
The Ohio State University Stackfiles for
Satellite Radar Altimeter Data

by

Yuchan Yi

Report No. 495

May 2010

Geodetic Science

The Ohio State University
Columbus, Ohio 43210

THE OHIO STATE UNIVERSITY STACKFILES FOR

SATELLITE RADAR ALTIMETER DATA

BY

YUCHAN YI

Report No. 495

Geodetic Science

School of Earth Sciences

The Ohio State University

Columbus, Ohio 43210

May 2010

ii

ABSTRACT

This document describes the OSU stackfile database for satellite radar altimetry and
software that is used to access and maintain the database system. The stackfile database
system can be viewed as a reformatted version of Geophysical Data Record (GDR) data
products of satellite radar altimeters. A stackfile database is accessible using 2-
dimensional location indices of nominal ground tracks while the GDR products are
registered in time along actual ground tracks. The third dimension of a stackfile is the
repeat cycle of a satellite altimeter mission. The purpose of this document is to use it as a
user’s guide of the OSU stackfile databases installed on a unix/linux server.

iii

ACKNOWLEDGMENTS

The original version of stackfiles was designed by Gerhard L.H. Kruizinga, Center for
Space Research, University of Texas at Austin, 1994. Most part of the text in this
document was borrowed from the CSR technical memo "The New Stackfiles" originally
written by G.L.H. Kruizinga in the summer of 1994 and updated on August 21, 1998.

iv

Table of Contents

ABSTRACT ii

ACKNOWLEDGEMENTS iii

0 Updates over a 1998 CSR Stackfile 1

1 Introduction 2
1.1 Altimeter Satellites ……..…………………………………………………… 2
1.2 Stackfiles ……………………………………………………………………. 2

2 Implementation 5
 2.1 Multiple Stackfiles ….………………………………………………………. 5
 2.2 Units and Resolution ……………………………………………………….. 6
 2.3 Flags …………………………………………………………………………. 7
 2.4 Missing Data ………………………………………………………………... 8
 2.5 File Size …………………………………………………………………….. 8

3 Fortran Calling Sequences 10
 3.1 Opening and Closing a Stackfile …………………………………………... 10
 3.2 Determining the Dimensions of a Stackfile ……………………………….. 11
 3.3 Reading and Writing Bin Headers ………………………………………… 12
 3.4 Reading Slot Data …………………………………………………………. 13
 3.5 Getting the "Data Missing" Data Flag Value ……………………………… 15
 3.6 Logging ……………………………………………………………………. 15
 3.7 Getting Text Stored in the Textual Master File …………………………… 16
 3.8 Getting the Name of an Open Stackfile …………………………………… 17
 3.9 Avoiding Fortran Logical Unit Number Conflicts ………………………… 17

4 Compiling Programs 18

5 File Structure 19
 5.1 Bin, Stackfile Record ……………………………………….…………….. 19
 5.2 Header …………………………………………………………………….. 19
 5.3 Slot ………………………………………………………………………… 20
 5.4 Master.bin File ……………………………………………………………. 21
 5.5 Master.txt File …………………………………………………………….. 21
 5.6 Journal File ………………………………………………………………… 22

REFERENCES 23

1

 0 Updates over a 1998 CSR Stackfile

These are features that are additional to the 1998 version of the Center for Space
Research (CSR) stackfile system (The New Stackfiles, 1998; Kruizinga, 1997):

a. The data type of slot latitude and longitude arrays has been changed to Double
Precision (REAL *8) from Single Precision (REAL *4). The arrays of slot
latitude/longitude are accessed through routine sfgetlatslongs.

b. The first and last repeating cycle numbers of data available in the stackfiles are
returned from routine sfgetsize.

c. Unit of Significant Wave Height (SWH) has been changed to cm from dm and that of
Sigma-naught to 0.01 dB from 0.1 dB.

d. 10 Hz - 1 Hz Sea Surface Height (SSH) residuals are accessible through routine
sfgetdssh10.

2

1 Introduction

1.1 Altimeter Satellites
The ground tracks of altimeter satellites Topex/Poseidon, ERS-1/2, and Geosat/Exact
Repeat Mission (ERM) repeat after certain duration of nodal days. Here is a summary of
pertinent orbital characteristics. Nodal days and revolutions refer to one complete cycle.

 Topex/Poseidon ERS-1 Phases C/G
ERS-2

Geosat ERM

Orbital period
Inclination
Nodal days
Revolutions

6745.8 sec
66.03°
9.9
127

6035.9 sec
98.58°
35
501

6037.6 sec
108.06°
17
244

The height of ocean surface varies with time due to changing currents and density of the
ocean. Repeating ground tracks mean that each satellite revisits the same areas every
repeat cycle, allowing development of time series of ocean variability.

A radar altimeter on each of the satellites continuously measures the distance between the
satellite and ocean surface. Researchers receive the altimeter measurements as the
Geophysical Data Record (GDR). Each GDR summarizes approximately 1 second of
radar altimeter measurement, or more than 31 million GDRs per satellite a year. Each
GDR contains a time tag, latitude and longitude of the satellite, and a short series of
ocean surface height measurements made during the one second interval. GDRs also
contain a number of other items such as environmental corrections and modeled effects.

