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Abstract

Urban agriculture (UA) is rapidly expanding in the majority of Ohio’s cities and is widely 

recognized as a means of improving the ecological conditions, quality of life, and food security 

in urban areas. This project will apply the soil quality evaluation process to soils being used for 

specialty crop production in urban areas in Ohio with the goal of better understanding their soil 

properties and identifying appropriate management strategies.  The project is focused around two 

major components: an experimental research site and a field study of production sites. The 

experimental site is located in a series of adjacent vacant urban lots in Youngstown OH where 

vacant houses were recently demolished and removed.  The demolition process often leaves soils 

severely degraded and this experiment will document the soil’s initial condition following 

demolition, as well as the ability for the soil to be improved for UA by applying organic matter.   

Experimental treatments focused on applying organic soil amendments produced from urban 

green wastes will be applied in a replicated, complete block experimental design, including the 

following treatments: 1) control, 2) leaf compost, 3) leaf compost + intensive cover cropping, 4) 

leaf compost + hardwood biochar.  All plots are split plots comparing in ground cultivation with 

cultivation in 20cm raised beds.  The experiment will be run for the 2011 and 2012 growing 

seasons.  Data will be collected on vegetable crop yield and on soil physical, chemical and 

biological properties and analyzed through both hypothesis testing and soil quality indexing. 
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Compaction is a primary constraint at the site with bulk density values of 1.79 g cm-3  for in 

ground plots and 1.55 g cm-3  for raised beds.  Crop yield data from 2011 demonstrate strong 

treatment effects on both crop yield (p=0.002) and harvest index (p=0.008).  Both compost 

amended and compost + biochar amended plots had significantly greater crop yields than control 

plots, while compost + biochar plots had the highest harvest index values.  An additional study in 

2012 will conduct soil quality assessment at urban market gardens in Ohio and provide producers 

with a soil quality report and management recommendations. Expected outcomes include 

improved knowledge and management of UA soils in the region.



1. Introduction

	

 The formerly industrial cities of the North Central region have become a rapidly 

expanding frontier for urban agriculture (UA) in the US.  As populations in these cities have 

declined, a legacy of vacant land and properties has been left behind (Table 1). The city of 

Cleveland currently has more than 1,500 hectares (ha) of vacant land in the city, while 

Youngstown, Ohio contains more than 20,000 vacant city parcels (CUDC 2008).  UA has 

emerged as an important means of utilizing vacant land and is capable of producing numerous 

societal benefits, including: improved nutrition, increased food security, and income generating 

opportunities (Smit et al. 1996).  Urban soils, however, are highly variable and subject to high 

levels of anthropogenic degradation (Lehman and Stahr 2007).  An understanding of local soil 

properties is a basic starting place for sustainable agriculture, yet this information is simply not 

available in most urban areas.

	

 UA has been expanding rapidly in the North Central region of the U.S. during the past 

few years. Extension personnel in Cleveland and Detroit estimate that 40-50 and over 20 market-

based urban farms have come online in the past five years in those two cities, respectively (Pers. 

Comm.). Many UA sites are located in “urban food deserts,” or areas where citizens do not have 

access to nutritious foods in the quantities required by dietary recommendations (Wrigley 2002, 

CUDC 2008). Participation in UA has been linked to increased consumption of fruits and 

vegetables at both the household (Alaimo et al. 2008) and neighborhood (Zezza and Tasciotti 

2010) levels. UA has also demonstrated the potential to generate economic revenue in 

impoverished areas in the region (Mallach and Brachman 2010; CUDC 2008). A recent report by 

the Brookings Institute suggested that  UA can play a significant role in improving quality of life 

in urban areas in Ohio, but that greater technical support is needed to increase success among 



urban producers (Mallach and Brachman 2010).  Currently, very little information exists about 

the characteristics of urban soils or options for their management in the North Central region, 

and little research has been conducted on crop production in urban areas in the U.S. as a whole.  

Even the published soil surveys lack specific information about urban soils and tend to group 

them together into generic urban land complexes.  This project will address this unique 

knowledge gap by generating important background data and management recommendations for 

urban soils.

