly (because of


(3.4)) to having its second powers integrable in SI. Assuming the system


is identifiable, i.e., the characteristics of T(x,y) can be retrieved from


input-output observations of the real system, the question is: How can


the observation data be used to obtain an "accurate*1 estimate of T(x,y)?


Equations (3.1) - (3.4) represent a variational problem, that of


searching for a function T(x,y) "which minimizes the non-linear functional


(3.2) under constraints (3.1) - (3.3). The solution of such a problem


depends strongly on the solution properties of the constraint equations.


However, the theory of non-linear P.D.E. is not well developed yet.
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Consequently? the derivation of existence theorems as well as necessary


and sufficient conditions for T(x,y) to be extremum of (3,2) is still


an open question. Existence theorems for a similar problem to the one


defined by (3al) - (3*4) have been studied by Lions [Lions, 1971] and


Cesari [Cesari, 1972],


Due to the above limitations? an approximate solution to the iden­


tification problem (3,1) - (3,4) is developed. Linearization of (3.1) ­


(3.3) transforms (3.2) into a quadratic functional in T(x3ky). The


minjjnization of quadratic functionals subject to linear constraints is a


well understood problem with many available solution procedures. After


linearizing (3,1) - (3.3) around nominal values of h - h and T = T ,


an auxiliary objective functional quadratic in the perturbation functions,


5 and 6T is formulated. The minimization of this auxiliary objective


functional is performed subject to a linearized P.D.E, related to


(3.1) - (3,3). Letting 6h = u the control variable of a dynamic optimi­


zation problem is solved by least^squares techniques in Hilbert space.


A detailed development of the procedure is presented by Lopez I Lopez91973]


and mathematical justification is provided by Lions, {Lions, 1971]..


3.3 Parameter Identification as a Finite Dimensional Problem QProblem B)


Reduction in dimensionality of the identification, problan demands


knowledge of the structure of the transmissivity function within a set


of parameters• The problem of selecting such a structure is discussed


below*
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Assuming that the model equation (2.1) accurately represents the


characteristics of the real system, then a perfect simulation would be


attained if the exact value of the aquifer transmissivity were substi­


tuted in the model* However, (2,1) is just an approximation of the


real system, and therefore the model ̂ s T(x,y) is not expected to coincide


with the real transmissivity. In fact, a discrepancy between them may be


required in order to compensate for approximations introduced in other


parts of the model. From a physical viewpoint, the trajismissivity


indicates the capacity of the aquifer to transmit water through its entire


thickness. It is defined as


T = K D (3,5)


where


K = coefficient of permeability (ft/sec)


D = saturated thickness (ft)


K is a function of the geologic characteristics of the aquifer and there­


fore in non-homogeneous aquifers K is a function of x,y and z. In


confined aquifers, if D is approximately constant and K is usually averaged


on the aquifer depth, yielding a T which is a function of x and y only


T(x,y) = K(x,y)D (3.6)


In general, T(x,y) is a non-continuous function whose structure depends


on the aquifer geology. Since the geologic characteristics change from
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aquifer to aquifer, it is not possible to establish a general expression


for T(x,y) based on physical grounds. For specific cases, determination


of the structure of T(x,y) demands complete knowledge of the geology


of the aquifer. It is the recognition of the difficulties involved in


determining T from physical measurements which forces the hydrologist


to adopt indirect methods.


In summary, it does not seem feasible to determine a general repre­


sentation for T(x,y) based on physical grounds. Therefore, it is decided


to represent T(x,y) with some general mathematical structure capable of


approximating the real structure as close as possible.


A polynomial representation of T(x,y) is proposed. The degree of


the polynomial as well as the coefficients are selected using a least-


squares criterion. Specifically, the identification problem consists


of determining both the degree and the coefficients of the polinomial


which represents T(x,y). Clearly, the higher the degree of the polynomial


the more complex the identification problem becomes.


Let it be assumed that T(x,y) belongs to the space of positive poly­


nomials in x and y. For simplicity in the developments, assume T(x,y)


is given by


T(x,y) = b±x + b2y + b 3 (3.7)


where b., i = 1,2,3, are unknown coefficients to be determined. The


general case is handled in the same manner as explained below. The


identification problem described by relations (3*1) - (3.4) can be re­


formulated as follows.
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First the aquifer equation (2.1) is rewritten in compact form as


h(x,y,t; T) = F(x]_, x2, x3, bv bv b£ (3.8)


where x, = x, x? = y, x~ = t, b-'s = transmissivity function coefficients.


Notice that h in equation (3.8) is now a function of the parameters b^,


b?? and b~. Rather than identifying a function T (an infinite dimensional


problem) the identification problem now involves the identification of


a vector of parameter b̂ = (b*9 b-, b,J (a finite dimensional problem).


Using (3.8) the objective functional (3.4) becomes


t

= J ' [F(x, t, b) - F(x)]^dt dr (3.9)


0 i


where


x = fx x x 1


F(x) = h(x, y, t)


Since in a practical case it is not possible to obtain (observe)


F(x) for every point in the aquifer and for every time,- a more realistic


expression for equation (3.9) should be derived, namely:


$,00 = Z (F(x-, b) - F(x ) ) 2 (3.10)

1 - i = 1 -l - -l


where DC. represents a discretization of the domain, R, of equation (3.8),

JL
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the subscript i denotes the i  — observation, and n represents the number


of output observation points collected. Define the following problem


as problem B: Find an estimate of the parameter vector b_ such that the


error function (3.10) is minimized subject to the constraints (3.8).


3.4 Problem B: A Quadratic Approximation


An approximate solution to problem B can be obtained by approxim­


ting the non-linear objective function (3.10) with a quadratic function.


This is achieved by linearizing the constraint (3,8) about an initial


guess of the vector of parameters being identified b^ b0.


Linearization of (3.8) yields


K 3p


where


Rp = Discretization of R


S. = vector of perturbations


L = linearized aquifer model output


K = number of parameters being sought
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Accordingly, the objective function (4.10) becomes


n

is b St) - x ) (3.12)


i=l


The function cf)9 in (3.12) is a quadratic function of the perturbation S


(since hp is a linear function of SJ. Solution of this quadratic problem

•k


is now considered. The equations which characterize the optimum i> are


derived by substituting (3.11) in (3.12) as follows:


n

(VF


i=l


Differentiating (3.13) with respect to S_ and setting the result equal to


zero the following linear equation which characterize S. is obtained


(3,14)


where

T
A = P*P


(All derivatives are

evaluated at b°)


3F, 9F2 9F2
P =

L


3F. 9 F  9F
F
n n n


9B7
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n = number of observation points 

F- = F(x-, b)
1 — 1 ' — 

JL= fep §2' g3-*= gradient vector


n 3F.

i- = Z [F. - F-]  ̂ i . .. , _

J i=1 i i 3DJ J = 1, 2, 3


h=


At this point, some of the computational requirements of (3.12)


are considered. Since (3.14) is based on (3.11), the latter is studied


first. On the right hand side of (3.11) the first term, F(x-, b°), re­


quires the solution of the aquifer equation (2,1) with T(x,y) being


replaced by b°x + b°y + bS, Since (2,1) does not have an analytical


solution, an approximate numerical solution is found by using the discrete


model (2.5) - (2.9) introduced in Chapter 2. An aquifer simulator


[Maddock, 1972] helped in the implementation of the solution. This pro­


gram was modified and made compatible to be run on the UNIVAC 1108


computer facilities at Case Western Reserve University. Details are


given in Appendix A.

n
 SF
The second term of (3.11), Z i S. . requires the calculation

i=l JET * ZJ


3 Fi
of the model sensitivity function, -gr— t as follows: Perform the differen­

j


tiations in (3.1) - (3.3) to get


Txhx + V V =Sht
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where

2 2


V h - —^ + —2

3x By


T 3T

X 3x


3T
T 
3y y 

h	 3h

3x
X 

, 3h

h  =
y	  37


h =	 3h

n
 t 3t


Differentiating (3.15) with respect to (w.r,t,)b- yields:


T V2h. + T h . + T h . = Sh. . - Q (3.16)

J x xj y yj tj v


where

3h h.	 = JK


3  ­
f3h	 )3x N5BT' 

\r	 3 r3h -)
3yy ^5.­

3 

'. V2h + T -h + T
Y3
 -h 

Y C3,17) XJ X 

where T. = 3F7 

T x j 

T -	 • kyj 
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Initial and boundary conditions for (3.16) are obtained by differentiation


of I.C. and B.C. of O.I) - (3.3) w.r.t. b.. Since those conditions do not


depend on the transmissivity function, the set of I.C. and B.C. for (3.16)


are homogeneous. Notice that (3,16), the sensitivity equation of the


aquifer model, is also a parabolic differential equation of the same type


as (3.1) - (3.3). This fact greatly aids the development of the identifi­


cation digital package, since no additional coding has to be written to


calculate the sensitivity equations of the model. As a consequence, a


discrete version of equation (3.16), similar to the discrete version of


of eqns. (2f8) T (2.9) obtained for the aquifer equation, can be derived,

•A,


Here, only the discretization of Q will be explained since discretization


of any other term in equation (3.16) follows the same steps as in section


2.3.4. For the sake of simplicity only the Q corresponding to the sensi­


tivity equation for j=l, namely b^ will be discretized. Equation (3.17)


becomes


Q = TiV 2h + T x l h^ + T^ly (3.18)


note that


T = b,x + b2y + b3


thus


T l " x>  T2 * X. T3 = lj


accordingly


:Q' = V2h + hx C3,18)


Replacing h by central differences and hx by forward differences, equation


(3.8) becomes


Q - j • (Dijk) + (hi j k + l k - h..k) C3.19)




56


where


Dijk =  ( V l j k " hijk} + (hi+ljk "
hijk}


C h i j - lk-hijk3 + Chij+lk


Going back to equation (3.14) some of the computational effort


required to solve the equation which characterizes IS now becomes clear.


To construct the matrix A in (3.14), first, the aquifer equation (2.1)


lias to be solved, then the sensitivity equation (3.17) is solved for


b p b£, and b^ (i.e., three equations), and finally a matrix multiplication


T
of the sensitivity functions P is performed, namely P P. Similar manipu­


lations are required to define g_. SL is obtained by pre-multiplication


of £ by the inverse of A, A"* .


3.5 Development of the Identification Algorithm


Once the quadratic problem is solved the next step is to decide on


some way of improving the initial guess T in order to get better quadratic


approximations to the identification problem described by equations (3.8) ­


(3.10).


Any scheme to correct the initial guess must consider the characteris­


tics of the usurfaceu cf> Ct>) - If F* is linear in b, then, <j>1 (b) represents

X — X ~~* X —


a surface whose contours are ellipsoids. For the nonlinear case the surface


becomes distorted according to the severity of the nonlinearity. This


"ill-conditioned" characteristic of the <£-, (b) surface accounts for almost
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all the trouble found when, attempts to improve b° using traditional methods


are made. For example, the well known Gauss-Newton method, [Marquardt, 1963 [


proceeds to improve IDO by iterating the solution method of equation (3.14),


In practice, a value of b° far from the optimum of $., (b) causes the Gauss-


Newton method to diverge. On the other hand, a steepest descent technique


would alleviate the problem caused by starting points far from the optimum,


but would not handle the entire optimization procedure, due to its natural


slow convergence compounded with the poor conditioning of the <{u (b) surface*


Marquardt [Marquardt, 1963], considered these problems and derived


an algorithm which combines efficiently the Gauss-Newton method and the


steepest descent, reinforcing each other whenever local conditions of the


<f>1 (b) surface requires it.


Marquardt!s algorithm fits the requirements of the present problem


well (improvement of b  ) and it is utilized as part of the Identification


Algorithm.


By "improvement of b°" via the application of Marquardt *s algorithm


(M.A.) we mean any ID which yields a further decrease in the objective


function (the error criterion).