1.2 Stackfiles

The Center for Space Research (CSR) at The University of Texas at Austin condenses
GDRs into what are called "stackfiles." Each stackfile can be viewed as a three-
dimensional array. The three dimensions represent (1) the distance from the equator
along an orbit (row number); (2) which orbit of a repeat cycle (column number, actually,
an equator-crossing longitude); and (3) each of the repeat cycles.

Conceptual Stackfile

Equator-crossing longitude

cycle A
lo

ng
-tr

ac
k

di
st

an
ce

 A

lo
ng

-tr
ac

k
di

st
an

ce

D
es

ce
nd

in
g

A
sc

en
di

ng

Actual Stackfile

Sectors
Equator-crossing longitude

3

In an actual implementation, this monolith is cleaved along two of the dimensions. One
cutting plane divides the set of along-track distance values. Each complete orbit is
separated into ascending and descending passes (halves of orbit). Ascending passes begin
at the southern extreme latitude and extend to the northern extreme; descending passes
cover the other part of complete orbits.

The other kind of cutting planes were devised to keep the size of files manageable. They
occur in the orbit dimension, sectoring the earth in effect. They separate the stackfile into
what are called sector files. In current version of stackfiles, GDR data have been
preprocessed and edited before storing them into stackfiles. Users may want to apply
further data editing according to their own stringent edit criteria to use high quality data
only out of stackfiles.

Data are stored into bins approximately 1
second of time long along the satellite
ground tracks. A bin contains all the
information from various repeat cycles
measured over a particular area of the
earth. In stackfiles, bins are addressed
with row and column indices. Each
column corresponds to a particular pass
or orbit. Columns have been numbered
in the order of equtor-crossing longitude
not in the time order. Each row corresponds
to a particular latitude.

Rows are numbered in such a way that
the bin closest to the equator is row 0;
negative row indices are south of the equator
and positive ones north. Columns are indexed from 1 to the total number of equator
crossings, increasing eastward. Likewise, repeat cycles or slots are indexed from 1 to the
total number of repeat cycles.

Each bin is composed of a header and a number of slots, one per cycle. The bin header
contains the bin center's latitude and longitude, number of slots with valid height value,
mean and standard deviation of these heights, height bias, ocean depth (bathymetry), and
eight logical flags. Presently only two of these flags are defined to indicate whether the
bin center is over the ocean or land, etc.

To save space in the file, individual slot heights are stored as displacements from a height
bias, which is representative of the entire bin. This height bias is stored in the bin header.
The height bias is calculated from a geoid model. No sea surface height data over in-land
waters are included in current stackfiles because of possibly large discrepancy between
water surface height and local geoid surface.

Slots of each bin contain the ocean surface height measured during corresponding repeat
cycles (actually, the height displacement from bias is packed in files), eight logical flags,
latitude and longitude displacements from the bin center, and other geophysical and
environmental data such as the surface atmospheric pressure. The unit of height
displacement is mm and those of latitude and longitude displacements are micro-degrees.

Stackfile

Row #

Column #

bin

+ rowBound

- rowBound

1 colSize

4

Slot flags indicate whether or not height is missing, displacements out of range, surface
is covered with ice, and certain corrections have been applied to height data.

Each of geophysical and environmental data is stored in an independent stackfile
separated from each other and from the height stackfile, which contains bin header and
geographic lat/long information as described earlier. Currently, these are for surface
pressure, ionospheric and wet troposheric corrections, electromagnetic (EM) bias
correction, ocean tide correction, sigma-0 and significant wave height (SWH) of the
ocean surface, and 10 Hz -1 Hz sea surface height (SSH) displacements.

In addition to the stackfile itself, there is a "Master.txt" file where useful information can
be stored about the satellite and stackfile. This information can be retrieved by users'
programs and used. Master.txt is an ASCII file. A scheme used at JPL was adopted where
entries are organized group-wise. For example, there is a group named
IDENTIFICATION. Within this group there are two items, SATELLITE-NAME and
SATELLITE-ID. The value of item SATELLITE-NAME is a character string of the
satellite name such as Topex/Poseidon. To get this information, a user's program supplies
the group and item identifiers and a subroutine retrieves the corresponding text value
from the stackfile's Master.txt file.

5

2 Implementation

A stackfile is a collection of data files stored in a directory. The directory is the stackfile's
"name." A direction (ascending or descending) of each satellite has its own directory. In
the figure, there are two stackfiles which are named /sf/topex/ascending and
/sf/topex/descending.

Stackfiles are sectored in order to keep the size of each file below about 100 MB.
Conceptually, a single stackfile is cleaved vertically so that the first set of columns are in
a sector file, the next set of columns in the next sector file, and so on.

The files in the stackfile directory have standard names. One standard file is a binary file
named Master.bin which contains the file dimensions (# rows, # columns, # slots), the
total number of sector files, etc. The various sector files which store the actual height data
also have standard names, SectorA, SectorB, etc. Similar files store other geophysical and
environmental data such as the surface atmospheric pressure.

Each directory contains another master file in addition to the one described above. This
Master.txt file contains textual information on satellite and stackfile. Finally, each
directory contains a journal file where a log or journal is kept for every access of user
programs.