Table 1. Vacant land and urban agriculture in shrinking cities. Table 1. Vacant land and urban agriculture in shrinking cities. Table 1. Vacant land and urban agriculture in shrinking cities. Table 1. Vacant land and urban agriculture in shrinking cities. 

Youngstown, 
OH Cleveland, OH Detroit, MI

% Change in Population

(1950-2007)
- 61% - 57% -55%

Number of Vacant Parcels 23,000 >18,000 >60,000 

Area of Vacant Land	

 >2,800 ha  >1,500 ha 1,900 - 10,000 ha

Urban Farms 

and Community Gardens 
15 * 75 * >300 

Market/Production-based 

Urban Farms 
2 * 25-35 * 20

* Indicates sites founded during past five years.  Table adapted from Beniston and Lal (2012).* Indicates sites founded during past five years.  Table adapted from Beniston and Lal (2012).* Indicates sites founded during past five years.  Table adapted from Beniston and Lal (2012).* Indicates sites founded during past five years.  Table adapted from Beniston and Lal (2012).

	

 The soil quality framework is a useful tool for assessing site-specific soil conditions and 

developing adaptive management strategies.  The concept of soil quality (or soil health) is 

generally defined as “the ability of a soil to function within ecosystem boundaries to sustain 

biological productivity, maintain environmental quality and promote plant, animal and human 



health”(Doran and Parkin 1994).  Healthy soil function promotes the robust functioning of the 

wider ecosystem.  Many essential ecological services are provided by soils, including: 

hydrological cycling, supporting plant growth, the cycling and storage of plant nutrients, the 

decomposition of organic matter, and the moderation of biogeochemical cycles (Daily et al. 

1997).    Deriving these functions from soils may be especially critical in urban areas, where 

areas of soil and vegetation must provide ecosystem services within a much larger landscape of 

impervious surfaces. 

	

 Soil quality is typically evaluated by field and laboratory analyses of a suite of soil 

physical, chemical, and biological properties.  Values measured for individual properties are then 

scored with scoring functions that represent the range in expected values for that soil property 

based on soil type, soil texture, and ecological conditions (Karlen and Stott 1994; Andrews et al. 

2004).   Individual property scores are then tabulated into an index which results in an overall 

soil quality score.  

	

 This study will utilize soil and ecosystem science methods to address a current and timely 

topic for natural resource management for the North Central U.S.: the utilization of vacant and 

degraded urban land for UA.  Large areas of vacant land exist in many cities of our region and 

these areas are increasingly being used for UA and public green spaces (Table1).  Many of these 

sites, like the study site in this project, have undergone a demolition process to remove vacant 

houses and buildings.  The demolition process often leaves soils at these sites severely 

compacted to the extent that plant growth and water infiltration are inhibited (USEPA 2011).  

Importing topsoil to improve soil conditions is an option for improving these sites, but requires 

higher costs and ecological impacts associated with sourcing the topsoil.  Soil amendments made 

from processed organic matter such as compost and biochar offer a potential solution to 



revitalizing these disturbed soils by applying materials from the urban green waste stream to 

them.  This process has the potential to improve soil restoration and UA outcomes at these sites, 

reduce costs associated with amending these soils, and reduce the export of green wastes from 

urban areas.  

	

 This study has established a soil research garden on a series of vacant urban lots where 

houses were demolished during the previous year with the following research objectives: 1) To 

assess soil properties and soil quality in a vacant lot soil where buildings have recently been 

demolished; 2) To determine the ability of organic matter amendments to improve soil quality 

and vegetable crop production in a recently disturbed vacant lot soil; and 3) To compare crop 

growth and soil properties in plots with raised beds with 10cm of soil from the site with plots 

where plants were grown directly in the ground. Data are being collected on numerous soil 

properties both in the time directly after building demolition and after the soil has been amended 

with different types of organic matter, thus providing unique and valuable information relevant to 

the management and restoration of urban soils following building demolition.  

2. Methods

2.1 Study Site

	

 The experimental site for this project is located in the Idora Neighborhood, on the south 

side of Youngstown, OH.  Youngstown is a city whose population has decreased dramatically 

through the past 50 yrs (Table 1) and vacant property/land reuse is currently a major topic of 

interest in the city.  The Idora neighborhood contains a large number of vacant lots and is also 

home to a few very active community groups.  