M.A. is based on the concept that the best direction, ̂  for finding


a local reduction in the value of $- (b), lies between (Gauss-Newton


method direction) and s^ (steepest descent method direction). Marquardt


proposes to find that direction by solving the following equation:


(A • XI) S ­
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Where A and g_ were defined in (3,14) and X is Marquardt parameter. Notice


that if A is very small, then equation (3,20) is reduced to (3,14) ? while


if A is very large, S_ = A" jg, which is the steepest descent direction;


thus, NLA. is indeed a hybrid between the steepest descent and Gauss -Newton


methods. The most critical step in M.A. is the selection of the parameter


A* The goal is to adjust A which yields to a reduction In $- (b) • The


mathematical basis of the algorithm are stated in three theorems which


can be found in [Marquardt, 1963]. Those theorems assure the existence of


a sufficiently large A which satisfies the condition,


(3,21)


where the superscript (r) denotes the iterations number, Marquardt!s


strategy for choosing A seeks to use small values whenever the local


conditions of the $,(£0 surface are such that equation (3*111 represents


a suitable linear approximation of the aquifer model (3.1). - C3.3],


In general, he uses large values of A only when necessary to satisfy con­


dition (3.21); otherwise, equation (3.20) would become a steepest descent


technique with all the drawbacks previously cited.


Following this line of thinking, Fletcher, [Fletcher, 1972], proposed


an improved strategy to select A by comparing the actual reduction in the


sum of squares, ̂ ( b ^ ) ~  * 1 C b ^ + S], and the reduction, <f>2 G ^ ) - £  2 ( b ^ + S),


that would have taken place if the quadratic approximation function (3,12) were


exactly correct, where,
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4>2(b
(n)J - c^(b(n) + S) = - [2 rT(b(Tl)) P(b(n)) S + ST A S]


where v_ is the vector of residuals:


r(b) = (r^b),..


and r. (b) = F(x.,b) - F(x.)


when the ratio,


R = —


is close to 1, the quadratic approxijnation (3.12), is good and \ should


be reduced to allow large steps. If R is negative or near zero then


(3.12) is bad and A should be increased. As a consequence, Fletcher


suggests the following strategy, [Fletcher, 1972]:


(i) If R e [P,0], then make A  ̂ = A^"1-1. Otherwise go to (ii)


(ii) If R < P make A ^ = R • X^'1^


, b FCxOl P S


the factor R lies outside the range [P,0 ], then make the


correction factor R as follows;


*

2 R < 2


R = (

10 R > 10
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The following scheme is proposed as a solution approach to


Problem B:


(i) Make an initial guess for the vector parameter b>:


b	 = ib1? b2, b3)


(ii)	 Substitute T = b-,x + b2y + b3 into the aquifer model (2.1)


and generate h(x.,:b ), the model's output, by using the


discrete model (2.5) - (2.9) and the Alternate Implicit


Direction method,


(iii)	 Substitute the models output obtained in step (ii) into


equation (3.16) to get the model sensitivity functions. Solve


(3.16) the same way as (3,1) ^ (3.3).


(iv)	 Solve the quadratic problem (3.11) - (3.12) by solving the


equation of characterization (3,14). To do so, use the


information generated in steps (ii) and (iii) above.


(v)	 Check how close the solution of the quadratic problem is to


the actual solution, by monitoring the decrease of the correction


term \Sr * |. Specifically, use as a stopping criterion


j - 1, 2, 3	 (3.22)

x


where T is a small positive number which insures that the


denominator of (3.22) does not become zero and e is a


convergence factor, usually selected as 10" , If (3.22) is


not met, generate a new quadratic approximation by following
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The following scheme is proposed as a solution approach to


Problem B:


(i) Make an initial guess for the vector parameter b>:


b	 = ib1? b2, b3)


(ii)	 Substitute T = b-,x + b2y + b3 into the aquifer model (2.1)


and generate h(x.,:b ), the model's output, by using the


discrete model (2.5) - (2.9) and the Alternate Implicit


Direction method,


(iii)	 Substitute the models output obtained in step (ii) into


equation (3.16) to get the model sensitivity functions. Solve


(3.16) the same way as (3,1) ^ (3.3).


(iv)	 Solve the quadratic problem (3.11) - (3.12) by solving the


equation of characterization (3,14). To do so, use the


information generated in steps (ii) and (iii) above.


(v)	 Check how close the solution of the quadratic problem is to


the actual solution, by monitoring the decrease of the correction


term \Sr * |. Specifically, use as a stopping criterion


j - 1, 2, 3	 (3.22)

x


where T is a small positive number which insures that the


denominator of (3.22) does not become zero and e is a


convergence factor, usually selected as 10" , If (3.22) is


not met, generate a new quadratic approximation by following




62


steps (vi) - (ix). Another stopping criterion could be to


check the decrease of the gradient P • (h - h).


(vi)	 Set b ^ r + 1 ^ b ^ + ̂  and repeat steps (ii) and (iiij


above.


fri
(vii)	 Select \l J using the strategy previously explained. Go to


step (iv), (use A>r^ rather than


A flow diagram of the Identification Algorithm is depicted in


Figure 3.1, Notice the extra step depicted there, namely the scaling of


the matrijc A and the vector g_. This is suggested by Marquardt as a means


to improve the numerical aspects of the solution of (3,20). The matrix


A tends to be ill conditioned, and therefore, inversion of (A + XI) in


.(3,20) presents numerical difficulties. Common practice is to scale A


so that its diagonal elements become unity. The same technique applies


to g.


A digital package implementing the Identification Algorithm just


described was written in Fortran V language for the Univac 1108 digital


computer. Flow diagram and program description are presented in Appendix A*


A linear polynomial representation was chosen for T in this program.


Reasons for doing so were based on trade-off considerations between


accuracy of the T representation vs computer time, For the real example


solved in Chapter 4 the linear representation was enough to produce an


accurate aquifer model. Extensions of the approach presented in this


chapter to more complicated representations of T are discussed in the


following chapters.
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CALCULATE P 4 

CHECK STOPPING CRITERION
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FIGURE 3.1




Chapter 4


COMPUTATIONAL RESULTS AND ANALYSES


4,1	 Introduction


To test the performance of the Identification Algorithm developed


in Chapter 3, the modeling and calibration of a real unconfined aquifer


system is undertaken. The presentation of the real example is organized


in four sections which; (i) describe the hydrological as well as the


physical aspects of the real system, (ii) propose and implement a


mathematical model, (iii) calibrate the model and finally, (iv) validate


this model.


The presentation of the real example is preceded by two hypothetical


examples brought into consideration for two reasons;


(i)	 To verify the accuracy of the identification algorithm by


checking it with known results.


(ii)	 Tutorial purposes.


In the following developments, transmissivity is represented with


a first order polynomial. This linear transmissivity representation


yields an aquifer model accurate enough to avoid the use of higher degree


polynomials, yet a comparison between the real and the model transmissivities


indicated differences that were already expected. A transmissivity function


which is represented by a higher order polinomial is discussed In subsequent


sections.
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4.2 Hypothetical Examples


A hypothetical aquifer whose characteristics are listed in Table 4.1


is assumed given. It is assumed that all model parameters are known


except transmissivity. Thus the identification algorithm is used with


the purpose of identifying the transmissivity value. The aquifer being


modeled is confined, with constant head and zero flow boundary conditions.


It is bounded (hypothetically speaking) by bedrock walls of very low


peimeability except for one boundary strip which is hydraulically connected


with a large source of water (a river) which causes the constant head


condition.


The geometric characteristics are such that the discrete model


(2.5) - (2.9), used in the numerical computations, is represented by a


square grid 5,000 feet wide with 1,000 feet separation between nodes


(i.e., there are 25 grid points).


Water head observations are generated by assuming true values for


the aquifer transmissivity, and then solving the discrete model using


those values plus the conditions in Table 4.1. The solution of the dis­


crete model is obtained by decoupling, in the identification program,


the P.D.E. solver (or aquifer simulator as it is called in this work) from


the optimization section. Q and At are assumed to be 0.1 ft /sec, and


2 hours (10 sees) respectively. It is hypothesized that a five pumping


period (of 2 hr. each) test was performed in the field to assist in


determining water level historical record.


Example 1: In example 1 the urealn transmissivity is assumed
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Characteristic


Aquifer Type


Storage Coefficient S


Transmissivity

Coefficient T


Initial Head


Boundary Conditions


Wells


Approximate Area


Description


Confined


 0.0025 (no dimensions)


Unknown (ft /sec)


Constant (ft)


Bound 1-: Constant head


Other bounds: Zero flow (impermeable)


Flow rate of 0.1 (ft /sec) for

one recharge well


One square mile


Aquifer Data: Hypothetical Example


TABLE 4.
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constant on the entire aquifer. Complete output information is available,


i.e., the water head changes are known at every point in the aquifer and


for every pumping period. Since the grid of the discrete model is made


of 25 grid points, and the total number of pumping periods is 5, the


number of observation points generated was 125. The assumed true value

2
2

for transmissivity was T* = 0.09 ftfor transmissivity was T* = 0.09 ft /sec
/sec. Using this information the


identification problem is formulated as:


mine})	 = E(h(xi,T)


subject to


0.0025 |£ (x-, T) + 10^-SCx- - a) (4.2)

at -i  M 2 -i


I.C.:


h(x,y,0) = constant


h(x,y,t)|r = constant


da  r 2, r3, r4 U


where


r.	 = grid boundaries. The sides of the square grid have heen


numbered clockwise starting from the left side*
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n = perpendicular direction to the boundary


Ax = distance between the grid*s nodes = 1000 ft.


a = (3, 3, K) = pumping function coordinates


6 (x-, - a) = Dirac delta function to indicate that there is


only one well at the grid node (3,3)


The problem defined by relations (4.1) - (4.2) was solved using


the identification algorithm. Results are presented in Table 4.2% The


observed head and the predicted head were compared at the point where the


pumping well is located. A close agreement between the two was observed.


An initial guess of the transmissivity T , was chosen to be one order


of magnitude greater than the "real value1! in order to check the performance


of the algorithm with starting points far from optimum* Figure 4,1 depicts


the minimization of the error function. The algorithm exhibits quadratic


convergence, i.e., the error in a given iteration is proportional to the


square of the error in the previous iteration. The flatness of the error


surface is seen after iteration 7 (see Table 4.2) where the rate of


decrease begins to be slower, and the optimal estimate of transmissivity


is close to the real value.


Another numerical experiment was carried out to test convergence


as a function of the initial guess. This time an initial guess value


about one order of magnitude smaller than the real value of the trans­


missivity was selected. Results are presented in Table 4*3* Convergence


was attained in fewer iterations than for the first case.
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Example 2: In this example, the aquifer transmissivity is assumed


to be a linear function of space. The function is given as follows:


T = - 0 1875x + .0375y)l(T4 + 0,1675


The coefficient values were selected to be compatible with realistic


values for sand and gravel aquifers. A typical range of transmissivity


values is 0.01<T<0,l ft2/sec.


The identification problem is to estimate the parameters b, such


that the error function $- is minimized? namely ,


125


nun $, = I (h(x-, b) - hCxJ)2 (4-3)

b l i=l ~"x ~ ~x


s.t.


| b3) 1 1 ^ , b)] + |7[(b1x + b2y+ b3)|(xi, b)] =


= 0.0025 |£ + ^ L ± 1 5(x. - a) (4.4)

3t 1
(Ax)Z ­


Solution of problem (4.3) - (4.4) is obtained by using the identifi­


cation algorithm. The procedure was started with the initial guess


TQ = 10~
6x + l(T7y + 0.01


where the coefficients were chosen far from the real ones to test the
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ERROR FUNCTION 

2, 

-l.E-1


-l.E-2


-l.E-3


-l.E-4


-l.E-5


-l.E-6


ERROR FUNCTION VS. ITERATION NUMBER


(HYPOTHETICAL EXAMPLE 1)


FIGURE 4.1

l.E-7


7 8


ITERATION NUMBER




Variable 

Name 

Starting 

Value 1 3 

Iteration Number 

5 7 9 11 15

Correct 

 Value 

Transmissivity 

T (ft2/sec) 
0.90 0.6506 0.3676 0.1801 0.08998 0.09005 0.0900 

Error Function 

0 (ft2) 
0.4414 0,3778 0.2545 0.09063 1.181E-6 7.086E-7 

Lambda Parameter 

X l.OE-2 l.OE-3 1.0E-5 1.0E-7 l.OE-9 1.0E-10 

Variable 

Name 

Starting 

Value 1 

Pumping Period 

2 3 4 5 

Observed Head 

(ft) 
0.0 0.1818 0.2250 0.3293 0.3648 0.3905 

Calculated Head 

(ft) 
0.0 0,1818 0.2250 0.3293 0.3648 0.3905 

TABLE 4,2 - Results hypothetical example 1. Correct T value perturbed by 
a factor of 10. Optimal water heads are shown in lower table. 



