A Note on Interrogatives and Adverbs of Quantification

Jeroen Groenendijk \& Martin Stokhof ILLC/Department of Philosophy
University of Amsterdam*

1. Introduction.

This paper is about a topic in the semantics of interrogatives. In what follows a number of assumptions figure at the background which, though intuitively appcaling, have not gone unchallenged, and it seems therefore only fair to clraw the reader's attention to them at the outset.

The first assumption concerns a very global intuition about the kind of semantic objects that we associate with interrogatives. The intuition is that there is an intimate relationship between interogatives and their answers: an interrogative determines what counts as an answer.** Given a. certain, independently motivated, view on what constitutes the meaning of an answer, this intuition, in return, determines what constitutes the meaning of an interrogative. For example, starting from the observation that answers are true or false in situations, we may be led to the view that answers express propositions, i.e., objects which cletermine a truth value in a situation. Given that much, our basic intuition says that interrogatives are to be associated with objects which determine propositions. Such objects will be reforred to as 'questions' in what follows. Notice that all this is largely framework indepenclent: we have made no assumptions yet about what situations, propositions, and questions are, we have only related them in a certain systematic way. In fact we will use a more or less standard, but certainly not uncontroversial, specification in what follows: situations are identified with (total) possible worlds; propositions with sets of worlds; and questions with equivalence relations on the set of worlds.

The second assumption that plays a role in what follows is of a more linguistic nature. Interrogatives typically occur in two ways: as independent expressions, and as complements of cortain verbs. The assumption is that these two ways of occurring are systematically related, not just

* The preparation of this paper was supported by the Esprit Basic Research Action Dyana. We would like to thank Craige Roleerts for her helpful comments.
** This intuition is what Belnap (in Belnap 1981) calls the 'answerhood thesis'.
syntactically but also semantically.* Notice that the exact nature of this relationship is underdetermined by this assumption: the most strict specification would require an interrogative to have the same meaning when occurring independently and embedded, but weaker specifications would also satisfy this requirement. The strict view combined with the previous assumption entails that both embedded and independent interrogatives express questions, and that verbs embedding interrogatives express relations to questions. Such relations may be of various kinds: a verb may express a relation to the question as such, in which case we call it 'intensional', or it may express a relation to the proposition which is the value of the question in the actua! world, in which case it is labelled 'extensional'.

The third assumption that plays a role in what follows is of a more methodological nature. It concerns the way in which a semantic analysis deals with the gencral, 'cross-categorial' phenomena of coordination and entailment. Roughly the assumption is that coordination and entailment are cross-categorial not only in a syntactic sense; but also semantically: a semanties of coordination and entaihent which is general in the sense of being specified independently of the category/type of expressions involved is to be preferred to one which is defned for each category/type of expressions separately. Again, this assumption is to a large extent framework independent. Within the classical intensional typetheoretic framework that we will employ in what follows we will assume that coordination is defined point-wise by the standard boolean comectives, and that entaiment is defined as meaning inclusion.**

It is interesting to note that if we combine this third assumption with the hind of analysis that energes from what we sad above, certan predictions result conceming entailment relations between interrogatives. Given our first assumption the meaning of an interrogative is an object which deternines in a situation what counts as an answer. Given that entainent is meaning inchuson, an interrogative I entails another interrogative I^{\prime} iff every answer to I is an answer to I^{\prime}. This seems to be an intuively acceptable result: amking a question involves anking another one if the later is answered if the former is.

This gives a rongh sketclu of the contours of the space within which a reasonable semantics for interrogatives is to be found, but in order to appreciate

[^0]the problems that we are interested in, we have to be a little more specific about what we take the basic semantics of interrogatives to be. As we indicated above. we assume that an interrogative expresses an equivalence relation betwen worlds. What is this equivalene relation? Ronghly speaking it is the relation of being extensionally the same with respect to sone relation. Concretely, an interrogative is based on a rclational expression: it expresses an inquiry about the extension of a relation. A sentential interrogative can be viowed as based on a zero-place relation, i.e, a sentence, and thus expresses an inquiry about a truth value. The worlds which are indistingushable with respert to the extension of a certan relation together make up a pronosition, which can be identified with the proposition expressed by an answer to the corresponding interrogative. Such a proposition gives an exhaustive specification of the positive extension of the relation involved. Notice that it follows that in ead world the question expressed by an interrogative determincs exactly one proposition: the complete true funwer to the interogative. In section $\underline{2}$ we will outhe how this virw can be implemented, now we turn to some observations that sem to be at odds with this amalys.

