

A Year (or Two) in the Life of Photon Doppler Velocimetry

David B. Holtkamp Hydrodynamic & X-Ray Physics

This is <u>not</u> going to be a "Physics" talk... At least not much... Mostly gadgets, examples, and stuff...

Acknowledgements

- Ted Strand (LLNL) it is a tribute to the quality of his advice that our first generation PDV worked the first time we turned it on
- LANL Pat Rodriguez, Benjie Stone, Lenny Tabaka, Brian Hollander (P-22), Matt Briggs, Will Hemsing (HX-3)
- NSTech Doug DeVore, Araceli Diaz, Adam Iverson, Greg Lare, Vince Romero, Don Rosenberry, Mike Rutkowski, Jason Young, and many other valued collaborators
- STL (Santa Barbara) Bruce Marshall
- And many others at LANL, NSTech, & STL who collaborated on experiments shown here

Our "First" PDV...

P-22 Single Point PDV

Beat frequency = $f_b = f_d - f_0 = 2 (v/c)f_0$

@ 1550 nm and v = 1 mm/µs

 $f_0 = 193414.49 \text{ GHz}$ $f_d = 193415.78 \text{ GHz}$ $f_b = 1.29 \text{ GHz}$

 $V = \lambda/2 \text{ x F}$ V(mm/µs) = 0.775 x F (GHz)

 Single channel shown (2 watt laser can support ~4 pts)

First Data at Santa Barbara (2004)

Ball Rolled Surface (2004)

- Blue is raw signal, green is high passed digitally
- Note that raw signal is > ± ~100 mV

Raw PDV Signal (2004)

- Shock break out to << 1 ns
- Elastic precursor evident
- Can use various methods to estimate velocity "fast" when SNR is good

Bare Fiber + Ball Rolled Surface

• VISAR also shows impact of debris on bare fibers between 5 and 5.5 µs

Los Alamos

SNR @ 1 Time

- Picked a point near 4 µs
- SNR ≈ 10⁴:1 in frequency/ velocity domain

7/20/2006 UNCLASSIFIED Page 9

Later Data (2005) – Tin Ejecta

Raw data can really look pretty bad at times...

Later Data (2005) – Tin Ejecta

Voltage Magnitude for file: PDV2A810.dig Fri May 27 10:59:26 2005 FFT: Overlap: 1024:512

 $V_{fs} = 1.848 \pm 0.030$ km/s

Asay foil probe shots (Sandia)

Asay Foil PDV data

- Raw (blue)
 & baseline
 corrected
 (green)
- Foil (and fringe rate) accelerates with time

Asay foil probe shots (w/ Mike Furnish @ Sandia)

Los Alamos

Sabot Velocity (LiF-LiF Shot)

LiF-LiF Impact (March 2006)

- LiF-LiF gun shot (3/2006)
- Good fringe contrast
- Single velocity at surface

LiF LiF Impact (March 2006)

- With good fringe contrast can measure velocity with good time resolution
- Elastic precursor and plastic wave resolved + ringing in metal coating at LiF LiF interface

7/20/2006 UNCLASSIFIED Page 17

Compare Pins to PDV (May 2006)

Shot	Pin Velocity (m/s)	PDV (#1)	PDV (#2)	PDV Average
56-06-17	268.7 ± 0.4 m/s	268.3706 ± 0.0067 m/s (fit error only)	268.5900 ± 0.0067 m/s (fit error only)	268.48 ± 0.16 m/s 268.62 ± 0.16 m/s (corrected)
56-06-18	742.9 ± 0.5 m/s	742.555 ± 0.012 m/s (fit error only)	742.934 ± 0.017 m/s (fit error only)	742.74 ± 0.27 m/s 743.14 ± 0.27 m/s (corrected)

- 10 pin block on muzzle mounted target (Brian Jensen)
- Corrected PDV data (× 1.00053761) for 1.88° steering (from 4° angle polish on fiber tip)
- Absolute PDV values agree with Pins (to within errors)

Quartz-Quartz Impact (July 2005)

