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We compare current and forecasted constraints on dynamical dark energy models from Type Ia

supernovae and the cosmic microwave background using figures of merit based on the volume of the

allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies

linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a

factor of �10 relative to current constraints by future space-based supernova data and CMB measure-

ments from the Planck satellite. If the dark energy equation of state is described by a more general basis of

principal components, the expected improvement in volume-based figures of merit is much greater. While

the forecasted precision for any single parameter is only a factor of 2–5 smaller than current uncertainties,

the constraints on dark energy models bounded by�1 � w � 1 improve for approximately 6 independent

dark energy parameters resulting in a reduction of the total allowed volume of principal component

parameter space by a factor of �100. Typical quintessence models can be adequately described by just

2–3 of these parameters even given the precision of future data, leading to a more modest but still

significant improvement. In addition to advances in supernova and CMB data, percent-level measurement

of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain

robust to variations in spatial curvature.
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I. INTRODUCTION

In the absence of physically compelling models for dark
energy, figures of merit (FoMs) are a useful tool that
encapsulate the constraining power of cosmological data.
FoMs combine various constraints on the expansion history
of the universe (e.g. the distance-redshift relation) in a
single number, or at most a handful of numbers. These
numbers serve as simple and quantifiable metrics by which
to evaluate the accuracy of constraints on dark energy
parameters from current and proposed experiments [1–3].
The simplest schemes adopt fixed functional forms for
the evolution of the dark energy equation of state and
define the FoM as the inverse of the allowed parameter
volume [4]. One widely used version is the two-dimen-
sional w0 � wa parametrization [1], but other higher-
dimensional versions have also been considered [4–6].

Any simple parametrization of the expansion history
risks biasing the FoM in favor of or against certain types
of data by choosing a fixed functional form [2]. To avoid
this problem, one can use more complicated schemes that
parametrize the whole functional freedom in the dark
energy equation of state evolution and separate the expan-
sion history and growth of structure information. For
example, uncorrelated modes of piecewise-constant discre-
tizations of the equation of state that are local in redshift
[7–15] or constructed from principal components (PCs)
[7,16–21] have been employed to characterize both current
and future data. In particular, the inverse parameter volume

of the PC amplitudes, defined separately for each experi-
ment, has been advocated as a FoM [3].
Besides avoiding biasing results towards a particular

functional form, a more model-independent FoM has the
advantage of being able to identify improvements in dark
energy constraints that might be missed by FoMs with
fewer parameters. On the other hand, not all improvements
in a multidimensional PC FoM reflect improvements in
constraining the space of known dark energy models
[22,23]. For example, stronger constraints may exclude
regions of the parameter space not occupied by typical
models.
In this paper, we study the FoMs defined both with the

commonly used w0 � wa parametrization and with PCs
based on forecasts for Type Ia supernova (SN) and cosmic
microwave background (CMB) data. Previous studies of
PC-based FoMs have generally relied on the Fisher matrix
approximation, and the implementation and utility of these
FoMs for real data has not been addressed. Here we define
straightforward generalizations of PC FoMs and apply
them to both actual data from current measurements and
forecasts for future data. While we still construct the PCs
using the Fisher matrix approach, we then treat the PC
amplitudes as free parameters and constrain them using
full Markov chain Monte Carlo (MCMC) likelihood ex-
plorations with current or future data. This methodology
follows that employed in previous papers where we studied
generalized predictions of classes of dark energy models
based on forecasts [17] and current data [18]. The new
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element here is the application of these methods to the
study of dark energy FoMs.

The standard approach for constructing the principal
component-based FoM is to use the PCs specific to the
experiment and the cosmological probe(s) considered; see
e.g. Ref. [3]. However, this approach makes it difficult to
directly compare PC-based FoMs for different experiments
and to assess improvements in specific regions of parameter
space. To facilitate such direct comparison between FoMs
for current and future data, we choose instead to fix the set
of PCs based on a specific projection of future data rather
than computing separate PCs for future and current data.

This paper is organized as follows. In Sec. II, we des-
cribe the current and forecasted SN and CMB data sets as
well as additional priors from baryon acoustic oscillations
(BAO) and measurements of the Hubble constant. We also
briefly review the MCMC analysis methods used to infer
dark energy constraints. In Sec. III, we compare FoMs
from the current and future SN and CMB constraints for
both the commonly used w0 � wa model (Sec. III A) and a
more general PC-based parametrization (Sec. III B). We
summarize and discuss these results in Sec. IV.

II. METHODOLOGY

In this section, we review the current data sets and
assumptions about future experiments for forecasts that
we use in this paper. We refer the reader to Refs. [17]
(hereafter MHH) and [18] for more details concerning the
forecasts and current data sets, respectively. All forecasts
in this paper assume that the data originate from a flat
cosmological constant (w ¼ �1) model with present mat-
ter fraction �m ¼ 0:24 and Hubble constant H0 ¼
73 km s�1 Mpc�1.

