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Abstract 

 

Cell motility is important in embryonic development, wound-healing, and the metastasis 

of cancer. There are different stimuli that guide cell motility in biological tissue. One of these 

stimuli is electrical in nature (the others being chemical and mechanical), and the mobility of 

cells under the presence of electric fields is called electrotaxis. It is well known that potential 

differences on the order of 20mV to 50mV exist across epithelial tissue. It is also known that 

when epithelial tissue is compromised resulting in a wound, a short circuit is created across the 

basement membrane. This endogenous electric field drives a flow of electrical current and cells 

towards the more negative site of the wound, driving closure. If bioelectricity plays an important 

role in moving cells in specific directions, then increasing the strength of the electric field and 

varying its direction in vivo can either accelerate or decelerate cell movement as desired.  

Bioelectricity therefore offers the possibility of controlling and potentially accelerating wound-

healing or retarding the metastasis of cancer. Conventional methods of studying and inducing 

electrotaxis have involved the use of metal electrodes placed in contact with the tissue or 

medium containing cells using agar salt bridges. This approach raises the possibility of 

contamination as well as unwanted effects of Ohmic heating. In this research, electric fields are 

induced in vitro in a non-contact manner, thereby eliminating any interfering electrochemical 

interactions or unwanted heating arising from flow of direct current through the culture medium. 

The goal of this research is to quantify and simulate cell movement in a standard wound-healing 

assay using numerical methods to solve the relevant two-dimensional transient governing 

equations. Preliminary results have been obtained from non-contact electrotaxis experiments, and 

a time-varying 2-D model has been developed that simulates and can eventually predict the 

migration of cells in response to an electrical stimulus. This model can be useful for further 

studies delving into mechanisms driving electrotaxis. Moreover, this work may lead to 

development of non-invasive means of treating patients with chronic wounds or burns or halting 

metastasis. 
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Chapter 1 

Introduction 

1.1) Historical Background 

Cell motility is important in embryonic development, wound healing, and the metastasis 

of cancer. There are various stimuli (mechanical, chemical, and electrical) that guide the motility 

of cells in biological tissue. The movement of cells in the presence of electric fields is called 

electrotaxis (also known as galvanotaxis). The term galvanotaxis is coined after Luigi Galvani, 

who in the 1780s, while performing experiments on frogs at the University of Bologna, is 

famously known to have accidentally touched a frog’s leg with two dissimilar metal electrodes.  

The electrodes generated an applied electric field and current flow, which immediately caused 

the dead frog to twitch[1]. Figure 1 illustrates Galvani’s realization of “animal electricity,” a 

term he used to describe the concept of bioelectricity. 

 

Figure 1: Luigi Galvani's frog twitch experiments in the 1780's [1] 

 

1.2) Electrotaxis 

Galvani’s experiment was the first one to explore the idea of bioelectricity. Since then, 

researchers have discovered the existence of voltage potentials on the order of 20mV to 50mV 

across epithelial tissue (Figure 2). It is also known that a wound in the form of a cut in the 

epithelial tissue results in an electrical short across the basement membrane which normally 

separates charges between epithelial layers and the underlying connective tissue and stroma. This 

potential gradient then drives an electric current flow towards the more negative site – the wound 

[1]. If bioelectricity plays an important role in moving cells in a specific direction, then 
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increasing the strength of the electric field in vivo artificially can either accelerate cell movement 

(as in the case of wound-healing) or decelerate cells (as in cancer metastasis) as desired. 

Electrotaxis therefore offers the possibility of controlling and potentially accelerating wound 

healing or retarding the metastasis of cancer. 

 

Figure 2: Potential difference between epithelial surface and basement membrane [2] 

1.3) Literature Review 

The directional movement of cells in the presence of electric fields has been observed by 

numerous researchers. Foulds and Barker [3] were able to show the existence of a “skin battery” 

experimentally by measuring potentials on the order to 20mV to 50mV across the dermis at 

various sites of the body for seventeen humans. Nishimura, Isseroff, and Nuccitelli [4] showed 

that human keratinocytes respond directionally in the presence of an electric field of greater 

strength than 5mV/mm.  

Despite the observations made about cell movement in the presence of electric fields, the 

scientific community is yet to fully understand the mechanisms underlying this phenomenon. 

Pullar, Isseroff, and Nuccitelli [5] were able to show the importance of kinase signaling 

pathways in cells in directing keratinocyte electrotaxis. Upon inhibition of the protein kinase, a 

significant reduction in electrotactic response was observed. Zhao [6] further probed the cellular 

mechanisms involved in cell movement and how electric fields may be having an effect on the 

specific signaling pathways in cells. It was proposed that in the presence of electric fields, 

polarized membrane lipid domains and EGF receptors may cause asymmetrical signaling 

through kinase, triggering a directional cellular movement response 

  There is great potential for electrotaxis to be leveraged clinically, and several attempts 

have been made to develop products for faster wound healing. Chu et al. [7] explored the effects 
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of dressing wounds with silver-nylon bandages that drive small currents to stimulate electrotaxis. 

Vomaris [8] is a company that strives to make bandages called Procellera that are coated with 

patterned regions of silver oxide and zinc to generate an electric field in the presence of a wound 

[9]. 

 All of the experiments performed to study electrotaxis to date have involved direct 

contact of electrodes with the culture medium containing the cells. Huo et al. [10] looked to 

induce electric fields on the order of 2.5mV/cm onto human keratinocytes and fibroblasts for the 

first time non-invasively using a Field Therapy Accelerator. More recent work by Sequin et al. 

describes a method of applying electric fields to a conducting cell media without direct contact 

using an electromagnetic coil [11]. The experimental results from keratinocytes and highly 

metastatic breast cancer cells in this work form the starting point for the model developed in this 

research. Kostic, Lynch, and Sheetz [12] describe the effect of cellular microenvironment on 

metastasis. A highly metastatic breast cancer cell line, SCP2, that is observed in this work is the 

specific cell line used in ref. [11] in addition to an immortalized cell line of human keratinocytes. 