Los Alamos

ó

Thermal Cookoff of HE

- L. Smilowitz, et al (C & HX Divisions) investigate thermal runaway of HMX explosives in heated, confined HE assemblies (figure is for a windowed configuration)
- Large raw PDV signal (lower left) allows possibility of self-triggering data acquisition (lasers on for minutes at a time)

20

15

10

5

-5

-10

-15

-20

-25

-30

0

Los Alamos

7/20/2006 UNCLASSIFIED Page 20

Bare HE Shots

- Characterization of plane wave HE lens systems
- Streak + slits looking at shock light for planarity
- Blind optical pin for SBO
- PDV on bare HE for SBO & velocities (?)
- Better scopes (6804 & 6154)
 & better detectors

1st Shot

- Zoom in on shock
 breakout
 feature
- ~300 ps
 (FWHM)
- SBO to
 < 100 ps

PDV Data (Zoomed)

- 256 pt FFT (256 x 25 ps x 50% overlap = 3.2 ns/bin)
- Breakout @ 16.4782 μs
- Probe hit @ ~16.621 µs
- Air shock @ ~7.4 km/s
- Scope artifact @ ~8.4 km/s

Air Shock (Zoomed)

- Air shock region before probe impact
- 25 ps per point
- F = 9.53 GHz (± 0.05 GHz)

Zoom Near Breakout

- 64 pt FFT \rightarrow 64 x 25 ps/pt x 50% overlap = 0.8 ns/bin
- ~6-7 ns before breakout @ 6.95 μ m/ns ≈ 45 μ m into TNT (?)

Los Alamos

Other Shots (#612)

- 64 pt FFT \rightarrow 64 x 25 ps/pt x 50% overlap = 0.8 ns/bin
- ~6-7 ns before breakout @ 6.95 μ m/ns \approx 45 μ m into TNT (?) • Los Alamos

#612 in Frequency Domain

• F = 13.75 GHz @ 16.595 µs

#612 in Time Domain

• 25 ps/pt sampling rate; ~15 GHz scope analog bandwidth

Krakatau Installation

• 12 point system (10 used) with two 5 W lasers & recording

7/20/2006 UNCLASSIFIED Page 29

Los Alamos

Unicorn Installation

- 8 channels (2 x 4 point systems)
- 2 lasers (not shown)
- 4 scopes (2 voltage coverages per channel)

"Handheld" PDV

- Miniature PDV
 - Developed for DOE flight applications
 - 12 V @ < 1 A
 - Ready < 100 ms after power on
 - Multimode fiber
 - Up to 5 km/s
 - Analog downlink for recording on ground
 - Patent pending

Probe Assortment & Applications

- Bare fiber probes angle polished (2° 4°) to make ~ -20 to -30 dB return loss for unshifted
 - Useable from ~1 mm to > 10 mm standoff (perhaps longer?)
 - Inexpensive, small, easy to use, alignment forgiving, but not very efficient at large distance from most surfaces
- Commercial probes (3 to 6 mm diameter) e.g. Oz Optics
 - Collimated & focused probes
 - Useable from ~1 mm to > 100 mm; efficient light return!
 - Cost a bit higher (\$100 \$200)
 - Alignment can be tricky from mirror surfaces
- Miniature collimated probes e.g. Lightpath
 - ~ 1.25 mm (D) x 3 mm (L)
 - Flexible to implement, but relatively inefficient (diffuse surface only)
 - Cost (now) ~\$150 ea (used to be ~\$30 ea...)

Oz & Lightpath Probes

• Trying to standardize on bare fiber (& Lightpath) probe tube diameters, length, etc for multiple users

Probes on Kerinei & Krakatau

Probes on Kerinei & Krakatau

Probes on Kerinei & Krakatau

R2 (B)

22	16	10	0	10	16	22	28	
A06				A05			A04	70.0
								78.0
A17				A16			A15	80.0
								83.5
	A26				A25			84.5
A32		A31	18			A30		87.5
								88.5
			15	A39			A38	90.0
	A50				A49			87.0
A52								86.0
								85.0
			8	A57			A56	82.5
								81. 5
A67			1	A66			A65	75.0
	R3 (C)							

Ultra-Miniature Probes

- Corning "Optifocus"
- Monolithic collimator
 - Fusion spliced
 - No epoxy
 - Single AR coated surface
- Low cost (\$40-50 ea)
- Concerns
 - Efficiency
 - Alignment accuracy to probe assembly

Los Alamos

Future Work (We Hope!)