A. Current SN and CMB data

The Type Ia SN sample we use is the Union compilation
[24]. These SN observations measure relative distances,
Dðz1Þ=Dðz2Þ, over a range of redshifts spanning 0:015 �
z � 1:551, with most SNe at z & 1 (see Fig. 1). We include
SN constraints using the likelihood code for the Union data

sets [25], which includes estimated systematic errors in the
covariance matrix [24].
For the current CMB data, we use the 5-year data release

from the WMAP satellite [26–28] employing the likeli-
hood code available at the LAMBDAWeb site [29]. Unlike
the CMB priors used for the forecasts below, the likelihood
used here contains the full information from the CMB
angular power spectra, except for the small effects of
gravitational lensing of the CMB that add little to current
dark energy constraints from WMAP. We compute the
CMB angular power spectra using the code CAMB [30,31]
modified with the parametrized post-Friedmann dark
energy module [32,33] to include models with general
dark energy equation of state evolution where wðzÞ may
cross w ¼ �1.

B. SN and CMB forecasts

For our SN forecasts, we take the expected redshift
distribution for the SuperNova/Acceleration Probe
(SNAP) [34,35] plus a low-z sample of 300 SNe at 0:03<
z< 0:1. The SNAP magnitude errors include both statisti-
cal and systematic components:

�2
� ¼

�
�z

�zsub

��
0:152

N�

þ 0:022
�
1þ z�
2:7

�
2
�
; (1)

where N�, shown in Fig. 1, is the number of SNe in each
bin of width �z (�z ¼ 0:1 except for the statistical
uncertainties in the low-z SN bin, for which �z ¼ 0:1�
zSNmin ¼ 0:07), and �zsub is the width of the sub-bins used to
smooth the distribution of SNe in redshift. We use 500 sub-
bins up to zmax ¼ 1:7. The second term on the right-hand
side of Eq. (1) models a systematic floor that increases
linearly with z up to a maximum at zmax of 0.02 mag per
�z ¼ 0:1 bin [36].
For the Planck CMB forecasts, we use a 2� 2 covari-

ance matrix corresponding to the inner error ellipses in
Fig. 2,

C CMB ¼ ð0:0018Þ2 �ð0:0014Þ2
�ð0:0014Þ2 ð0:0011Þ2

� �
; (2)

with parameters

� CMB ¼ flnðDðz�Þ=MpcÞ;�mh
2g: (3)

Here Dðz�Þ is the comoving angular diameter distance to
recombination.
In the Planck forecasts we ignore additional CMB

information about dark energy such as the integrated
Sachs-Wolfe effect and gravitational lensing of the CMB.
Planck data are expected to obtain limits on the fraction of
early dark energy of �ð�DEðz�ÞÞ � 0:004 [37,38]; how-
ever, since these limits may depend on the modeling of
early dark energy, we include in our forecasts only a
conservative prior of �ð�DEðz�ÞÞ ¼ 0:025 [with fiducial
value �DEðz�Þ � 10�9] which approximates the current
constraint from WMAP [39].

FIG. 1 (color online). Redshift distributions of Type Ia super-
novae in the Union compilation (solid blue) and assumed for
SNAP (dashed red), including the anticipated low-redshift sam-
ple from other surveys at z < 0:1.
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C. Additional priors

For both the current and forecasted constraints we add
additional priors from recent measurements of baryon
acoustic oscillations and the Hubble constant. The BAO
constraint we use is based on the measurement of the
correlation function of Sloan Digital Sky Survey
Luminous Red Galaxies (LRGs) [40], which determines
the distance and expansion rate at zBAO � 0:35 through the

combination DVðzÞ � ½zD2ðzÞ=HðzÞ�1=3. We implement
this constraint by taking the volume average of this quan-
tity, hDVi, over the LRG redshifts, 0:16< z < 0:47, and

comparing with the value of A � hDVi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�mh

2
p

=zBAO given
in Ref. [40], A ¼ 0:472	 0:017 (taking the scalar spectral
tilt to be ns ¼ 0:96). Using more recent BAO constraints,
e.g. from Ref. [41], has only a small effect on the current
constraints with SN and CMB data [18].

We include the recent Hubble constant (H0) constraint
from the SHOES team [42], based on SN distances at
0:023< z < 0:1 that are linked to a maser-determined
absolute distance using Cepheids observed in both the
maser galaxy and nearby galaxies hosting Type Ia SNe.
The SHOES measurement determines the absolute dis-
tance to a mean SN redshift of zh ¼ 0:04, which effectively
corresponds to a constraint on H0 for models with rela-
tively smooth dark energy evolution in the recent past
(cf. [43]) such that limz!0DðzÞ ¼ cz=H0. We implement
this constraint as a measurement of DðzhÞ ¼ czh=ð74:2	
3:6 km s�1 Mpc�1Þ.