2.1 Multiple Stackfiles

It is possible for a program to open multiple stackfiles simultaneously, for example, both
the ascending and descending stackfiles, or stackfiles of distinct satellites. To implement
this feature, when the stackfile is first opened, a "stackfile number" is returned which is
similar to the logical unit number of a file. The stackfile number must be provided to

/sf

topex others

ascending descending others

 Master.bin Master.bin
 Master.txt Master.txt
 SectorA SectorA
 SectorB SectorB
 SectorApressure SectorApressure
 SectorBpressure SectorBpressure
 Journal Journal
 … …

6

subsequent routines so they reference the appropriate stackfile. In the SGI Irix systems, a
user program can open up to 198 files. This number practically limits the total number of
stackfiles that can be accessed at once.

2.2 Units and Resolution

Subroutine calls return 4-byte real values for height and other geophysical and
environmental data such as the surface atmospheric pressure. 8-byte real values are
returned for slot latitude and longitude. The units are degrees for latitude and longitude,
meters for height and 10 Hz height displacement, millibars for pressure, 0.01 dB for
Sigma-0, cm for SWH, and mm for other geophysical and environmental corrections.

In the stackfiles, numeric values are stored as signed integers and logical flags as bits to
save space. There are conversion factors associated with each stackfile for conversion of
real quantities, such as heights, lat/longs, pressures, and others, to integers that are
actually packed in the stackfile. These factors are set when each stackfile is first created.
The basic rule applied in determining these factors is that the original data resolutions on
GDRs be retained. In fact, this results in obvious values for most of them. The only
conversion factor that requires some deliberation is that of pressure.

The height conversion factor is the number of storage units per meter. For example, to
store heights in millimeters, the height conversion factor should be 1000. Each bin header
contains a height bias. Individual slot heights are packed as unit-converted, signed two-
byte integers displaced from this bias. The extreme displacements of any slot height are,
therefore, +32767/ heightFactor and -32768/ heightFactor meters. Currently, the height
conversion factor is 1000 so they are +32.767 and -32.768 meters from the bin bias. If a
new point is packed whose converted height displacement from the bias exceeds the
signed two-byte limit, over-range slot flag is set and a data flag of "data missing" value is
returned when the slot height is accessed. The 10 Hz height displacement is packed in
mm. Thus its conversion factor is 1000 also.

The latitude and longitude conversion factor is the number of storage units per degree. At
present, latitude and longitude displacements are packed in micro-degrees with the
lat/long conversion factor 1,000,000. These lat/long displacements are packed in three-
byte integers after this unit conversion. The extreme displacements are thus +223-1 and -
223 micro-degrees, going up to almost ±8.4 degrees.
Pressures range from 950 to 1050 millibars or so. A rule of thumb is that a change in
pressure of one millibar affects the ocean surface height to rise by 10 millimeters
(inverted barometer response of the ocean surface). Pressure is packed after removing a
bias, multiplying the difference by a conversion factor and finally rounding to an integer.
The recommended pressure bias is 1000 millibars and the conversion factor is 200, thus
assuring a resolution of about 0.005 millibar.

Currently no conversion is made to pack into stackfiles all the other data, such as wet
tropospheric, ionospheric, and ocean tide corrections, with a zero bias.

7

2.3 Flags

Bin headers and slots contain one-byte spaces for eight flag bits. The stackfile software
automatically converts such flag bits to an array of eight logical values, that is, .TRUE. or
.FALSE. In Fortran codes, one can write statements such as these for bin header flags:

 LOGICAL binFlags(8)
 …
 CALL sfGetHeader (sf, row, col, binLat, binLong, binFlags, …)
 IF (binFlags(1)) THEN
c….. over land
 …
 ENDIF

Here are the bin header flags currently defined.

Bin header flags .TRUE. .FALSE.
1
2 (OUT OF DATE)
3
4-8 unused

Land
No lake bias applied
Oceans (water bins only)

Water
Special lake bias applied
Lake (water bins only)

Note: The land/water flag in the bin header has been initialized by the CSR from a digital
elevation model different from the one of the ocean depth in the bin header. Two might
disagree near coastlines. The land/water flag has the priority.

In the original version of CSR stackfiles, the special lake bias accommodates lake
surfaces which are not at sea level. The special height biases for individual lakes are
different from local geoidal heights. However, no lake data are stored in current stackfiles
any longer.

The slot flags have the following meaning:

Slot flags .TRUE. .FALSE.
1. earth surface (OUT OF DATE)
2. ocean tide correction
3. inverted barometer correction
4. point edited by preprocessor
5. height missing
6. wild data point (3.5σ criterion)
7. height or lat/long displacement out of range
8. Topex/Poseidon only

ice
applied
applied
removed (bad)
missing
wild
over-range
Poseidon

No ice
Not applied
Not applied
accepted (good)
present
OK
OK
Topex

Flag 5, "height missing" has the first precedence. Users should check it first.

8

All slot flags are set true as an initialization when a stackfile is created (height missing).
SfInsert routine of the stackfile software described below determines values of slot 5
(height missing), 6 (wild data point), 7 (over-range), and 8 when a height is inserted to a
slot. The first four flags are copied from the source of the height information at that time.