- Memo coauthored with Vince Romero (Bechtel Nevada)
- Complimentary to current multipoint VISAR approaches
- 0.7" (< 18 mm) tip-to-tip probe diameter (above is ½" ball; really likely to be 5/8" for practical reasons)
- Interferometric OTDR to locate probe tip and target surface to few microns

Future Probes

- Specialty Probes for Hydros & Subcrits
 - Optical Pin Domes (e.g. Vince Romero's concept)
 - High temperature pin domes (e.g. Pat Rodriguez)
 - Novel concepts (e.g. Bruce Marshall, Vince Romero & others)
- Ultra-miniature probes
 - Z capsule "pin" shots
- Ultra-long Standoff Probe
 - Use Nikon lens and retro tape fringes at > 30 m (!)
- Combined Multifunction Probes
 - VISAR + PDV
 - PDV + Pyrometry
 - Reflectometry? Ellipsometry? Others?

Rise Time of Detector + Recording

- Used pulsed laser (instead of CW shot laser for OTDR)
- 10-90% rise time
 ~125 ps
- Scope ≈ 8 GHz Detectors ≈ 15 GHz

OTDR in (Near) Shot Configuration

Post-Insertion

Free surface probes (2)

4 MP PDV Probes (3 of 4 good?)

Non-Destructive Acoustic Testing Technique*

* Also known as "thumping the ESA plate"

Data Analysis Approaches

Data Analysis Approaches

- FFT based spectrogram (Gabor) always reliable
 - Good place to start; compromise between time and velocity resolution; best with weak fringes and low SNR in frequency domain, but may not be optimal for temporal resolution
- When fringe contrast high -
 - Hilbert transforms are attractive but unforgiving of baseline shifts and detector/digitizer harmonics; some care needed
 - Hilbert-Huang transforms for multiple discrete frequencies (?)
- For most cases where fringe contrast is moderate
 - Some optimal balance exists between velocity and time resolution for particular data sets – not global optimum for all
 - Wavelet or Wigner-Ville transform optimal? Needs more work with knowledgeable DSP folks...

Doug's 4 Big Questions

- PDV vs. VISAR Accuracy
 - Demonstrated ~0.1% absolute accuracy, better perhaps in progress
- PDV Rise Time
 - < 100 ps in signal; currently few ns in velocity (depends on velocity (frequency) and SNR in frequency domain)
- PDV Performance on Sweeping Wave
 - VISAR has problems also; PDV would show increasing contrast in frequency domain as surface across spot accelerates (small spot size with single mode fiber would be easier than with larger VISAR fibers)
- Performance on Poor Surface (e.g. goes black on shock breakout)
 - Demonstrated robust performance with large variations in SNR in frequency domain, of course if reflectivity is == 0, then of course nothing is seen (or can be), but PDV can be robust to large changes in surface reflectivity and recover velocity (frequency) when SNR improves

PDV vs. VISAR

- PDV is well suited to:
 - Long tracking distance on ill-conditioned surfaces
 - Ejecta, rubble, multiple velocities
 - More compact, easier installation & operation
- VISAR is well suited to:
 - Measuring a small velocity or velocity changes *quickly*

Summary

- PDV does <u>not</u> replace VISAR both are useful diagnostics that should be chosen (or used together) as the physics requirements dictate
- Fielded > 100 shots at LANL, Sandia, NTS, other locations; multiple systems fielded simultaneously in some cases
- Continuing to develop/refine for specific applications – probe geometries tailored to experimental requirements
- Progress needed in data analysis approaches and with new probe requirements tailored to experimental requirements