D. MCMC methodology

Given the current or forecasted data, we use MCMC
likelihood analysis (e.g. see [44–46]) to determine
dark energy parameter constraints and figures of merit
for both the simple w0 � wa models and general PC

parametrization. From the likelihood Lðxj�Þ of the data
x given each proposed parameter set �, Bayes’ Theorem
tells us the posterior probability distribution of the parame-
ter set given the data

P ð�jxÞ ¼ Lðxj�ÞP ð�ÞR
d�Lðxj�ÞP ð�Þ ; (4)

where P ð�Þ is the prior probability density. The MCMC
algorithm generates random draws from the posterior
distribution. We test convergence of the samples to a
stationary distribution that approximates P ð�jxÞ by
applying a conservative Gelman-Rubin criterion [47] of
R� 1 & 0:01 across a minimum of four chains for each
model class. We use the code COSMOMC [48,49] for the
analysis of current data and an independent MCMC code
for forecasts.

III. FIGURE OF MERIT COMPARISONS

A. w0 � wa figure of merit

We first consider the two-parameter model for the dark
energy equation of state [50,51]

wðzÞ ¼ w0 þ wa

z

1þ z
: (5)

The FoM for this model defined by the Dark Energy Task
Force [1,4] is the inverse of the area of the 95.4% C.L.
region A95 in the w0 � wa plane. Figure 3 shows these
regions for the current and forecasted data with and with-
out marginalization of spatial curvature �K.
For a Gaussian error distribution, A95 is proportional to

the square root of the determinant of the 2D covariance
matrix C for w0 and wa. Since the constant of proportion-
ality used in practice for the FoM varies widely in the
literature (e.g., see [52]), we simply define

FoM ðw0�waÞ � ðdetCÞ�1=2 � 6:17�

A95

: (6)

The approximate equality in Eq. (6) becomes exact for a
Gaussian posterior distribution.1 Although the posterior in
w0 and wa is not perfectly Gaussian, the FoM computed
using detC in Eq. (6) remains a good approximation to the
area-based FoM. The difference between the two is�10%
in the worst case (current data with �K � 0) and & 2% in

the other cases. Values of the detC version of FoMðw0�waÞ
are given in Table I. The FoMs for current data are con-
sistent with those found in previous studies of w0 � wa

constraints from similar data sets (e.g., [5,53–55]).

FIG. 2 (color online). Approximate constraints on Dðz�Þ and
�mh

2 from WMAP 5-year data (outer contours, blue shading)
and forecasts for Planck (inner contours, red shading), showing
68% C.L. (light shading) and 95% C.L. (dark shading) contours.

1The constant of proportionality can be derived by considering
a 2D circular Gaussian distribution with width �. Defining
� � A95=ð��2Þ and integrating the distribution over the area
A95 yields 1� e��=2; setting this equal to 0.954, we obtain
� � 6:17.
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While analyses of w0 � wa models typically allow wðzÞ
to cross �1, it is useful to also consider a more restricted
class of models that satisfy the quintessence bound �1 �
w � 1 in light of the PC description below. Imposing this
quintessence prior greatly restricts the allowed parameter
space as shown in Fig. 3. Assuming a flat (nonflat) uni-
verse, the detC FoM is a factor of �8 (6.5) larger than
without the quintessence prior for current data, and a factor
of �13 (9) larger for forecasts. Thus the addition of the
quintessence prior increases the ratio of future to current
FoM values by about 60% (35%) relative to the ratios in
Table I. Note that the effect of the quintessence prior on the
FoM for forecasts depends on the choice of the true model
from which the data are drawn; for example, had we
chosen fiducial w0 and wa values that lie as far within
the quintessence prior boundaries as the current data allow,
the forecasted area allowed within the priors would be
greater and the improvement in the FoM relative to current
constraints would be smaller.

Even in this case where the posterior distribution with
the quintessence prior is far from Gaussian, detC still
approximates the area-based FoM through Eq. (6) reason-
ably well. Although values of the detC FoM are smaller by
35%–40% than the area FoM, the ratio of future to current
FoM values is nearly unchanged. We shall see that this type
of agreement for quintessence models carries over to the
more general PC-based FoM in the next section.

B. Principal component figure of merit

We generalize the dark energy parametrization to allow
arbitrary variations of the equation of state at z < zmax with
a basis of principal components (PCs) [7,16]. Details of the
PC construction can be found in MHH; here we highlight
the points of special relevance for the FoM.
We construct the PCs based on the SN and CMB fore-

casts from Sec. II B. The PCs are a set of orthogonal
functions ordered by the precision with which they can
be measured by the future SN and CMB data. Specifically,
the principal component functions eiðzjÞ are eigenvectors

of the SNAPþ Planck covariance matrix in the space of
piecewise-constant values of the equation of state in red-
shift bins, wðzjÞ. The principal components form a basis in

which an arbitrary function wðzjÞ may be expressed as

wðzjÞ ¼ �1þ XNz;PC

i¼1

�ieiðzjÞ; (7)

where �i are the PC amplitudes, Nz;PC ¼ 1þ zmax=�z is

the number of redshift bins of width �z, and zj ¼ ðj�
1Þ�z. We choose the maximum redshift for variations in
wðzÞ to be zmax ¼ 1:7, matching the largest redshift for the
SNAP supernova data. The impact of dark energy evolu-
tion at higher redshifts is expected to be small, but perhaps
non-negligible; to account for this possibility, we parame-
trize the equation of state at z > zmax by a constant, w1.
Likewise, we consider models with spatial curvature,
�K � 0. Note that w1 and �K are not allowed to vary
from their fiducial values of �1 and 0, respectively, in the
Fisher analysis used to construct the PCs.
Since the highest-variance PCs correspond to modes of

wðzÞ to which even future data are insensitive, we truncate
the sum in Eq. (7) by replacing Nz;PC with Nmax <Nz;PC.