Variable 

Nan© 

Starting 

Value 1 2

Iteration Number

 3 4 5 6 7

 Correct 

 Value 

Transmissivity 

T (ft2/sec) 
0.01 0.03198 0.06053 0.08272 0.08941 0.09002 0.09005 0.0900 

Error Function 

0 (ft2) 
2.114 0.4211 5.013E-2 2.000E-3 1.357E-5 7.080E-6 7.000E-7 

Lambda Parameter 
l.OE-2 l.OE-3 l.OE-4 l.OE-5 l.OE-6 l.OE-7 l.OE-8 

Variable Starting Pumping Period 

Name Value 1 2 3 4 5 

Observed Head 

(ft) 
0.0 0.1818 0.2250 0.3293 0.3648 0.3950 

Calculated Head 

Cft) 
0.0 0.1818 0,2250 0.3293 0o3648 0.3905 

TABLE 4.3 - Results hypothetical example 1. Correct T value perturbed by

a factor of 1/10. Optjjnal water heads are shown in lower table.
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convergence of the algorithm. Results of the parameter search are displayed


in Table 4.4. The error function decreases monotically as shown in


Figure 4,2. In the first two steps the initial error was decreased 99%.


The reduction is about one order of magnitude per iteration.


Several numerical experiments were performed to identify the region


of convergence of the algorithm for this particular problem. This region


b*
was roughly determined to be IQQQ £b<L.56b* by the following procedure:


(i)	 Perturb the optimal solution by increasing the parameter


values of (b-., b~, b~) by one order of magnitude,


(ii)	 Perturb the optimal solution by decreasing the parameter


values of (b.., b?, b.,) by one order of magnitude,


(iii)	 Perturb each parameter individually from its optimal value.


It was observed that during the minimization process, transmissivity


may sometimes become partially negative, especially when the starting


point is not within the convergence range specified above. Negative


transmissivity caused instability problems (oscillatory solutions) to the


alternate implicit direction algoritlim which solved the aquifer equation.


The AID has been shown to be stable, (Birkoff and Urvga, 1959], for any


time step or space increment when applied to parabolic equations of the


type considered here. However, the proofs of stability impose constraints


on the geometry of the aquifer as well as on the coefficients of the


equation. In particular, it is required that the coefficients be greater


than or equal to zero.


To alleviate the problem, the identification algorithm was modified


so that detection of the oscillatory condition could be made and then




Parameters Starting Iteration Number Correct


Value 1 3 5 7 9 11 13 Val ues


b± X 10
+6 (ft/sec) 1.0 1.996 -12,92 -17.26 -18.18 -18.48 -18.62 -18.70 -18.75


b 2 X 10
+6 (ft/sec) 0.1 1.269 -6.591 -6.332 -4.970 -4O281 -3.989 -3.800 -3.850


b 3 (ft/sec) 0.01 0.01766 0o1556 0.1720 0.1708 0o1688 0.1678 0.1678 0.1675


Error Function 0 0.7942 0.1059 1.495E-3 1.761E-4 1.109E-5 2.744E-6 6.736E-7 1.229E-7


(ft2)


X- Parameter 1.0E-2 1.0E-3 l.OE-5 l.OE-7 l.OE-9 l.OE-11 1.0E-13 1.OF/IS


TABLE 4,4 - Results hypothetical example 2, The initial g-aess is one

order of magnitude (greater for b^ and b?) smaller than the

correct values.
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- l.E-4


- l.E-5
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ERROR FUNCTION VS. ITERATION NUMBER
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corrected. The abnormal situation was corrected by providing the


program with a built-in mechanism to select a new starting point. The


idea is to penalize the error function by a factor of 10 (arbitrarily chosen)


so that the algorithm be forced to look for a better X which in turn implies


the choice of a new point tu This is an empirical method which proved to


be useful for some cases. In extremely bad cases a new starting point will


have to be externally supplied to the program.


Eesults of the sensitivity analysis are presented in Tables 4.5 and


4.6 The algorithm seems to be more sensitive to b. than to b~ and b~ since


the maximum increase allowed for b. is 1.5 before the algorithm diverges


or becomes unstable. Notice that the optimal solution T- ^(18,75x + 3.85y)10


+ 0.167, becomes negative at x = 7000 ft, y « 7000 ft, for values of b±


greater than 1.1 x 18.75. It appears reasonable that the maximum increase


allowed for b., be 1.5.


4.3 Discussion


The perfoimance of the identification algorithm in the solution of


example problem 1 was satisfactory. The accurate convergence to the


optimum, while starting with poor initial guesses of transmissivity, is


very encouraging. The first run took 25 seconds and 10 iterations. The


second run took 20 seconds and only 6 iterations on the UNIVAC 1108


digital system.


On the other hand, solution of example 2 pointed out some limitations


of the algorithm. The instability produced in the aquifer simulator when




i 

! Parameters Starting Iteration Number Correct

Value 1 3 5 7 9 11 13 Values


b± X 10
+6 (ft/sec) -0.1 1.034 -16.67 -16,63 -18.00 -18.40 -18.55 -18.70 -18.75


b 2 X 10
+6 (ft/sec) -•0,01 1.064 -11.37 -6,770 -5.302 -4.437 -4.042 -3.878 -3.875


t>3 (ft/sec) 0.01 0.01647 0o2004 0.1714 0.1715 0.1692 0.1679 0.1678 0.1675


Error Function 0 1.475 0.2405 0.00356 1.320E-4 1.826E-5 3.817E-6 1.070E-6 1.587E-7


(ft2)

X-Parameter l.OE-2 1.0E-3 1.0E-5 1.0E-7 1.0E-9 1.0E-11 1.0E-13 1.0E-15


TABLE 45 - Results hypothetical example 2. Sensitivity Analysis.


Perturbation of b]_, b2* and bj.




Parameters Starting Iteration Number Correct 
Value 1 2 3 4 5 6 7 Values 

b1 X 10+6 (ft/sec) -30.00 -19.47 -19.26 -19,09 -18.85 -18.75 -18.75 

b2 X 10+6 (ft/sec) -3c75 -3.416 -3.445 -3.505 -3.567 -3.68 -3.75 

b 3 (ft/sec) 0.1675 0.1688 0.1685 0.1680 0o1671 0.1675 0.1675 

Error Function 0 80232E-3 7.000E-5 2.690E-6 9.923E-' 7 2.386E-: 7 2.000E-7 

(ft2) 

TABLE 4.6­ Results hypothetical exanple 2. Sensitivity Analysis, 
Perturbation of b~. 
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transmissivity becomes partially negative could be a limitation for


a p p l i c a t i o n s \ s h o i v t h o t v is n  o p r e v i o u s k n o u ' U \ U v .it a l l i ^v:i\ A11 u­


t r a i i s n i s s i A i t \ v u l u o s . 1-or fhr-.r ^ .1 .<••- *r\rt;}l t . - n t u u : | v i n t u\\\


have to be tried.


b*

In example 2 , the range, jrj^ ^ b  £ l.S b*, still allows a wide


variation for T. As far as computer time is concerned, the different


experiments performed in example 2 averaged 43 sec/iteration. The


average number of iterations was 14. These times are reasonable


particularly when talcing into account the fact that each iteration requires


the solution of four partial differential equations. In the hypothetical


examples as well as in the real one below, b~ was selected as a large


number (between 0.1 and 0.5) while b-. and b 2 were chosen smaller (10" ,10 ),


This selection o£bls locates the transmissivity plane almost parallel to


the aquifer area and enough above it to avoid the transmissivity to be


driven to a negative value at the first algorithm's corrections. Usually,


a good starting value for b~ was the arithmetic mean of the available


information on transmissivity.


4.4 A Real Example


The construction and validation of an aquifer model for the Fairfield-


New Baltimore area is an jjnportant step in this project since no prediction


of the real system behavior can be made without such a component. The


purpose of this section is to show how the modeling and identification


of the FairfieId-New Baltimore Hamilton aquifer can be implemented using


the identification algorithm.
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4.4.1 Description of the Real System


The area modeled in the present study which is shown in Figure 4,3


was discussed in details in section 1.2. In particular, it consists


of 32 square miles of the Great Miami River Valley southwest of Hamilton,


Ohio.


The basic hydrologic properties of the aquifer are essentially


described by the coefficients of transmissivity and storage. A perfect


simulation of the system requires these parameters to be known at every


point. Since this is impossible, the hydrologist must use the available


data to interpolate those figures in some optimal manner. The identifi­


cation algorithm developed for this project constitutes one possible


interpolation scheme.


For the Fairfield-New Baltimore area only four reliable, [Spieker, 1968],


tests have been performed to determine the aquifer transmissivity. The test


points are shown in Figure 4.4 as T~, T2> T~, T-. The average storage


coefficient has been estimated to be 0,145 in this study, based on figures


suggested by Spieker, [Spieker, 1968].,


4.4.2 The Aquifer Model


The modeling of the real system described in the previous sections


is implemented in this section. The model assumptions are:


1.	 The aquifer drawdown is and will remain small compared with


its saturated thickness.


2.	 The initial conditions of the system are uniform throughout the


aquifer.




LOCATION OF THE FAIRFIELD-NEW BALTIMORE AREA.

LOWER GREAT MIAMI RIVER VALLEY (after Spieker)


FIGURE 4.3




Proposed Cincinnat 
woii field 
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} J< ** i IW'A •' ^/"^Southwestern Ohio 
! U.S. Atomic Ennrgy ̂  - ( M S ^ - • „, / W a ^ f CQ ^ f |e |< | 

V/ca field 

A/bi t rary nvoiic*. iKJund.-iry 

0 2 MILES 
I 

Till; FAUiFTHLD-NHV BALTIUORH AOUrFl-R. r  . DENOTES CONSTANT HEAD BOUNDARIES. 

r ( ) DliNOTliS CONSTAMf FLOW BOTJNDARIES. T . LOCATES AREAS WHERE TRA.NRMISSIVITY HAS BEEN >EASURED. 

l-'T(TfIRF A A 



83


3.	 The east and west aquifer boundary conditions can be represented


by constant head boundaries,


4.	 All flow within the aquifer is two dimensional (no vertical com­


ponent); recharge from the boundaries is one dimensional,


5.	 The stream is modeled as a constant head boundary condition.


6.	 Storage coefficient is constant.


7.	 Time is divided into equal intervals of one year each.. Within


each interval, called pumping period, wells pump at constant


rates* All wells fully penetrate the aquifer.


In the present work, initial conditions of the area were averaged


to 550 ft. based on SpiekerTs figures, [Spieker, 1968]. Assumption 1 in­


troduces some error since it does not allow the model to take into account


dewatering of the system* The error becomes serious only when 20 to 25


percent of the aquifer *s saturated thickness has been dewatered. This


thickness has been estimated between 140 and 200 feet. Therefore, the


model can be used to evaluate drawdowns of as much as 35 feet. Beyond


this point equation (2.1) does not accurately represent the system.


itesumptions 2 through 4 and 7 may introduce errors of local extent


but are not expected to introduce serious errors in the regional potential


distribution.


Under conditions of heavy pumping assumption 5 would have to be


modified since the reduction in the streamflow may reach levels, such that


there would not be enough river water to maintain the water level constant


beneath the streambed. Actual pumping conditions are low (by comparison


with the stream recharge), and therefore asstimption 5 is justified.
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Finally> assumption 6 is based on the fact that most of the aquifer


extent (except for small marginal areas which are of the semiconfined


type) are unconfined and the coefficient of storage of an unconfined


aquifer is generally about 0.1-0.2 [Spieker, 1968].


