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Abstract

Cognitive control has been of interest to psychologists and neuroscientists because

of its contribution to understanding individual differences, impulsivity, addiction, and

obsessive-compulsive disorder. Two tasks used to test cognitive control are the Go/No-Go

(GNG) and Stop-Signal (SS) tasks. In the GNG task, subjects are given a cue to respond

or withhold a response at the beginning of a trial. The SS task extends this basic paradigm

by including the possibility that a “Go” cue may switch to a response-withholding cue.

Behavioral and functional magnetic resonance imaging (fMRI) data, extracted for twenty-

four regions of interest (ROIs), were collected from eleven subjects who completed both the

GNG and SS tasks. In this study, blood oxygenation level-dependent (BOLD) responses

were fit using a hierarchical Bayesian analysis to five increasingly complex models of the

trial-wise neural activation to improve the signal-to-noise ratio and explore differences in

neural activation between response (Go trials) and response inhibition (No-Go/Stop trials).

We found that constructing a hierarchy, or adding multiple levels to the model, greatly

constrained the predicted BOLD signal by systematically removing outliers. Additionally,

increasing model complexity elucidated brain regions that played a role solely in carrying

out a response (Go trials). We next replicated these results using the more complicated SS

task. We found, from adding a hierarchical structure, that some brain areas showed less

activation after a stop signal than during either a Go or No-Go trial. Our results suggest

hierarchical modeling is a useful tool in interpreting often noisy fMRI data.
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Introduction1

Bayesian hierarchical modeling has the potential to be a highly effective tool in un-2

derstanding neural dynamics by addressing the noisiness of fMRI data and other issues3

relating to multiple corrections in a systematic way. Hierarchical Bayesian modeling has4

already been used to improve fMRI research. For example, Bowman, Caffo, Bassett, and5

Kilts (2008) presented a voxel-based framework for hierarchical Bayesian analysis. Later,6

Ahn, Krawitz, Kim, Busmeyer, and Brown (2011) showed how hierarchical Bayesian esti-7

mates of behavioral model parameters can be used as regressors in fMRI analysis and lead8

to more constrained results than when the same analysis is run using behavioral parameters9

estimated by non-hierarchical Bayesian techniques, such as maximum likelihood estimates.10

Our analysis differs from these two studies in the following ways. First, unlike Bowman11

et al., the hierarchical model fitting occurs after preprocessing and traditional voxel-based12

analyses, such as ROI analyses. Thus, our method can be easily integrated into existing13

pipelines for fMRI analysis. Also, unlike Ahn et al., our instance of hierarchical Bayesian14

modeling is purely neurally-based and is implemented without making assumptions about15

behavior.16

We tested this framework in the area of cognitive control, and specifically response17

inhibition. Cognitive control theories, in general, are based on the idea that fronto-parietal18

connectivity allows for cognitively regulatory abilities (Jung & Haier, 2007; Miller & Co-19

hen, 2001). Additionally, individual differences found in these tasks arise from differences20

in fronto-parietal connectivity, or whole-brain connectivity to the prefrontal cortex (Cole,21

Yarkoni, Repovs, Anticevic, & Braver, 2012). Response inhibition is one area of research22

within the broad domain of cogntive control. Response inhibition research has important23

applications to individual differences, attention deficit hyperactivity disorder and obsessive-24

compulsive disorder (Bannon, Gonsalvez, Croft, & Boyce, 2002; Miyake & Friedman, 2012;25

Schachar & Logan, 1990). Two tasks commonly used to measure response inhibition are26

the Go/ No-go (GNG) task and the Stop-Signal (SS) task. In the GNG task, subjects are27

instructed to respond to one stimulus (or set of stimuli), often by invoking a motor response28



INHIBITORY CONTROL 6

(i.e. pressing a button), and not to respond to a different stimulus, or set of stimuli. The29

SS task extends this basic setup by adding a stopping condition, where a Go signal is pre-30

sented, but after a set delay, a stop signal is presented. One area of research in the response31

inhibition literature is comparing the neural activation and correlates of GNG and SS tasks32

(Rubia et al., 2001; Swick, Ashley, & Turken, 2011). Using a hierarchical Bayesian analysis,33

we are able to gain insight inside the differences between going, not going, and stopping.34

We aim to show the benefits of using hierarchical Bayesian modeling in constraining35

fMRI data and to apply these benefits to understanding the neural dynamics of response36

inhibition present in GNG and SS tasks. First, we explain the details of the tasks and the37

methodology for obtaining, preprocessing, and analyzing the fMRI data. Next, we introduce38

five increasingly complex models of the BOLD response. The results from these model fits39

are presented in a trifold manner. First, we compare model constraint and predictions.40

Second, we examine how neural activation changes across response and response inhibition41

conditions. Third, we evaluate coactivation between brain regions and how differences in42

coactivation relate to individual differences. We conclude with a summary of the results43

and a discussion of the limitations and further directions.44

Methods45

Participants46

The eleven participants analyzed in this study were part of another study where47

multiple tasks, including the GNG, were run in the MRI scanner. These participants later48

participated a second session for the SS task, so they are included in the current study. All49

participants were recruited from the Ohio State University and its surrounding community50

and provided informed consent. The study was approved by the Institutional Review Board51

of the university. Among the eleven participants (mean age=24.6 years; range from 18 to52