As shown in MHH, the 10 lowest-variance PCs (Nmax ¼
10) form a basis which, for the classes of models we
consider here, is sufficiently complete for the forecasts.
Therefore, 10 PCs more than suffice for the current data as
well. This set of basis functions is displayed in Fig. 4.
We impose priors on the PC amplitudes corresponding

to the range of wðzÞ allowed for scalar field quintessence,
�1 � w � 1 following MHH. Our conservative imple-
mentation excludes only parameter values that must violate
these bounds even when considering possible compensa-
tion from the omitted higher-variance PCs (e.g. see the
lower panel of Fig. 4 at z < 0:1). This approach yields top
hat priors of width

��i ¼ 2

Nz;PC

XNz;PC

j¼1

jeiðzjÞj; (8)

which follows from Eq. (A10) in MHH.
In analogy to the w0 � wa FoM in the previous section,

we base the FoM for dark energy PCs on the determinant of
the covariance matrix of �i for the n lowest-variance PCs,

FIG. 3 (color online). Constraints on w0 and wa, assuming a
flat universe (left panel) or marginalizing over spatial curvature
(right panel). The regions of 68% C.L. (light shading) and 95%
C.L. (dark shading) are shown for both current UnionþWMAP
constraints (outer contours, blue shading) and SNAPþ Planck
forecasts (inner contours, red shading). Dashed lines mark the
boundary of the quintessence prior, �1 � wðzÞ � 1.

TABLE I. Figures of merit for w0 � wa models and 10-PC
quintessence models without early dark energy.

FoMðw0�waÞ FoMðPCÞ
10

Data �K ¼ 0 �K � 0 �K ¼ 0 �K � 0

SNAPþ Planck 160 46 53 000 19 000

UnionþWMAP 15 11 370 260

Ratio 11 4.3 140 73
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detCn. Even without informative data, this determinant is
finite:

detCðpriorÞ
n ¼ Yn

i¼1

�
��iffiffiffiffiffiffi
12

p
�
2
; (9)

where the individual factors of ��i=
ffiffiffiffiffiffi
12

p
(listed in

Table II) are the rms values of the corresponding top hat
priors. These priors impact the FoM in a manner similar to
those imposed in Ref. [3], where a Gaussian prior is
adopted that requires the rms variation of 1þ wi for each
PC mode, averaged over scale factor, to be no more than
unity. However, our priors are slightly stronger since we
use the quintessence bounds to impose a top hat prior on
1þ wðzÞ at all redshifts. In order that the FoM values do

not reflect information that comes exclusively from the
quintessence prior, we follow the convention in Ref. [3]
and renormalize the detC statistic to obtain

FoM ðPCÞ
n �

�
detCn

detCðpriorÞ
n

��1=2
: (10)

Table II shows the mean and rms of each of the 10 PCs
fromMCMC likelihood analysis using the current data and
forecasts. Note that for components 6–10 in the current
data the rms is dominated by the prior, and likewise for
7–10 in the forecast. Figure 5 shows the one-dimensional
posterior probability distributions of the first 6 PCs where
the information from the data resides.
Figure 6 (upper panel) shows the FoM for the current

data and forecasts. Note that for both data sets the FoM
starts to saturate around the sixth PC as expected. The
lower panel shows the ratio of FoMs of future and current
data. Once again the saturation point is around the sixth PC
with the total level of improvement varying from a factor
of �60 to �140 depending mainly on whether spatial
curvature is included.
This dependence of the FoM improvement on curvature

is mainly due to a degeneracy between�K and the first PC
which reduces the FoM when marginalizing over �K,
particularly for the forecasts. This degeneracy is largely a
consequence of our choice not to marginalize over �K

when constructing the PCs, but the leading degeneracy
between dark energy and curvature is included in the first
PC. There is a related difference between the flat and
nonflat cases in the w0 � wa contours in Fig. 3 and

FoMðw0�waÞ in Table I.
Current BAO andH0 measurements (Sec. II C) constrain

�K enough that current SNþ CMB PC uncertainties are
affected little by curvature, but for the SNþ CMB fore-
casts we need �1% measurements of an absolute distance
scale to achieve a FoM improvement comparable to that in
the flat case. Figure 7 shows an example of breaking the
�K � �1 degeneracy using a 1% hDVi measurement at
z ¼ 0:8–1:2 as might be achieved from a future BAO

FIG. 4 (color online). Top panel: The first 10 PCs of wðzÞ
(increasing variance from bottom to top), with 500 redshift bins
between z ¼ 0 and zmax ¼ 1:7. The PCs are offset vertically
from each other for clarity. Bottom panel: An example of wðzÞ
for a quintessence model [red dashed curve; see Eq. (12)] and its
representation using the first 10 PCs in Eq. (7) (blue solid curve).
Dotted lines show the w ¼ �1 zero point for each component
(top) and for the example model (bottom).