Now, the aquifer model is defined using the information above as


follows:


0.145 |£

(Ax)2


I.C.	 h(x,y,0) = 550 ft,


h(x,y,t)|r = 550 ft. i = 1, 2, ,., 5 (see Fig, 5.4)


h(x,y,t)L = 550 ft. River


—- (x^y^t))! = Recharge from boundaries (see Table 5.7)

dn


where


P(x,y,t) = Pumping function. See Table 4.8


Ax = 2,640 ft, = grides nodes distance


n = perpendicular direction at the boundary


6(x. - a) - Dirac delta function. It indicates the location of the pumpixtg


well


a = Pumping coordinates - (x.,y. ,t-r)




Boundary

12,5 12,6 11,6 11,8 12,8 12,9 11,10 10,11 9,11 9,12 9,13 8,14


Points

(B.P.) ( See figure 5.5 for location of this coordinates)


Infiltra­

t i o nfT R 1 7 5 S 7 3 3 10 8 5 5 6 8


B.P. 7,15 6,15 5,15 5,16 6,17 6,18 5,19 4,20 4,25 4, 26 4, 27 5,28 6,28


I.R. 8 5 8 6 5 5 8 9 6 5 5 7 3


B.P. 8,28 7,27 6,26 6,25 7,24 8,23 9,22 10,21 10,20 10,18 10,19 10,17 CO


en


I.R. 8 5 5 5 8 5 8 7 7 5 5 5


B.P. 10,16 11,15 12, 14 13,13 14,13 15,13 16,13 17,12 18,11 18,10 19,8


I.R. 5 6 7 8 5 5 6 5 6 5 7


B.P. 17,7 16,8 16,7 16,6 16,5


I.R. 5 5 5 6 6


TABLE 4#7 - Infiltration Rates Fairfield-New Baltimore Aquifer. Units: ft
3/sec.*100




Well Well PUMPING PERIODS

Coor-
 Name
dinates
 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962


13,8 A-2 : 155 155 155 155 155 155 155 155 155 155 155


13,11 fS-l 1512 1835 1762 2155 2031 2260 2019 2298 2223 2004 1951


7,21 F-10 0000 0000 500 0000 338 377 381 372 356 354 357


8,21 F-ll 0000 500 0000 0000 423 471 477 465 445 443 446


8,20 F-16 500 0000 0000 500 338 377 381 372 356 354 357


TABLE 4.8 - Purrping history FairfieId-New Baltimore aquifer. Figures are given in ft3/sec. * 100,


Data from 1957̂ -62 were not used in the identification of T.
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Next step in the modeling of the Fairfield-New Baltimore aquifer


is the identification of the transmissivity function in equation (4.5).


4.4*3 Identification


In order to pursue the calibration of the equation model (4*5)?


input output information describing the evolution of the system for


a given period of time is required. The time period between years


1952 to 1962 was chosen for the identification and validation process „


This period has the best available records for these purposes * The


period 1952 - 1962 was divided in two subperiods; data from 1952 to


1956 was used in the model identification and from 1957 to 1962 in the


model validation*


Infiltration rates and the complete pumping history of the region


from 1952 to 1962, which were obtained from the Miami Conservancy


District, are presented in Tables 4.7 and 4*8. A breakdown per month


can be obtained from, [Spieker, 1968]. Location of the pumping wells


is displayed in Figure 4.4.


Unfortunately, drawdown records were not as abundant as pumping


records and it was only possible to get water level information for two


wells, named HJ-7 and H-2, whose location is shown in figure 4,4*


In spite of the scarce water level information available, it was


decided to run the identification algorithm for two reasons: (1)


Scarcity of information is a usual problem the hydrologist has to face.


(2) No minimum requirements on the amount of information needed
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to calibrate the model has been made in this study. It is felt that the


more information available on the system's evolution, the more accurate


the model calibration can be performed. The present problem seems a


good case for testing this hypothesis. As a consequence, two experiments


were planned.


In experiment 1 the model calibration was performed by using the


only two water head records available. In experiment 2 the model calibra­


tion was performed by using results from tlie analog model by Spieker


[Spieker? 1968] for the same problem area. Specifically, his model


equation [same as[2.1]) was solved using the parameters and conditions


that he determined for the area, thus the additional water head information


generated via Spiekerrs mathematical model was used as ^'observation* water


head data in experiment 2. This provided additional water head estimates


for the six pumping wells of the region plus their surroundings (4 adjacent


nodes). A total of 25 observations per year or 125 observations for five


years were generated and used in the identification process. The main


purpose of the two experiments was to compare the performance of the


algorithm under scarce vs. non-scarce information conditions. Presentation


of results follows.


Table 4,9 summarizes the characteristics of the aquifer under study.


Table 4.10 presents drawdown observations based on hydrographs of


observation wells EU-7 and H-2. Figure 4*5 indicates the constant head


and recharging boundaries. Tables 4.11a - 4.11b present the additional


information generated based on Spieker1 s model, and used in experiment 2.


This information was input into the identification algorithm^ The presen­
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Characteristic	 Description


Aquifer Type	 Unconfined, Small marginal areas 
are of semi-confined type 

Storage Coefficient S	 0.145 average ( dimensionless) 

Transmissivity Unknown (ft /sec) 
Coefficient T 

Ini t ia l Head	 550 (ft) average water table height 

Boundary Conditions East § West bounds: Constant Head 
North § South bounds: 6,8 (mgd) 

flow on the average 

Wells	 Six pumping wells distributed in 
three areas: 
Southwestern Co. (13.8 mgd)

Hamilton South (7.5 mgd)

Atomic Energy Commission (1.0 mgd)


Approximate Area	 30 square miles (a 20 x 30 node grid

has been used to approximate this area)


Acquifer Data: Fairfield-New Baltimore


TABLE 4.9




Well Well

Coor- WATER HEADS: OBSERVED VS . PREDICTED

dinates Name
 1952 1953 1954 1955 1956 1957 1958


8,19

Observ. BU-7 0.00 1.50 2.00 1.00 3.50


8,19

Predict. BU-7 2.56 1.99 1.60 3.15 4.50


14,12 
Observ. H-2 5.00 6.00 6.50 3.50 6.00 O 

14,12

Predict. H-2 2.77 4.41 4.77 5.61 5.67


TABLE 4.10- Comparison of water heads, experiinent 1. Water head is 

measured in feet. 
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YEAR = 1952 YEAR = 1953


OBSERVATION DRAWDOWNS OBSERVATION


POINT (ft) POINT


6 19 0 6 19

6 20 -511 6 20

6 21 -611 6 21

6 22 -534 6 22

7 19 -745 7 19

7 20 -1459 7 20

7 21 -1187 7 21

7 22 -879 7 22

8 19 -1514 8 19

8 20 -3459 8 20

8 21 -1853 8 21

8 22 -1219 8 22

9 19 -1311 9 19

9 20 -1950 9 20

9 21 -1633 9 21

9 22 -1337 9 22

12 8 -503 12 8

12 10 -41 12 10

13 7 -556 13 7

13 8 -1338 13 8

13 9 -462 13 9

13 11 -6575 13 11

13 12 -2071 13 12

14 8 -566 14 8

14 12 r726 14 12


TABLE 4,11a - Water Head Observations Used in Experiment 2.


DRAWDOWNS


(ft)


0

-606

-1043

-1060

-648


-1385

-2085

-1768

-1165

-2199

-4183

-5298 CO


-1284

-2003

-2737

-2581

-586

-51


-629

-1425

-513

-8086

-2063

-641

-942




YEAR = 1954 

OBSERVATION DRAWDOWNS


POINT (ft)


6 19 0

6 20 -840

6 21 -1669

6 22 -1436

7 19 -656

7 20 -1702

7 21 -3751

7 22 -2187

8 19 -887

8 20 -1575

8 21 -2304

8 22 -2033

9 19 -917

9 20 -1380

9 21 -1767

9 22 -1859

12 8 -575

12 10 -53

13 7 -640

13 8 -1436

13 9 -520

13 11 -7793

13 12 -2522

14 8 -652

14 12 -920


YEAR = 195 5 

OBSERVATION DRAWDOWNS 

POINT (ft) 

6 19 0 
6 20 -646 
6 21 -861 
6 22 -831 
7 19 -871 
7 20 -1715 
7 21 -1558 
7 22 -1278 
8 19 -1728 
8 20 -3788 
8 21 -2275 
8 22 -1676 
9 19 -1576 
9 20 -2314 
9 21 -2074 
9 22 -1818 
12 8 -576 
12 10 -S3 
13 7 -642 
13 8 -1438 
13 9 -521 
13 11 -9499 
13 12 -3067 
14 8 -654 
14 12 -1117 

TABLE 4.11a - Continued.




YEAR =


OBSERVATION


POINT


6 19 
6 20 
6 21 
6 22 
7 19 
7 20 
7 21 
7 22 
8 19 
8 20 
8 21 
8 22 
9 19 
9 20 
9 21 
9 22 
12 8 
12 10 
13 7 
13 8 
13 9 
13 11 
13 12 
14 8 
14 12 

TABU! 4.11a


1956


DRAWDOWNS


(ft)


0

-1427

-2437

-2274

-1496

-3306

-5105

-3609

-2623

-5271

-6351

-4441

-2643

-3992

-4664

-4434

-576

-53

-642

-1438

-521

-8987

-2916

-654

-1069


- Continued




YEAR = 1952 YEAR = 1953


OBSERVATION DRAWDOWNS OBSERVATION DRAWDOWNS

POINT (ft) POINT (ft)


6 19 -.000000 6 19 -.000000

6 20 -.530857 6 20 -.623984

6 21 -.619037 6 21 -1.039144

6 22 -.543416 6 22 -1.054990

7 19 -.756806 7 19 -.657858

7 20 -1.467938 7 20 -1.386740

7 21 -1.186875 7 21 -2.051189

7 22 -.883659 7 22 -1.735517

8 19 -1.511098 8 19 -1.161544

8 20 -3.421866 8 20 -2.171297

8 21 -1.823468 8 21 -3.992072

8 22 -1.214679 8 22 -2.514910

9 19 -1.282507 9 19 -1.266367

9 20 -1.904663 9 20 -1.970619

9 21 -1.601156 9 21 -2.651348

9 22 -1.329860 9 22 -2.506758


12 8 -.512047 12 8 -.576988

12 10 -.043959 12 10 -.054620

13 7 -.566957 13 7 -.640974

13 8 -1.320580 13 8 -1.405682

13 9 -.468210 13 9 -.518913

13 11 -7.214109 13 11 -8.879487

13 12 -2.087315 13 12 -2.620361

14 8 -.539650 14 8 -.607309

14 12 -.633808 14 12 -.814830


TABLE 4.11b - Water Heads Predicted by Model from Experiment 2.




YEAR = 1954


OBSERVATION

POINT


6 19 
6 20 
6 21 
6 22 
7 19 
7 20 
7 21 
7 22 
8 19 
8 20 
8 21 
8 22 
9 19 
9 20 
9 21 
9 22 

12 8 
12 10 
13 7 
13 8 
13 9 
13 11 
13 12 
14 8 
14 12 

YEAR = 1955 

DRAWDOWNS OBSERVATION DRAWDOWNS 
(ft) POINT (ft) 

-.000000 
-.862288 
-1.655571 
-1.416339 
-.669419 
-1.707635 
-3.681129 
-2.132637 
-.893308 
-1.573498 
-2.253234 
-1.988275 
-.913395 
-1.371126 
-1.736283 
-1.825383 
-.585905 
-.056273 
-.651824 
-1.415879 
-.525412 
-8.559774 
-2.538707 
-.616953 
-.793580 

6 
6 
6 
6 
7 
7 
7 
7 
8 
8 
8 
8 
9 
9 
9 
9 
12 
12 
13 
13 
13 
13 
13 
14 
14 

19 
20 
21 
22 
19 
20 
21 
22 
19 
20 
21 
22 
19 
20 
21 
22 
8 
10 
7 
8 
9 
11 
12 
8 
12 

-.000000 
-.672268 
-.870826 
-.840091 
-.887468 
-1.729666 
-1.555635 
-1.275206 
-1.729634 
-3.753715 
-2.238414 
-1.661059 
-1.548088 
-2.268211 
-2.032237 
-1.798155 
-.587250 
-.056523 
-.653544 
-1.417400 
-,526371 

-10.431515 
-3.085838 
-.618459 
-.964532 

TABU: 4. lib - Continued. 