	

   The experimental plots were established during spring 2011 on 3 contiguous urban lots 

where vacant homes were deconstructed and demolished the previous autumn and winter.  This 

provides the opportunity to assess soil conditions and the effect of our management directly 

following the heavy disturbance of deconstruction.  

2.2 Experimental design

	

 The experimental plots for this project are laid out according to a split plot randomized 

complete block design.  There are three primary treatments of differing organic matter inputs to 

the soil, and a fourth unamended treatment that serves as a control.  The treatments are replicated 

six times for a total of twenty-four main plots.  Additionally, all plots contain a split-plot 

treatment comparing cultivation in raised beds, with additional soil from the site added, with 

planting crops directly into the ground.  Each full plot is 6 m long by 1.5 m wide, and the split 

plots are 3 m long by 1.5 m wide.  

	

 The treatments all contain compost that was produced from urban leaf wastes by a 

landscaping company near the site (Table 2).  The compost (Cmp) was added to all treatment 

plots at a rate of 15 kg m-2 or 150 Mg ha -1.  This consisted of applying an approximately 10 cm 

deep layer of compost to each plot and incorporating through tillage, which is equivalent to 

approximately 50% by volume application to the soil surface (0-10 cm).  The compost + biochar 

(C+B) treatment also received 20 Mg ha -1 application of biochar produced from hardwood 

feedstock.  The compost + intensive cover cropping (ICC) treatments was planted to Sorghum x 

Sudangrass (Sorghum bicolor X Sorghum bicolor subsp. drummondii) for the first summer 

season.  Tillage radish (Raphanus  sativus) was then be sown into the Sorghum x Sudangrass as 

an autumn cover crop.  All plots were planted with annual ryegrass (Lolium multiflorum) as a 

winter cover crop.



Table 2. Experimental treatments. Table 2. Experimental treatments. 

Primary Experimental Treatments Split Plot Treatment

1) Control 1) In Ground Cultivation

2) Compost (15 kg m-2)

1) In Ground Cultivation

3) Compost (15 kg m-2) + Biochar (2 kg m-2) 2) 20cm Wooden Raised Beds 
with 10cm additional soil from 
on site4) Compost (15 kg m-2) + Cover Cropping 

(Sorghum X Sudangrass)

2) 20cm Wooden Raised Beds 
with 10cm additional soil from 
on site

	

 Crop plants were established in the plots in early June 2011.  In 2011, paste tomatoes 

(Solanum lycopersicum), swiss chard (Beta vulgaris subsp. cicla), and sweet potatoes (Ipomoea 

batatas) were each planted in two full replications of soil treatments.  This planting scheme was 

utilized to simulate the diverse cropping systems found in small scale vegetable production and 

to represent vegetable crops of fruiting, vegetable, and root types. Crops were primarily rain 

irrigated with supplemental irrigation through dry periods.  A drip irrigation system was used to 

provide uniform irrigation throughout all plots. 

2.3 Soil analysis methods

	

 Soil samples were collected from each split plot at 0-10 and 10-20 cm depths.  Samples 

included both intact core samples and composited bulk soil samples.  All plots were sampled 

prior to the onset of treatments to assess baseline conditions at the site.  Soil analyses will be 

performed on both the baseline samples and those collected in autumn 2012 following two full 

growing seasons. 

	

 Soils from the site are being analyzed for a suite of soil physical, chemical and biological 

properties.  Results presented in this report, however, reflect preliminary findings and thus 



contain results from a small subset of the soil analyses.  Analyses presented include the physical 

methods of penetration resistance (Bradford 1986) and bulk density (core method) (Blake and 

Hartge 1986), and the chemical method of microwave assisted digestion and full element 

analysis (U.S. EPA 1994).  Penetration resistance (PR) was measured using static hand cone 

penetrometer (Eijkelkamp, Giesbeek, The Netherlands).  The penetrometer was inserted 

vertically downward into the soil at a speed of approximately 1 cm s-1.  Measurements were 

taken in triplicate for each split plot for both the 0-10 and 10-20 cm depth.  Field PR was 

calculated by dividing the penetrometer reading (in N) by the base area (cm2) of the 

penetrometer cone, and the units then converted to MPa.  Field PR was measured in early June 

on baseline soil conditions, and in mid-August and late September after treatments were applied.  