48) included in the analysis, there were 5 females and 6 males.53
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Stimuli54

All stimuli were programmed in Matlab using Psychtoolbox extensions55

(http://psychtoolbox.org/) on a Windows PC. The participant lay supine on the56

scanner bed and viewed the visual stimuli back-projected onto a screen through a mirror57

attached onto the head coil. In the GNG task, subjects were instructed to press a button58

when they viewed an A, B, C, D, or E, and to not press any button when they viewed an59

X, Y, or Z. The SS task contained both of these “Go” and “No go” trials, but also on some60

trials a Go signal was presented but then after a delay, a Stop signal (square around the61

letter) appeared on the screen. The GNG task consisted of 75 “Go” and 25 “No-go” trials,62

for a total of 100 trials. The SS task consisted of 64 “Go” trials, 16 “No-go” trials, and 8063

“Stop” trials of 3 different delays (individually fit for each subject, based on response time64

distributions). There were 160 trials per run, and each subject completed three runs of the65

SS task, so there were 480 trials total. In this study, our analysis focused on just the first66

run from both tasks. Figure 1 shows the trial examples for both GNG and SS tasks.67

MRI Data Acquisition68

MRI recording was performed using a 12-channel head coil in a Siemens 3T Trio69

Magnetic Resonance Imaging System with TIM, housed in the Center for Cognitive and70

Behavioral Brain Imaging at the Ohio State University. BOLD functional activations were71

measured with a T2*-weighted EPI sequence (repetition time = 2000 msec, echo time = 2872

msec, flip angle = 72 deg, field of view = 222×222 mm, in-plane resolution = 74×74 pixels73

or 3×3 mm, and 38 axial slices with 3-mm thickness to cover the entire cerebral cortex and74

most of the cerebellum). In addition, the anatomical structure of the brain was acquired75

with the three-dimensional MPRAGE sequence (1×1×1 mm3 resolution, inversion time =76

950 msec, repetition time = 1950 msec, echo time = 4.44 msec, flip angle = 12 deg, matrix77

size = 256×224, 176 sagittal slices per slab; scan time 7.5 minutes) for each participant.78
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Figure 1 . Example Trials Diagram showing the example stimulus within a trial. The
left panel shows Go/ No-go (GNG) task (one Go trial and one No-go trial), and the right
panel shows the Stop-Signal (SS) task (one Go trial, one No-go trial and one Stop trial).
For a stop trial, a square around the letter appears after variable time to indicate to inhibit
response.

Image preprocessing and analysis79

The fMRI preprocessing was carried out using FEAT (FMRI Expert Analysis Tool)80

in FSL (FMRIB software library, version 5.0.8, www.fmrib.ox.ac.uk/fsl). The first six81

volumes were discarded to allow for T1 equilibrium. The remaining images were then82

realigned to correct head motion. Data were spatially smoothed using a 6-mm full-width-83

half maximum Gaussian kernel. The data were filtered in the temporal domain using a non-84

linear high-pass filter with a 90-s cutoff. A two-step registration procedure was used whereby85

EPI images were first registered to the MPRAGE structural image, and then into the86

standard (MNI) space, using affine transformations. Registration from MPRAGE structural87

image to the standard space was further refined using FNIRT nonlinear registration.88

After the neural data was preprocessed, twenty-four regions of interest (ROIs) were89

extracted. Table 1 shows information about ROIs and their corresponding number labels,90

used in later figures.91
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Number Name %MNI xyz nVox (<40)

1. callosum [3 -23 29] 208
2. PCC (posterior cingulate cortex) [-2 -56 22] 957
3. preSMA (presupplementary motor area) [4 21 47] 1952
4. left angular gyrus [-44 -72 30] 328
5. left fusiform gyrus [-43 -60 -17] 84
6. left IFG-1 (inferior frontal gyrus 1) [-37 18 -4] 912
7. left IFG-2 (inferior frontal gyrus 2) [-44 9 29] 426
8. left IPL (left inferior parietal lobe) [-34 -52 46] 459
9. left ITG (left inferior temporal gyrus) [-56 -10 -20] 44

10. left insula [-39 -3 7] 41
11. left MFG (left middle frontal gyrus) [-3 50 -9] 477
12. left putamen [-27 -13 7] 48
13. left SFG (left superior frontal gyrus) [-9 57 35] 128
14. left thalamus [-6 -16 -2] 72
15. left ventral striatum [-1 16 -9] 100
16. right caudate [13 10 6] 55
17. right IFG (right inferior frontal gyrus) [43 20 12] 2830
18. right IPL (right inferior parietal lobe) [48 -44 43] 1400
19. right MFG (right middle frontal gyrus) [38 48 -10] 83
20. right MTG (right middle temporal gyrus) [49 -66 26] 60
21. right precuneus [12 -67 42] 83
22. right putamen [31 -11 4] 44
23. right SFG (right superior frontal gyrus) [21 49 31] 45
24. right thalamus [9 -16 3] 154

Table 1
Regions of Interest Table showing the number label and full name of each ROI as well

as MNI coordinates and number of voxels.

