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Abstract:  

In this work zeolite supported manganese oxides (MnOx-Y) were studied for 

photochemical water oxidation. Zeolite-supported manganese oxides were synthesized by ion-

exchanging of manganese ions into zeolite pores and cages, and pulling out those cations by 

treating with potassium permanganate and precipitating them manganese oxides on the surface of 

zeolite. Prepared zeolite-supported manganese oxides were treated with high concentration of 

potassium ions, which ion-exchanges into zeolite channels as well as manganese oxides. Bulk 

manganese oxides (MnOx) were also synthesized from manganese salts and permanganate in 

aqueous medium. Characterizations such as powder x-ray diffraction (PXRD), Raman 

spectroscopy, x-ray photoelectron spectroscopy (XPS), and electron microscopy provided the 

information  about the structural features of MnOx-Y and those features match to poorly ordered 

birnessites (layered like manganese oxides). Photochemical water oxidation of MnOx-Y and 

MnOx were evaluated using Ru(bpy)3
2+-S2O8

2- system. MnOx-Y exhibited better catalytic activity 

compared to bulk MnOx, showing that zeolite support is the important factor for enhancing the 

catalytic activity of manganese oxides for photochemical water oxidation. A non-impregnation 

route provided by zeolite support has offered an advantage for the deposition of manganese oxides 

on its surface. Zeolite support provides a high surface area scaffold for wide dispersion of 

manganese oxides on its surface, which brings the catalyst and photosensitizer in a close proximity 

for efficient electron transfer between them during water oxidation. 
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Introduction: 

Today 82% of world’s energy supply are dependent on non-renewable fossil fuels such as coal, 

oil, and natural gas (1). With the rise of global population and advanced technologies, the demand 

of global energy supply is increasing at an alarming rate. Burning these fossil fuels is also a primary 

reason for global warming, which produces massive amount of greenhouse gases such as CO2 

(record breaking level: 400 ppm level) (2). In order to resolve these critical issues, a clean, 

sustainable, and renewable sources of energy is of urgency. Hydrogen gas (H2) can be a potential 

source of clean and renewable energy carrier (3). H2 gas is used in hydrogen fuel cells, 

hydrocracking, urea synthesis, and many other areas. Currently about most of the H2 fuel is 

generated from burning fossil fuels, and the process involves generating greenhouse gases which 

is not ideal, environment-friendly or cost-effective. Photocatalytic water splitting could be the 

clean, sustainable, and economical method to generate H2 gas (4). This process involves using 

abundant renewable resources such as water and sunlight as the source of energy. In this process, 

water decomposes into oxygen (O2) and H2 using solar energy. The generated H2 gas could be 

stored and consumed as a clean fuel.  

 

Figure 1: Water-splitting reaction (water oxidation and water reduction) 

  Water splitting process consists of two steps: water oxidation and water reduction. Water 

oxidation step involves oxidation of water into O2 gas, protons, and electrons. And water reduction 

involves using generated protons and electrons to produce H2 gas. The water oxidation step is 

thermodynamically and kinetically unfavorable reaction as it is a multi-electron process. It is an 
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uphill reactions (ΔG = 238 KJ/mol). Without an efficient water oxidation step, the water splitting 

process can be quite challenging. Thus this step requires the best O2 evolving catalyst (water 

oxidizing catalyst) so that it can drive water oxidation step efficiently and consequently the 

production of H2 gas becomes efficient.  

 

Figure 2: Water-splitting reaction using photosensitizer (PS) to trap sunlight in photochemical 

system 

 Several homogeneous and heterogeneous catalysts have been explored for water oxidation 

study. Heterogeneous oxides such as oxides of iridium oxide (5) and ruthenium oxide (6) have 

been reported to be efficient water oxidizing catalysts, but they are impractical as they are rare 

expensive metals. Earth abundant transition metals such as iron, cobalt, nickel, oxides have been 

studied as water oxidizing catalysts (7-9). Metal oxides supported and un-supported on several 

matrices have been reported as well.  