YEAR = 1956


OBSERVATION


POINT


6 19 
6 20 
6 21 
6 22 
7 19 
7 20 
7 21 
7 22 
8 19 
8 20 
8 21 
8 22 
9 19 
9 20 
9 21 
9 22 
12 8 
12 10 
13 7 
13 8 
13 9 
13 11 
13 12 
14 8 
14 12 

DRAWDOWNS


(ft)


.000000

1.467000

-2.428633

-2.252329

-1.520619

-3.313951

-5.029217

-3.539490

-2.621887

-5.215648

-6.138299

-4.328899

-2.605573

-3.921900

-4.550408

-4.333839

-.587463

-.056562

-.653824

-1.417642

-.526521

-9.871262

-2.633577

-.618703

-.920827


TAHJ.l: 4 . n  b - Continued. 
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tation of results is divided in two parts:


Experiment 1:


The identification process was stared with the initial guess


T Q = (x + y)l(T8 + 0,5


The initial guess was based on transmissivity information of the area


(see Figure 4.4), After 3 iterations the algorithm could not find


any better solution than the one presented in Table 4*12% The initial


2 2
error was reduced from 109 ft to 27*6 ft * Notice that the error


function is composed of 10 square error terms since five years are


being considered for the identification process (1952-1957) and only


two observations are available per year. A comparison between the


observation data and the optimal solution is made in Table 4%1(L It


is noted that the observations of well H-2 are matched better than


those of ELJ-7, A maximum difference of 2..8 feet between calculated


and observed heads of the following years match better. On average>


the maximum differences registered are of 1.5 feet*


There are two sources of error that could explain the lack of output


matching between the real system and the model. First are the observa­


tion heads themselves* The hydrographs of observation wells FJ-7 and


H-2 are the resultant of two components; (i) The river fluctuations,


and (ii) pumping. Since it is impossible to track the river fluctuations


it is not possible to know accurately how much of the drawdown indicated


by the hydrographs corresponds to pumping effects. However, a long term


trend can be detected and based on this trend the observation data were




Parameters


bx X 10
+6 (ft/sec)


b 2 X 10
+6 (ft/sec)


b 3 (ft/sec)


Error Function 0


(ft2)

X- Parameter


Starting Iteration Number Correct 
Value 1 2 3 . 4 5 6 7 Values 

0,01 0.490 4.80 5.34 UNKNOWN 

0.01 ' ,0.564 -10,54 -9.82 UNKNOWN 

0.5 0.413 0.346 0.345 UNKNOWN 

109.0 67.76 27.60 42.20 

0.000 1.00 0.10 27.60 

TABLE 4.12 - Results identification of real aquifer.. Experiment 1 .
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chosen. As a consequence, a U feet difference is to be expected


between the model and the system. Second is the small amount of


information available. An aquifer whose areal extension is 30 square


miles is being identified with only two observation points. The matching


of water heads seems reasonably good, yet nothing can be said until a


general drawdown map of the area can be obtained for the same time periods


considered in this study. The fact that the model matches a pair of


points reasonably well does not mean it is emulating the total system well.


This is why the validation stage in any modeling process is so important *


The validation results are presented in the next section and they shed


some light on the characteristics of the identification process as well


as on the minimum information requirement levels.


Experiment 2:


In this experiment the additional information presented in Table 4.1 la,


and based on the solution of SpiekerTs model equation, is used in the


model calibration process. The identification algorithm was initialized


with


T = (x + y)10^6 t 0,1


where the transmissivity coefficients were selected based on previous


perfomance of the algorithm with small values of b. and b~ rather


than on any information on transmissivity values,


The algorithm performed quite well in this case. The initial


error was reduced from 6065 square feet to 3%S square feet in six


iterations, A comparison of the real drawdown values (Table 4%lla] and
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the model's predicted drawdown (Table 4tll b] shows generally good


agreement between them, in some cases, up to the fourth decimal place.


Again, perfect matching can not be expected since the model does not


represent exactly the real system.


The results obtained here seem to be good, yet nothing can be


said until it is proved that the model is in fact calibrated. In


other words, if the model is well calibrated, then it should be


capable of predicting future behavior of the system under any given


conditions. This is the validation step which is taken care of in


the next section.


The results of the identification are displayed in Table 4.13,


Notice that between the starting and the optimal parameter values there


is a difference of about one order of magnitude,


4,4,4 Model Validation


The main goal of this section is to test whether the models identi­


fied in the previous section are capable of predicting the real system


behavior or not, The relevance of this verification is emphasized in


dealing with the results of experiment 1.


Since the calibration process was performed using historical records


from 1952 to 1956, the validation test consists of checking the performance


of the model for conditions other than the ones used in the identification.


In 1962, the hydrologic conditions of the real system were determined,


[Spieker, 1968]. A drawdown map of the aquifer describing the state of




Parameters Starting Iteration Number Correct

Value 1 2 3 4 5 6 7 Values


b x X 10
+6 (ft/sec) 0.1 1.002 3.700 6. 929 9,575 10 .98 11 .14 UNKNOWN


b 2 X 10
+6 (ft/sec) 0,1 0.3322 2.597 4. 930 7.169 8. 625 9. 062 ; UNKNOWN


b 3 (ft/sec) 0.1 0.2485 0.2160 0. 1440 0.04644 -0.03625 -0.03524 UNKNOWN


Error Function 0 6,065, 1,716. 251.0 50 ,72 6.951 6. 311 3. 570

(ft2)


X- Parameter 0.000 0.000 0.000 0. 000 0.000 1. OE-4 2. 000


TABLE 4.13 - Results identification of real aquifer.Experiment 2.
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the system in November 1962 is shown in Figure 4.6. The model verifi­


cation test consists of driving the aquifer model from 1952 to 1962


(using the same input conditions as in the real system) and comparing


the model's output in 1962 with the conditions displayed in Figure 4.6.


If the outputs match each other, the model is said to be validated.


Model From Experiment 1:


The model calibrated in the previous section showed a reasonably


good matching of drawdowns at the observation wells BU-7 and H^2 yet


the results obtained in the verification test, and presented in


Figure 4.7, shown a very poor prediction of the actual conditions of


the systems in 1962. Notice, that the drawdowns at BU-7 and H-2 are


matched accurately though. This points out how misleading it is to


attempt to identify a large system with so little information. Local


conditions were reflected in the identification process accurately..


Global aquifer conditions were not reflected in the model since the


observation points BU-7 and H-2 did not convey enough information


about those general characteristics.


The worst prediction was made at the Southwestern well field


where the real drawdown is 15 feet and the model predicted 29 feet. The


results of this experiment are very important for two reasons:


(i)	 Show that matching of the observations does not guarantee


a well calibrated model,
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(i.i)	 Indicate that observation points far from the location of


the pumping sources are not advisable for the identification


of the system since these points do not reflect properly


the system1s characteristics of the pumping areas.


Model from Experiment 2:


The verification of this model was carried out in the same way


described above. Figure 4,8 presents the drawdown map as predicted


by the model. Comparison of this map with the actual drawdown map


of Figure 4.6 shows good agreement between them except for the


southwestern area where the comparison becomes difficult because the


two main wells were lumped as one in the modelt There were two reasons


for lumping these wells; (i) the pumping history of these wells


is aggregated, (ii) the dimension of the grid used in the discretization


of the model equation are such that the wells appear as aggregated. A


refined grid will produce better resolution of this area if the need for


a more accurate answer arises. However, the drawdown predicted by


the model at the well's location is close to the actual. The comparison


of drawdowns reports a good model matching of local and global conditions


of the system. Therefore, the model from experiment 2 is assumed valid


and ready to be used in further studies. The model representation is


finally given by
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.14x + 0.96 . 0,035]||) + |  _ Ql.Ux + 0.9/ - 0,035]|~) 

0.145 | f + , 5(x. - a) 

I.C. h(x,y,0J = 550 ft. 

h(x,y,t) | r = 550 ft i " 1, 2, , . , 5 (see Figure 4.4) 
i 

B.C. h(x,y,t)L = 550ft River condition 
L6


dh(x,y,t)i- = Recharge from boundaries (see Table 4,7)


A comparison of the error functions for experiment 1 and 2 is given in


Figure 4.9, Validation results for the aquifer digital models from


experiments 1 and 2 are given in Table 4*14t


4.4.5 Validity of Results


In order to evaluate the validity of the real example study made


in this chapter, it is important to emphasize the limitations of the


present analysis and to determine possible sources of error.


Concerning boundaries of the area modeled, pumping history, and


drawdowns for the year 1962, the information is well documented and


highly reliable^ therefore the error source expected from the data is


minimized. Regarding the storage coefficient, Spiekers considered the


figure of 0,2 to be valid for the unconf ined area partly because of the


close agreement between the drawdowns determined from his analog model
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Well Well Observed Predicted Error Well Well Observed Predicted Error

Coor- Coor­

dinates Name Head(ft) Head(ft) % dinates Name Head(ft) Head(ft)


13,8 A-2 6.0 11.0 83 13,8 A-2 6.0 4.0 33


13,11 S1-S2 15.0 29.0 93 13,11 S1-S2 15.0 12.0 20


8,20 F-16 6.5 17.7 154 8,20 F-16 6.5 7.7 18.4


8,21 F-11 6.5 20.8 220 8,21 F-11 6.5 8.7 30


7,21 F-10 6.5 17.3 154 7,21 F-10 6.5 7.5 15.3


8,19 BU-7 4.0 6.9 72.5 8,19 BU-7 4.0 3.13 21.7


14,12 H-2 4.0 3.0 25 14,12 H-2 4.0 1.0 75


*Model from Experiment 1. Water heads compared | Model from Experiment 2. Water Heads compared

on November 1962. | on November 1962.


TABLE 4.14 - Results Validation Aquifer-Digital Models from Experiments

1 and 2.


*Note that the model from Experiment 1 was identified with only two observation points.

Since the validation process pointed out large percentage errors between this model and

the real system, the former was rejected.
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and those of Figure 4,81 For the semiconfined area he uses values


from 0,02 to 0.1, The aquifer digital model used in this study does


not take variable storage coefficients. As a consequence the storage


coefficient for the model was obtained by averaging the weighted


(using the area percentage as a weight) sum of storage coefficients


for the aquifer. This introduces some error in the computations


which does not seem to affect seriously the final results since a good


agreement between calculated vs. actual drawdowns was obtained. In


future extensions of this work the relevance of the storage coefficient


will be evaluated more carefully. The methodology presented in this


report can be readily applied to handle the variable storage coefficient


case providing the aquifer model be modified.


Concerning the interaction aquifer^river and aquifer^boundaries,


the rates of induced recharge are the most difficult variables to


estimate in this study and the ones which may produce the largest errors.


An important factor in the present analysis is the rate of recharge of


the river to the aquifer, Since the river is a large source of water


and the infiltration rates determined at two different points on the


aquifer are high, it is assumed the river can be handled as a constant


head boundary condition. The consequences of this assumption are


observed in Figure 4.8. The model results for the Southwestern area


show smaller drawdowns than the actual system, indicating that the


recharge contribution of the river to the aquifer is overestimated%


Notice, however, that the error induced by this overestimate does not


affect seriously the prediction at the well itself, A more accurate
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result demands a more accurate modeling of the river. This would


require more knowledge of the infiltration rates. At the present


moment this information is not available.


Regarding the interaction aquifer-boundaries, it is noted that


the rate of leakage from the bedrock valley walls has not been deter̂ ­


mined. The figures used in this study are based on those estimated by


Spieker [Spieker, 1968]. He considers those estimates correct, partly


because the results of his analog model simulation seem to match well the


real conditions observed in the system, and also because of the fact


the river is the largest recharger of the region; so an error in the


estjjnation of these infiltration rates would not affect seriously the


drawdown distributions. Another source of error comes from the discreti­


zation of the aquifer area in order to solve equation (2,1). A comparison


of Figures 4.4 and 4,5 reveals the gross approximations made in the


representation of the real area*s geometry. Again, a trade-off beteeen


accuracy of the model's solutions and computer time is the main reason


for adopting this representation [i<e.9 the one in Figure 4,5).


Finally, the largest source of error in this study may come from the


fact that in the identification process observation data was generated


by a model rather than from the real system itself (since this was not


possible). However, there is confidence in the data generated for two


reasons; (i) the model derived with this data showed a good agreement


with the real system, (ii) the model source of information has been


verified and found completely acceptable, [Spieker, 1968],




Chapter 5


EXTENSION OF AQUIFER MODEL DEVELOPMENT:


A MJLTICELL MODEL


5.1 Introduction


A technique has been proposed [Maddock, 1972] to model groundwater


systems via a simulation model for which an "Algebraic Technological


Function" (A.T.F,) may be calculated. The principal idea underlying


the A.T.F. technique is a linearization of the system model. This


makes possible a linear superposition of the systemfs response to water


head elevation charges, which can be effectively coupled with a manager


ment model.