Model Specification92

Five increasingly complex models were constructed to model the neural response93

during the GNG and SS tasks. Figure 2 shows a graphical diagram of the five models. The94

complexity of the models increase in a stepwise manner. The first model is the simplest95

and has no hierarchical component. Ni,j represents the observed neural data, where for a96

given region of interest, there is a blood oxygenation-level dependent (BOLD) response at97

a time t in response to the presentation of a Go, No-go, or Stop-signal, denoted as stimulus98

j. The shape of the BOLD response is constructed from convolved hemodynamic response99
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Figure 2 . Model graphical diagrams Graphical diagrams of the five models. Each node
represents a variable in the model, where filled nodes are observed data and white nodes
correspond to latent variables. The only filled node pictured in each model is N, the neural
data. The design matrix (information about stimuli condition and onset time) were not
included in this diagram for visual clarity. Arrows represent relationships between variables
and plates represent replications across dimensions (e.g., conditions or subjects).

functions. For a more detailed discussion, see Palestro et al. (2018). The hemodynamic100

response function (HRF) was chosen to be a canonical form of the double-gamma model101

implemented in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/):102

h(t) = βh0(t) = β

(

ta1−1b1
a1 exp(−b1t)

Γ(a1)
− c

ta2−1b2
a2 exp(−b2t)

Γ(a2)

)

, (1)

where t is time, β is the amplitude of the response, and Γ(x) = (x − 1)! is the gamma103

function. The parameters a, b, and c are fixed to their conventional values: a1 = 6, a2 = 16,104

b1 = 1, b2 = 1, and c = 1/6. The only freely estimated parameter is β.105

An HRF occurs at every single stimulus presentation, but the shape of the BOLD106

response is influenced by the timing of HRF following other stimuli presentations and the107

proximity to other stimuli onsets. When stimuli are close together (e.g. within a 30 second108
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window), the shape of an BOLD signal for a given stimuli is influenced by the HRFs of109

other stimuli. The amplitude is increased, as the BOLD response carries over in time.110

Using data from the design matrix, which contains the onsets of each stimuli (in the case111

of the GNG task, when a Go or No-go letter appears on the screen), we can predict when112

a HRF will occur. fMRI measures are delayed from when they actually occurred, but the113

BOLD response is linearly time invariant (LTI), which means that the BOLD response is114

delayed the same amount of time as the neural activation. This allows us to assume that115

the HRF starts at point t when the stimulus was presented. Also, the amplitude, β, can116

be observed relatively across subjects, conditions and ROIs. This is because β is linearly117

related to the strength of neural activation in a given area.118

The process of this shifting and change in amplification is called convolution. The119

first step, shifting, can be represented by the following equation:120

(f ∗ h)(t) =

∫

∞

−∞

f(τ)h(t − τ)dτ

=

∫

∞

−∞

h(τ)f(t − τ)dτ (commutativity). (2)

where h(t) is the canonical HRF from Equation 1 and f(t) is a boxcar function that121

contains the timing of stimulus presentation. f(t) contains the t of a stimulus’ onset, and122

zeros at every other time point. This centers the HRF at t for when a stimuli was presented.123

The next step of convolution addresses the amplitude change that occurs when HRFs are124

close together. To integrate each individual HRF we calculate from above, we use beta-series125

regression (Mumford, Turner, Ashby, & Poldrack, 2012; Rissman, Gazzaley, & D’Esposito,126

2004), which sets individual regressors for each trial to use in a generalized linear model127

(GLM).128

The neural likelihood can then be defined as the baseline activation (β0) plus the sum129

of the convolved and amplified HRFs with an added error term:130
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N(t) = β0 +
R
∑

i=1

hi(t) + ǫ(t)

= β0 +
R
∑

i=1

βih0,i(t) + ǫ(t), (3)

R is the number of stimulus presentations, in the GNG task R=100 (one stimulus per trial)131

and in the SS task R=240 (one per Go/ No-go trial and two per Stop trial, one per each132

stimulus shown). Again, the only free parameters are the amplitudes of β. The distribution133

of the added error term ǫ(t) is assumed to be normal, centered at 0, with a standard134

deviation of σ, which is freely estimated:135

ǫ(t) ∼ N (0, σ).

The distribution of the neural data is also normal, with the mean as the design matrix, X,136

multiplied by single-trial βs and a standard deviaton of σ:137

N ∼ N (Xβ, σ), (4)

All of the above is specifically for Model 1, but also provides the basis for all five138

models. The second model adds a hierarchical structure across conditions. For the Go/139

No-go task there are 2 conditions: Go and No-go. For the stop-signal task, there were four140

conditions: Go, No-go, stop-signal presented before a response was made, and a nuisance141

regressor, for when a stop-signal was presented after a response was made. In this model,142

an additional free parameter is added, the hyperparameter on β, δ. Each condition, k,143

has a corresponding δ parameter. Model 3 constructs an additional level of hierarchy144

across subjects. Two more freely estimated are added with this model. The first, µ0,145

is a hyperparameter on the each subjects baseline activation β0

j . The second added free146

parameter is µj , a hyperparameter of δj,k.147

Models 4 and 5 add a hierarchical structure across ROIs. These models add one free148
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parameter, Σ. Σ informs the prior for δ, which in Model 4 is:149