 Manganese oxides have been reported to be efficient water oxidizing catalysts. Manganese 

is abundant, non-toxic, and economical element. It is also found in enzyme responsible for water 

oxidation in natural photosynthesis. Different polymorphs of manganese oxides such as α-Mn2O3, 

α-MnO2, β-MnO2, δ-MnO2, λ-MnO2, Mn2O3, Mn3O4, amorphous manganese oxides, octahedral 

molecular sieves, and octahedral layered manganese oxides have been studied for water oxidation 

(10-14). Nanosized manganese oxide supported on mesoporous silica (KIT-6) has been reported 
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(15).  Water oxidation are evaluated using water oxidant such as cerium ammonium nitrate (CAN), 

photochemical water oxidation using photosensitizer such as Ru(bpy)3
2+, or 

photoelectrochemically.  

 We report the synthesis of birnessite like poorly ordered layered manganese oxides 

supported on zeolite Y microstructure and evalutate its photocatalytic water oxidation activity. We 

are using zeolite Y as the support for manganese oxides catalyst. Zeolites are hydrated microporous 

aluminosilicate minerals with the pores and cavities in molecular dimensions as shown in Figure 

3. It has the framework consisting of T-O-T (T=Si/Al) connecting TO4 tetrahedr a (16). They 

possess large surface area and tunable surface properties. Zeolite Y has Si/Al ratio of 2.5 with 

sodium ions as a counterbalance charge. It has a pore size of 7 Ao and supercage of 13 Ao (16). 

The ion-exchanging properties, high surface area, and high thermal stability of zeolite Y have 

broadened the range of its applications. The synthesis of nanoscale manganese oxides within 

faujasite zeolite has already been reported in the literature and oxygen evolution kinetics was 

measured using CAN (17). Our group reported the anchoring of cobalt hydroxide on the surface 

of zeolite Y resulting better stability of catalyst through immobilization and better dispersion on 

the zeolite surface (18). We adopt similar a novel synthetic route to synthesize manganese oxides 

on the zeolite surface. Mn2+ ions are ion-exchanged into zeolite, and then treated with KMnO4. K
+ 

ion-exchanges out Mn2+ from zeolite, and reacts with MnO4
- to form manganese oxides on the 

surface of zeolite. We hypothesize that zeolite Y can enhance the catalytic activity of manganese 

oxides by uniformly dispersing manganese oxides on its surface, immobilizing and stabilizing 

them, controlling their size and morphology, and exposing more active Mn sites to photosensitizers 

for efficient photocatalytic water oxidation.  
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Figure 3: Zeolite Y microstructure 

Experimental Section: 

Synthesis of zeolite supported manganese oxides: Micron-sized zeolite Y (Si/Al= 2.55) was 

purchased from Zeolyst International. A typical experiment is defined. In 200 mL of 0.04 M 

manganese (II) acetate tetrahydrate (Sigma Aldrich) 2.0 g of zeolite Y. The ion-exchange at room 

temperature (RT) was carried out for 24 h. The solution was filtered and washed and dried 

overnight at RT, and further treated with 100 mL of 0.01 M KMnO4 and stirred for 2h at RT 

followed by filtration, washing, and drying. These samples are called MnOx-Y*. Further treatment 

included stirring with 50 mL of 3.0 M KCl for 2h at RT followed by filtration, washing, and drying 

at RT. The resulting materials are named MnOx-Y. 

Synthesis of bulk manganese oxides (MnOx): In a 100 mL, 0.04 M manganese (II) acetate and 

0.01 M KMnO4 were stirred for 2 hours at RT. The solution was filtered and washed and dried 

overnight at RT. The samples were further treated with 50 mL of 3.0M KCl for 2h at RT followed 

by filtration, washing, and drying at RT.  