2.4 Missing Data

The stackfile software uses a special REAL*4 data flag value to indicate "data missing"
that can be returned from a stackfile routine. A user program can use the value to test data
retrieved from an opened stackfile.

 REAL *4 missingData
 …
c….. get a special data flag value used to indicate missing data
 CALL sfGetMissingData (missingData)
 …
 CALL sfGetHeader (sf, row, col, binLat, binLong, …)
 IF (binLat .EQ. missingData .OR. binLong .EQ. missingData) THEN
 …
 ENDIF

2.5 File Size

The size of the Master.bin file is just 116 bytes. The Master.txt file only contains textual
information. It will probably not exceed a few KB. The Journal file grows each time a
user program accesses a stackfile. Over time, it might grow to several 100 KB.

Stackfiles are huge; on the order of 500 MB. Here is how to calculate the size. The fixed
size of each stackfile is determined when it is first created. First parameter that
determines this size is the maximum number of repeat cycles to be stored. For
Topex/Poseidon, the current stackfile has been created to hold up to 400 cycles or about
10.8 years of data. Each bin of a height stackfile comprises a 28-byte header and 400
slots, each of which takes 9 bytes. Thus, for Topex/Poseidon, each bin requires 28 +
9×400 = 3,628 bytes.

The total number of bins is the product of the number of orbital revolutions per cycle and
that of bins per pass (one half of revolution). The number of bins per pass is
approximately 1/2 of the orbital period in seconds because one point per second is stored.
To be symmetric across the equator, this number has to be an odd number. For the case of
Topex/Poseidon stackfile, there are 127 revolutions in a repeat cycle and 3,141 bins per
pass, or 127×3,141 = 398,907 bins in each of ascending and descending stackfiles. This
amounts to 1,447,234,596 bytes, or about 1,447 MB for each of ascending and
descending height stackfiles.

9

To maintain each data file's size no larger than about 100 MB, each of these height
stackfiles are sectored. For current Topex/Poseidon stackfile, each of ascending and
descending height stackfiles has been divided into 22 sector files. To accommodate 127
passes, each sector contains 6 passes that require about 68 MB to store up to 6×3,141 =
18,846 bins.

The same sectoring method applies to other stackfiles. Thus, each bin of 10 Hz - 1 Hz
SSH displacement stackfile is 20×400 = 8,000 bytes long, for Topex/Poseidon, each
displacement in a slot taking a 2-byte signed integer. Each sector file of 10 Hz SSH
displacements requires 8K×18,846 = 150.768 MB.
Similarly, each bin of other stackfiles, such as those of surface pressure and corrections,
is 2×400 = 800 bytes long, taking a 2-byte signed integer per slot. Therefore, each sector
file of these has a fixed size of 15.0768 MB for the current Topex/Poseidon.

10

3 Fortran Calling Sequences

Routines that are used to modify and access a stackfile are described here. Users of these
routines need not to worry about how a stackfile is implemented; how many sector files
are used; the actual layout of data records, etc. These routines hide the unnecessary
details of implementaion.

Note: The implicit convention of the Fortran INTEGER and REAL types is ignored here.
For more controlled software development and maintenance, it is generally recommended
to declare

IMPLICIT NONE

statement in Fortran codes.

3.1 Opening and Closing a Stackfile

CALL sfOpen (sf, name, access)

CALL sfClose (sf)

The sfOpen routine opens a stackfile for reading or updating. It returns a 4-byte integer
value to sf argument. This value is similar to a logical unit number in conventional
Fortran I/O. All stackfile routines that are invoked subsequently have sf as their first
argument.

Name argument is a character string that is passed to sfOpen routine as the pathname of
a stackfile directory to be opened. Access argument that is passed to sfOpen is a single
character, 'r' for a session of read-only access and 'u' for updating access. The character
has to be a lower case letter.

When the use of a stackfile is finished, sfClose is called. 4-byte integer argument sf that
is passed to sfClose identifies the stackfile.

It is allowed to open several stackfiles at the same time and the value returned to sf
argument serves for identifying different stackfiles. For example,

 INTEGER *4 sfAsc, sfDes
 CALL sfOpen (sfAsc, '/data2/sf/tp/ascending', 'r')
 CALL sfOpen (sfDes, '/data2/sf/tp/descending', 'r')
 …
 CALL sfClose (sfAsc)
 CALL sfClose (sfDes)
 END

The following companion routines are useful when you are going to access satellite
information in Master.txt file or time tag information in Equator.table file:

CALL StackOpen (sf, name, access)

11

CALL StackClose (sf)

Because routine StackOpen calls sfOpen and routine StackClose does sfClose, it is not
necessary to call sfOpen/sfClose pair once StackOpen/StackClose pair is used for a
stackfile. The calling sequence of two open/close pairs is identical. It is suggested to
prefer StackOpen/StackClose pair to sfOpen/sfClose pair for obvious reasons.