Since the work presented in this thesis primarily focuses on developing a model to 

characterize cell behavior, several similar models were explored to understand the possible range 

of physical solutions. R.A. Fisher’s [13] paper on solving the traveling wave equation in order to 

track propagating fronts of a population, given a gene mutation, formed the basis of the 

parametric relationships used in this work. The reaction diffusion equation, and its application to 

solve a variety of biological problems, is further explored in the work of Volpert and Petrovskii 

[14]. Vanegas-Acosta et al. [15] considered cell movement of osteoblasts in a very different 

assay geometry than the one utilized in this research, but this model nonetheless serves as a point 

of comparison for the model developed in this research. 

This thesis is organized as follows. The following chapter provides the motivation and 

objectives for the work presented in this paper. The experimental setup and procedure are 

discussed in Chapter 3. Preliminary results from the experiments are summarized in Chapter 4. 

The development of the model based on the experiments is the focus of Chapter 5. Chapter 6 

expands the model to two dimensions and discusses the procedure for solving the governing 

equations. Chapter 7 details the results from simulations of the model.  Finally this thesis is 

summarized thereafter, followed by recommendations for future work.  
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Chapter 2 

Motivation and Objectives 

2.1) Motivation 

Electrotaxis initiated by application of an externally applied electric field offers the 

possibility of accelerating or decelerating cells as desired. However, more work needs to be done 

to characterize this phenomenon in order to facilitate its application in a clinical setting. 

Conventional experiments that study the motion of cells in the presence of electric fields follow a 

setup as shown in Figure 3 that include a cell culture in indirect contact to electrodes via an agar 

salt bridge [1]. Despite the remoteness of the electrodes, various electrochemical contaminants 

(i.e. ions) may be introduced into the cell culture via the agar bridges. In addition, there may be 

adverse effects due to Ohmic heating present in the experiment since the current flow may be 

constricted depending on the path of least resistance followed. The indirect contact, therefore, 

does not allow for an isolated study of electrotaxis, free from spurious effects. It is beneficial to 

study the movement of cells, therefore, in the presence of an electric field applied without 

contact.  Since such a scheme would require the electric field to be applied inductively and 

therefore cannot be measured directly, it is necessary to develop a model of the process as well. 

 

Figure 3: Conventional electrotaxis experimental setup [1] 

A model is a useful way for quantifying the results from an experimental assay. It is a 

useful tool for researchers to compare changes across control cases in light of the many external 

factors that may affect an experimental setup including cell culture differences and other 

environmental variables. Moreover, a robust model can be used as a predictive means to 
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optimize further experimental work. To the best of this author’s knowledge, there are few 

references in the literature [15] that develop such a model, and none have been developed for cell 

migration assays based on the relevant physics. Moreover, expanding such a model to include the 

effect of applied electric fields on cells can be a very useful tool to further understand the 

phenomenon of electrotaxis.  

 

2.2) Objectives 

The idea of applying electric fields in a non-contact manner to induce cell motility has 

been recently described by Sequin et al. [11]. In their work, an electric field is applied to a cell 

culture inductively using a coil through which a time-varying current is driven. Preliminary 

results from this work are presented in this thesis, and these results are used as a starting point 

for developing a model.  

In following the experiments performed by Sequin et al. [11], the primary goal of this 

research is to develop a time varying, two-dimensional model that mimics the observations of the 

cells in these experiments. The relevant physical equations must be obtained that describe the 

movement of cells, and a two-dimensional governing equation or equations must be developed to 

describe cellular movement. Ultimately, a time-lapse simulation of the experiment must be 

developed that can be used to quantify and eventually predict cell motility. 

A secondary goal of this work is to incorporate the effect of electric fields on cellular 

motion into the model. A plausible theory must be developed to describe the physics of 

electrotaxis, and this must be incorporated into the model. Finally the model must be tested for 

validity across experiments. 
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Chapter 3 

Experimental Apparatus 

3.1) Wound-Healing Assay 

The idea of applying electric fields in a non-contact manner is recent [10] [11]. A time 

varying magnetic field is applied to a culture dish containing keratinocytes cultured in standard 

DMEM media [11]. The medium containing the cells is electrically conducting; therefore, the 

time varying magnetic field induces an electric field in the medium, by Faraday’s Law. This 

induced electric field drives (or inhibits) cell motility. The experimental setup is illustrated in 

Figure 4. 

 

 

Figure 4: Schematic of experimental apparatus for wound healing assay [11] 

The time varying magnetic field is applied by an in-house designed electromagnet placed 

under the culture plate containing the cells in the medium. An alternating current is passed 

through the coil, which then results in the time varying magnetic field, through Ampère’s Law. 

Figure A1 in Appendix A further illustrates the electromagnetic principles underlying the non-

contact application of an electric field.  

The first experiment presented in this work was performed on an immortalized cell line 

of human keratinocytes. For this experiment, a contiguous layer of cells was placed in the culture 
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plate. A well-defined rectangular region in the middle, devoid of cells, simulated the wound. The 

specific culture insert used in this assay is shown in Figure A2 of Appendix A. The approximate 

width of this particular gap was about 500μm. A 1Hz, 20V peak-to-peak sawtooth voltage 

waveform was applied across the coil, which then resulted in a 1Hz sawtooth current (Figure 5). 

Control experiments were conducted on the same assay but without any applied electromagnetic 

field. The cell culture was imaged on a phase contrast microscope every 4 hours, digitized, and 

the exposed area of the simulated wound was calculated by numerical integration after importing 

the digitized data into MATLAB. 