Characterization: X-ray diffraction patterns were obtained using a Rigaku X-ray diffractometer 

with Cu Kα radiation with 0.5 divergence, 0.02 step size and 0.5s dwell time. Raman spectroscopy 

was done with a Renishaw-Smith Detection IR-Raman Microprobe, model- inVia. A 633-laser 

line was used for the acquisition of the spectra. A spinning cell was used in order to preserve the 

sample integrity. XPS sepctra was obtained using Kratos Axis Ultra X-ray photoelectron 
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spectrometer with Al K∞ source (12 kV, 6 mA). The region scans were acquired using 20 eV pass 

energy and the survey scan was obtained using 80 eV. All peaks were calibrated with respect to C 

1s peak position at 285.0 eV.  The morphology of the samples was characterized by FEI Helios 

Nanolab 600 dual beam focused ion beam/scanning electron microscope. High-resolution 

transmission electron microscopy of the samples was obtained using Titan3 80-200 probe-

corrected monochromated at voltage of about 140 kV.  

Elemental Analysis: For elemental analysis of the catalyst, cold digestion method was adopted 

(19). In a Teflon bottle, 30 mL of mixed HF, HCl, and HNO3 (1:1:1 ratio) was prepared. The 

catalyst (30-50 mg) was added to the acid solution. After dissolution of the catalyst, 75 mL of 0.86 

M boric acid was added to neutralize HF. DI water was added to the solution so that the total 

solution weighs 100g. Manganese loading in the zeolite was determined using atomic absorption 

spectroscopy (AAS) using a Shimadzu AA-7000 Atomic Absorption Spectrophotometer. 

Photochemical water oxidation: In a glass reactor, sodium persulfate (0.02 M) (Sigma Aldrich), 

sodium sulfate (0.1 M) (Fischer Scientific), tris(2,2’-bipyridyl) ruthenium chloride (6.7 mg) 

(Sigma Aldrich), and 60 mg of powder catalyst was added to 80 mL borate buffer (pH 8.5). The 

solution inside the reactor was sealed and purged with N2 gas for 10 min while stirring. After N2 

purging, the reactor was illuminated with visible light using a Hg lamp equipped with a 420 nm 

cut-off filter and 360 mW/cm2 intensity. For the measurement of dissolved oxygen evolution, a 

YSI instrument fiber optic dissolved oxygen (YSI ProODO) sensor was used. The electrode was 

calibrated by 2-point calibration method (zero for nitrogen saturated water and air-saturated water).  
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Scheme 1: Schematic diagram of photochemical water oxidation using Ru(bpy)3
2+- S2O8

2- 

photochemical system 

Results: 

Synthesis of zeolite supported manganese oxides: Scheme 2 shows the synthesis procedure outline 

and scheme 3 demonstrates schematic diagram of synthesis procedure. Mn2+ are ion-exchanged 

into zeolite Y. The material is treated with KMnO4. During this treatment, K+ ion-exchange out 

Mn2+ from the zeolite. Mn2+ reacts with the solution based MnO4
- to form manganese oxides on 

the surface of zeolite (MnOx-Y*). MnOx-Y* sample is treated with high concentration of K+ 

which ion-exchanges into both zeolite and manganese oxides, and is called MnOx-Y.  

 

Scheme 2: Schematic outline of the synthesis procedure for MnOx-Y* and MnOx-Y 
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Scheme 3: Schematic diagram of the synthesis procedure for MnOx-Y* and MnOx-Y 

 The amount of Mn loading on zeolite Y was determined using cold digestion method, and 

the elemental analysis data shows that Mn wt% of MnOx-Y* is 27.7%, that of MnOx-Y is 19.2%, 

and that of MnOx is 49.4%. 

Powder X-ray diffraction (XRD): The XRD diffraction patterns of MnOx-Y* and MnOx-Y are 

shown in Figure 4(a). MnOx-Y* are amorphous in nature, as no additional peaks besides zeolite 

Y peaks were observed.  After K+ exchange, the crystalline peaks were observed in MnOx-Y. The 

broad peaks at 2θ ~ 12.5o, 24o, 35.6o, and 36.2o were observed, which matches to the poorly ordered 

birnessite like layered manganese oxides (20). Since the broad peaks have weak intensities, and 

this signify that materials are poorly crystalline. 
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Figure 4(a): Power X-ray diffraction pattern of MnOx-Y* and MnOx-Y ranging from 2θ = 11-

14o, 22-25o, and 34-37o. “x” denotes zeolite peaks and “o” denotes manganese oxides peaks 

 

Figure 4(b): Power X-ray diffraction pattern of MnOx 

Bulk manganese oxides (MnOx) have the broad crystalline peaks at 2θ ~ 24o, 38.2o, and 

66o as shown in Figure 4 (b). These materials are mostly amorphous.  