	

 For the elemental analysis air dried soil was passed through a 2mm sieve.  Samples were 

then analyzed according to U.S. EPA method 3051a (U.S. EPA 1994), microwave-assisted aqua 

regia digestion followed by inductively coupled plasma-atomic emission spectroscopy (ICP-

AES) analysis at the Environmental Soil Chemistry Lab at The Ohio State University. 

2.4 Crop plant analyses

	

 Vegetable crop yields were recorded at field moisture content.  Swiss chard was harvested 

completely and yield recorded on 8-12-11.  Tomatoes yields reflected two harvest dates 9-1-11 

and 9-19-11.  Vegetable crop yields were sorted according to visual inspection, and only those 

deemed of marketable condition were included in the yield measurement.  For vegetable crops, a 

harvest index was calculated by dividing the mass of marketable crop yield by the total plant 

biomass for each crop.  Sorghum sudangrass was also harvested at two dates 8-5-11 and 9-27-11, 

and its yield values are presented in dry weight, following oven drying at 60 ˚C for 24 h.  



2.4  Statistical analyses

Baseline soil properties were analyzed using a one-way analysis of variance (ANOVA) in JMP v 

9 (SAS Inc., Cary NC) with organic matter treatments as the treatment effect.  Tukey’s honest 

significant difference (HSD) test (α=0.05) was utilized as a mean separation procedure. Crop 

yield data were analyzed using a split-plot analysis of variance ANOVA in PROC GLM of SAS 

v9.2 (SAS Inc., Cary NC).  Organic matter treatments were treated as the primary treatment 

effect and raised beds as the split plot.  

3. Results

Results presented in this report reflect measurements taken during the first growing season of a 

two year project, and are thus considered preliminary.  A full presentation of all measurements 

will be in preparation following the 2012 growing season. 

3.1 Soil physical properties

	

 Baseline soil penetration resistance (PR) were significantly higher in the In Ground (G) 

plots than in the Raised Bed (RB) plots in both the 0-10 cm (G 8.31 MPa,  RB 3.01 MPa) and the 

10-20 cm depth (G 9.43 MPa, RB 7.63 MPa) (Table 3).  These values all reflect conditions that 

can be considered compacted.  The Cornell Soil Health Program has reported that PR levels 

above 2.07 MPa (or 300 psi) are restrictive to root growth (Gugino et al. 2009).

	

 PR levels showed a significant reduction from the control plots under all of the 

experimental treatments during the second sampling date at both the 0-10 and 10-20 cm depths 

(Table 4).  Control plots also showed decreased PR levels after planting, compared with the 

baseline values.  At the third PR sampling date, Cmp and C+B treatments both demonstrated 

significant decreases in PR levels compared with the control at the 0-10 cm depth (Table 4).  C



+B and ICC treatments demonstrated significantly reduced PR values compared with the control 

at the 10-20 cm depth.  

Table 3.  Baseline soil physical properties.Table 3.  Baseline soil physical properties.Table 3.  Baseline soil physical properties.Table 3.  Baseline soil physical properties.Table 3.  Baseline soil physical properties.Table 3.  Baseline soil physical properties.

Depth Split Plot Bulk Density 
(g cm-3)

Field Penetration 
Resistance (MPa)

10cm In Ground 1.79 A 8.31 A

Raised Bed 1.55 B 3.01 B

20cm In Ground 9.43 A

Raised Bed 7.63 B

Capital letters indicate t-groupings from Tukey’s HSD test of means (α=0.05).Capital letters indicate t-groupings from Tukey’s HSD test of means (α=0.05).Capital letters indicate t-groupings from Tukey’s HSD test of means (α=0.05).Capital letters indicate t-groupings from Tukey’s HSD test of means (α=0.05).Capital letters indicate t-groupings from Tukey’s HSD test of means (α=0.05).Capital letters indicate t-groupings from Tukey’s HSD test of means (α=0.05).