TABLE II. Top hat prior rms ��i=
ffiffiffiffiffiffi
12

p
and mean and rms of �i from current data and

forecasts, assuming flat quintessence models without early dark energy.

UnionþWMAP SNAPþ Planck

PC i ��i=
ffiffiffiffiffiffi
12

p
��i �i ��i �i

1 0.375 0.061 0.041 0.011 0.008

2 0.421 0.087 0.132 �0:013 0.037

3 0.428 0.165 0.203 0.011 0.086

4 0.411 0.206 0.278 �0:040 0.141

5 0.450 0.184 0.278 �0:028 0.206

6 0.452 �0:069 0.394 0.053 0.284

7 0.425 �0:071 0.360 0.117 0.343

8 0.454 �0:063 0.436 0.043 0.374

9 0.461 �0:281 0.438 �0:147 0.418

10 0.463 0.026 0.448 �0:003 0.424
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experiment. As shown in Fig. 7 of MHH, the shift in
absolute distance corresponding to the curvature degener-
acy is largely independent of redshift and its elimination
could also be achieved with comparable measurements at
z ¼ 0–0:1 from improved Hubble constant probes or z ¼ 3
from high-redshift BAO.

The small gap in FoMðPCÞ
n ratios in Fig. 6 between

models with and without early dark energy is driven by
the current constraint on the fifth PC; as shown in Fig. 5,
Pð�5Þ is not centered on zero and the distribution is cut off
by the prior. Including early dark energy shifts this distri-
bution further outside the prior, reducing the PC volume

(and increasing the FoM) for current data. Forecasts for
PCs are basically unaffected by early dark energy (see
Fig. 6), so the overall effect of early dark energy is a
slightly smaller FoM ratio when the fifth PC is included.
This particular feature is not generic in the sense that it
would not necessarily show up for other choices of data
sets or dark energy parametrizations, but similar effects
could appear in other analyses where the dark energy priors
play an important role.
Since we are using the PCs constructed assuming

the forecasted data rather than the current data, we could
in principle have strong covariances between the PC

FIG. 5 (color online). Marginalized 1D posterior distributions for the first 6 PCs of flat (solid blue curves) and nonflat (dashed red
curves) quintessence models without early dark energy. Marginalizing over the early dark energy parameter w1 has little effect on the
distributions. Top row: current UnionþWMAP data; bottom row: forecasts for SNAPþ Planck assuming a realization of the data
with �i ¼ 0. Plot boundaries that cut off the distributions at nonzero probability correspond to the top hat priors on �i for quintessence
models. Higher-variance PCs are mainly limited by the quintessence priors for both current constraints and forecasts (see Table II).
Vertical dotted lines show the predictions of an example quintessence model from Eq. (12) (see Fig. 4).

FIG. 6 (color online). Top panel: PC figures of merit FoMðPCÞ
n

with forecasted uncertainties for SNAPþ Planck and with mea-
sured uncertainties for UnionþWMAP, normalized as in Eq.
(10) to account for the quintessence prior. Bottom panel: Ratios

of FoMðPCÞ
n forecasts to current values. In both panels, point types

indicate different quintessence model classes: flat (solid points)
or nonflat (open points), either with (squares) or without (circles)
early dark energy.

FIG. 7 (color online). Forecasts for �K and the amplitude of
the first PC, �1, showing 68% C.L. (light shading) and 95% C.L.
(dark shading) regions. The large contours (blue shading) in-
clude only SNAP and Planck data as well as the additional priors
from Sec. II C. The small contours (red shading) add to these
data a 1% measurement of hDVi averaged over the redshift bin
0:8< z < 1:2 as might be obtained from a future BAO experi-
ment, reducing the degeneracy between curvature and dark
energy.
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amplitudes that would be hidden in Fig. 5. Likewise, we

could have substantial differences between FoMðPCÞ
n and

definitions of the PC FoM involving ratios of �i [2,3]. In
practice, however, the covariances between PC amplitudes
remain small in all cases. Even for current data, the

difference between ðdetCnÞ�1=2 and
Q

n
i¼1 �

�1
i is & 20%

for flat quintessence models and & 30% for nonflat
models. The effect of covariances on the forecast FoM
values is even smaller. Thus the 1D distributions in Fig. 5
accurately depict the current and future constraints on PC
amplitudes.

