CROPS

and cropping sequences as related to

SOIL TYPES

J. Benton Jones, Jr.

O. L. Musgrove

H. J. Mederski

OHIO AGRICULTURAL EXPERIMENT STATION

WOOSTER, OHIO

This page intentionally blank.

CROPS AND CROPPING SEQUENCES AS RELATED TO SOIL TYPE

J. Benton Jones, Jr., O. L. Musgrave; and H. J. Mederski ${ }^{1}$

INTRODUCTION

Every soil sample submitted to the Agricultural Extension Service Soil Testing Laboratory, Columbus, Ohio is accompanied by a questionnaire which describes the soil type and cropping sequence which this sample represents. This bulletin is a summarization of $104,0.41$ questionnaires submitted by Ohio farmers between July 1, 1956 and July 1, 1959 relating cropping sequence with soil type.

This bulletin provides information not included in Agricultural Census figures which are normally reported by county; therefore, the information is unique since it relates cropping sequence with soil type.

PROCEDURE AND PRESENTATION OF RESULTS

Information from the questionnaires was placed on IBM cards, which used to process the data into the various tables cited in the text ${ }^{2}$.

Figure 1 shows the location of the major soil types. The heavy lines delineate regions of major soil divisions. Within these regions, the light lines delineate the major soil type areas ${ }^{3}$. Thereare 15 major soil types ${ }^{4}$ given in Figure 1, the numbers refering to the soil type area as given in the accompanying table.

[^0]Figures 2 through 5 show the percentage of crop land devoted to corn, soybeans, small grain, and meadow or pasture, respectively, by major soil type. Figures 6 through 8 show the percentage of crop land devoted to continuous corn, permanent pasture and rotation cropping, respectively, by major soil type. These figures are given to provide the the reader with a general panaromic view of crop land utilization for four agronomic crops grown in Ohio and three selected agronomic cropping sequences. For more detailed information, reference should be made to the tables.

The tables give the percentage of crop land devoted to a particular cropping sequence by soil type. In Table 1 , the percentage of crop land devoted to 11 cropping sequences is given for 59 soil types. In Table 2, the percentage of crop land devoted to tobacco, tomatoes and sugar beets is given by soil type.

The percentage of crop land devoted to row crops is greater in western Ohio than eastern and southern Ohio. In northwest Ohio, com and soybeans occupy 30 to 50 percent of the crop land (Figures 2 and 3). By contrast, meadow and pasture occupy from 50 to 80 percent of crop land in the extreme southern and eastern half of Ohio (Figure 5). The percentage of crop land in corn and small grains is fairly constant over the state except for the extreme southern and southeastern parts (Figures 2 and 4).

The percentage of crop land devoted to continuous corn ranges from 1 to 5 percent over most of the state except in northwest Ohio and along the lake where the percentages are 10 and 12 percent, respectively, (Figure 6).

Sizable percentages of the crop land in com is continuous corn. Using the percentages given in figures 2 and 6,5 to 30 percent of the crop land in corn was found to be in continuous corn. The highest percentages occur in the Hoytville (26%) and Lacustrine (30%) series soils, while the lowest percentages are to be found in the Blanchester (5\%) and Cambridge (6%) soil series. For the remaining major soil series, the percentage of corn land in continuous corn ranges from 8 to 14 percent. For the entire state, including all soil types listed in Table 1, 22 percent of the corn land in Ohio is in continuous com. Sizeable portions of the bottom land or terrace soils are in continuous corn. The percentage figures for these soils may be found in Table i.

Crop land devoted to soybeans is almost entirely limited to northwest Ohio (Figure 3). Rotations including soybeans occupy from 25 to 75 percent of the cropland in the Lake Plain area (Table 1).

In Ohio, 67 to 97 percent of the crop land is devoted to rotation farming (Figure 8). Northwest Ohio has the largest proportion of land in rotation. The smallest proportion of land in rotation is found in southern and southeastern Ohio due to the sizeable portion of the crop land in permanent pasture (Figure 7).

On the average, corn-smallgrain-meadow, corn-soybeans-smallgrainmeadow, and corn-smallgrain-meadow-meadow, are the most frequently used rotations over the entire state (Table 1). However, in particular areas, specific rotations are used more frequently than others. For instance, corn-oats-wheat-meadow is widely used only in northeast Ohio, while in western Ohio, corn-corn-smallgrain-meadow is more frequently used than elsewhere:

DISCUSSION

The cropping sequences employed by Ohio farmers tend to follow the topography characteristics of the land. The level plain soils in western and central Ohio are devoted largely to row crops. In the rolling hill counties in southern and eastern Ohio, the percentage of crop land in meadows and permanent pastures is high. The hazards of erosion limit the frequency of row crops in these areas. Of particular interest are the fairly large percentages of corn land devoted to continuous corn. Even in the rolling hill areas of Ohio, sizeable percentages (10 to 15 per cent) of corn land are being continuously cropped. However, much of this corn is located on the terraces and bottom lands (See Table 1).

The cropping sequences employed by farmers on specific soil types within the major soil areas vary considerably (Table 1). For example, in the Lake Plain area, the percentage of crop land devoted to continuous corn varies from 1 to 16 percent. Much of this variation is probably due to local soil characteristics, particularly texture and drainage. The heavy Paulding-Latty soils are poorly drained, while the light textured Ottokee-Tedrow soils are well drained. The heavy Paulding-Latty soils, being more difficult to manage, are less frequently plowed and cultivated.