Raman Spectroscopy: Raman spectra of MnOx-Y* and MnOx-Y are shown in Figure 5(a) and that 

of MnOx is shown in Figure 5(b). Raman frequency bands are observed at ~500, 572, and 650 cm-

1, with the latter bands being intense as seen in all samples. Raman active modes at 500-515, 575-

585, and 625-650 cm-1 are assigned to birnessites (21). The peak ~500 cm-1 overlaps with T-O-T 

stretching mode of zeolite Y (22). In bulk MnOx, the peak 500 cm-1 is relatively weak compared 

to MnOx-Y* and MnOx-Y because of the absence of zeolite support. The peak at ~572 cm-1 is 

attributed to Mn-O lattice vibration along the chains of MnO6 octahedra, and the peak at ~650 cm-

1 is attributed to symmetric stretching of Mn-O bond perpendicular to the chains of MnO6 

octahedra (11,20). 
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(a)                                                             (b) 

Figure 5: Raman spectra of MnOx-Y* and MnOx-Y (a) and MnOx (b) 

X-ray photoelectron spectroscopy (XPS): Figure 6 shows that the XPS spectra in Mn 2p1/2 and Mn 

2p3/2 region for (a) MnOx-Y* (b) MnOx-Y and (c) MnOx. The curve deconvolution of Mn 2p3/2 

region showed that MnOx-Y* has peaks at 642.5 and 644.3 eV, with the former being intense. For 

MnOx-Y, only peak at 642.5 eV was present. For MnOx, peaks at 641.3, 642.5, and 644.0 eV were 

present. It has been reported that Mn (III) redox state has peak at binding energy 642 eV and Mn 

(II)/Mn(IV) has peaks at 644 eV (23). 

 

(a)                                     (b)                                         (c) 

Figure 6: XPS spectra of Mn 2p region of (a) MnOx-Y* (b) MnOx-Y and (c) MnOx 
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Morphology: SEM micrographs of (a) bulk MnOx and (b) MnOx-Y are shown in Figure 7. Bulk 

MnOx looks micron-sized cluster. MnOx-Y* and MnOx-Y look similar in morphology (not 

mentioned in the paper). The zeolite is micron-sized and nanoclusters of manganese oxides are 

deposited on the surface of zeolite as shown in Figure 7(b). Nanosized birnessite like manganese 

oxides are anchored and widely dispersed on the zeolite surface. Figure 7(c) shows that lower 

loading of manganese oxides supported on the zeolite surface (MnOx-Y(B)). 

 

Figure 7: SEM micrographs of (a) bulk MnOx (b) MnOx-Y (19.2% Mn wt) and (c) MnOx-Y (B) 

(2.91% Mn wt) 

Photocatalytic activity: Chemical water oxidation using CAN (0.1M) was used for evaluation of 

water oxidation activity using MnOx-Y. Reusability test was carried out using CAN. The rate of 

oxygen evolution per mole of Mn per sec (turnover frequency: TOF) was measured for three runs. 

The first run was 0.96, the second run was 0.24, and the third run was 0.16 mmolO2mol-1
Mns

-1. 

XRD of MnOx-Y sample after first run was carried out (Figure S1), which showed that zeolite Y 

structure is completely destroyed after treatment with CAN due to low pH condition. This was not 

determined in the earlier paper that studied manganese oxides within faujasite zeolite for water 

oxidation using CAN (17). This shows that zeolite support is important for robustness and stability 

of manganese oxides. 
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Photochemical water oxidation activities of the samples were determined by using 

photosensitizer Ru(bpy)3
2+ and sacrificial electron acceptor (Na2S2O8) in borate buffer pH 8.5. The 

dissolved oxygen kinetics was determined by YSI optical probe. The TOF was determined for the 

first 100 sec. The TOF of MnOx-Y was 0.44 mmolO2mol-1
Mns

-1 and that of MnOx was 0.048 

mmolO2mol-1
Mns

-1. The catalytic activity of MnOx-Y was better than MnOx as shown in Figure 8. 