δj,k,r ∼ Nr(µk, Σ),

and in Model 5 is:150

δj,k,r ∼ Nr(µk, Σj),

where the notation is consistent with Figure 2, with subject j, condition k, and ROI r. The151

difference between Model 4 and Model 5 is that the ROI covariance matrix for Model 4152

is collapsed across subjects (Σ), whereas Model 5 has one ROI covariance matrix for each153

individual (Σj). The priors for µk and Σ are distinctly specified for Models 4 and 5. Note154

that the parameters for the priors on µk and Σ can be set arbitrarily. For Models 4 and 5,155

the prior for µk is normally distributed156

µk ∼ Np (φ0, s0) ,

We set φ0 to be a vector of 24 zeros and s0 to be a twenty-four by twenty-four matrix157

of zeros with the diagonal set to 1. For model 4, the prior for Σ is an inverse Wishart158

distribution,159

Σ ∼ W
−1(I0, n0),

where I0 is another twenty-four by twenty-four matrix of zeros with the diagonal set to 1160

and n0 is 24. For Model 5, the prior is the same, but there is a separate one for each subject161

j.162

Fitting details163

To fit the models, we used Just Another Gibbs Sampler (JAGS; Plummer (2003)). All164

of the models across the two tasks had three chains, but took on one of two combinations165

of adaptation, burn-in, and sampling iterations. The first, longer procedure, was used for166

Models 1, 2 and 3 in the GNG task and Model 1 in the SS task. In this procedure, model167
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initialization ran for 2,000 adaptations. After initialization, 4,000 samples were discarded168

as burn-in. Then, the posterior sampling ran for 6,000 iterations. Thus, with three chains,169

there was a total of 18,000 samples for each parameter.170

Because of computational complications, the sampling lengths was shortened for Mod-171

els 4 and 5 of the GNG task and Models 2 through 5 of the SS task. In this procedure,172

model initialization ran for 1,000 adaptations, followed by a burn-in period of 2,000 itera-173

tions. The posterior sampling then ran for 3,000 iterations. With the three chains again,174

there were a total of 9,000 samples for each parameter.175

For all models, the chains were plotted and visually checked for convergence. All of176

the hyperparameters (when applicable) and σ and a sample of the predicted neural response177

(N) and single-stimuli amplitudes (βs) were checked for each subject and ROI.178

Model Constraint179

The first step in our analysis was to compare model constraint. We compared model180

fits in three stages. We first looked at the models’ predictions of neural responses across181

time. All five models predicted the neural responses across the time series and therefore182

can all be directly compared. Additionally, because we observed this neural response, we183

can see how well the predictions map onto the observed data. Next, we compared model184

predictions of β across the five models. Unlike in the first comparison, β is latent and thus185

cannot be examined in relation to any real data. Lastly, we compared model predictions of186

δ. Because δ is the hyperparameter of β, it is only present in the models with a hierarchical187

component. Thus, only models 2 through 5 were analyzed. We separated these comparisons188

by task, starting with the GNG task.189

Go/ No-go190

Time Series Predictions. All five of the models predicted neural activation at191

every point of the time series. Figure 3 compares the abilities of the first 3 models in192

predicting the neural activity of the left insula (ROI 10) across the time series for the GNG193
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task. Each column corresponds to a model and each row corresponds to a subject. The194

first three subjects were chosen for illustrative purposes, but represent the general trend195

shown across subjects. The black dots in each subplot represent the real, observed BOLD196

response. The solid red line is the mean of the posterior of the predicted neural data across197

the time series and the dotted red lines represent the 95% predictive interval. The neural198

predictions from Models 4 and 5 did not visually differ from the predictions from Model 3,199

and are not included in this figure.200

In this figure, Model 1 outperforms Models 2 and 3 in capturing subjects’ BOLD201

response in the left insula. This trend was also observed across subjects and ROIs. Model202

1 has a lot of variability and closely captures the observed neural data. The 95% predictive203

interval continues to closely capture the observed neural data, containing essentially all of204

the observed data points. Despite their increased complexity, Models 2 through 5 have205

much less variance and their 95% predictive intervals include less of the observed data than206

Model 1. Importantly, these results do not necessarily mean that Model 1 best captures all207

of the data. The next comparison focuses on the constraint of β estimates.208

Constraint on Beta Estimates. While increasing model complexity did not im-209

prove time series predictions, it did greatly improve single-trial beta estimates (β). Figure210

4 compares predictions of β from the first three models, again with left insula during the211

GNG task. Similar to Figure 3, the rows correspond to the first 3 subjects and the columns212

correspond to the first 3 models. Unlike in Figure 3, however, there is no real data for213

comparison because β is latent, or unobserved. The dotted lines refer to the range of the214

posterior estimates and the red boxes denote the interquartile range.215

This figure shows a representation of the large shrinkage effect on model estimations of216

single trial β, especially when going from a nonhierarchical model (Model 1) to a hierarchical217

model (Model 2). Additionally, model hierarchy reintroduced some variability in the model218

estimates. Models 4 and 5 did not drastically improve upon the estimates of Model 3,219

so they are not pictured. Importantly though, Models 4 and 5 present more information220

regarding correlations between ROIs, as well as more constraint on the posteriors of other221