The A.T.F- has several disadvantages, however. While it may be


appropriate for systems governed by a single partial differential equation,


application to systems comprising portions governed by effectively


different equations may make the modeling process difficult. Another


disadvantage occurs for the case in which the system consists of combined


unit aquifers. Although each unit is affected by the others, an input


from within a unit has a greater influence than an input from outside


units. Thus, points within and outside a given unit deserve different


weightings in the construction of the model. Finally, for any real system,


it is likely that detailed analysis will require extensive computer capacity


and consequently may prove to be an important restriction. For this case
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direct use of the A,T.F, technique may prove to be inadequate,


Decomposition of the ground-water system into different cells


combined with the A,T,F* approach constitutes a new approach. It


appears that it may provide an improved solution to the problems dis­


cussed above. An accurate analysis and modeling procedure is made


possible for each cell, and the dimensionality of the model is reduced,


5,2 Model Formulation


The multicell approach to modeling groundwater makes use of a set


of balance equations, of which each represents a mass balance applied to


a particular cell* For a single cell representing an area, xvithin


an aquifer and surrounded by impervious boundaries, the balance equation


takes the form [Bear et al, 1972]<


+ At) - h(t))*A»S


where


At =5 Period for which the balance is written,


Q - Net inflow into the cell


A = Area of cell


h(tj = Average water level elevation in the cell at


time t


S = Aquifer storativity at the cell (averaged],t
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Applying the same principle of water balance to a multicell


system, taking into account the interflow between adjacent cells,


leads to a set of difference equations. The form of these equations


is identical to the form of those which result from the discretization


of an ordinary differential equation when used to approximate the


aquifer system.


The thickness of an aquifer usually is small compared with its


lateral dimensions. For an unconfined flow in nonhomogeneous medium,


in which the storage coefficient is assumed to be independent of water


table elevation while transmissivity is not, the following difference


equation may be used [Yu and Haimes, 1973] %


-V - Q


where


. W.-C- A Wji  j i A  Ai i

.: 2 Lj i At


C . A k. - F 
31 3 

h. = Water table elevation at the i-th cell during the m-th
xm


time step.


Q. = Net inflow into the x-th cell during the m-th time step,




116


w.. = Length of the perpendicular sector associated with the


segment between cells i and j,


L.. = Distance between the centers of nodes i and j#


K.. = Hydraulic conductivity averaged between cells j and i,


E.. = Effective aquifer depth averaged between cells j and i,


F. - = Elevation at the top of the aquifer averaged between cells


j and i.


A- = Area of I^th cell.


S. - Storage coefficient averaged over the i-th cell,


One should note that the multicell approach is very much simplified


by comparison with the real system. Boundary conditions must be simplified


as well* Constant flow may be handled through inflow to a particular


cell. Constant head requires a fixed head for the cell at all times, No


flow requires that the hydraulic conductivity be set at zero between cells


and the construction of an imaginary neighboring cell.


The multicell model provides approximate inflows and outflows for


each cell In the modeling procedure. These values may be computed for each


time step together with averaged water heads. To obtain an accurate


estimate of drawdown at a particular point of interest one can isolate the


cell in which the point of interest is located. This cell may then be


modeled in greater detail using a mathematical model which takes into


account the particular boundary conditions which relate to its adjacent


cells, as functions of time.


To illustrate the usefulness of the proposed modeling technique,
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the Fairfield-New Baltimore aquifer in the lower Great Miami River Vallev


was modeled. A computer program was written to simulate


the aquifer. The system was divided into cells with differing charac­


teristics (see Figure 5.1). The data utilized included pumpage,


water elevations, and cell boundary conditions, and were taken from


Spieker, [Spieker, 1968] (as also used in chapter 4), An explicit


computation scheme can be used, if care is taken to avoid the stability


problem by choice of an appropriately small time step. The semi-pervious


bedrock which forms the natural boundaries for the groundwater system can


be handled as part of the water balance for each cell (constant inflow) . The


river can be handled as constant head cells. Initial water head values in


all cells are part of the input to the program. For each time period ione


year) the forcing function (pumpage) at each cell is given.


The simulation model can produce two types of output:


(i)	 For each time period, the interflow between adjacent


cells is provided^


(ii)	 For each time period the averaged water level is predicted


in all cells.


Cell 4 (see Figure 5.2) was selected to be simulated by means of a


particular model. Maddock*s program [Maddock, 1972] was used for this


purpose. The square grid used in chapter 4 was implemented for cell 4


only. The results from the multicell model for boundary conditions


between cells provide the data for the related nodes. The program


is described in detail in Maddock [Maddock, 1972], The method used for
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solving the problem is the alternating direction implicit technique.


Ten years of pumpage imposed on the system were simulated. The


steps for doing this were:


(i)	 The multicell model was used to determine the initial


state befor pumpage began. Running the model over a


long time provided a steady state head distribution


for the system regardless of the initial values


chosen on a random basis, and with no pumpage imposed,


(ii)	 The steady state calculated at the previous step was


used for calibrating the modelxs parameters (equation 5.1)­


This was achieved by comparing the results with a map of


initial head given by Spieker (Figure 5.2).


(iii)	 The system was simulated by the multicell model to


produce the system response averaged at each cell for a


ten year period,


(iv)	 The cell model using outputs from the previous step was


used to simulate cell 4 over the same ten years and so


to produce drawdown at wells, Table 5,1 summarizes


the results. Three pumping wells are located in cell 4,


An analog model (Spieker) aoid digital model results


(see chapter 4) for which the entire aquifer was modeled


are compared as are the two-^stage results> to the real


drawdowns as measured in the aquifer at the end of the


simulated time period (see Figure 4.7 ):
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REAL 
WELL VALUE ANALOG DIGITAL 2-STAG 

F-16 6.50 9.0 7.8 7.2 

F-11 6.50 9.0 7.8 8.5 

F-10 6.50 9.0 7.8 6.P 

DRAWDOWN IN FEET


TABLE 5.1


From the Table 5.1 one may conclude that the suggested modeling


technique provides a procedure by which to predict an accurate map


of drawdown at different parts of a groundwater system. One can


expect that the advantage of this technique is even greater if it is


applied to a more complex system for which a single stage model is


impractical.


In this study we are prijnarily interested in the coupling of a


groundwater system with a desired management model * Using the


proposed technique, it is possible to extend the A.T.F. approach toward


handling a more complex system, The basis used is that the drawdown at


a point in a aquifer due to input at some other point within the ground­


water system may be approximated by a linear combination of responses


predicted by the multicell model, and by those predicted by the more


detailed model of the unit aquifer to which the point belongs *
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Let 3(k»j,i) be the drawdown at point k due to one unit input


at point j occuring i time periods previously during one unit tijne with


k and j located at the &th unit aquifer * Let Y(^>r,i) be the average


drawdown at unit aquifer i due to one unit input in cell r occuring i


tine periods previously during one unit of time. Let D(£?t) be the


areal averaged drawdown at the^-th cell at the end of t time periods


due to the aggregated input to the whole system:


R t


r=l m=l


where


R = total number of cells r - 1 ,,,,,*, R


and


Q(r,m) = Aggregated input of water to the r-th cell area


during the m-th tjjne period.


Let D*(k,t) be the drawdown at the k-th point located at the ?-th


cell at the end of the t time period due to the aggregated input in the


l~th cell


j-1 m-1


where


total numiber of points in the £-thcell where input


may be introduced,
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and


Q* U>m) - Aggregated input of water in the j-th point located


at the -6-thcell during the m-thtime period.


Let DT^Ckjt) be the total drawdown at the k-th point located at


the &-th cell at the end of the t time period due to the aggregated input


in the whole groundwater system so that


t

DT,(k,t) = D U,t) + n (k,t) - I y{l9l t -m+1) * Q U,m)
t V m=1
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The significance of this last algebraic equation .̂av he illustrated


rjrapiiically on the schematic section of three adjacent cells. A pur.irâ e


Is loosed on cells 1 and 2. Figure 5.3 shows the decomposition of the


drawdov/n at each cell due to these wells.


CELL 1 CELL 2 CELL "•> 
INIT1A1 

r 'STAC! 

Bl Bl A2 
A3 

Al Al̂ . ^ B3 

/Cl 
B2 ^ 

D3 

D2 

^ - . 

AL ­ DRA'vDCfVN DUE TO PUt-lPAGP. AT 1-ST CELL 

BL ­ DRAWDCMN DUE TO PUT-1PAGE AT 2-ND CELL 

CL ­ PARTiaTLAR DRAWDOWN DUE TO PUfPAGF. AT T i  l PARTIQJLAR CELL 

DL ­ Ca^POSITION OF DRAWDOWN: 

CELL 1  : Dl = B l + C  l 

CELL 2  : D2 = A2+C2 

CELL 3  : D3 = A3+B3 

REALIZATION OF THE ALG1-RRAIC DECOMPOSITION 

FIGURI:: 5 .  3 
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APPENDIX A


COMPUTER PROGRAM


A.I Introduction


A program, written in FORTRAN V for the UNIVAC 1108 digital computer,


implements the identification algorithm developed in this report. The


program is composed of two main parts: One part includes the optimization


procedure and the other includes the procedure for solving the aquifer


equation and the sensitivity equations of the system being modeled, To


make use of the program the user has to completely define the characteris­


tics of the aquifer under study and the input information needs to be properly


added according to the rules defined in this appendix. An input-output


historical record will be also required for the system identification phase.


The program is divided into three subprograms, namely: MAIN (optimiza­


tion section), MAD (aquifer simulator), and MATCH. The latter coordinates


the coimnunication between the optimization section and the aquifer simulator.


MAIN plays the role of the main program while MAD and MATCH are merely


subprograms.


The identification program has been designed in order to calibrate the


transmissivity function of confined aquifers models. It is assumed that


the aquifer under study can be modeled by a linear parabolic partial differen­


tial equation. The mathematical model is already contained within the


program and the user has only to specify the aquifer characteristics, Once


this is done, the program finds the best transmissivity which is represented


by a linear polynomial function for the given model. The resulting output
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is a calibrated aquifer model.


The aquifer simulator subroutine (MAD) solves the aquifer equation


many times during the optimization process. It also solves the sensitivity


equations of the system which provide gradient information used in the


optimization. The model equation built in the program handles different


pumping pattern conditions, leakage from confining regions with storage


capabilities, leakage from lakes and/or streams, irregular-shaped boundaries,


and nonhomogeneous transmissivity. The transmissivity function structure


has been approximated in the program by a linear polynomial in x and y, the


polynomial coefficients being given by BET(1,IKC), BET(2,IKC), and BET(3,IKC).


The program allows for future extensions to quadratic or higher polynomial


representations for the transmissivity function.


The aquifer simulator requires the boundary conditions of the aquifer


be either constant head or constant flow conditions. As for initial conditions,


a constant head is assumed throughout the aquifer.


The model calibration is carried out over a time period which is usually


divided into equal intervals called pumping periods. The size of the time


horizon is determined by the input-output historical record available for


the identification process.


MATCH has the main task of setting proper conditions in the aquifer


simulator section so that the sensitivity equations can be solved. For


example, calculation of the forcing function for the sensitivity equations


is one of the tasks performed by MATCH. MAIN is the master control and


optimization section of the program which determines the direction and


size of the corrections to be made on the initial transmissivity guess.
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MAIN operates based on information supplied by the aquifer simulator


section (MAD) and the input-output historical record. An operation


description of the total program is presented in the following section.


A.2 Application


The identification program can be used for estimating coefficients


embedded in systems described by a second order linear parabolic equation.


In this project the program has been applied to the identification of an


aquifer system, therefore the following description only uses terminology


related to the water resource field. However, it is easy to make analogies


with any other systems (not necessarily water resource) which can be des­


cribed by parabolic equations, thus allowing for more general application


to the program•


The model equation (2.1) used in this program has been derived under


certain assumptions which are rewritten for convenience of the user below.


Also the optimization subroutine has requirements which are specified below.


1.	 It is assumed that the aquifer being modeled can be treated as


a two dimensional flow system.


2.	 Drawdowns relative to the saturated thickness are small.


3.	 The storage coefficient is constant throughout the aquifer,


4.	 Boundary conditions can be accurately approximated by constant


head or constant flow,


5.	 The time horizon considered for the transmissivity identification


must be divided into equal intervals called pumping periods.
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Within a pumping period wells are assumed to pump at constant


rates.