3.2 Determining the Dimensions of a Stackfile

CALL sfGetSize (sf, rowBound, columns, cycles, firstCyc, lastCyc)

Once open, call sfGetSize to determine the actual stackfile dimensions. 4-byte integer sf
argument is the stackfile number that is passed to the routine to indicate which stackfile is
in question. SfGetSize returns the row size to rowBound, the column size columns,
cycle size cycles, the first cycle number available in the stackfile firstCyc, and the last
lastCyc (all 4-byte integers). All arguments of sfGetSize are positive numbers. The
values of three parameters, rowBound, columns, and cycles, have been set when the
stackfile was first created.

In a user's code, it is necessary to make sure that long enough arrays are reserved.

 INTEGER *4 Ncyc
PARAMETER (Ncyc = 400)
REAL *4 heights (Ncyc)
LOGICAL slotFlags (Ncyc)
INTEGER *4 sf, rowBound, colSize, cycleSize, cyc1, cyc2
INTEGER *4 row, col

CALL sfOpen (sf, '/data2/sf/tp/ascending', 'r')
CALL sfGetSize (sf, rowBound, colSize, cycleSize, cyc1, cyc2)
IF (cycleSize .GT. Ncyc) THEN
 PRINT*, 'increase cycle size Ncyc to', cycleSize
 STOP
ENDIF

DO row = -rowBound, rowBound
 DO col =1, colSize
 CALL sfGetHeader (sf, row, col, …)
 CALL sfGetHeightsFlags (sf, cyc1, cyc2, heights, slotFlags)
 …
 ENDDO
ENDDO

12

3.3 Reading and Writing Bin Headers

CALL sfGetHeader (sf, row, col, lat, long, flags, bias, depth, count, mean, stddev)

CALL sfPutHeader (sf, row, col, lat, long, flags, bias, depth, count, mean, stddev)

Two routines sfGetHeader and sfPutHeader access only the header portions of each
bin. They have identical calling sequence and differ only in the directions of data travel.
SfGetHeader gets bin header data from a stackfile while sfPutHeader places that
information into a stackfile. The stackfile has to have been opened for reading before
sfGetHeader is called and for updating if sfPutHeader is to be used.

Both routines begin with three 4-byte integer arguments that are passed to them for
stackfile identification and locating a bin. Other arguments convey the header
information from or to the stackfile.

4-byte real lat and long arguments are the geographic latitude and longitude of the bin
center in degrees. Latitude range from -90 to 90 and longitude from 0 to 360 excluding
360.

Logical flags argument is an array of eight flags. The definition of each header flag is
described in the section Header, File Structure.

4-byte real bias argument is the height bias in meters. Slot heights are packed as
displacements from this bias.

4-byte real depth argument is depth of the ocean in meters and is positive downward
from the geoidal surface. The stored values were interpolated from a low-resolution map.

4-byte integer count argument is the number of valid data points stored in the bin. The
value is updated whenever new height data is inserted into the stackfile using sfInsert.
The upper bound of this argument is the cycle size, which can be returned from routine
sfGetSize.

4-byte real mean and stddev arguments are the mean and standard deviation of the valid
height data in the bin. Units are meter. These values are updated whenever new height
data is inserted into the stackfile using sfInsert.
Here is an example code that reads one header, changes a flag, and rewrites it.

 IMPLICIT NONE
 INTEGER *4 sf, row, col, count
 REAL *4 lat, long, bias, depth, mean, stddev
 LOGICAL flags(8)
 …
 CALL sfOpen (sf, '/data2/sf/tp/ascending', 'u')

 row = 0
 col = 1
 CALL sfGetHeader (sf, row, col, lat, long, flags, bias, depth, count, mean, stddev)
 Flags(2) = .FALSE.
 CALL sfPutHeader (sf, row, col, lat, long, flags, bias, depth, count, mean, stddev)

13

 CALL sfClose (sf)
 END

3.4 Reading Slot Data

Routines sfGetHeightsFlags, sfGetLatsLongs, sfGetPressures, sfGetWettropo,
sfGetOceantid, sfGetEmbias, sfGetSwh, sfGetSigma0, sfGetIonocorr, and
sfGetDssh10 return items from slots of a bin. The bin has to have been accessed already
using sfGetHeader.

CALL sfGetHeightsFlags (sf, firstSlot, lastSlot, heights, slotFlags)

CALL sfGetLatsLongs (sf, firstSlot, lastSlot, lats, longs)

CALL sfGetPressures (sf, firstSlot, lastSlot, press)

CALL sfGetWettropo (sf, firstSlot, lastSlot, wet)

CALL sfGetOceantid (sf, firstSlot, lastSlot, otide)

CALL sfGetEmbias (sf, firstSlot, lastSlot, emb)

CALL sfGetSwh (sf, firstSlot, lastSlot, swh)

CALL sfGetSigma0 (sf, firstSlot, lastSlot, sigma0)

CALL sfGetIonocorr (sf, firstSlot, lastSlot, iono)

CALL sfGetDssh10 (sf, firstSlot, lastSlot, dssh10)

4-byte integer sf argument that is passed to these routines indicates which stackfile is to
be accessed. The 4-byte integer firstSlot and lastSlot arguments are passed to these
routines also and specify the range of repeat cycles to be read.

4-byte real array heights is returned with the sea surface heights of specified slots in
meters and has the size n where n is the maximum number of slots. Any of them can have
the value of "data missing" data flag. The sea surface height is the height above a
reference ellipsoid. Argument slotFlags is an 8×n logical matrix to which slot flags are
returned.