	

 Results from the baseline sampling date indicated that the soils in the RB plots had significantly 

lower bulk density (BD) (1.55 g cm-3) than the soils in the G plots (1.79 g cm-3).  Both of these 

results indicate significant soil compaction at the site, as BD values ranging from 1.4 - 1.7 g 

cm-3 , depending on soil type, have been reported to have negative effects on root growth, while 

BD values ranging from 1.5 - 1.8 g cm-3 are considered restrictive to root growth (NRCS 2000). 

	

 Compaction has been observed in a number of previous studies of urban soils (Beniston 

and Lal 2012) and has often been associated with decreased rates of water infiltration in urban 

areas (Gregory et al. 2006; Pit et al. 1999).  Results presented here support earlier observations 

by U.S. EPA  (2011) that vacant urban lots where building demolition has occurred are subject to  

severe soil compaction.  These results also indicate, however, that widely available soil 

treatments such as green-waste compost are effective in reducing reducing soil compaction levels 

(Pit et al. 1999). 



Table 4. Field penetration resistance (PR) measurements for 2 dates. Table 4. Field penetration resistance (PR) measurements for 2 dates. Table 4. Field penetration resistance (PR) measurements for 2 dates. Table 4. Field penetration resistance (PR) measurements for 2 dates. Table 4. Field penetration resistance (PR) measurements for 2 dates. Table 4. Field penetration resistance (PR) measurements for 2 dates. Table 4. Field penetration resistance (PR) measurements for 2 dates. 

Date - 8/12/11Date - 8/12/11Date - 8/12/11 Date - 9/25/11Date - 9/25/11Date - 9/25/11

Depth (cm) Treatment Field PR 
(MPa)

Treatment Field PR 
(MPa)

0-10 Control
3.50 (0.32) A

Control
1.80 (0.18) A

Cmp
1.16 (0.32) B

Cmp
0.91 (0.18) B

Cmp + 
Biochar 1.26 (0.32) B

Cmp + Biochar
0.76 (0.18) B

Cmp + ICC
1.08 (0.32) B

Cmp + ICC
1.14 (0.18) AB

10-20 Control
6.36 (0.41) A

Control
4.47 (0.22) A

Cmp
3.92 (0.41) B

Cmp
3.64 (0.22) AB

Cmp + 
Biochar 3.73 (0.41) B

Cmp + Biochar
3.12 (0.22) B

Cmp + ICC
4.26 (0.41) B

Cmp + ICC
3.55 (0.22) B

Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).

3.2 Soil chemical properties

	

 Trace element data from the baseline sampling at the site indicate that the soils at the site 

do not contain high enough levels of heavy metal trace elements to merit concern.  The analysis 

included several metals of concern in urban areas (Table 5) including: arsenic (As), cadmium 



(Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn).  All of the metals demonstrated 

levels that were background or slightly elevated. 

	

 The primary heavy metal of concern in urban soils is Pb.  Large quantities of Pb were 

deposited in urban soils in the U.S. during the twentieth century through the use of Pb-based 

paints and leaded gasoline (Mielke et al. 2011; Mielke 1999).  Soils are now considered a 

primary risk vector for Pb contamination and Pb poisoning in many cities in the U.S. (Fillipelli 

and Laidlaw 2010). The U.S. EPA has suggested that >400 ppm concentration of Pb in soils 

requires further testing and remediation at sites to be used for playgrounds or public greenspaces 

(U.S. EPA 2001) and that number is now often used to indicate the level of risk for urban gardens 

and UA (Beniston and Lal 2012).  The Pb results presented here reflect an intensive sampling of 

urban lots following building demolition.  Thus, the measured value of 112 (mg kg-1) (or ppm)  

Pb presented here (Table 5) suggests that it is possible for vacant houses to be demolished 

without causing high levels of contamination of the soil remaining at the site.  

Table 5. Baseline trace element analysis.Table 5. Baseline trace element analysis.Table 5. Baseline trace element analysis.