 

Figure 5: Input voltage and resulting current 

The second experiment presented in this work was performed on SCP2 cells, which are a 

highly metastatic breast cancer cell line [12]. For this experiment, an 80% confluent layer of 

cells was placed in the culture plate. The tip of a pipette was used to introduce a scratch through 

the middle of the cell culture. The approximate width of this particular gap was about 1.1mm. A 

100kHz sawtooth voltage waveform was then passed through the coil. Images from this 

experiment were gathered in the same way as the previous experiment. 

 

3.2) Electromagnetic Coil 

The coil used for both experiments described in the previous section was referred to as 

H1 for its sequence in the design and construction process in the Applied Physics Laboratory. H1 

uses copper wire of radius 0.268mm (23 AWG). The coil is 2.47cm long with an inner radius of 

0.71cm and outer radius of 2.33cm. There are 18 layers of windings in the coil, with 87 turns per 

layer. The coil was measured to have a resistance of 25Ω and an inductance of 12.1mH. 
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Chapter 4 

Preliminary Experimental Results 

4.1) Keratinocyte (HaCaT Cells) 

For the experiment with keratinocyte cells, over eight hours, it was found that the cell 

fronts closed significantly less compared to the control. Thus, gap closure was inhibited in the 

presence of an electric field. This is shown in the images in Figure 6. Figure 7 then quantifies the 

percentage of gap closure over time. Gap closure here refers to the percentage of the original gap 

area that is filled with cells after the experiment begins. The gap closure values were obtained 

after digitizing the microscope images from Figure 6, and numerically integrating the area of the 

gap in MATLAB.  From Figure 7, it may be qualitatively noted that the time rate of change of 

gap closure for this experiment is nearly constant. 

 

Figure 6: Results from wound healing assay with keratinocytes 
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Figure 7: Keratinocyte closure over time with and without an induced electric field 

 

4.2) Highly Metastatic Breast Cancer Cells (SCP2) 

For the experiments with the highly metastatic breast cancer (SCP2) cells, over sixteen 

hours, it was found that the cell fronts closed less with the induced electric field compared to the 

control. Thus, as in the results of the experiments with Keratinocytes, gap closure was once again 

inhibited in the presence of an electric field.  This is shown in Figure 8. Figure 9 then quantifies 

the percentage of gap closure over time. Gap closure here refers to the percentage of the original 

gap area that is filled in with cells at the end of the experiment. 
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Figure 8: Results from wound healing assay with SCP2 cells 

 

Figure 9: SCP2 closure over time with and without an induced electric field 
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Chapter 5 

Development of Model 

5.1) Control Volume Analysis 

 It is not only important to show the effect of electric fields on cell motility 

experimentally, but it is imperative to quantify and eventually be able to predict cellular motion 

in these wound-healing assays. This can be done by developing a model that mimics the behavior 

of cells in the assay. Such a model can then be used to optimize subsequent electrotaxis 

experiments and may even prove useful for predictive purposes. 

A control volume approach was utilized to develop a model for cellular motion in the 

wound-healing assay. First, a control volume is placed in the simulated wound (Figure A3 of 

Appendix A). Some simplifying assumptions are then made about the cells in the control 

volume: 

1. The cells are assumed to exist as a contiguous monolayer 

2. The number of cells per unit volume (or area) or cell number density is taken to be a 

continuous variable 

Next, the flux of cells through the control volume in one dimension can be described as shown in 

Figure 10:  

 

Figure 10: Flux through the control volume in 1-dimension 

Here,  ̇ is the number flow rate of cells, and the various flow rates can be defined as follows: 

  ̇            (1) 

 

dx 

h 
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where n describes the number density of cells traveling at some velocity V. Next, the number 

flow rate going out can be described using a first-order Taylor Series expansion: 

  ̇             
 

  
             (2) 

The number flow rate stored is the time rate of change of cells in the control volume: 

  ̇       
 

  
             (3) 

Finally, the net rate of production (proliferation) of cells under competition for limited resources 

can be taken into account. Cell replication here is taken to be proportional to the number 

density  , and to the available resources.  

  ̇                         (4) 

  is the rate coefficient for cell production and is taken to be a constant.    is the steady-state 

cellular number density far away from the simulated wound. The expression          used 

here follows a logistic growth pattern, and is often used to characterize cell population growth in 

the presence of limited resources [14]. 

It is now possible to combine the flow rates using the conservation of mass or in this case 

conservation of a single species: 

  ̇     ̇      ̇      ̇       (5) 

When combined, like terms cancel out to yield the following equation: 

 
  

  
 

 

  
              (6) 

where   is a diffusion velocity for the cells, which is taken here to be given by a constitutive 

equation such as Fick’s Law: 

      
  

  
 (7) 

 where   is a diffusivity describing cell migration in the absence of any external forces.  

Substituting Equation 7 into Equation 6 yields: 
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          (8) 

This equation is a non-linear diffusion equation and reduces to the standard linear diffusion 

equation encountered in many branches of physics and engineering when    .  

The parameters that appear in Equation 8 are listed in Table 1 along with their definitions and 

units.    

 

Table 1: Understanding the parameters 

Parameter Units Description 

n [cells/m
3

] Cell number density (dependent variable) 

  [m
2

/s] Average diffusion coefficient for cellular motion 

s [m
3

/s] Rate coefficient for production of cells under competition for 

resources 

n
 

 [cells/m
3

] Cell number density far away from the gap 

 

The sections below describe the roles of the individual parameters in special cases of the one-

dimensional governing equation, and Section 6.5 later shows how initial estimates were obtained 

for these parameters based on the experimental results. 

5.2) Special Cases of Non-linear Reaction-Diffusion Equation 

Before delving into the complexity of finding solutions for the governing equation 

(Equation 8), it is instructive to consider certain special cases of the equation. These special 

cases can provide insights into the roles of the individual parameters  ,  , and   . These 

insights can later be used in solving the relevant two-dimensional case of the governing equation. 