Different manganese loading of MnOx-Y were synthesized. MnOx-Y(A), MnOx-Y(B), and 

MnOx-Y(C) have manganese weight percentage of 0.33%, 2.91%, and 19.2% respectively. The 

TOF of MnOx-Y(A), MnOx-Y(B), and MnOx-Y(C) were 9.05, 1.31, and 0.44 mmolO2mol-1
Mns

-1 

respectively. With the decrease in manganese loading in zeolite Y, the catalytic rate was increased 

as shown in Figure 9. 

 

Figure 8: Visible light-induced dissolved oxygen measurement of MnOx and MnOx-Y 
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Figure 9: Visible light-induced dissolved oxygen measurement of zeolite supported manganese 

oxides with different loading of Mn:MnOx-Y(A) (0.33% Mn wt), MnOx-Y(B) (2.91% Mn wt) 

and MnOx-Y(C) (19.2% Mn wt) 

 Dissolved oxygen evolution kinetics of MnOx-Y* and MnOx-Y were compared. The TOF 

of MnOx-Y* was 0.06 mmolO2mol-1
Mns

-1 and that of MnOx-Y was 0.44 mmolO2mol-1
Mns

-1. The 

catalytic activity of the MnOx-Y* was lower compared tot hat of MnOx-Y.  Treatment of MnOx-

Y* with the high concentration of K+ ions enhanced its catalytic activity as shown in Figure 10. 

 

Figure 10: Visible light –induced dissolved oxygen measurement of MnOx-Y* and MnOx-Y 

The active catalyst MnOx-Y was tested for reusability. The catalyst was tested twice and 

showed comparable performance with rates of 0.49 mmolO2mol-1
Mns

-1 as shown in Figure 11. 

There was little oxygen evolution without catalyst in Ru(bpy)3
2+- S2O8

2- system.  
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Figure 11: Reusability test of MnOx-Y in visible induced photochemical water oxidation 

Discussion: 

 A novel non-impregnation route for the synthesis of zeolite supported manganese oxides 

is reported in this paper. Mn2+ are ion-exchanged into zeolite Y, and with the treatment of KMnO4, 

K+ ion-exchange out Mn2+ from the zeolite and Mn2+ reacts with the solution based MnO4
- to form 

manganese oxides on the solution interface of zeolite. Thus formed MnOx-Y* are amorphous, but 

after treatment with high concentration of K+ the sample MnOx-Y become poorly crystalline 

birnessite like layered manganese oxides.  

 In order to study the role of zeolite support on photocatalytic activity, bulk MnOx was 

prepared and its catalytic activity was compared to MnOx-Y. The photocatalytic activity of MnOx-

Y was significantly higher compared to bulk MnOx as shown in Figure 8. Zeolite support plays an 

important role in enhancing the catalytic activity of manganese oxides. Zeolite support controls 

the size as well as morphology of manganese oxides, such that nano-sized manganese oxides are 

formed on the surface of zeolite as seen in SEM micrographs as shown in Figure 7 (b) and 7(c). 

Nano-sized manganese oxides has high surface-to-volume ratio compared to bulk MnOx, which 

can be attributed to one of the reason for increased catalytic activity of MnOx-Y. Manganese 
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oxides are also widely dispersed on the zeolite surface including stability as well as 

immobilization, leading to more exposure of Mn active sites to photosensitizers for proficient 

electron transfer between them for efficient water oxidation. 