INHIBITORY CONTROL 16

Figure 3 . Time Series Fits Model predictions of neural activity of the left insula in the
GNG task. Rows correspond to subjects and columns correspond to model. The black dots
in each subplot are the real, observed BOLD response. The solid red line is the mean of
the posterior predicted neural data across the time series and the dotted red lines represent
the 95% predictive interval.
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Figure 4 . Constraint on Beta Estimates in GNG Representative plots of the constraint
introduced when constructing a hierarchical component into a model. These plots are for
model fits to the GNG task. These single trial estimates are all for ROI 10, the left insula,
an area implicated in both the GNG and SS tasks. Each row corresponds to a different
subject and each column corresponds to a model. The red box shows the interquartile range
and the dotted lines show the range of the posterior.

parameters, such as the β hyperparameters (δ).222

An example of the constraining effect of model complexity on δ is shown in Figure223

5. This figure shows the joint distribution of δGo and δNo−Go for the left insula in Model224

3 (left panel) and Model 4 (right panel). In this figure, each red point corresponds to a225

different subject. The x-coordinate of the point is the mean of the δ posterior for the Go226

condition and the y-coordinate is the mean of the δ posterior for the No-Go condition. The227

error bars are two standard deviations away from either the δGo mean if horizontal or the228

δNo−Go mean if vertical. The diagonal dotted line represents indifference. In other words,229

if a point lies on that line, a subject has an equal predicted BOLD response in trials when230

they are told to press a button and trials when they are told not to press a button for that231

specified ROI.232

While single-trial β estimates look essentially identical for Model 3 and Model 5, the233

comparisons of δNo−go versus δGo in the two models, shown in this figure, highlight the234
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Figure 5 . Constraint on Beta Hyperparameters in GNG This plot shows the joint
distribution of δGo and δNo−Go for the left insula in Model 3 (left) and Model 5 (right).
Each red point corresponds to a different subject. The x coordinate of the point is the mean
of the δ posterior for the Go condition and the y coordinate is the mean of the δ posterior
for the No-Go condition. The error bars are 2 standard deviations away from either the δGo

mean if horizontal or the δNo−Go mean if vertical.

constraint offered by Model 5. In Model 5, the mean of the posterior of δGo is greater than235

δNo−go in all eleven subjects. If we looked only at Model 3, the result is less robust. For236

example, in Subjects 1 and 11, the mean of δNo−go is actually greater than the mean of δGo.237

Stop-signal238

As previously stated, the models for the SS task are more complex as there are two239

additional conditions. To see how this added complexity would affect model predictions,240

we again reviewed single-trial (or in this case, single-stimulus) β estimates and the hyper-241

parameters for these estimates. The time series predictions were also observed, but are not242

pictured. The time series analysis in the SS task yielded the same results as the analysis243

in the GNG task, namely that Model 1 fit the observed neural data more closely than the244

other models.245

Constraint on Beta Estimates. Figure 6 replicates the finding from the GNG246

task that adding even one layer of hierarchy greatly constrains β estimates. The layout and247
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Figure 6 . Constraint on Beta Estimates in SS Representative plots of the constraint
introduced when constructing a hierarchical component into a model. These plots are for
model fits to the SS task. These single-stimuli estimates are all for ROI 5, the left fusiform
gyrus. Each row corresponds to a different subject and each column corresponds to a
model. The red box shows the interquartile range and the dotted lines show the range of
the posterior.

notation of this figure are identical to Figure 4, but in this case, the β estimates are for the248

left fusiform gyrus in the SS task. Additionally, because this is the SS task, the estimates249

are not for each trial, like in the GNG task. In both tasks, the models estimate a β for250

the onset of each stimulus (i.e. the letter “A” signifying “Go”), but in the GNG task this251

is equivalent to trial. In the SS task, however, in trials with a stop-signal, there are two252

stimuli presented in a single trial (a “Go” cue followed by a “Stop” cue), and thus for some253

trials there are two β estimates.254

Perhaps the largest effect of introducing a hierarchical structure in Figure 6 is the255

narrowing of the posteriors. This effect can be seen in the changes of the scale of the y-axes256

from one model to another. The most dramatic change, both in the figure and across all257

subjects and ROIs, occurs from the transition from Model 1 to Model 2. This effect was258

also seen in the GNG task, represented by Figure 4, but the posteriors are even wider for259

the SS estimates. For some subjects/ROIs, the range of posteriors is over 200. An example260



INHIBITORY CONTROL 20

Figure 7 . Constraint on Beta Hyperparameters in SS This plot shows the joint
distribution of δGo and δStop for the left fusiform in Model 2 (left) and Model 5 (right).
Each red point corresponds to a different subject. The x coordinate of the point is the
mean of the δ posterior for the Go condition and the y coordinate is the mean of the δ
posterior for the Stop condition. The error bars are 2 standard deviations away from either
the δGo mean if horizontal or the δStop mean if vertical.