The MATLAB scripts for obtaining the solutions in all of the cases described next are given in 

Appendix C 
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5.2.1) Spatially Homogeneous Case 
The first case to consider is the special case of spatial homogeneity, when there is no 

variation in relation to  . The governing one-dimensional partial differential equation can be then 

condensed into the following ordinary differential equation: 

 
  

  
           (9) 

It is useful to consider the non-dimensional form of the differential equation for a better 

understanding of the parameters. Letting  ̅  
 

  
, the following non-dimensionalized equation is 

obtained: 

 
  ̅

  
     ̅    ̅  (10) 

For this particular ordinary differential equation, an analytical solution may be obtained, 

assuming some initial value    for cellular number density. The steps involved in acquiring the 

following analytical solution are given in Appendix B.  

  ̅  
 

  (
  
  
  )      

 (11) 

The solution for  ̅ as given by Equation 11 is shown in Figure 11.  

 

Figure 11: Spatially homogeneous logistical growth, s = 1x10
-9

 m
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Figure 11 shows the net production of cells through replication until some steady state 

value,    is reached. The parameter   also takes into account cellular competition for limited 

resources. The plot follows a logistic growth pattern [16], a model that is frequently used to 

describe population growth and even cellular dynamics and tumor growth [14]. The parameter   

represents a time constant that dictates cellular growth to steady state. Generally, a larger value 

of   indicates a faster cellular growth rate. 

 

5.2.2) Steady State Case 

For the steady state special case, 
  

  
 is set to 0 to yield the following differential equation: 

   
   

   
          (12) 

Letting  ̅  
 

  
 and letting  ̅  

 

    
 where      can be considered to be the diameter of the 

culture dish (5cm), Equation 13 can be non-dimensionalized to yield: 

  
 

    
   

   ̅

  ̅ 
     ̅    ̅  (13) 

The resulting equation is solved numerically and displayed in Figure 12. As can be seen in 

Figure 12, there is a strong relationship between the parameters   and   that dictate the shape of 

the graph or even the existence of a solution.  

 

Figure 12: Steady state striations, s/D = 3/1,      
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The resulting oscillations in the plot in Figure 12 is obtained if     . A sinusoidal solution 

here is expected as the     ̅  drops out in the differential equation and is overpowered by the 

linear     ̅ term.  The solution may actually describe a physical solution, wherein the cells form 

striations in the culture plate. Figure 13 illustrates this special case of oscillating cell number 

densities along the horizontal axis.  It is not known whether or not this is physically realizable 

experimentally. 

 

Figure 13: Striations in a cell culture plate 

The steady state special case may also be considered for     . Such a case yields much more 

volatile solutions, one of which is shown in Figure 14.  

 

Figure 14: Steady state case where n∞≈n, s/D = 3/1 
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5.2.3) Traveling Wave 
The Fisher-Kolmogorov equation is a special one-dimensional case of the reaction-

diffusion equation (Equation 8). In 1937, R.A. Fisher considered the case of population 

dynamics, given a gene mutation. He sought a solution to the following equation that has a linear 

source term [13]: 

 
  

  
  

   

   
     (14) 

Here,   is the dependent variable, analogous to   in the model for the migration assay.   in 

Equation 14 is analogous to diffusivity, and   is used in a very similar way to the rate 

coefficient for production of cells under competition for resources  .   in Fisher’s equation is the 

frequency of the parent allelomorph, and is analogous to   . In his analysis, Fisher proposed a 

solution that describes traveling waves of constant velocity that propagate through space over 

time (Figure 15).  

 

 

Figure 15: A traveling wave front using Fisher's approach. Here some dependent variable u is plotted as a function 

of x captured at some particular time step. Source: en.wikipedia.org [17] 

 

Using Fisher’s approach, it is useful to consider the cell fronts in the assay closing inwards at 

some constant velocity  . It is then possible to make the following substitution into the 

governing differential equation: 

 
  

  
   

  

  
 (15) 

Substituting Equation 15 into the governing partial differential Equation 8 leads to a second 

order ordinary differential equation: 

http://en.wikipedia.org/wiki/File:Travelling_wave_for_Fisher_equation.svg
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            (16) 

Equation 16 can also be non-dimensionalized in the same way as was performed in the previous 

sections to yield: 

 
 

    
 

   ̅

  ̅ 
 
    

    
 ̅
  

  
       ̅    ̅  (17) 

In Fisher’s analysis, it was concluded that for traveling wave solutions to be present, the 

following inequality must hold true  

    √   (18) 

Applying the derived parametric relationships, the traveling wave profile is plotted in Figure 16. 

The graph considers two fronts traveling at two arbitrary velocities (.6235m/s and .8235m/s) to 

show the general shape of the solutions and the interplay of parameters involved.  

 

Figure 16: Traveling wave solution, s/D = 2/.08 

The traveling wave is an effective way of modeling the cellular fronts as they move over 
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cells either occupy a particular location in space or there may be a void. Thus, realistically, cell 

number density is much more binary, varying between   and 0. The traveling wave approach 

helps create this contrast by setting up a sharp gradient between the cell region and the no-cell 

region.  

The traveling wave may be set up only for particular values of   and   as seen in 

Equation 19. Moreover, as   is increased, the gradient tends to be sharper. Generally to achieve 

traveling waves with sharp gradients for this particular assay, the value of the nondimensional 

source term     ̅    ̅  must share a similar order of magnitude as the value of the expression 

 

    
 

   ̅

  ̅ 
. 
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Chapter 6 

Two-Dimensional Governing Equation for Cell Migration 

To this point, spatial variation in only one dimension has been considered. Based on 

special cases of the one-dimensional governing equation, the modeling parameters have been 

better understood. In order to model cellular movement in the entire assay, however, it is now 

necessary to consider cellular movement in both horizontal (x) and vertical (y) dimensions. 