8-byte real arrays lats and longs are returned with the geographic latitude and longitude
of slots in degrees. Any of them can have the value of "data missing" data flag. Longs
values returned by routine sfGetLatsLongs might be slightly less than 0 or slightly larger
than 360 near the Greenwich meridian. The size of these arrays, like that of the following
arrays, is n, the maximum number of slots.

4-byte real array press is returned with the surface atmospheric pressures of specified
slots in millibars. Any of them can have the value of "data missing" data flag.

4-byte real array wet is returned with wet tropospheric correction values in mm. The sign
convention is the opposite of that in GDRs. Any of wet values can be that of "data
missing" data flag.

14

4-byte real array otide is returned with the ocean tide corrections in mm. Any of otide
values can be that of "data missing" data flag.

4-byte real array emb is returned with EM bias correction values in mm. The sign
convention is the opposite of that in GDRs. Any of emb values can be that of "data
missing" data flag.

4-byte real array swh is returned with the SWH in cm. Any of swh values can be that of
"data missing" data flag.

4-byte real array sigma0 is returned with the sigma-0 in 0.01 dB. Any of sigma0 values
can be that of "data missing" data flag.

4-byte real array iono is returned with ionospheric correction values in mm. The sign
convention is the opposite of that in GDRs. Any of iono values can be that of "data
missing" data flag.

Argument dssh10 is a 4-byte real 10×n matrix to which 10 Hz - 1 Hz SSH displacements
are returned in meters where n is the maximum number of slots. Any of dssh10 values
can be that of "data missing" data flag.

The following example code reads each bin of the entire ascending stackfile. It can
handle up to the first 400 repeat cycles, but accesses only cycles 10 through 271.

 IMPLICIT NONE

 INTEGER *4 Ncyc
 PARAMETER (Ncyc = 400)
 INTEGER *4 sf, row, col, cyc, rowBound, colSize, cycleSize, cyc1, cyc2, count
 REAL binLat, binLong, bias, depth, mean, stddev
 LOGICAL binFlags (8)
 REAL *4 heights(Ncyc), press(Ncyc), swh(Ncyc)
 REAL *8 lats(Ncyc), longs(Ncyc)
 LOGICAL flags(8, Ncyc)
 …
 CALL sfOpen (sf, '/data2/sf/tp/ascending', 'r')
 CALL sfGetSize (sf, rowBound, colSize, cycleSize, cyc1, cyc2)

IF (cycleSize .GT. Ncyc) THEN
 PRINT*, 'increase cycle size Ncyc to', cycleSize
 STOP
ENDIF

 DO row = -rowBound, rowBound
 DO col = 1, colSize
 CALL sfGetHeader (sf, row, col, binLat, binLong, binFlags, bias, depth,
 c count, mean, stddev)
 CALL sfGetHeightsFlags (sf, 10, 271, heights, flags)
 CALL sfGetLatsLongs (sf, 10, 271, lats, longs)
 CALL sfGetPressures (sf, 10, 271, press)
 CALL sfGetSwh (sf, 10, 271, swh)

15

 DO cyc = 10, 271
 …
 ENDDO
 ENDDO
 ENDDO
 CALL sfClose (sf)
 END

3.5 Getting the "Data Missing" Data Flag Value

When data have not been stored in a bin header or slot, a special REAL *4 value is
returned by stackfile reading routines. The routine described here returns this data flag
value:

CALL sfGetMissingData (missing)

4-byte real missing argument is set to the "data missing" value. It can be used to check
data items retrieved from the stackfile.

 IMPLICIT NONE
 REAL *4 missing
 INTEGER sf, row, col, count
 REAL *4 binLat, binLong, bias, depth, mean, stddev
 LOGICAL binFlags(8)

 CALL sfGetMissingData (missing)
 CALL sfOpen (sf, '/data2/sf/tp/ascending', 'r')
 row = 0
 col = 1
 CALL sfGetHeader (sf, row, col, binLat, binLong, binFlags, bias, depth, count,
 c mean, stddev)
 IF (binLat .EQ. missing .OR. binLong .EQ. missing)
 C PRINT*, 'missing data in row, col:', row, col
 …

3.6 Logging

The stackfile software keeps a journal for each stackfile used. The journal is logged
automatically each time a stackfile is created, opened, and closed. The logging
information file is named as Journal and is kept in the same directory as other data files.
Users can leave their own messages in the Journal file.

CALL sfJournal (sf, msg)

16

4-byte integer sf argument is passed to select a stackfile. A character string argument msg
is passed to the routine and it appends a text message msg to the journal file whenever it
is called.

Each call to sfJournal appends a single line to the journal file. The line includes the date
and time, user id, name of the program, and a message text. A journal file is an ASCII file
that can be viewed and printed.

 INTEGER *4 sf
 CALL sfOpen (sf, '/data2/sf/tp/ascending', 'r')
 CALL sfJournal (sf, 'starting loop A')
 DO I = 1, 1000
 …
 ENDDO
 CALL sfJournal (sf, 'all done')
 CALL sfClose (sf)

3.7 Getting Text Stored in the Textual Master File

After a stackfile is open, routine sfGetGItext can be used to retrieve textual information
given a group and item as look-up keys. This information is stored in Master.txt file in
the directory of each stackfile.