6.	 The aquifer area is discretized by superimposing a grid on


the plan view of the aquifer. Node points represent an area


segment. If more than one well exists in a given area segment,


their pumping rates are added and treated as single well. A


restriction exists on the number og grid points, namely, it


can not be larger than 20 x 30 nodes due to computer storage


limitations.


7.	 Input-output historical records covering the system behavior


throughout the time horizon considered in the identification


are required. No constraints are imposed on the number and


location of the observation points. However, it is desirable


to select water head measures of as many well fields as possible


and for different time periods.


8.	 Starting values of the transmissivity parameters BET(1,1),


BET(2,1), BET(3,1) have to be guessed by the user to initialize


the optimization process. If the user has some information


about the aquifer transmissivity he may attempt to draw a plane


passing through some of the known values. If no or very little


information is available on transmissivity, the user is advised


to set BET(1,1) and BET(2,1) to 10~6 and to choose BET(3,1)


between the range [0.2, 0.8].
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A.3 Program Description


The identification program was designed following a subroutine


approach • The break down of the program into independent subroutines


coordinated by a main program greatly facilitates the development


as well as the understanding of the program by potential users.


There are three major subroutines which make up the program.


From the users viewpoint the one which requires more attention is


MAD (the aquifer simulator) since it requires a great deal of data and


imposes conditions on input operations for other subroutines. Pre­


liminary operations to activate the aquifer simulator subroutine are


described first.


A.3.1 Preliminary Operation


First, discretization of the aquifer area by superimposing


a square grid on the plan view of the aquifer is performed.


This operation defines the frame of reference to be used through­


out the program. Then, water head observations, storativity values


initial conditions, pumping rates, recharge sources^ and leakage


at each of the grid nodes are defined. The nodal array of the grid


is pictured as follows:




1 

13.3


* -f 1 - —


,3-1 i-l,J
0


The geometry of the aquifer is defined by means of


the matrix of coordinates T. If a node point (I,J) lies otside the


boundary of the aquifer then T(I,J) is made equal to zero, otherwise


T(I,J) is set equal to one. The dimensions of the matrix T can not


exceed 20 x 30 as explained before.


Once the grid is defined, rules for assigning hydrologic


values characterizing the aquifer can be defined as follows:


1. The storage coefficient is a constant everywhere including areas


outside the boundaries of the aquifer. The user has to give only the


value of the constant of storativity and the program assigns this


value to the different grid nodes.


2. Similarly, the initial conditions of the system are defined by


a constant value throughout the aquifer. Note that equation (2.1)


can be decomposed in two equations,namely, the dynamic and the steady


state (or static) equations. The assumption that the initial head is


a constant throughout the aquifer is used to by-pass the problem


of solving the steady state equation of the system (in addition to
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the dynamic) . For aquifers where the initial water head can not be


approximated by a constant, the present program is only applicable


provided the steady state solution of the aquifer equation is


found externally to the program and superimposed onto the dynamic


response supplied by the program.


3. The aquifer simulator recognizes leakage from lakes or stream­


beds by assigning artificial pumping values,ranging from 2 to 10,


to the node points where the leakage occurs. The values 2 to 10 are


merely signals. Associated with these values corresponding hydraulic


conductivities, HYDGON(K) must be defined. For example, a pumping value


of 2 at node (I,J) indicates to the program that there is leakage


at this node. To calculate the leakage value the program requires


the value of HYDCON(K), where K = P(I,J) - 1 , which has to be


defined by the user.


4. At node points where there is a constant head condition a signal


value of 1 is assigned to the pumping rate. For example, assuming


there is a constant head condition at node (I, J) , then a pumping


rate P(I,J) = 1 is assigned at node (I,J).


5. Constant flow boundary points are defined as pumping (or re­


charge) wells with pumping (or recharge) rate values equal to the


influx (recharge) or outflux (pumping) of water through the area


represented by the node. The pumping values are given in cubic feet


per second.


8. Since each grid node represents an area segment of the total


aquifer area, a number of wells in the same area associated with
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a given node, should be combined into a single well whose pimping


rate is the sum of the individual pumping rates.


9. Location of pumping wells, boundary points, constant head


points etc. , is always referenced to the grid superimposed on


the aquifer.


10. The input-output historical record needed in the identification


process is input to the program by giving the spatial coordinates


and the time of the observation measure as well as the value in


feet of the water head observed.


11. The initial guess for the transmissivity function is defined


in the program by means of the program parajneters BET (1,1),


BET(2,1) and BET(3,1). Rules to select those values were already


discussed in section A.2.8.


A.3.2 Structure


The program is composed of twenty three subroutines which


perform the following tasks:


OPTIMIZATION SECTION


1. MAIN: Program control and optimization are performed. The flow


diagram depicted in figure 4.1 sumarizes the tasks performed by MAIN.


2. INPT: Initial guess of transinissivity parameters, water head


observations (i.e. input-output historical record) ,and parameter


values needed in the optimization scheme are read in,


3. MAD: Aquifer simulator. Solution of the aquifer and sensitivity


equations is impleinsnted.
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4. MATCH: Coordinates information exchange between MAIN and MAD.


sets proper boundary and initial conditions to solve sensitivity


equations. Calculates the forcing functions of these equations.


58 MATMPY: Matrix multiplication subroutine used in the calculation


of A ( A =5 P^P and P is the matrix of solutions of the sensitivity


equations] , and in the estimation of Lambda, the parameter


which controls the size of the incremental corrections in the


optimization process.


6. PHIC: Evaluates the error function PHI which is given by the sum


of squares of the residuals (Observed water heads -• Predicted water


heads).


7. RSCAL: Scales the matrix of derivatives A (by transforming its


diagonal elements into lTs ) , and the gradient of the error function


PHI.


8. VECT: Calculates the magnitude and the direction of the correction


to the initial transmissivity parameters.


9. CHECK1: Evaluates the Stoping criterion.


AQUIFER SIMULATOR SECTION


10. INF: Signals for suppresion or activation of subroutines re­


lated to the printing of drawdown distributions, well locations or


transmissivity maps are read in. Indications of the type of boundary


conditions, leakage, river and lake infiltrations are input. Grid


dimensions, number of pumping periods are considered in the identifica­
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tion process; the time span of a pumping period, initial conditions,


storage coefficients3 and coefficients specifying the leakage


conditions (if any) are read in. Finally, the geometry of the


aquifer is also input.


11
 • P-ARAM: Calculation of the iteration parameter IV- . for the


implicit iterative method is performed.


12. INF2: Constants, whose initial values are the same regardless


of what aquifer model is being identified, are initialized.


13. WELL: The value of pumping and recharge wells, and their loca­


tion nodes are read in. Also nodes where constant head and/ or


constant flow boundary conditions exist as well as- leakage from


rivers, lakes or confined layers are read in along with the corre­


sponding flow or infiltration values.


This information is stored in the matrix PS(I,J,K) and called


in whenever the aquifer simulator is used in the solution of the


aquifer equation* Note that for the sensitivity equations PS changes


from one iteration of the optimization process to the next one.


14. ITRATE: Within a pumping period the alternate implicit


direction method is cycled until either convergence is achieved or


the maximun number of iterations allowed within a pumping period is


exceeded. The cycling within iterations is achieved by using the


iterative parameter I£. • Detection of oscillatory conditions in


the solution of the aquifer equation produced by possible negative


transmissivity values ( the optimization procedure may drive




138


the transmissivity function negative), is performed.


15. CYCLE: Calls a new well field at the end of each pumping


period.


16. LEAKY: Determines the pumping rate of wells, at a given node,


in cubic feet per second. Also, identifies whether a node is a constant


boundary" point or a point of leakage, by checking the value of the


pumping rate P(I,J). If P(I,J) is greater than 10 or less than zero


the node is a pumping or recharging well. If P(I,J) is X a constant


boundary point is located at node (I,J), and a vertical permeability


of 10 is assigned along with a pumping rate of zero ftVsec. If


P(I,J) is between 2 and 10, leakage from a stream or lake bed is


present and a hydraulic conductivity value of HYDCON (T(I,J)) is


is assigned to the node.


17. LEAKY1: Calculates the discharge of water in ft3/sec. which leaks


from a confining layer with storage.


18. WCHECK: Prints the water head at a desired node and at a particular


time. The location of these nodes is read in.


19. MATCAL: The alternate implicit direction method is implemented


in this subroutine which is divided in three sections: INITL which


initialize the variables used in the alternate implicit direction


technique, ROW which solves the equation in the X direction, i.e., cal­


culates a solution of the aquifer equation for a particualr time,


keeping column values fixed ( see equation 7). COLUMN which solves


equations in the Y direction,i.e., calculates a solution of the


aquifer equation keeping row values fixed (see equation 8).
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20• PRINT: It prints (when desired) the transmissivity initial distri­


bution, well distribution and drawdown maps,


21 • INTERV: The time interval within a pimping period can be broken


down into subintervals of different time lengths The purpose of


so doing is to obtain a more accurate solution of the aquifer equation.


As the length of these subintexvals increases, more iterations will be


needed to achieve convergence within a pumping period. On the other


hand, as the length of the subintervals decreases, fewer Iterations


of the alternate implicit method may be needed to achieve convergence


within a subinterval but more subintervals will be necessary to reach


the end of a pumping period. INTERV gives the option to the user of


adjusting the length of the subintervals by increasing their length


geometrically according to the expression


At = At j- ALPHA k - 1 ]/ [ ALPHA - 1 ]

Ix IN ""* «L


This expression is based on the fact that the response of an aquifer


behaves approximately as an error function. The user should select a


value for ALPHA ranging from 1.1 to 10.0. There is no rule for the


selection of ALPHA except experience with the program and the pro­


blem under study,


22• TIME: Calculates time passage in seconds, minutes, hours, days,


and years •


23. WRITER:Coordinates the print out of head distribution and maps.
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A.3.3	 Flow Chart


The program flow chart is presented in figures A.I and A.2 .


A. 4	 Input Requirements


Input to the program consists mainly of data cards related


to the aquifer simulator and to the optimization process. The se­


quence of data input as well as a detailed description of the


variables involved follows.


A.4.1 Data Cards


First, data cards related to the optimization section, MAIN,


are read in using the subroutine INPT. The data deck for this section


is described belowo The program variables are ;


NIT = Maximum number of iterations allowed to the optimization routine


MAIN,


NG - Number of water head observations used in the identification,


KB - Number of parameters to be identified.


BET (1,1) ~ Initial guess trasmissivity coefficient b^. Under


scarce information conditions set BET (1,1)= 10 •


BET(2,1) =» Initial guess transmissivity coefficient b2» Under


scarce information conditions set BET(2,1)= 10"^.


BET(3,1) = Initial guess transmissivity coeffcient b$. Under scarce


information conditions choose BET(3,1) between £0,2,0.8].


ELMDA(l) = Initial value of X.


NU - Number of pumping periods considered, MJ defines the time context
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of the identification process.


JSCALE = Scales water head observations to integer values in feet.


IDIM = Total number of rows making up the grid,


JDIM = Total number of columns making up the grid,


FHEAD = Observation data format,


I,J,K = Space coordinates (I,J) and time (K) of the observation


measure.


PS(I,J,K) - Matrix of observation points,


IFLAG =f A signal flag. If IFLAOO another observation point is read.


If IFLAG = 1 no more observation cards are read*


EPS1 =? If the stoping criterion at a given iteration becomes less


than EPS1 , the program stops.


The above data is input according to the following card sequence:


CARD VARIABLE FORMAT


1 NIT, NG, KB 314 

2 BET(1.1),BET(2,1),BET(3,1) 3F13.10 

3 ELMDA(l) ,NU,JSCALE,IDIM,JDIM F10.6,4I10 

4 FHEAD 3A4 

5 I , J , K , PS(I,J,K) , IFLAG 2014 
(row) (column) (time) (observation) (signal) 

6 EPS1 F10.6 

The card number above indicates the order in which data cards are


being read. For example, the observation data are read in the fifth
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place„


Now data cards related to the aquifer simulation section of


the program are read in. Most of the variables describing the aquifer


are input through subroutine INF* Program variables are:


PCHAR(I) F A chart containing 160 symbols to be used in the printing


of transmissivity, drawdown, and well location maps.