When the control volume approach presented in Section 5.1 is extended two dimensions, the 

following two-dimensional governing equation results: 

 
  

  
    

   

   
   

   

   
          (19) 

Note that now diffusion is considered both in the x and y directions. For the sake of convenience, 

Equation 19 can be written in terms of the flux vector  ⃑ as follows: 

 
  

  
  ⃑⃑⃑   ⃑           (20) 

 Where  ⃑       (21) 

 

6.1) Analysis Using COMSOL 

Solving a two-dimensional partial differential equation with a non-linear source term as 

in Equation 20 can be time-consuming and computationally complex. For the sake of 

convenience, COMSOL Multiphysics software was used as a platform for solving Equation 20. 

COMSOL is a software program that uses advanced numerical methods for modeling and 

simulating physics-based problems. All simulations in this research were created with the 

MUMPS parallel sparse direct solver [18] using the finite element method. 

 

6.2) Model Setup 

Upon initiating a COMSOL file, it is essential to specify the geometry upon which the 

relevant physics are to be solved. For the case of the assay, a rectangle the size of the initial gap 

from each experiment was chosen to be the structure. Next, the relevant governing equations 
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were chosen from the list of available physics icons in the software. Once the relevant governing 

equation is entered, boundary conditions must be prescribed. This may be done visually as 

shown in Appendix C.  Figure 17 shows an example of the gap geometry with the prescribed 

boundary conditions. Note that for this specific case, Dirichlet boundary conditions were used at 

the right and left boundary to set the value of the dependent variable to   . Neumann boundary 

conditions were used at the top and the bottom to indicate zero-flux in the y-direction initially. A 

description of the specific steps involved in configuring the simulation file is given in Appendix 

C. 

 

Figure 17: Gap geometry and boundary conditions 

 

6.3) Generating the Mesh 

In a problem described by Equation 20 where stability is an issue, grid size plays a key 

role in determining the existence of a solution. For areas in the geometry where gradients are 

high, the solution only converges if the grid size is small enough. Although having a small grid 

size means greater accuracy, it also means that there are more elements to solve for, and 

therefore a significantly greater computational time. Fortunately, COMSOL offers adaptive mesh 

refinement, whereby, the grid size is made finer in the specific parts of the geometry that demand 

greater accuracy, whereas the grid size elsewhere remains coarse. The mesh therefore consists of 

non-uniform elements and is changed and adapted at every time step of the solution. The 
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adaptive mesh feature was utilized for all the simulations in this research. Moreover, for saving 

additional time, typical time-steps utilized were on the order of 10s to 100s intervals. This 

approach saved a significant amount of time – the average simulation that could take anywhere 

between two and five hours to run with a uniform mesh and smaller time-steps was solved in 

between half-an-hour and an hour.  

 

Figure 18: Adaptive mesh refinement 

 

6.4) Effect of Electric Field 

In order to account for the change in cellular movement in the presence of an electric 

field in the model, an analog was drawn to ion mobility theory in gases and liquids. This is 

considered acceptable as the cells are expected to have a distribution of surface charge and can 

therefore be treated as massively charged ions.  In the presence of an electric field, ions 

experience some average drift velocity that can be written as: 

        ⃑⃑ (22) 

where  μ is the ionic mobility and takes into account particle motion in the presence of collisions 

with other particles. The same idea is applied here to cellular movement in the presence of an 

electric field. This mobility theory can be incorporated into the flux vector in Equation 20 as: 
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  ⃑         ⃑⃑  (23) 

 

The value for cellular mobility μ is to be inferred experimentally after determining all other 

parameters of the model from the relevant control experiments. It must be noted that for the sake 

of simplifying the equation, a constant value of  ⃑⃑ is assumed for the models in this work. In the 

experiments, the value of the electric field actually varied with time. Therefore, the constant 

value assumed for  ⃑⃑ was taken to be a representative average value of  ⃑⃑    over the duration of 

the experiment.  

 

6.5) Inferring Parameters 

Appropriate values for the parameters          and    can be obtained from the model 

if the model predictions are matched to the experimental observations in the control cases. These 

parameters are specific to the specific experimental situation, which takes into account the type 

of cells being used, the cell culture, and other environmental variables. Next, an appropriate 

value for   can be inferred if the model predictions are matched to the experimental observations 

when the electric field is applied.  

Whereas in reality, the magnitude and direction of the electric field changed over time in 

the experiments, a constant value 4.4mV/cm is assumed for the electric field in the horizontal (x) 

direction in the simulation. 

In order to make the model match the experimental results, reasonable initial estimates of 

         and    need to be made to initiate the fine-tuning process of matching model to 

experiment. It is appropriate to begin with finding a value for  , since a constant-velocity 

traveling wave approach is used for finding the solutions in the model as described in Section 

5.3.3.   can be estimated from the experimental results by monitoring the distance a cell front 

has traveled over the course of the experiment and dividing that by the duration of the 

experiment: 

    
  

  
 (24) 

As can be seen in Figure 7, it is reasonable to assume that   is indeed constant. 

Next,   can be estimated in a similar manner dimensionally as: 
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 (25) 

Since   and    are now known,   can be estimated through the traveling wave parametric 

condition described in Equation 18. Rearranging Equation 18, a maximum value for   can be 

found: 

   
  

   
 (26) 

Finally, since    is defined as the cell number density away from the gap, it can be calculated by 

estimating confluency in the cell culture as: 

   
 
 
              

      
 (27) 

 

Appendix B shows the sample calculations used to arrive at the initial estimates for both 

experiments that are modeled in this thesis. 
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Chapter 7 

Results 

7.1) Overview 

Upon estimating initial values for the parameters as described in Section 6.5, the 

governing equation (Equation 20) was solved using COMSOL Multiphysics. At every 4-hour 

time increments of simulated time (which corresponded to approximately eight to ten minutes of 

computer run time), the model was compared to the experiment for gap closure. 