of this can be seen in Subject 3’s predictions of the left insula’s BOLD response for each261

stimulus, with a range of -150 to 100. Model 2 scales this down to -20 to 20, and Model 3262

constrains it further.263

In the GNG task, we saw that the most complex model led to different and more264

constrained estimates of δ than less complex models. Figure 7 replicates this result in the265

SS task. This figure is set up identically to Figure 5 with a few exceptions. First, δGo (x-axis)266

is compared with δStop (y-axis) instead of δNo−go. Importantly, this stop condition includes267

only the stop signals that appeared before a response condition was made. Additionally,268

these δ predictions are for the left fusiform gyrus (not the left insula like in Figure 5),269

consistent with the ROI used for the time series analysis in Figure 6. Lastly, this figure270

compares Models 2 (left) and 5 (right).271

In Model 5, all eleven subjects show more activation in the Go condition than in272

the Stop condition. In Model 2, however, only nine subjects show this trend in activation.273
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Additionally, in the Model 2 subplot, Subject 3 shows a greater activation for δStop than δGo,274

with a relatively larger difference (or distance from the line of indifference) than observed in275

other subjects. However, in the Model 5 subplot, Subject 3 shows the opposite, with more276

activation in δGo than in δStop and is closer to the group mean. Furthermore even with ±277

2 standard deviations from the mean, each subject’s δGo is larger than δStop. In conclusion,278

increasing model complexity in the SS task adds more constraint in both the β and the δ279

estimates.280

Differences in Activation Across Tasks and Conditions281

To explore activation differences across task, we looked at the β hyperparameters, δ.282

δ defines the posterior from which the single-trial βs are sampled. For each model, in both283

the GNG and SS tasks, each condition has its own δ value, and thus provides a consistent284

way to compare how the change in BOLD activation differs across subjects. In the GNG285

task, there are 2 conditions, and thus 2 δs, δGo and δNo−Go, in Models 2 through 5. We had286

four different δ distributions for this task, Go and No-go, similar to the GNG task, but also287

two stop δs. The first is when a subject did not respond before the onset of a stop-signal,288

and the second is the nuisance regressor, where a subject responded before a stop-signal was289

presented, but still observed the stop signal. We will report the δs only from M5, because290

as shown from the previous section, M5 provides the most constraint, most notably in these291

δ values (Figures 5 and 7).292

Go/ No-go293

The aggregated group results of the δ values by condition in the GNG task are shown294

in Figure 8. Each numbered dot corresponds to an ROI. The location of the dot is approxi-295

mated for visual clarity. The color of the dot represents the percent change in BOLD signal.296

Cooler colors represent a smaller, or more negative, percent change in BOLD, and warmer297

colors represent a larger percent change in BOLD. We took the average δcondition for each298

subject across all iterations and chains and then took the group average. We can see areas299
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Figure 8 . Go No Go ROI Activation by Condition Aggregated results from the SS
task across individuals for the mean of the δ distribution (hyperparameter on the single-trial
β) for each ROI. Cooler colors represent a smaller or more negative percent change in BOLD
signal, i.e. less activation, and warmer colors represent a larger percent change in BOLD
signal, i.e. more activation. The rows correspond to the mean of δ for each condition, with
Go on the top and No-go on the bottom.

that are approximately equal, such as the left fusiform gyrus (ROI 5, column: x = −20),300

right putamen (ROI 22, x = 0), and right thalamus (ROI 24, x = 10). Other areas show301

higher activation in the go condition, such as left ventral striatum (ROI 15, x = −10), left302

insula (ROI 10, x = 10), and right caudate (ROI 16, x = 10). Lastly, some areas show303

higher activation in the No-go condition, such as left IPL (ROI 8, x = 40) and right IPL304

(ROI 18, x = 40).305

While this figure can give an overview of the results, it is not possible to appreciate the306

individual differences known to be important in this task. Additionally, one subject could307

be skewed in one direction, but this would not be representative of the actual difference308

in task. Therefore, we also looked at the joint distribution of the delta parameters on an309

individual level. When discussing these results, we will use the phrase “more activation,”310

which in this case means that the mean of posterior for δk for one condition was greater311

than the mean of the posterior of the δk for a different condition. Four ROIs showed more312

activation for one condition over the other in nearly every subject. The left insula (ROI 10),313

left putamen (ROI 12), and left ventral striatum (ROI 15) showed more activation in the314
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Go parameter than in the No-go parameter. This trend was present in all eleven subjects.315

There was no ROI that showed more activation for No-go over Go in all eleven subjects.316

However, one ROI, the right inferior parietal lobe (ROI 18), showed more activation for317

No-go over Go in ten out of eleven subjects.318

Stop-signal319

We looked at group-level and individual means of δ across in condition in the SS task320

as well. In this paper, we will report only on the non-nuisance stop condition. However,321

we did also look at the nuisance distribution and compared it to the Go, No-go, and non-322

nuisance stop conditions. We found that its patterns and trends were very similar to the323

stop condition, and chose not to report it because it deviates from the canonical SS task.324