In addition to these agronomic factors which influence cropping sequences employed by the Ohio farmer, availability of markets and government regulation also exert their influence. An estimate of, these influences is beyond the scope of this bulletin.

TABLE 1. -Percentage of crop land devoted to 11 cropping sequences catagorized by soil type

TABLE 1.-continued-Percentage of crop land devoted to 11 cropping sequences catagorized by soil type

TABLE 1.-continued-Percentage of crop land devoted to 11 cropping sequences catagorized by soil type

Soil type	$\begin{aligned} & E \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & D \\ & E \\ & E \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{y} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{3} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								
Cincinnati-Rossmoyne-Jessup-Grayford-Edenton	1	0	17	0	5	4	23	3	3	15	14	2447
Fairmont-Maddox-Heitt-Bratton-Hagers-TownCedarville	1	0	5	0	0	2	17	3	9	22	28	374
Marengo Condit-Bennington Alexandria-Cardington	$\begin{aligned} & 3 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 22 \\ & 19 \\ & 24 \end{aligned}$	$\begin{array}{r} 8 \\ 11 \\ 10 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 11 \end{aligned}$	$\begin{array}{r} 10 \\ 7 \\ 7 \end{array}$	$\begin{aligned} & 19 \\ & 20 \\ & 23 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 9 \end{aligned}$	$\begin{aligned} & 1157 \\ & 2372 \\ & 3192 \end{aligned}$
Hanover-Fallsburg-MillwoodLoudonville	1	0	40	3	0	0	19	0	6	12	20	550
Olmsted-Lorain-FriesMonroeville	12	0	13	15	24	6	5	0	0	0	8	250
Canadia-Canadice-Paines-ville-Wilmer	12	0	22	13	16	5	6	0	0	6	10	203
Plainfield-Coloma	12	0	26	9	9	6	7	0	0	10	12	196
Trumbull-Mahoning Ellsworth	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{array}{r} 0 \\ 0 \end{array}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	$\begin{array}{r} 17 \\ 0 \end{array}$	$\begin{aligned} & 4 \\ & 7 \\ & \hline \end{aligned}$	$\begin{array}{r} 2 \\ 2 \\ \hline \end{array}$	$\begin{array}{r} 22 \\ 8 \end{array}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 13 \\ & 11 \end{aligned}$	$\begin{array}{r} 14 \\ 9 \end{array}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 1840 \\ & 1498 \end{aligned}$

TABLE 1.-continued-Percentage of crop land devoted to 11 cropping sequences catagorized by soil type

Soil type		$\begin{aligned} & \text { n } \\ & 0_{0}^{0} \\ & 0 \hat{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$								
Montgomery-Fox-OckleyMillereek	7	1	24	2	15	15	16	6	3	4	4	1150
Chilo-Luray-ReynoldsBlago	13	1	18	7	6	8	14	2	5	10	13	615
Sebring-Purdy	6	0	17	9	5	6	23	2	6	12	12	504
Mentor-Glenford-Holston-Monogahela-Elk-Captina	1	0	20	8	0	0	20	0	1	9	16	1440
Sloan-Wabash-Algiers	21	2	18	0	14	16	10	4	2	3	3	936
Genessee-Ross-ShoalsDefiance	18	2	18	1	14	17	9	4	2	3	4	1408
Elkins-Dunning Wayland-Atkins-Melvin	$\begin{aligned} & 19 \\ & 11 \end{aligned}$	1	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	4	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \end{array}$	$\begin{aligned} & 14 \\ & 16 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \\ & 17 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	$\begin{array}{r} 1083 \\ 462 \end{array}$
Huntington-Linside-Pope-Philo-Chagrin-Lobdell	14	0	17	3	2	8	16	4	6	9	17	1623
Carlisle-Willette-Kerston-Edwards-Warners-Tawas	59	3	7	1	6	4	6	0	1	1	1	340
Average	6.6	2.1	16.4	8.5	15.0	7.7	15.0	3.1	5.0	11.8	12.2	

TABLE 2.-Percentage of crop land devoted to tobacco, tomatoes, or sugar beets either in continuous culture or rotation catagorized by soil type

KEY TO MAP

Figure 1. Major Soil Types.

Figure 2. Percentage of crop land devoted to corn.

Figure 3. Percentage of crop land devoted to soybeans.

Figure 4. Percentage of crop land devoted to small grain.

Figure 5. Percentage of crop land devoted to rotation meadow or pasture.

Figure 6. Percentage of crop land devoted to continuous corn culture.

Figure 7. Percentage of crop land in permanent pasture.

Figure 8. Percentage of crop land in rotation with two or more crops.

This page intentionally blank.

[^0]: ${ }^{1}$ Assistant Professor; Extension Agronomist and Associate Professor, The Ohio State University; and Professor of Agronomy, The Ohio Agri cultural Experiment Station.
 ${ }^{2}$ The authors are indebted to Dr. C. R. Weaver, Station Statistician, and the staff of the Statistics Laboratory, Ohio Agricultural Experiment Station for assistance in processing these data.
 ${ }^{3}$ See "Fertility Status of Ohio Soils" by Jones, J. B., Mederski, H. J. and Musgrave, O. L. Ohio Agr. Expt. Sta. Res. Bul. 894, 1961.
 ${ }^{4}$ Morse, H. H. and Bone, S. 1958. Understanding Ohio Soils. Ohio Agr. Ext. Service Bul. 368.