A separate question is whether the use of detC gives
misleading results due to non-Gaussianity of the PC pos-
terior distributions (for example, due to distributions being
cut off by the quintessence prior). To test the significance
of such effects, we consider an alternate FoM analogous to
the area-based FoM for w0 � wa models,

V�1
n � ð2 ffiffiffiffi

�
p Þn

Z
d�P 2ð�jxÞ; (11)

where� is the parameter subset consisting of the first n PC
amplitudes. The motivation of this form is that the allowed
volume in parameter space is proportional to the inverse of
the average number density of MCMC samples. The num-
ber density is proportional to P , and the averaging over the
posterior probability gives another factor of P . The nor-
malization of Eq. (11) is chosen so that for an nD Gaussian

posterior with covariance Cn, V
�1
n ¼ ðdetCnÞ�1=2.

For the 4–5 lowest-variance PCs, we find good agree-

ment between V�1
n and ðdetCnÞ�1=2 with differences of no

more than �30%. Using the V�1
n FoM increases the ratio

of future to current FoM values by 10%–15%. For n > 5,
accurate computation of the integral in Eq. (11) becomes
more difficult due to the sparsity of MCMC samples.

Improvements in FoMðPCÞ
n do not necessarily represent

significant improvements in the ability to limit the parame-
ter space of known dark energy models, especially for the
higher PCs [22,23]. In order to address such issues, one can
project the predictions of a model for wðzÞ onto the PC
space and examinewhether the predictions lie in the volume
excluded by forecasted constraints. As an illustrative ex-
ample, we consider a quintessence model with the potential

Vð�Þ ¼ V0 þ 1
2m

2�2: (12)

This model provides examples in the thawing class [56]
for V0 ! 0 and can also mimic the low-redshift behavior
of Albrecht-Skordis models with oscillations around an
offset minimum [57]. We consider an example where m ¼
7� 10�33 eV and V0=�crit ¼ 0:717 with �DE ¼ 0:733,
h ¼ 0:69, and Hubble-drag frozen initial conditions
_�i ¼ 0; the equation of state for this model is shown in
the lower panel of Fig. 4. These parameters are chosen to be
allowed by the current data but testable with future data.

Figure 5 compares the predictions for this model with
the data constraints. Note that even for the future data only

the first two PCs are stimulated at a level that the data can

constrain. Thus for these types of models FoMðPCÞ
2 is more

representative of the parameter volume improvements than
higher-dimensional FoMs. Taking into account the
quintessence prior, the improvement from current to future
data in this case is comparable to that implied by the
w0 � wa FoM.
More generally, studies have found that up to 3 PCs are

useful for distinguishing amongst different commonly used
quintessence models with data sets comparable to our
future forecasts [23]. On the other hand, these studies do
not preclude the possibility that FoM improvements in the
higher components can distinguish between other yet to be
investigated classes of models.

IV. DISCUSSION

We have compared current and forecasted figures
of merit (FoMs) for dark energy using both a simple
w0 � wa description of the equation of state, and a more
complicated but more complete principal component (PC)
parametrization. By consistently using a fixed set of PCs
based on future data, and by generalizing the FoM defini-
tion to include possible parameter covariance, we showed
how PC FoMs can be applied to likelihood analyses of both
existing data sets and forecasts.
We have also shown that the covariance-based FoMs

accurately represent relative changes in the parameter
volume, even in the presence of strongly non-Gaussian
posterior distributions such as those caused by imposing
top hat priors. Traditional variance-based PC FoMs are
consistent with those that include the full covariance for
the cases we have tested, but we do not expect such
agreement to hold in general. For example, if our PC
eigenfunctions from SN and CMB data are applied to
qualitatively different data, e.g. weak lensing or BAO,
the FoMs that account for the parameter covariances
should be employed.
For the w0 � wa FoM, future space-based supernova

data and CMB measurements from the Planck satellite
can improve on current measurements by a factor of
�10. For the PC FoM, the expected improvement is
much greater still. While the forecasted precision for any
single principal component is only a factor of 2–5 smaller
than current uncertainties, the constraints on general quin-
tessence models bounded by �1 � w � 1 improve for
approximately 6 components resulting in a reduction of
the total allowed volume of dark energy parameter space
by a factor of �60–140. The FoM improvement depends
mainly on whether or not variations in spatial curvature are
allowed, with the maximum ratio of�140 requiring either
fixing the curvature with a theoretical prior (�K ¼ 0) or
combining future SN and CMB data with a measurement
of absolute distance and/or the expansion rate with at least
�1% accuracy.
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Although improvements from future SN and CMB data
extend to 6 components of wðzÞ, many commonly consi-
dered quintessence models are adequately described by the
first three PCs for which the allowed volume only
decreases by a factor of �20–40 relative to current mea-
surements. While figures of merit provide a convenient
model-independent metric to evaluate experiments, they
must be interpreted with caution when science goals in-
clude discriminating amongst specific dark energy models.

ACKNOWLEDGMENTS

M. J.M. was supported by CCAPP at The Ohio State

University; D. H. by the DOE OJI grant under Contract

No. DE-FG02-95ER40899, NSF under Contract No. AST-

0807564, and NASA under Contract No. NNX09AC89G;

W.H. by the KICP under NSF Contract No. PHY-0114422,

DOE Contract No. DE-FG02-90ER-40560, and the

Packard Foundation.