In order to calculate the gap closure percentage in the model, a criterion for 

differentiation between cell and gap had to be developed within the traveling wave. It was 

decided that the inflection point of the traveling wave would be taken as the interface between 

cell and gap. In order to find the inflection point of the two converging waves, COMSOL was 

used to obtain the one-dimensional profile plots of  . MATLAB was used to find the appropriate 

inflection points and subsequent cell-gap thresholds through numerical differentiation. The 

MATLAB script used to find the inflection points of the traveling waves is provided in Appendix 

D. 

Once the area of the gap was found, the percent closure was calculated and compared to 

the experimental counterpart. If the values were not within ±5% of each other, the parameters 

were fine-tuned appropriately, and the simulation was repeated with the new values of the 

parameters.  

The parameters          and    that were acquired from the control experiments were 

used again in the simulations with the electric field. It was anticipated that the mobility can be 

varied until the gap closure observed in the experiments was replicated in the simulations for the 

case of the applied electric field. 

 

7.2) Gap Closure in the Control Case 

In the experimental control case for Keratinocytes in the scratch assay, the gap closure 

after 4 hours was 25.11% and the gap closure after 8 hours was 53.71% as can be seen in Figure 

7. Gap closure here refers to the percentage of the original gap area that is filled in after the 
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experiment begins. After the values of           were found (Table 2), the results shown in 

Figure 19 and Figure 20 were obtained 

   

Figure 19: Modeling keratinocyte closure 

 

Figure 20 shows how close the experimental gap closure values were to the modeled ones. 

 

Figure 20: Predicting gap closure - keratinocytes 
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Table 2 lists the parameters used for this particular model.  

 

Table 2: Model parameters for keratinocytes assay 
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Despite the close approximation that the model delivers, it fails to capture such artifacts 

as the wavy cell fronts in the experiment. This suggests that the model needs to be refined in 

order to capture certain nuances of experiment. 

 

In the experimental control case for SCP2 cells in the scratch assay, the gap closure after 

16 hours was 43% as can be seen in Figure 9. The model was fit to behave like the experiment, 

and Figure 21 below shows the results compared to the corresponding images from the 

experiment. 

  

Figure 21: Modeling SCP2 cell closure 
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Figure 22 shows how close the experimental gap closure values were to the modeled ones. 

 

Figure 22: Predicting gap closure - SCP2 cells 

Table 3 lists the parameters used for this particular model.  

 

Table 3: Model parameters for SCP2 assay 
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Note that since there was not enough contrast in the experimental image to determine motion in 

the y-direction, a diffusivity of 0 was assumed in that direction. 

It must also be noted that the order of magnitude for the diffusivity values acquired through both 

of the above simulations were about the same as presented in a model for cell migration by 

Vanegas-Acosta et al. that considered cell movement of osteoblasts in a different assay geometry 

[15]. 

7.3) Predicting Gap Closure – Electric Field Case 

Using the parametric values inferred in the control case, an electric field of 4.4mV/cm in 

the horizontal (x) direction was introduced in the model, and the mobility was gradually 

increased. 
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For low values of mobility (μ<10
-8

m
2
/Vs), the gap closure remained the same as the control case. 

Here, the electric field expression failed to make a significant contribution to the flux term in 

Equation 20. 

 

Figure 23: Asymmetric closure. μ= 8x10
-9

m
2
/Vs. Gap Closure: 54% 

As mobility was increased to μ=5x10
-7

m
2
/Vs, asymmetric closure was observed in the 

simulations. One cell front advanced faster (in this case the left one), while the other one 

advanced slower than the control case. However the gap closure at the end of the simulated 4 

hours (which was approximately half an hour of computer run time) remained about the same as 

the control case. An inhibition of closure was not observed. 

 

Figure 24: Asymmetric closure. μ= 5x10
-7

m
2
/Vs. Gap Closure: 54% 
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As mobility was further increased to 2x10
-6

m
2
/Vs, the rightmost cell front failed to 

advance at all, while the leftmost cell front (Figure 25) advanced even faster than before. Here, at 

the end of the simulated 4 hours, gap closure actually increased. This obviously does not 

correspond to the behavior of the cells observed experimentally. 

 

Figure 25: Asymmetric closure. μ= 2x10
-6

m
2
/Vs. Gap Closure: 76% 

 

The simulation was rerun, this time changing the direction of the applied electric field. The very 

same trends of accelerated closure were apparent, but this time the asymmetry was in the 

opposite direction as Figures 24 and 25. This is illustrated in Figure 26. 



  36 
 

 

Figure 26: Asymmetric closure. μ= 2x10
-6

m
2
/Vs. Gap Closure: 76% 

 

Similar behavior was noticed for the SCP2 cell model. Appendix A contains the images and data 

from varying mobility in the SCP2 model. 

 

When incorporating the electric field, the ion mobility theory analog that was assumed in 

Section 6.4 along with a constant value for  ⃑⃑ was only able to lead to accelerated closure, but 

never inhibited closure. It is possible to model inhibition of closure, but to do so, it is necessary 

to change the value of diffusivity as can be seen in Figure 31 in Appendix A. However, 

diffusivity is assumed to be a property of the cells and cell culture as it is inferred from the 

control experiments, and hence it must remain the same even when the electric field is present.    

The fact that it must also change in order to explain the experimental results suggests that the 

presence of the electric field has altered some fundamental property of the cells that they possess 

even in the absence of the field.  

A constant value was assumed for the electric field in the model which did not reflect the 

time-varying electric field present in the experiments. Therefore, future refinements of the model 

would have to account for a time-varying electric field. However, since the electric field varies 
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over time on the order of tens of nanoseconds, and the time-steps incorporated in the simulations 

were on the order of tens of seconds, an appropriate non-dimensional scheme must be developed 

to be able to solve Equation 23 with a time-varying electric field input in a reasonable amount of 

computer run time. Moreover, the time-varying input may also introduce instabilities that must 

be addressed by appropriately setting up the solver. Hence, more work needs to be done to refine 

the model that takes into account a time varying electric field input. 
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Summary and Conclusions 

This thesis has explored the use of the non-linear reaction-diffusion equation to simulate 

scratch assay cell migration experiments, with and without the presence of an induced electric 

field.  A better understanding of electrotaxis offers the promise of finding ways to artificially 

accelerate (as in wound-healing) or decelerate (as in cancer metastasis) cells as desired. 