A list of this symbols can be seen in Section A. 5 ,


IPT - If a map of the initial aquifer transmissivity distribution


is desired, set IPT = 1 , otherwise IPT = 0


IPW = If a map showing the aquifer well location and constant head


boundary location is desired, set IPW - 1 , otherwise IPW = 0


IPH = If a map showing water head distributions throughout the


aquifer is desired set IPH = 1, otherwise IPH = 0. This feature


is not applicable for the case where the aquifer simulator is


used for the solution of the sensitivity equations.


IBOUND = If IBOUND= 1 , then there exists somewhere in the aquifer


a constant head boundary. This IBOUND is a signal which


indicates that constant head points will be input to the


program. If there is no constant head condition set


IBOUND = 0


ILEAK1 = Leakage signal: if ILEAK1 = 1 there is somewhere in the


aquifer leakage from a confining region with storage


capabilities.


IDRAW - Set IDRAW = 0 . In future extensions of the program, IDRAW= 1
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will activate a drawdown printout option.


ICHECK - Set ICHECK « 0, in future extensions of the program ICHECK =1


will activate a mass balance option to check accuracy of


the solutions produced by the alternate implicit direction 

technique• 

IRIV B If IRIV = 1 a river or lake is present in the aquifer and 

leakage occurs, otherwise IRIV =0 

I FLOW - If IFLOW - 1, a constant flow boundary condition is present, 

otherwise IFLOW = 0 

FTRAN = Format to read the geometric pattern of the aquifer


FPUMP - Pumping rate and constant head boundary format


KTH - The frequency of printing maps, related to the aquifer


simulation, is controlled by KTH


ITER = Number of time steps within a pumping period


NUMKT = Total number of time steps considered in the identification.


The number of pumping periods ,NU, equal NUMKT/ITER.


INFT - Set INFT = 25 . This variable is related to the number


of terms considered in the formula for infiltration


from a confining layer.


LENG = Maximum number of iterations in the water head solution, within


a pumping period , can be cycled* LENG should be assigned


a value of 60 in this program since the aquifer simulator


is going to be used to solve different sensitivity equations


(at each iteration of the optimization procedure a new set of


equations is produced) . The value LENG = 60 is found to cover
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most situations.


STRTH = Initial water head conditions in the aquifer.


DX = The distance in feet between grid nodes.


ALPHA - If the pumping periods are divided into sub intervals,


ALPHA controls , through a geometric increase, the size of these


sub intervals. For example? if ALPHA = 2.0, then the time


steps within a pumping period are doubled after conipletion of


a row (solution of equation 7) and column (solution of


equation 8) calculations* ALPHA must always be greater


than one.


S - Storage coefficient of the aquifer


RANGE = Time in seconds of the duration of a pumping period


BEDTHK - If there is a stream or lake bed through which water


leaks, BEDTHK is the thickness of the bed. Set BEDTHK =1.0


when there is no leakage,


HYDCON(K) = Hydraulic conductivity for the stream or lake bed. The


aquifer model allows definition of nine different values


of hydraulic conductivities. The user has to combine


or coordinate the index of HYDCON with the value of


P(I,J) as explained before (see section A.3,1 point 4).


For example, if at node (I,J) a stream or lake passes


by? the user must indicate this to the program by


assigning a value to P(I,J) between 2 and 10 (integer


values only). Associated with each P(I,J) a value


HYDCON ( P(I,J) - 1 ) is defined• Nine values usually


give enough flexibility to the user for modeling
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river or lake interactions with the aquifer.


SCALE 1 = Scales decimal pumping values into integer values in cubic


feet per second.


SCALE 2 = Set Scale 2 = 1.0. In the optimization procedure this


scale will be redefined. This scale is related to transmi­


ssivity


DT = The value of the tine increment in seconds. If the time


geometric increase feature is to be used^ then set


DT = 1.0 Otherwise, the value of DT equals the size of the


pumping period or of one of the sub intervals. Usually one


year is considered a normal value for DT (or 31,557,600


seconds).


EPS = If within a given time step ( a pumping period is made of


time steps ) two consecutive iterations of the alternate


implicit direction method produce head values with a difference


less than EPS (EPS = 10"3 is a good value), the program pro­


ceeds to the next time step.


ZPERM = If there is leakage from storage of a confining layer,


then ZPERM is the permeability of that layer. Otherwise


set ZPERM =1.0


ZLENG = Thickness of the confining layer. If no leakage is present,


set ZLENG =1.0


The above data is input according to the following card sequence:
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CARD VARIABLE FORMAT


7,8,9,10 PCHAR(I) 40A2


11 IPT, IPW, IPH, IBOUND, ILEAK1, IDRAW,


ICHECK, IRIV, IFLOW 1012


12 FTRAN, FPUMP 2(3A4)


13 KTH, NUMKT, INFT, LENG, ITER 1018


14 STRTH, DX, ALPHA, S 4F20.5


15 RANGE, BEDTHK, HYDCON(l), HYDCON(2) 4F20.5


16 HYDCON(3), HYDCON(4), HYDCON(5) ,HYDCON(6) 4F20.5


17 HYDCON(7), HYDCON(8), HYDCON(9), SCALE 1 4F20.5


18 SCALE 2, DT, EPS 4F20.5


19 ZPERM, ZLENG, SC 4F20.5


20 T(I,J) (Aquifer Geometry) 2014


Aquifer Geometry.- The geometry of the aquifer is defined by


the grid superimposed on the aquifer area. The grid is made up


of rows and columns. The geometry of the aquifer is input to


the program by reading a one grid's row at a time. At each node of


a given row an integer value, either 1 or zero, is assigned to


the dummy varible T(I,J). If the node is inside or on the boundary


set T(I,J) = 1, otherwise set T(I,J) = 0. The first card of a row


(a grid's row may need more thanl card to be defined) is occupied by


the row number. Cards will continue to be read untill all the nodes


of the row are read in. Then, a new row along with its row number
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is read. The process continues until all the rows have been


entered. The last card of the set is a check card. In columns


2 through 26 the check words "AQUIFER GEOMETRY READ IN," should


be punched. This completes the description of the information


being input in subroutine INF. It remains to describe how the


boundary conditions as well as the river or lake interactions with


the aquifer are defined to the program. This is the task of sub­


routine WELL. The information is input as follows:


Constant Head Boundary Cards.- Node points which lie on the constant


head boundary (if any) are read one point per card. Each of the cards


provides the row (variable I) and the column (variable J) number of


the node, and a signal flag ( JSIG) which determines if another


constant boundary card is to be read. If JSIG = 0 , the next constant


head card is read in, if JSIG = 1 the reading process is ended.


The format for the constant head nodes is supplied by FPUMP.


Constant Flow Boundary Cards.- Node points which lie on the constant


flow boundary (if any) are read one node point per card. Each of the


cards provides the row (I) and the column (J) number of the node


along with the representative pumping value P(I,J) for the node to


simulate inflow (pumping rate negative) or outflow (pumping rate


positive). The value of P(I,J) must be an integer scaled in ft3/sec.


A signal flag,JSIG , determines if another constant flow point is to


be read. If JSIG = 1, the reading process ends* If JSIG = 0, the next
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constant flow card is read in.


River, Lake Cards.- If a lake or stream has leakage into the aquifer


from its bed, then those node points on the lake or stream are


given integer P(I,J) values greater than 1 but less than or equal to


10. The P(I,J) value is not an actual pumping rate but a signal9 and


also an index for the hydraulic conductivity bed. Each of the river


or lake cards provides the row and column number of the node (I,J) ,


the signal P(I,J), and the next card signal JSIG.


Pumping (Recharge) Well Card.- For each well in the aquifer a well


card is required. The card provides the well's nodal position (I,J),


and its rate of pumping P(I,J) which has to be an integer number in


ft /sec (use SCALE 1 for this purpose) .The well card also carries a


signal flag, JSIG , which works as explained in previous paragraphs.


For each pumping period exists an associate set of pumping data cards.


The last card of each set must have the signal JSIG = 1 which marks


the end of a pumping period data set.


The card sequence is as follows:


CARD VARIABLE FORMAT


21
 I , J , JSIG 315


(row) (column) (signal)


22 I, J, P(I,J) , JSIG 415


(flow or index)


23 I, J, P(I,J) , JSIG 415


(pump ing-recharge)




The card number above indicates the order in which the bound­


ary cards should be arranged to be read in. Card 21 refers to the


set of constant head cards and the number 21 indicates the position


of the set in the sequence of data cards of the program. Card 22 refers


to the set of constant flow and/or river-lake cards while card 23 refers


to the set of pumping or recharge rates.


A.5 Output


The output of the program is mainly composed of error messages,


input data, maps, and results of the identification process.


1. ERROR MESSAGES


The error message - THE SOLUTION FAILED TO CONVERGE - is printed to


indicate that either the solution of the aquifer equation or the sen­


sitivity equations was not attained. Some possible causes for this


are the use of negative transmissivity values in the equations


above, the use of large time increments in discretizing these


equations, coarse grids, or maldefinition of the aquifer geometry and/


or boundary conditions. The user can identify the problem area by means


of the additional error message - TROUBLE IN MATCH - which is printed


whenever the convergence failure is related to the sensitivity equations.


The nature of the problem is identified by the error message - OSCIL­


LATIONS - which is printed when a negative transmissivity value drives


unstable the alternate implicit direction method.


Another error message printed by the program is - OVERFLOW DETECTED


IN MATRIX INVERSION - which indicates that ill-conditioning of the matrix


A is causine trouble in the inversion procedure. The problem may be
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caused by round off error in the calculation of the sensitivity equa­


tions compounded with ill conditioned characteristics of the mini­


mization surface PHI.


2. MAPS


There are only two maps which are printed:


a- INITIAL TRANSMISSIVITY MAP which depicts the geometry of the


aquifer as well as the initially guessed transmissivity values (in


hundredths of feet square per second ).


b- WELL LOCATION and BOUNDARY CONDITIONS MAP which shows those nodes


where there are wells discharging water from the aquifer ( W ) or


wells recharging the aquifer ( +W ), constant head conditions ( CH )


, river or stream conditions ( R ), and constant flow conditions


which are indicated in the map by a "W (outflow) or +W (inflow) symbol.


3. INPUT DATA


The following input data is printed for checking purposes; observation


data, maximum number of iterations allowed to the optimization process,


number of grid points, number of unknown parameters, initial guess


of transmissivity coefficients, initial value of A, and


information related to the aquifer simulator and read in INF (see


section A.4.1, p. Pumping rates and infiltration rates are not


printed, however the program can be easily modified to do so*


4. IDENTIFICATION RESULTS


At each iteration of the optimization procedure the following information


is printed; the value of the coefficients being identified, the error function
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PHI (observation head - predicted head) , the iteration number, the


stopping criterion CHEK (for each transmissivity coeffcient), the in­


cremental correction vector _S , and the new value of X . For cases


where the X procedure requires more than one iteration , the trans­


missivity coefficients are printed for each iteration. The last print­


ing before the program stops contains the optimal solution.


A.6 Concluding Remarks


Concerning point 2 section A.3.1 , the steady state solution can


be obtained by using the aquifer model independently of the optimization


section. Then, solution of the aquifer equation considering a long


time horizon ( say 100 years ) will give the steady state response, To


disconnect the aquifer simulator from the optimization section intro­


duce in MAIN the statement GO TO 250 after 12 CONTINUE . The same


data deck used in the identification process should be used for the


above implementation.


The convergence of the identification algorithm depends on the


initial guess of the transmissivity parameters. Should the optimization


process fail to produce a solution, the user will have to supply a


new starting point. The information generated in unsuccessful runs


can be used to make better choices of the initial guess. For example,


a severe correction on one ( or several ) parameter (s) indicates over­


estimation (or underestimation) of the parameter value.


Concerning core requirements the program as now written, requires


about 47 K words on the UNIVAC 1108 computer, a word being equivalent
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to 36 bits. As for computer time , with 20 x 30 grid nodes (see


Chapter 4 , the Fairfield-New Baltimore aquifer) and a period of five


years, and with yearly changes in pumping rates, the program takes 120


seconds .This time involves 7 iterations of the optimization proced­


ure , each iteration requiring the calculation of the solution of 4


parabolic partial differential equations.