CALL sfGetGItext (sf, group, item, text)

4-byte integer sf argument identifies a stackfile. 16-byte character group and item
arguments are textual keys used for the retrieval. By convention, these keys are upper-
case letters and trailing blanks in them are ignored. If a line with these keys is located, the
remainder of the line is returned in character text argument.

Following example code retrieves the satellite name:

 INTEGER *4 sf
 CHARACTER *16 group, item

CHARACTER *20 satName
CALL sfOpen (sf, '/data2/sf/tp/ascending', 'r')
group = 'IDENTIFICATION'
item = 'SATELLITE-NAME'
CALL sfGetGItext (sf, group, item, satName)
PRINT*, satName

Numeric values are also stored in this file. One can retrieve them with a code like this:

INTEGER *4 sf
CHARACTER *16 group, item
CHARACTER *100 text
REAL *8 period
CALL sfOpen (sf, '/data2/sf/tp/ascending', 'r')
group = 'EQUATOR'

17

item = 'PERIOD'
CALL sfGetGItext (sf, group, item, text)
READ (text(:25), *) period

In fact, this example is taken from a stackfile routine get_stack_info, which is invoked
by Stack_Open routine. Both of these routines are coded in /data2/sf/tp/src/stacklib.f.

The numeric stackfile information in Master.txt file retrieved by routine get_stack_info
is accessible through two Fortran COMMON blocks /equator/ and /stackinfo/. Users can
use routine get_stack_info to access this stackfile information by including a header file
/data2/sf/tp/src/stack_info.h in their codes.

3.8 Getting the Name of an Open Stackfile

A stackfile database consists of several data files under a stackfile directory. For
example, there is a file containing equator-crossing data associated with every stackfile.
To open such file, a program needs the pathname of the stackfile directory. This is what
sfGetName routine returns.

CALL sfGetName (sf, name)

4-byte integer sf argument passed to this routine identifies a stackfile. SfGetName
returns the pathname of the stackfile directory in the character argument name.

3.9 Avoiding Fortran Logical Unit Number Conflicts

The stackfile software uses getlun and freelun routines to get a free and release a
recyclable logical unit number, respectively. Two routines maintain a pool of integer
values, each of which is larger than 200 and used as a logical unit number of Fortran I/O.
It is okay for users to use these two routines as well. In this way, a user code can be
prevented from attempting to use a logical unit number that is being used for stackfiles.

CALL getlun (lun)

CALL freelun (lun)

When getlun is called, a 4-byte integer value is returned to lun. This value can be used in
subsequent Fortran file I/O statements. When finished, one can call freelun to recycle the
logical unit number to the pool of free ones.

18

4 Compiling Programs

Source codes of the stackfile routines described in this write-up can be found in the
following three files of f90 source code package:

/data2/sf/tp/src/sf.f
/data2/sf/tp/src/share.f
/data2/sf/tp/src/stacklib.f

Two more f90 packages for stackfile applications are available:

/data2/sf/tp/src/mssLib.f
/data2/sf/tp/src/gridLib.f

The compiled object codes of these f90 source files are in /data2/sf/tp/src/lib/:

/data2/sf/tp/src/lib/sf.o
/data2/sf/tp/src/lib/share.o
/data2/sf/tp/src/lib/stacklib.o
/data2/sf/tp/src/lib/mssLib.o
/data2/sf/tp/src/lib/gridLib.o

To save disk space, it is recommended to link to /data2/sf/tp/src/lib instead of copying
these files to your own lib/ directory. Besides, users can access updated version of these
files always. For example,

ln -s /data2/sf/tp/src/lib lib

It is recommended also to have f90 compiler optimize your code for faster run of your
executable object code. For example, suppose your f90 source code is in a file name as
app1.f. Here is the command line to compile it, assuming the link mentioned above has
been made:

f90 -O2 app1.f lib/sf.o lib/share.o

The executable goes to a.out.

19

5 File Structure

A stackfile is a directory containing several database files having standard unix file
names each beginning with a capital letter.

Master.bin file is a binary file and contains two records: one for stackfile dimensions and
the other for conversion factors and biases.

Most part of stackfile data is stored in sector files named as SectorA, SectorB, etc., for
height and lat/longs. Other data, for example pressure, are in different sector files named
as SectorApressure, and so on. Each sector file is a direct-access binary file. All rows and
cycles (slots) of a certain number of columns are stored in each sector file having a fixed
file size. The last sector file might have unused columns.

An ASCII file Journal contains a log of each program run that used the stackfile software
and database directory. Each line contains date, time, user id, program name, and a
message text.

Master.txt file is an ASCII file containing satellite and orbit constants that are useful to
user applications.

Equator.table file is an ASCII file containing the equator-crossing information needed for
the bin addressing of each data point that is to be inserted and for a time tag computation.

These five sets of database files are required in any stackfile directories. Master.txt and
Equator.table files are not produced by the stackfile software.