Conventional methods of studying electrotaxis involve the use of agar bridges to directly contact 

the cell culture to the metal electrode in order to apply an electric field. Such an approach can 

introduce electrochemical contaminants and undesirable Ohmic heating effects.  

The focus of this research was to analyze experiments conducted on cells through a non-contact 

application of an electric field and then to develop an appropriate model to quantify and 

eventually predict experimental results. Non-contact here is achieved inductively through a time-

varying current driven through a coil. Experiments were conducted in a “wound healing assay” 

for keratinocyte cells and highly metastatic breast cancer (SCP2) cells, and it was noted that 

upon the application of an electric field, the movement of the cell fronts was inhibited 

significantly in both cases. 

By assuming that the cells form a monolayer and that cellular number density can be 

characterized as a continuous variable, a model was developed that utilized a control volume 

approach to derive a two-dimensional governing partial differential equation. The Fisher-

Kolmogorov Equation is a one-dimensional special case of this equation and is solved by R.A. 

Fisher [13] to provide the parametric relationships that generate constant-velocity traveling wave 

fronts. The traveling wave approach was used to track the movement of the closing cell fronts in 

time and space. In order to account for cell movement in the presence of an electric field, ion 

mobility theory was used as an analog and appended to the model. 

COMSOL Multiphysics finite element software was used in conjunction with an adaptive 

meshing feature to generate the two-dimensional simulations of the governing differential 

equation. By matching model to experiment in the control case, the relevant parameters from the 

model were inferred. Inferred diffusivity values were on the same order of magnitude as 

diffusivities presented in a cell migration model for osteoblasts by Vanegas-Acosta [15].  

When the electric field cases were simulated, closure was noticed to be asymmetrical. 

Upon varying the value of cellular mobility, the net closure either remained the same or 

increased as a result of higher mobility values. One possible reason for the ion mobility model 



  39 
 

not conforming to experimental results is that the electric field may in fact be affecting some 

fundamental cellular mechanism, thereby changing the value of cell diffusivity from the control 

case. It may also be noted that while a constant value of the electric field was assumed in the 

model, in reality, the electric field applied periodically changed magnitude and direction. The 

model therefore must be refined to take into account time-varying electric fields. 

Despite its shortcomings, a viable model was developed that allows for quantification of 

migration assays. This may serve as a useful tool for biologists and researchers to ensure that 

control cases are indeed similar. Further development of this model may also shed more light 

into the phenomenon of electrotaxis. 

 

Recommendation for Future Work 

 The model developed in this research may be improved in several aspects. First, it is 

instructive to run more simulated cases of the governing equation to see the different patterns 

and profiles that are possible. Some of these cases may be computationally expensive, and it may 

be useful to run some cases through a supercomputer to see if certain nuances or artifacts of 

experimental cell motion can be modeled. Second, more work needs to be done into 

understanding the electric field model and whether it is possible to computationally inhibit 

closure with an electric field present. One way to do this is to enter a realistic time varying 

electric field (in pulses). However, such an approach may be computationally demanding. 

Finally, the validity of the model should be examined for different electric field strengths, 

frequencies, cell types, and other assay geometries. Once a robust model is created, it would be 

possible to optimize subsequent experiments and experimental outcomes using the predictions 

from the model.   
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Appendix A: Figures and Tables 
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Figure 27: Electromagnetic principles underlying non-contact application of electric field 

 

 

Figure 28: Cell culture insert. Source: http://ibidi.com 

http://ibidi.com/
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Figure 29: Control volume inside the assay geometry 

 

 

Figure 30: Acceleration with constant electric field model - SCP2 cells 
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Figure 31: Changing diffusivity in the applied electric field case to account for inhibited closure 
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Appendix B: Sample Calculations 
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I. Analytical Solution for Spatially Homogeneous Special Case 
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II. Initial Parameter Estimation for Keratinocyte Model 
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The above value of   can be compared to the inferred value in the model of    . 5       
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Appendix C: Explanation of the Software 
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Explanation of COMSOL Multiphysics 

COMSOL Multiphysics’ user interface is visually driven and relatively easy to use. This 

Appendix describes the steps involved in creating and analyzing a model in COMSOL. 

Upon opening a new file in COMSOL, one is prompted to select the type of physics that is to be 

solved. The format that most closely matches the model developed in this paper is called 

“General Form PDE” under the Mathematics tab (Figure 32).  

 

Figure 32: Initiating a model in COMSOL 

The next task in setting up the model is defining the geometry onto which the relevant equations 

need to be solved. Right clicking Geometry on the Model Builder pane reveals a list of possible 

1-D and 2-D figures available (Figure 33). For this model, Rectangle is selected and appropriate 
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dimensions are ascribed to model the gap in the wound-healing assay (Figure 16).

 

Figure 33: Geometry selection in COMSOL 

 

Next, the essential parameters can be entered by selecting Parameters under Global Definitions 

in the Model Builder pane. Once parameter values are entered, units can be entered explicitly 

using brackets as shown in Figure 34.  
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Figure 34: Entering parameters with units in COMSOL 

 

Next, selecting Model >> General Form PDE opens up the pane to enter the governing 

equation or equations. COMSOL actively checks units, and raises an error if units are 

mismatched as the equation is entered.  
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Figure 35: Entering the governing equation in COMSOL 

When selecting a mesh, it is most practical to check off Adaptive Mesh Refinement under 

Study >> Step 1: Time Dependent. The simulation can then be run by right clicking Study and 

then clicking Compute.  