In his dissertation Stephen Beman* has argued that wh-terms like whel student(s) in many ways behave like indefinite terms such as a stio. dent/students. Berman's main atgument concerns their behavior under aberbs of quanification, as in the following example:
(1) The primipal usually find ant wheh students cheat on the fimal exima.

According to Berman, this sentence has two readings. Besides the reading paraphrased in (2), there is also a reading that can be paraphrased as in (3):
(2) In most (fimal exam) situations the principal finds out which students cheat in that situation.
(3) Of most student: who cheat ou the final exam the principat fuds wh that they chem on the final exam.

Berman convincingly argues that these two readings of (1) are different. Suppose that in each of the (final exan) situntions the principal catches 75 percent of the cheaters, then on paraphrase (2), sentence (1) would be true, but on the rathag pataphased by (3) sentente (1) wonld be false. For (2) to be true, it should be the ase that for most of the (final exam) situations the primemal catches all cheating students.

This is taken to indicate that a wh-term like wheh student does mot contain a quatifior by itself. but gets its quantificational force from an

[^1]adverb of quantification, much in the same way as this has been argued to be the case for indefinites as in (4):
(4) If a student cheats on the final exam then the principal usually finds out that he does.

Of course the adverb of quantification may be implicit, in which case it is supposed to have universal quantificational force. On this assumption Berman gets the interpretation paraphrased in (6) for a sentence like (5):
(5) The principal found out which students cheated on the final exam.
(6) For all students who cheated on the final exam the principal found out of them that they cheated on the final exam.

This paraphrase of the meaning of (5) is not quite what one would expect assuming the kind of semantics outlined above. Recall that on that approach questions are strongly exhaustive in the following sense: a question determines in a possible world a unique proposition, one which gives a complete specification of the positive extension in that world of the relation involved. It is preciscly this aspect of strong exhaustiveness that is lacking from the semantic interpretation that Berman assigns to the embedded interrogative in (5). For it is clear that (6) is compatible with it being the case that the principal accuses a number of non-cheaters of having cheated. But in the analysis outlined earlier the proposition which the question expressed by the embedded interrogative determines in the actual world, and to which the principal stands in the relation of having found out, is strongly exhaustive. Hence on that analysis the principal should not accuse non-cheaters, if (5) is to be true.

Of course the same holds for sentence (1) and Berman's paraphrase (3). Clearly (1) entails (3), but it is not entailed by (3): if the principal indeed found out about most cheaters that they cheated, but also accused more than just a few non-cheaters of having cheated, then whereas (1) would be false according to the strong exhaustiveness approach, its proposed paraphrase is not.

Berman's paraphrases represent a different view on answers, and consequently, on the meaning of interrogatives. According to this view the answer to an interrogative need only be weakly exhaustive. The difference with the strongly exhaustive approach is most easily explained in terms of question-answer pairs. Consider the following example:
(7) Which girls are asleep?
-Mary, Suzy and Jane (are asleep).
According to the weakly exhaustive view, the answer in (7) means simply that Mary, Suzy and Jane are girls that are asleep. According to the
strongly exhaustive view it means that Mary, Suzy and Jane are the girls that are aslecp, i.e., it says that only Mary, Suzy and Jane are girls that are asleep. In other words, the two views differ with respect to what proposition counts as the truc answer to the question which girls are asleep, and hence to what is the meaning of the interrogative.

Different views on what constitutes the meaning of an interrogative lead to different predictions regarding the logical properties of (embedded) interrogatives. Let us give one simple illustration. We saw above that given the standard analysis of entailment as meaning inclusion, and given the general characterization of the meaning of interrogatives in terms of their answerhood conditions, an interrogative I entails an interrogative I^{\prime} iff whenever a propositions p gives a true answer to I, p gives a true answer to I^{\prime} as well. If we combine this with strong exhanstiveness we predict that the interrogative in (7) entails (8) (assuming that we know that Claire is a girl):
(8) Is Claire ashem?

Dut under weak exhaustiveness this does not follow. If only Mary, Suzy and Jane are aslecp, the interrgative in (\bar{i}) would demote the proposition that they are aslecp, but that does not ental that Chaire is not asleep, which in that situation would be the true answer to (8). Similarly, strong exhanstiveness predicts that (9):
(9) John knows which gink are asleep.
entails (10):
(10) John knows whether Clate is astecp.