From our group-level analysis, we found that many ROIs showed less activation after325

a Stop-signal than after a Go or No-go cue. Figure 9 shows aggregated group results for326

each ROI in the SS task. Each corresponds to a condition, with Go at the top, No-go in327

the middle, and Stop (again, not including the nuisance regressor) at the bottom. The328

methods for obtained this plot are identical from those used in the GNG analysis, but note329

that the scale in the percent BOLD legend are specific for this task, and ranges from -0.6 to330

1.4, as opposed to the GNG task which ranges from -0.8 to 0.6. The upper bound is more331

than double, but our analyses will focus on the relative differences of activation in between332

conditions within a certain task. Go and No-go look very similar, with a few exceptions333

such as in the left insula (ROI 10). They especially look similar when compared to Stop,334

whose widespread cooler, negative activation looks starkly different from the wide ranges of335

Go/ No-go. The Stop condition has no ROIs with a percent change in BOLD signal larger336

than 0.21, and a mean of -0.036, which is much less than the means the ROIs for Go (mean337

= 0.40) and No-go (mean = 0.35). This is not to say that every ROI was less activated than338

every ROI in a Go or No-go condition, though, as we will find in the individual analysis.339

The discussion of the individual analysis will focus on the ROIs where the means of340

the δ parameter were greater in one condition over another for all subjects. Like in GNG,341
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Figure 9 . Stop-Signal ROI Activation by Condition Aggregated results from the SS
task across individuals for the mean of the δ distribution (hyperparameter on the single-trial
β) for each ROI. Cooler colors represent a smaller or more negative percent change in BOLD
signal, i.e. less activation, and warmer colors represent a larger percent change in BOLD
signal, i.e. more activation. The rows correspond to the mean of δ for each condition: Go,
No-go, and Stop.

these analyses will focus on the results form the most complex model, Model 5. Unlike342

GNG, we have 3 different conditions to make comparisons about.343

There were nine ROIs where all subjects showed more activation in Go than in Stop.344

They were: the preSMA (ROI 3), left fusiform gyrus (ROI 5), left IFG-1 (ROI 6), left IFG-2345

(ROI 7), left IPL (ROI 8), left insula (ROI 10), right caudate (ROI 16), right IPL (ROI346

18), and right SFG (ROI 23). In all of these ROIs except for the right IPL, this trend held347

true with ± two standard deviations from the mean of the posteriors. There were eight348

ROIs where all subjects showed more activation in No-Go than in Stop. These areas were349

the same as the ROIs with more activation in Go than in Stop listed previously, with the350

exception of the right caudate (which was more activated in No-Go than in Stop for ten351

out of eleven subjects). Only four of these eight areas (preSMA, left fusiform gyrus, left352

IFG-2, and left IPL) still showed more activation in No-Go than Stop with ± 2 standard353
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deviations from the mean of the posteriors.354

Even though Figure 9 may give the impression that no ROIs showed more activation355

in the Stop condition than either Go or No-go, this is not the case. The left middle frontal356

gyrus (ROI 11) shows more activation for the Stop condition over the No-go condition in357

all eleven subjects. The left MFG was shown to be more active in stop than in Go for only358

seven out of eleven subjects, so the clear consensus was found only when comparing Stop359

and No-go. The left MFG was the only ROI with a consensus between all eleven subjects,360

but for ten out of eleven subjects, the left ITG (ROI 9) was found to be more activated361

in Stop than in both Go and No-go and the right MTG (ROI 20) was found to be more362

activated in Stop than in No-go.363

There were no ROIs where all subjects showed more or less activation in the Go or364

No-go condition. However, there still is some evidence supporting the results from the GNG365

individual analysis. All of the areas found in the GNG task to have more activation in the366

Go condition than in the No-go condition (the left insula, left putamen, and left ventral367

striatum), were found again in the SS task to have more activation in the Go condition than368

in the No-go condition for at least nine out of the eleven subjects. However, the area found369

in the GNG task to have more activation in the No-go condition in the Go condition (the370

right inferior parietal lobe), was not found to follow this trend for a majority of subjects in371

the SS task.372

Individual Differences in ROI Coactivation373

As stated in the introduction, individual differences in cognitive regulation are thought374

to arise from differences in connectivity with the frontal cortex (Cole et al., 2012). Our more375

complicated models allow us to explore possible differences in connectivity. The parameter376

Σ in Models 4 and 5 show us which ROIs are coactivated. The twenty-four by twenty-four377

matrices shows pair-wise correlations of activation. Importantly, Σ does not specifically378

show connectivity, but coactivation. Thus, we cannot make any conclusions about connec-379

tivity, but coactivation and connectivity are closely related, so if the coactivation matrices380
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Figure 10 . GO/No-Go Correlation Matrices Twenty-four by twenty-four correlation
matrices showing coactivation of the twenty-four regions of interest. The correlation matrix
on the left is the group correlation matrix from Model 4. The four correlation matrices
on the right are four individual level-plots from Model 5. They are labeled with their
respective subjects and represent the range of subjects. The legend to the right applies to
all 5 plots. Cooler colors show a negative correlation and warmer colors show more positive
correlations. The diagonal has a correlation of 1.0 and was removed for visual clarity.