Next comes the task of prescribing boundary conditions. Right clicking on General Form PDE 

shows a list of boundary conditions that can be used for the simulation. Upon selecting a desired 

boundary condition, the value or expression may be entered and ascribed to a boundary visually. 

For the simulations in this paper, the Dirichlet Boundary Condition and the Zero Flux condition 

were most heavily utilized. 
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Figure 36: Possible boundary conditions in COMSOL 

Once the simulation is run, results are generated and displayed under 2D Plot Group. To 

generate a1-D profile view, a Cut Line 2D must be created in the geometry. This may be done 

by right clicking on Data Sets. Next, a 1D Plot Group must be created by right clicking on 

Results to graph the values of the dependent variable along the line created in Cut Line 2D 

versus some other variable.  
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All of the data can be conveniently exported as a spreadsheet by right clicking the appropriate 

dataset and clicking on Add Plot Data to Export. Movies of the simulation can be conveniently 

created in the same manner. 

 

Figure 37: Data analysis features in COMSOL 
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Appendix D: MATLAB Scripts 
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SpatiallyHomogeneous_nbar.m 

%Anu Kaushik 

%Reduction-Diffusion Equations 

  

%This program numerically solves for cell density in the 

spatially 

%homogeneous special case for the governing one-dimensional PDE. 

The result 

%is plotted in Figure 11  

  

%The Ohio State University 

%Department of Mechanical and Aerospace Engineering 

  

  

[t,n_bar] = ode45(@changen_nbar,[0,600],.001); 

  

plot(t,n_bar,'LineWidth',2); 

xlabel ('Time (s)','FontSize',14) 

ylabel ('n/n_i _n _f','FontSize',14) 

title('Spatially Homogenous Case','FontSize',14) 

 

changen_nbar.m 

function [ dn ] = changen_nbar( t,n_bar ) 

 

%   This function file is the input to SpatiallyHomogeneous_nbar 

and 

%   describes the parameters used in the plot in Figure 11 

  

s=.000000001; 

n_inf = 2.5e7; 

  

dn = s*n_inf*n_bar*(1-n_bar); 

end 
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SpatiallyHomogeneous_nbar.m 

%Anu Kaushik 

%Reduction-Diffusion Equations 

  

%This program numerically solves for cell density in the steady 

state 

%special case for the governing one-dimensional PDE. The results 

%are plotted in Figure 12 and 14  

  

%The Ohio State University 

%Department of Mechanical and Aerospace Engineering 

  

[x_bar,n_bar] = ode45(@sschange_nbar,[0,1],[.01,0]); 

  

plot(x_bar,n_bar(:,1),'LineWidth',2); 

xlabel ('x/L _r _e _f','FontSize',14) 

ylabel ('n/n_i _n _f','FontSize',14) 

title ('Steady State Case','FontSize',14) 

 

sschangen_nbar.m 

function [ dn ] = sschange_nbar( x,n_bar ) 

  
%   This function file is the input to SteadyState_nbar and 
%   describes the parameters used to plot Figures 12 and 14 
s=3; %3e-2 
D=1; %1e2 
n_inf = 1; 
Lref = 1; 

  
dn = [n_bar(2) 
     -1*Lref^2/D*s*n_inf*n_bar(1)*(1-n_bar(1))]; 

  

  
end 
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TravelingWave_nbar.m  

%Anu Kaushik 
%Reduction-Diffusion Equations 

  
%This program numerically solves for cell density in the 

constant velocity 
%traveling wave special case for the governing one-dimensional 

PDE. The result 
%is plotted in Figure  

  
%The Ohio State University 
%Department of Mechanical and Aerospace Engineering 
clc; clear all; 

  

  
[x_bar,n_bar] = ode45(@travwave_nbar,[0,1],[.999,0]); 

  
plot(x_bar,n_bar(:,1),'LineWidth',2); 
axis([0,1,0,1]);  

  
xlabel ('x/L_e _f _f','FontSize',14); 
ylabel ('n/n_i _n _f','FontSize',14); 
title ('Traveling Wave Case','FontSize',14); 

 

travwave_nbar.m  

function [ dn ] = travwave_nbar( x_bar,n_bar ) 

  
%   This function file is the input to TravelingWave_nbar and 
%   describes the parameters used to plot Figures 15 

  
  Lref = 10; n_inf = 1.0001;  D =.08; s= 2; uref = .82325;  
  u_bar = 1; 

  
dn = [n_bar(2) 
    -1*Lref*uref*u_bar/D*n_bar(2) + -

1*Lref^2/D*s*n_inf*n_bar(1)*(1 - n_bar(1))]; 

  

  
end 

  



  59 
 

inflectionpoints.m  

%Anu Kaushik 

  
clear all; 
clc; 
%This program finds the area of the gap in the wound-healing 

assay computational model 
%by finding the points of inflection of the traveling wave. The 

inflection 
%points of the traveling wave mark the threshold between cell 

and gap in the model  

  
%In a future iteration of this code, as the model starts 

developing wavy 
%fronts, the entire 2D model would have to be imported and the 

inflection points  
%have to be found at incremental distances from the bottom of 

the geometry 
%to the top, as numerical integration is performed. 

  
%The Ohio State University 
%Department of Mechanical and Aerospace Engineering 

  
gapwidth = 1100e-6; %in meters, experimentally dependent 

  
data = load('Elec_ker.txt'); 
d1=diff(data); 
d2= diff(d1); 
plot(d2(:,2)) 
l = length(d2); 
counter=1; 
for i=2:l 
    if d2(i-1,2)*d2(i,2)<0 && (d1(i,2)<-3000 || d1(i,2)>3000) 

%The value of the first derivative is used to eliminate noise 
        xval(counter)=data(i,1); 
        counter=counter+1; 
    end 
end 

  
percentClosure = 1-(xval(2)-xval(1))/gapwidth; 
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