But woak exhaustieness maks (0) compatible with John believing that Claire is aslecp, in case she is mot and still kow which girls are aslep.
 pretation of interogatives is the basic one. In oun op inion. predictions such
 tion. Other agments can be aded 'To indicate just one, suppose Hilary wants to find out which gils are astecp. She asks Peter, who replies that he doesn't know, but ards that Joln does. Now suppose, as we did above, that John believes that Mary, Suzy, Jane and Claire are asleep, whereas in fact only the first thee of then are. Asked by Hilary which girls are asleep, John answers that Jary, Sugs, Jame and Claire are Suppese furether that Hibuy subsequently finds ont that Claire in't atowg. Woudt she not quite righly dain that the answer she got from tom wes wong. that in fact he

[^2]did not know which girls were asleep, and that Peter was wrong in claiming that he did?

Another difference between the weak and strong exhaustiveness views shows up when we consider other embedding verbs such as wonder. Berman observes that if we replace the verb find out in (1) by the verb wonder the result is a sentence which has one reading less:
(11) The principal usually wonders which students cheat on the final exam.

This sentence can only be paraphrased, Berman notes, as in (12):
(12) In most (final exam) situations, the principal wonders which students cheat in that situation.
but lacks a reading corresponding to paraphrase (3) of (1).
Obviously, the source of the difference between (1) and (4) is a difference in lexical semantic properties of the verbs find out and wonder. What you find out if you find out which students cheat, is the true answer to the question which students cheat, i.e., you stand in the relation of finding out to the proposition that is the true answer to the question which students cheat. In case you wonder which students cheat, you do not stand in a relation to the proposition that expresses the true answer, rather you bear a particular relation to the question as such expressed by the interrogative, a relation which can be roughly paraphrased as that of wanting to find out the true answer to that question. In the terminology used above, we can say that the difference between verbs such as find out and verbs such as wonder is that whereas the latter are intensional the former are extensional.

Within the confines of the particular approach outlined above, this difference is accounted for by means of the usual distinction between the intension and the extension of an expression. The extension of an (embedded) interrogative is a proposition, its intension a (particular kind of) propositional concept. A verb such as find out takes the extension of an (embedded) interrogative as semantic argument, and a verb like wonder operates on its intension.

One thing to note here, is that the distinction between extensional and intensional embedding verbs does not coincide with the distinction between factive and non-factive verbs. Verbs like know or find out are factive with respect to their indicative complements. Knowing or finding out that Mary is asleep entails (presupposes) that Mary is actually aslecp. Verbs like tell or beheve on the other hand, are not factive. Telling or believing that Mary is asleep does not entail (presuppose) that she actually is. Note however that, unlike believe, tell can also take interrogatives as argument, as in John tells whether Mary is asleep. And in that case tell does behave in a factive
manner: if John tells whether Mary is asleep, then it follows that if Mary actually is asleep, he tells that she is aslcep, and that if she is not, he tells that she is not.

It is remarkable that this property of tell simply falls out the independently motivated assumption that it is an extensional embedding verb. To tell whether Mary is asleep means to tell the true answer to the question whether Mary is aslecp, which if Mary is asleep is the proposition that Mary is asleep, and if she is not, is the proposition that she is not,

Let us take stock. It seems that the phenomenon of quantificational variability in interrogatives is a realone. And on the face of it, it seems to be in conflict with exhanstiveness. However, the latter is an independently motjvated feature, and giving it up has all kinds of drawbacks. What we want to show in the remander of this paper is that, appearances (and Berman) not withstanding, quantificational variability can be accounted for in an approach which complies with strong exhatustiveness.

The rematinder of the paper is organized as follows. In section 2 , we sketeh how the somantic analysis of interrogatives onthed above can be implemented. In section 3 we disons the challenge that Berman's proposals form for this malysic. In section 4 we show how this challenge can be met, making use of some insights from dynamir semantics. The final section 5 contains some concluting remarks.