for different subjects are vastly different, it is reasonable to suggest that the connectivity381

could also be different.382

Go/ No-go383

The model outputs Σ as a covariance matrix, but each prediction (for each sample384

and chain) was converted into a correlation matrix and then averaged and plotted. Figure385

10 shows a plot of the Σ matrix estimated from Model 4 fit to GNG data and four plots of386

Σj estimated from Model 5 fit to GNG data from four representative subjects. In all five387

matrices, the diagonal components were removed to not skew the scale, since the diagonal388

represents the correlation between the same ROI (i.e. ROI 1 and ROI 1) and is always389

equal to 1.0. All five plots are colored according to the same scale. Warmer colors show a390

higher correlation and cooler colors show a smaller or more negative correlation.391

This figure supports the idea that individual differences play a role in the GNG task.392
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Figure 11 . Stop-Signal Correlation Matrices Twenty-four by twenty-four correlation
matrices showing coactivation of the twenty-four regions of interest. The correlation matrix
on the left is the group correlation matrix from Model 4. The four correlation matrices on
the right are four individual level-plots from Model 5.They are labeled with their respective
subjects and represent the range of subjects. The legend to the right applies to all 5 plots.
Cooler colors show a negative correlation and warmer colors show more positive correlations.
The diagonal has a correlation of 1.0 and was removed for visual clarity.

Not only does the group level Σ not look like the individual plots, but the individual plots393

predicted by Model 5 also look very different. Subject 6 had the widest range of values394

in its mean Σ and greatly skewed the results. For the majority of subjects, the values of395

Σ ranged from approximately -0.2 to 0.2. However, even when fit to their own scale, no396

consistent pattern emerged.397

Stop-signal398

We also observed the Σ plots from Models 4 and 5 from the SS task, to see if these399

individual differences were again present and also to see if there are any similarities between400

the two tasks, on either a group or individual scale. Figure 11 shows the correlation matrix401

from Model 4 and representative figures from the correlation matrices from Model 5. It402

is important to note that the scale in this figure is for the ranges of the SS Σs and is not403

equivalent to the scale in Figure 10.404
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Figure 11 shows that evidence for individual differences were again observed in the SS405

task. The Σ estimated from Model 4 did not look like the Σ for each subject estimated from406

Model 5. Additionally, there was not a consistent pattern among the individual subjects’407

correlation matrices. Subject 6 again had the widest range of their correlation matrix, with408

the other subjects having much smaller ranges. Even when comparing across tasks, there409

was no consistent pattern emerging for either the group Σs in the SS or GNG tasks, or in410

individual Σs in the SS or GNG tasks.411

Discussion412

We used hierarchical Bayesian modeling to constrain and better understand fMRI413

data collected from GNG and SS tasks. First, we found evidence that hierarchical Bayesian414

modeling improves single-trial β estimates and that increasing levels of hierarchy improves415

estimates for the hyperparameters of single trail βs. However, we also found some contra-416

dictory results from Model 1. Model 1 very closely fit the observed neural time-series data,417

but had the least constrained single trial β estimates by far. This is contradictory, because418

the β estimates inform the neural predictions, so we would predict that if the neural predic-419

tions are close to the real data, the β estimates would be very constrained. It could be that420

Model 1 is overfitting the data, or even making the wrong predictions. Cross-validation is421

thus an important next step in determining the validity and generalizability of the model422

predictions.423

Second, we found that the stopping condition had less BOLD activation across the424

brain than the Go or No-go conditions. This corresponds to many findings in the literature,425

but also contradicts some other evidence. The systematic deactivation in the stopping426

condition may be closely related to attention, specifically that the attention needed to427

initiate a stop response may cause the suppression of the default mode network (Turner,428

Van Maanen, & Forstmann, 2015). Additionally, Our results, however, do not provide429

evidence for the finding that the right inferior frontal cortex acts as a sort of brake in the430

brain (Aron, Robbins, & Poldrack, 2014). A possible reason for this disparity could be431
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because of the large number of voxels of the right IFC.432

Third, we found strong evidence for individual differences in these tasks. This cor-433

responds well to the literature, as individual differences are found to be at play in tasks434

of cognitive control, especially with response inhibition. The difference of the covariance435

matrices between tasks also suggest different neural systems are activated in the different436

tasks, which is supported by work in Swick et al. (2011).437

While our analyses show some insight into neural dynamics, they do not reveal any-438

thing mechanistic or take the behavior into account. Accuracy of subjects and response439

times add more constraint to the model, and allow us to build in more theoretical compo-440

nents. To make mechanistic claims and to incorporate the behavior, a further direction of441

this research would be to build a full joint model (for a review see Turner, Forstmann, Love,442

Palmeri, and Van Maanen (2017)). However, even without the additional constraint of be-443

havioral data, constructing a hierarchy allowed us to constrain the single-trial β estimates,444

discover diminished activation when stopping, and find evidence for individual differences445

in neural coactivation. In conclusion, we found that hierarchical Bayesian analysis is an446

important tool in understanding the neural dynamics of response inhibition.447
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