[1] A. Albrecht et al., arXiv:astro-ph/0609591.
[2] A. J. Albrecht and G. Bernstein, Phys. Rev. D 75, 103003

(2007).
[3] A. J. Albrecht et al., arXiv:0901.0721.
[4] D. Huterer and M. S. Turner, Phys. Rev. D 64, 123527

(2001).
[5] Y. Wang, Phys. Rev. D 77, 123525 (2008).
[6] R. G. Crittenden, L. Pogosian, and G.-B. Zhao, J. Cosmol.

Astropart. Phys. 12 (2009) 025.
[7] W. Hu, Phys. Rev. D 66, 083515 (2002).
[8] D. Huterer and A. Cooray, Phys. Rev. D 71, 023506

(2005).
[9] Y.Wang andM. Tegmark, Phys. Rev. D 71, 103513 (2005).
[10] C. Shapiro and M. S. Turner, Astrophys. J. 649, 563

(2006).
[11] J. Dick, L. Knox, and M. Chu, J. Cosmol. Astropart. Phys.

07 (2006) 001.
[12] D. Sarkar et al., Phys. Rev. Lett. 100, 241302 (2008).
[13] G.-B. Zhao, D. Huterer, and X. Zhang, Phys. Rev. D 77,

121302 (2008).
[14] G.-B. Zhao and X.-m. Zhang, Phys. Rev. D 81, 043518

(2010).
[15] P. Serra et al., Phys. Rev. D 80, 121302 (2009).
[16] D. Huterer and G. Starkman, Phys. Rev. Lett. 90, 031301

(2003).
[17] M. J. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 79,

023004 (2009).
[18] M. J. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 81,

063007 (2010).
[19] D. Huterer and H.V. Peiris, Phys. Rev. D 75, 083503

(2007).
[20] J. Tang, F. B. Abdalla, and J. Weller, arXiv:0807.3140.
[21] T.D. Kitching and A. Amara, Mon. Not. R. Astron. Soc.

398, 2134 (2009).
[22] R. de Putter and E.V. Linder, arXiv:0812.1794.
[23] M. Barnard, A. Abrahamse, A. J. Albrecht, B. Bozek, and

M. Yashar, Phys. Rev. D 78, 043528 (2008).
[24] M. Kowalski et al., Astrophys. J. 686, 749 (2008).
[25] http://supernova.lbl.gov/Union/.
[26] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009).
[27] M.R. Nolta et al., Astrophys. J. Suppl. Ser. 180, 296

(2009).
[28] J. Dunkley et al., Astrophys. J. Suppl. Ser. 180, 306

(2009).
[29] http://lambda.gsfc.nasa.gov/.

[30] A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538,
473 (2000).

[31] http://camb.info/.
[32] W. Fang, W. Hu, and A. Lewis, Phys. Rev. D 78, 087303

(2008).
[33] http://camb.info/ppf/.
[34] A. G. Kim, E. V. Linder, R. Miquel, and N. Mostek, Mon.

Not. R. Astron. Soc. 347, 909 (2004).
[35] G. Aldering et al., arXiv:astro-ph/0405232.
[36] E. V. Linder and D. Huterer, Phys. Rev. D 67, 081303

(2003).
[37] R. de Putter, O. Zahn, and E.V. Linder, Phys. Rev. D 79,

065033 (2009).
[38] L. Hollenstein, D. Sapone, R. Crittenden, and B.M.

Schaefer, J. Cosmol. Astropart. Phys. 04 (2009) 012.
[39] M. Doran, G. Robbers, and C. Wetterich, Phys. Rev. D 75,

023003 (2007).
[40] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).
[41] W. J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148

(2010).
[42] A. G. Riess et al., Astrophys. J. 699, 539 (2009).
[43] M. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 80,

067301 (2009).
[44] N. Christensen, R. Meyer, L. Knox, and B. Luey, Classical

Quantum Gravity 18, 2677 (2001).
[45] A. Kosowsky, M. Milosavljevic, and R. Jimenez, Phys.

Rev. D 66, 063007 (2002).
[46] J. Dunkley, M. Bucher, P. G. Ferreira, K. Moodley, and C.

Skordis, Mon. Not. R. Astron. Soc. 356, 925 (2005).
[47] A. Gelman and D. Rubin, Stat. Sci. 7, 457 (1992).
[48] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
[49] http://cosmologist.info/cosmomc/.
[50] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10,

213 (2001).
[51] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003).
[52] B. A. Bassett, Y. Fantaye, R. Hlozek, and J. Kotze,

arXiv:0906.0993.
[53] T.M. Davis et al., Astrophys. J. 666, 716 (2007).
[54] E. L. Wright, Astrophys. J. 664, 633 (2007).
[55] A. Mantz, S.W. Allen, D. Rapetti, and H. Ebeling,

arXiv:0909.3098.
[56] R. R. Caldwell and E.V. Linder, Phys. Rev. Lett. 95,

141301 (2005).
[57] A. Albrecht and C. Skordis, Phys. Rev. Lett. 84, 2076

(2000).