2. A semantics for interrogatives.

In the previons section we sketched informally the basios of a semantics for interrogatives within a chassical intensional framowork. 'This section indicates how such an analysis can be inplemented, and investigates the difference between the wak exhanstivenss viow and the strong exhaustiveness riew.*

Starting point is the assmption that in a word an interogative denotes the propontion that is expresed by its trme answor in that world. For a simple sontentim interogative such as (13 a), this means that in case Mary sleeps it demotes the probsition that May sleeps, and in case she does not sleep, it denotes the proposition that she does not. Identifying propositions with sets of possible worlds, this amounts to the following. In a world w, the set of possible wolds denoted by (13a) consists of those worlds w^{\prime} such that Mary slecps in w' iff she sleeps in w. Using two sonted type theory as a reprexention latgrags. (13c) represents the extenson of (13a) in w. By abstracting over a, we get (13d) as a representation of

[^3]its meaning. Another assumption we have made implies that the whethercomplement (13b) that corresponds to the interrogative (13a) has the same extension and intension.
(13) a. Does Mary sleep?
b. whether Mary sleeps
c. $\lambda w^{\prime}\left[S(w)(m) \leftrightarrow S\left(w^{\prime}\right)(m)\right]$
d. $\lambda w \lambda w^{\prime}\left[S(w)(m) \leftrightarrow S\left(w^{\prime}\right)(m)\right]$

We noted above that interrogative embedding verbs exhibit a distinction that we find quite generally in functional expressions, viz., that between expressions which operate on the extension of their arguments, and those which take their intension. Examples of extensional verbs are know and tell, and wonder is an example of an intensional verb. This gives a straightforward account of the fact that (14a) and (14b) together entail (14c):
(14) a. John knows whether Mary sleeps.
$\mathrm{a}^{\prime} . K(w)\left(j, \lambda w^{\prime}\left[S(w)(m) \mapsto S\left(w^{\prime}\right)(m)\right]\right)$
b. Mary sleeps.
b^{\prime}. $S(w)(m)$
c. John knows that Mary sleeps.
$\mathrm{c}^{\prime} . K(w)\left(j, \lambda w^{t}\left[S\left(w^{t}\right)(m)\right]\right)$
Notice that this does not hinge on the factivity of the verb know. For as is shown in (15) the same entaiment goes through for the non-factive verb tell:
(15) a. John tells whether Mary sleeps.
$\mathrm{a}^{\prime} . T(w)\left(j, \lambda w^{t}\left[S(w)(m) \leftrightarrow S\left(w^{\prime}\right)(m)\right]\right)$
b. Mary sleeps.
b^{\prime}. $S(w)(m)$
c. John tells that Mary sleeps.
$c^{\prime} . T(w)\left(j, \lambda w^{\prime}\left[S\left(w^{\prime}\right)(m)\right]\right)$
Given that wonder is an intensional verb, similar entailments do not occur with (16), wondering being a relation between individuals and questions, and not between individuals and propositions:
(16) a. John wonders whether Mary sleeps.
$\mathrm{a}^{\prime} . W(w)\left(j, \lambda w \lambda w^{\prime}\left[S(w)(m) \leftrightarrow S\left(w^{\prime}\right)(m)\right]\right)$
The meaning of a constituent interrogative, like the one in (17), is derived in a two-step proces. As we pointed out above, a constituent interrogative is associated with a relation. In the case of (17a) it is the property (one-place relation) of being a girl that sleeps, which is expressed by (17b). What the constituent interrogative asks for is a specification of the extension of the corresponding relation. The expression (17c) gives such a specification for
the property in (17b), for in a world w it denotes the proposition that is true in a world w^{\prime} iff the girls that sleep in w^{\prime}, are the same as the girls that sleep in w. This proposition gives an exhaustive specification of the extension of the property of being a sleeping girl in w. The expression (17d) represents the corresponding intension, i.e., the question expresssed by (17a).
(17) a. Which girl(s) sleep(s)?
b. $\lambda x[G(w)(x) \wedge S(w)(x)]$
c. $\lambda w^{\prime} \forall x\left[[G(w)(x) \wedge S(w)(x)] \leftrightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]$
d. $\lambda w \lambda w^{\prime} \forall x\left[[G(w)(x) \wedge S(w)(x)] \leftrightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]$