5.1 Bin, Stackfile Record

Sector files are binary files. Each data record is called a bin and has a 28-byte header and
a number of 9-byte height slots. The maximum numbers of rows, columns, and slots per
bin are set when the stackfile is created. The slot size of 10 Hz - 1 Hz height
displacements is 20 bytes. Ten 2-byte array elements of 10 Hz height displacements are
indexed in the increasing temporal order in every slot. The slot size of other data, such as
the surface atmospheric pressure, is 2 bytes.

5.2 Header

Five header items do not change even when a slot is updated: geographic latitude and
longitude of the bin center, height bias, ocean depth, and bin flags. When a slot is
updated, count, mean, and standard deviation of valid, that is, not missing, heights in the
bin are recalculated and points exceeding 3.5 σ criterion are flagged as wild.

Six header values are stored as REAL*4: bin latitude, bin longitude, height bias, ocean
depth, and mean and standard deviation of heights.

20

The bin latitude and longitude are packed in degrees.

To minimize slot size, slot heights are packed as displacements from a height bias of the
bin. The height bias in meters has been copied from a geoid model.

The ocean depth in meters is stored in each bin.

The count, mean, and standard deviation of valid, that is, not missing, slot heights are
calculated and maintained in the bin header.

Eight bits are packed with bin flags. Currently, two flag bits are used: (1) bin center is
over land or water; (2) bin is in an in-land lake or ocean when bin center is over water.

Bin Header and Height Slot

 Type(bytes) Units Remarks
Header

Geodetic latitude
East longitude
Height bias (geoid)
Ocean depth
Mean height
Standard deviation
points
Flags

28
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
2
2

degree
degree
meter
meter
meter
meter

-90 … +90
0 … 360

positive downward

Slot
Flags
Latitude displacement
Longitude displacement
Height displacement

9
1
3
3
2

micro-degree
micro-degree
millimeter

5.3 Slot

It is important to minimize the slot size. For Topex/Poseidon, all height slots take 1,436
MB of disk space. Thus, each of latitude and longitude displacements in micro-degrees is
packed into a three-byte field. This enables sfGetLatsLongs routine to return lat/longs of
each slot with the precision of an 8-byte real.

To reduce the byte size needed to pack the sea surface height (SSH), the bin header keeps
a height bias and each slot stores a displacement from that bias. This height displacement
is packed into a 2-byte integer in mm. To return the SSH above a reference ellipsoid in
meters, the height displacement in a slot is scaled and added to the height bias by
sfGetHeightsFlags routine.

One-byte disk storage is used in each slot to pack eight-bit flag information. Slot flags are
defined as:

1. ice/no ice surface (OUT OF DATE)

21

2. ocean tide correction applied
3. inverted barometer correction applied
4. point edited by preprocessor
5. data missing/exist
6. wild data point from 3.5 σ criterion
7. displacement out of range
8. For Topex/Poseidon, altimeter indicator. For other satellites, not used.

Flag 5, "data missing" has the priority over others. Currently, flag 1 (ice) is not used.

10 Hz height displacements from 1 Hz SSH are packed without shifting in millimeters in
an independent set of slot files that are sectored exactly the same way as height slot files
are.

Pressure data are kept in another set of slot files. The sector file names are
SectorApressure, etc. The pressure displacement in each slot is packed in a two-byte
integer. The pressure data has been subtracted by a bias and the resulting displacement
scaled to be stored.

Other data, which are maintained in still other sets of sector files as two-byte integers, are
not shifted nor scaled from the original GDRs. However, EM bias, wet tropospheric, and
ionospheric corrections on GDR have been changed in sign (mostly from a negative to a
positive).

5.4 Master.bin File

Master.bin file contains primary constants of the entire stackfile: dimensions, bias factors,
and scale conversion factors. It is a binary file and its contents are never changed once
the stackfile is created.

5.5 Master.txt File

Master.txt file is an ASCII file and contains other stackfile constants.

Each line consists of three fields: group, item, and data text. Group and item are
identifiers used for grouping in the file. Data text is the actual value of each constant. For
example, a certain set of polynomial coefficients is saved in this file. The polynomial
name is used as a group identifier; the individual coefficient names are used as item
identifiers; the coefficient values are data texts. The maximum length of groups and items
is 16 characters and that of data texts is 100 characters. The convention is that group and
item identifiers are upper-case letters.

The lines do not have to be in any order. Given a pair of group and item, stackfile routine
sfGetGItext simply opens this file, scans all lines sequentially until a line starting with
such a pair is read, and returns the data text of the line.

22

5.6 Journal File

Journal file is a list of accumulated use logs. Each time sfOpen or sfClose is called, a line
is automatically appended to this file. Application codes can call sfJournal to log their
own messages.

Each line contains date and time in yymmddhhmmss format. Next, there is an 8-character
user id. This is the login user id and is a blank if a batch job accesses the stackfile. Next
16-character field is the name of program. The remainder of the line is the message
passed to sfJournal.

23

REFERENCES

Kruizinga, G.L.H., Validation and applications of satellite radar altimetry, Ph.D.
dissertation, University of Texas at Austin, 1997.

The New Stackfiles, CSR technical memo, University of Texas at Austin, 1998.

	original: (from an original report, dated 2000)
	original2: (from an original report, dated 2000)