MICHAEL J. MORTONSON, DRAGAN HUTERER, AND WAYNE HU PHYSICAL REVIEW D 82, 063004 (2010)

063004-8

http://arXiv.org/abs/astro-ph/0609591
http://dx.doi.org/10.1103/PhysRevD.75.103003
http://dx.doi.org/10.1103/PhysRevD.75.103003
http://arXiv.org/abs/0901.0721
http://dx.doi.org/10.1103/PhysRevD.64.123527
http://dx.doi.org/10.1103/PhysRevD.64.123527
http://dx.doi.org/10.1103/PhysRevD.77.123525
http://dx.doi.org/10.1088/1475-7516/2009/12/025
http://dx.doi.org/10.1088/1475-7516/2009/12/025
http://dx.doi.org/10.1103/PhysRevD.66.083515
http://dx.doi.org/10.1103/PhysRevD.71.023506
http://dx.doi.org/10.1103/PhysRevD.71.023506
http://dx.doi.org/10.1103/PhysRevD.71.103513
http://dx.doi.org/10.1086/506470
http://dx.doi.org/10.1086/506470
http://dx.doi.org/10.1088/1475-7516/2006/07/001
http://dx.doi.org/10.1088/1475-7516/2006/07/001
http://dx.doi.org/10.1103/PhysRevLett.100.241302
http://dx.doi.org/10.1103/PhysRevD.77.121302
http://dx.doi.org/10.1103/PhysRevD.77.121302
http://dx.doi.org/10.1103/PhysRevD.81.043518
http://dx.doi.org/10.1103/PhysRevD.81.043518
http://dx.doi.org/10.1103/PhysRevD.80.121302
http://dx.doi.org/10.1103/PhysRevLett.90.031301
http://dx.doi.org/10.1103/PhysRevLett.90.031301
http://dx.doi.org/10.1103/PhysRevD.79.023004
http://dx.doi.org/10.1103/PhysRevD.79.023004
http://dx.doi.org/10.1103/PhysRevD.81.063007
http://dx.doi.org/10.1103/PhysRevD.81.063007
http://dx.doi.org/10.1103/PhysRevD.75.083503
http://dx.doi.org/10.1103/PhysRevD.75.083503
http://arXiv.org/abs/0807.3140
http://dx.doi.org/10.1111/j.1365-2966.2009.15263.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15263.x
http://arXiv.org/abs/0812.1794
http://dx.doi.org/10.1103/PhysRevD.78.043528
http://dx.doi.org/10.1086/589937
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://dx.doi.org/10.1088/0067-0049/180/2/296
http://dx.doi.org/10.1088/0067-0049/180/2/296
http://dx.doi.org/10.1088/0067-0049/180/2/306
http://dx.doi.org/10.1088/0067-0049/180/2/306
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1086/309179
http://dx.doi.org/10.1103/PhysRevD.78.087303
http://dx.doi.org/10.1103/PhysRevD.78.087303
http://dx.doi.org/10.1111/j.1365-2966.2004.07260.x
http://dx.doi.org/10.1111/j.1365-2966.2004.07260.x
http://arXiv.org/abs/astro-ph/0405232
http://dx.doi.org/10.1103/PhysRevD.67.081303
http://dx.doi.org/10.1103/PhysRevD.67.081303
http://dx.doi.org/10.1103/PhysRevD.79.065033
http://dx.doi.org/10.1103/PhysRevD.79.065033
http://dx.doi.org/10.1088/1475-7516/2009/04/012
http://dx.doi.org/10.1103/PhysRevD.75.023003
http://dx.doi.org/10.1103/PhysRevD.75.023003
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15812.x
http://dx.doi.org/10.1088/0004-637X/699/1/539
http://dx.doi.org/10.1103/PhysRevD.80.067301
http://dx.doi.org/10.1103/PhysRevD.80.067301
http://dx.doi.org/10.1088/0264-9381/18/14/306
http://dx.doi.org/10.1088/0264-9381/18/14/306
http://dx.doi.org/10.1103/PhysRevD.66.063007
http://dx.doi.org/10.1103/PhysRevD.66.063007
http://dx.doi.org/10.1111/j.1365-2966.2004.08464.x
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://dx.doi.org/10.1142/S0218271801000822
http://dx.doi.org/10.1142/S0218271801000822
http://dx.doi.org/10.1103/PhysRevLett.90.091301
http://arXiv.org/abs/0906.0993
http://dx.doi.org/10.1086/519988
http://dx.doi.org/10.1086/519274
http://arXiv.org/abs/0909.3098
http://dx.doi.org/10.1103/PhysRevLett.95.141301
http://dx.doi.org/10.1103/PhysRevLett.95.141301
http://dx.doi.org/10.1103/PhysRevLett.84.2076
http://dx.doi.org/10.1103/PhysRevLett.84.2076