 The loading of manganese oxides can be controlled by the amount of manganese precursors 

used in the first step while ion-exchanging into zeolite microstructure. Zeolite structure plays an 

important role in controlling the loading of manganese oxides as well. As shown in Figure 7(c), 

the amount of manganese oxides on zeolite surface has decreased by using the low concentration 

of manganese precursors. The catalytic activity of zeolite supported manganese oxides with 

different Mn content are shown in Figure 9, and the trend was MnOx-Y(A)> MnOx-Y(B)>MnOx-

Y(C). Here the MnOx-Y(C) is referred as MnOx-Y. The lower loading of manganese oxides on 

zeolite, the better the performance of water oxidation. This observation is related to the effect of 

lower loading of manganese where the catalytic rate is normalized to Mn content. Overall, this 

shows that zeolite microstructure is important for optimizing the loading of manganese oxides on 

its surface. 

 The broad and weak intensities of basal reflections (001) and (002) signify that manganese 

oxides on the surface of zeolite (MnOx-Y) are poorly ordered and randomly stacked birnessites 

after K+ treatment (24). There is an increase in random ordering of manganese oxides into 

crystalline phases which is helping to stabilize the layered structure of manganese oxides (25). 

Birnessite with random ordering and poorly crystalline nature are found to be active in catalytic 

water oxidation (25, 26). XPS indicate that MnOx-Y sample has predominant Mn(III) oxidation 

state. In bulk MnOx, there is a high content of Mn(II)/Mn(IV) oxidation state. In case of MnOx-

Y*, there is high ratio of Mn(III) to Mn(II)/Mn(IV). There is an increase in content of Mn(III) after 

treatment with K+ ions i.e. from MnOx-Y* to MnOx-Y. Increased Mn (III) can lead to disordering 



Shrestha 16 
 

due to lattice strain induced by Jahn-Teller distortion (20). It has been reported that Mn(III) lead 

to more structural flexibility, formation of Mn-O-Mn motifs for O-O bond groups, mono μ-oxo 

and mono μ-hydroxo groups which are linked to high oxidation activity of manganese oxides (27). 

Raman spectra of MnOx-Y shows that there is decrease in intensity of 572 cm-1 compared to 650 

cm-1 band, which suggests that presence of local disorder in the structure of birnessite (21). This 

can be related to the presence of unsaturated oxygens due to disruption of Mn-O bonding in the 

sheets, which can participate in proton couple electron transfer for water oxidation (11). This 

introduction of K+ ions into MnOx-Y* has really improved the crystallinity of manganese oxides 

into poorly ordered birnessite, and thus related to the increased catalytic activity of manganese 

oxides as shown in Figure 10. These counterbalancing cations do not have any catalytic role, but 

to be involved in the stabilization of layered structure of manganese oxides. MnOx-Y are stable 

and robust from reusability test in Figure 11. That suggests that zeolite supported manganese 

oxides can be reused multiple times, and still retain its structure-function property. 

Comparison with Literature: 

 The photochemical water oxidation catalytic rates of different manganese oxides reported 

in the literature are listed in Table 1. They are compared to our catalyst, as they all are studied in 

Ru(bpy)3
2+ photochemical system. Our catalyst has a wide range of TOF depending on the Mn 

content on the zeolite surface. 
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Table 1: Literature report of photochemical water oxidation activity of reported manganese 

oxides 

Conclusion: 

 A successful deposition of nano-sized manganese oxides on the surface of zeolite following 

a novel synthetic route is demonstrated in this paper. Zeolite supported manganese oxides perform 

better catalytic water oxidation compared to bulk manganese oxides. Zeolite support helps to 

widely disperse manganese oxides on its surface, control its size and morphology, and exposes 

more manganese to photosensitizers for efficient water oxidation. K+ ions improve the catalytic 

activity of manganese oxides by introducing more ordering, stability, and crystallinity to layered 

structure of manganese oxides. Zeolite supported manganese oxides are stable as well as robust. 

In future, we will be focusing on structure-function role of redox inert and redox active cations on 

manganese oxides synthesized on zeolite surface to improve both rate and yield of oxygen 

evolution. 
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Figure S1: X-ray diffraction pattern of zeolite Y before and after treated with 0.1M CAN  

 