Trace Element Concentration 
(mg kg-1)

Comments

As 17.99 background level
Cd 3.96 slightly elevated
Cr 25.94
Cu 37.07 slightly elevated
Pb 112.22 urban background
Zn 159.77 slightly elevated



3.3 Crop yields

	

 The crop yield data reflects an analysis in which the tomato and swiss chard yields were 

both analyzed together, simply as total crop yield.  The sweet potato crop was destroyed by deer 

pressure, before fencing was completed at the site.  The data from two crops were analyzed 

together to achieve a higher number of replications. 

	

 Plots receiving the Cmp and C+B treatments both had more than double the crop yields 

(Cmp 2.34 kg m-2 ; C+B 2.42 kg m-2) of the control plots (1.07 kg m-2) (Table 6).  Similarly, the 

C+B amended plots demonstrated a significantly higher harvest index (0.52) than the control 

plots (0.40), and the Cmp treatment (0.47) also demonstrated increasing trend in harvest index 

from the control, despite not being statistically significant.  

Table 6. Crop yields for the 2011 growing season. Table 6. Crop yields for the 2011 growing season. Table 6. Crop yields for the 2011 growing season. Table 6. Crop yields for the 2011 growing season. Table 6. Crop yields for the 2011 growing season. 

Treatment Crop Yield (kg m-2) Harvest Index

Control 1.07 (0.24) A 0.40 (0.02) A

Compost (Cmp) 2.34 (0.24) B 0.47 (0.02) AB

Compost + Biochar (C+B) 2.42 (0.24) B 0.52 (0.02) B

Overall Effects (p-value)Overall Effects (p-value) Treatment Split plot

Crop Yield (kg m-2) 0.002 0.36

Harvest Index 0.008 0.75

Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).



The overall treatment effect for the organic matter also demonstrated significant differences for 

both crop yield (p=0.002) and harvest index (0.0008) (Table 6).  Collectively, these results 

suggest that urban green waste composts and biochars applied in large quantities can successfully 

improve soil conditions in physically degraded urban soils to an extent that vegetable crops can 

yield well in the first season.  This is consistent with previous observations that large applications 

of compost can improve degraded urban soils for ornamental plant growth (Cogger 2005).

	

 The split plot treatment of raised beds (RB) did not demonstrate a significant effect on 

either crop yield (0.36) or harvest index (0.75) (Table 5).  This was unexpected, as the RB plots 

had significantly lower bulk density values (Table 3) which indicates improved soil structure,  

aeration, and rooting conditions compared with the in ground plots. 

	

 The sorghum sudangrass produced large quantities of biomass in both the G (10.54 Mg 

ha-1) and RB ( 9.42 Mg ha-1) (Table 7).  These values were not significantly different and they are 

consistent with previous reports of high biomass production (Clark 2007).  Sorghum sudangrass 

was identified as the cover crop with the strongest ability to decrease compaction levels in 

vegetable crop soils in New York (Wolfe et al. 1997).  It demonstrated significant decreases in 

field PR in in the 10-20 cm depth in this study.  The ability to produce large quantities of both 

above and below ground biomass and to decrease compaction may make sorghum sudangrass an 

ideal warm season cover crop for degraded urban soils. 



Table 7. Sorghum sudangrass dry matter yields for 2011. Table 7. Sorghum sudangrass dry matter yields for 2011. Table 7. Sorghum sudangrass dry matter yields for 2011. 

Plot Type 2011 Yield 
(Mg ha-1)

In Ground (G) 10.54 (1.57) A

Raised Bed (RB) 9.42 (1.57) A

Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).
Values in parentheses are standard errors and capital letters indicate t-groupings from Tukey’s 
HSD test of means (α=0.05).

4. Conclusions

The results presented in this study suggest that following the demolition of buildings soils in 

vacant urban lots may be heavily compacted.  Contamination by Pb and other trace elements was 

not, however, a serious issue at this research site.  Organic matter treatments of compost, 

compost + biochar, and compost + intensive cover cropping demonstrated reductions in soil 

compaction at the site.  The compost and compost + biochar treatments both doubled crop yields 

and significantly increased the harvest index compared with unamended control plots.  The 

raised bed split plot treatment did not demonstrated a statistically significant increase in crop 

production during the initial growing season.  The results suggest that soil amendments produced 

from urban green-waste can improve soil function and facilitate viable specialty crop production 

in vacant urban lots following building demolition. 
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