This analysis represents the strong exhaustiveness view on the meaning of constituent interrogatives. For an answer to (17a) should express the proposition denoted by (17 c), and hence it should not just say that $a_{1} \ldots a_{n}$ are girls that sleep, but also that no other individual is. That is, an answer should specify that $a_{1}, \ldots a_{n}$ together form the entire positive extension of the property of being a gin that sleeps, not just that they are (among the) girls that sleep. An answer that contains only the latter information is weakly, but not strongly exhanstive. The weak exhaustiveness view can be represented in a similar fashon as the strong exhanstiveness approach:
(18) a. Which girl(s) sleep(s)?
b. $\lambda x[G(w)(x) \wedge S(w)(x)]$
c. $\lambda w^{\prime} \forall x\left[\left[G(w)(x) \wedge S\left(w^{\prime}\right)(x)\right] \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]$
d. $\lambda w \lambda w^{\prime} \forall x\left[\left[G(w)(x) \wedge S\left(w^{\prime}\right)(x)\right] \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]$

The derivation of multiple constituent interrogatives follows the same pattern as that of single constituent interrogatives. Starting point is an expression R^{n} which expresses an mplace relation. The denotation of the interrogative based on R^{n} in a world u is the proposition which is true in those worlds w^{\prime} for which it holds that the extension of R^{n} in w^{\prime} is the same as that in 20 . Thus we arive at the following general schema:

$$
\lambda u^{\prime} \forall x_{1} \ldots x_{n}\left[R(w)\left(x_{1} \ldots x_{n}\right) \leftrightarrow R\left(w^{\prime}\right)\left(x_{1} \ldots x_{n}\right)\right]
$$

Again, this is the strong exhaustiveness view. Weakly exhaustive interpretations result if we require not identity of extension, but only inclusion:

$$
\lambda u^{\prime} \forall x_{1} \ldots r_{n}\left[R\left(w^{\prime}\right)\left(x_{1} \ldots x_{n}\right) \rightarrow R\left(w^{\prime}\right)\left(x_{1} \ldots x_{n}\right)\right]
$$

Notice that it is only on the strong exhanstiveness approach that sentential interrogatives fall ont of in the gencral schema: they result if $n=0$. The weak exhaustiveness analysis would need a separate interpretation rule for sentential interrogatives.

Embedded constituent interrogatives are derived by the same process as embedded sentential interrogatives. Verbs like wonder operate on the intension of their argument, verbs like tell or know on its extension. This means that sentences like (19a) and (20a) translate as (19b) and (20b) on the weak exhaustiveness approach, and that (10c) and (20c) are the representation that the strong exhatstiveness view gives rise to:
(19) a. John wonders which girl(s) slecp(s).
b. W $(w)\left(j, \lambda w \lambda w^{\prime} \forall x[G(w)(x) \wedge S(w)(x)] \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)$
c. $W(w)\left(j, \lambda w \lambda w^{\prime} \forall x\left[[G(w)(x) \wedge S(w)(x)] \leftrightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right)$
(20) a. John tells which girl(s) sleep(s).
b. $T(w)\left(j, \lambda w^{\prime} \forall x\left[[G(w)(x) \wedge S(w)(x)] \rightarrow\left[G\left(u^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right)$
c. $T(w)\left(j, \lambda w^{\prime} \forall x\left[[G(w)(x) \wedge S(w)(x)] \leftrightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right)$

On both approaches wonder expresses a relation to the question which girl(s) slecp(s), and tell a relation to the true answer to that question. Moreover, notice that neither appoach needs an additional factivity postulate for tell.

Let us look a little bit closer at what the two notions of exhaustiveness amount to in the case of (20). Under the assumption that tell is closed under entailment, the weakly exhaustive interpretation (20b) follows from the strongly exhaustive interpretation (20 c). And if we assume that it is closed under conjunction, then the weakly exhanstive reading (20D) is equivalent with (21), and hence, the latter is also entailed by the strong exhaustive rcading (20c):
(21) $\forall x\left[[G(w)(x) \wedge S(w)(x)] \rightarrow T(w)\left(j . \lambda u^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(u^{\prime}\right)(x)\right]\right)\right]$

In the case of (19), which contans the intensional monder, an analogous paraphrase/entaiment is not obtainable. The quantification over girls that sleep in w cannot be raisel over the verb, becanse it is inside the seope of the intensionalizing λu.

The expression in (21) represents the parapluase that Berman would give for (20a). But Berman arrives at such a result only by means of a factivity postulate for tell with embedded interrogatives, whereas 10 such assumption is necessary on the approach outlined above.

Before we turn to the strongly exhanstive interpretation, let us be a little bit more explicit about the transition from (20b) to (21). The two assumptions we made concerning the meaning of tell, viz., that if one tells p and p entails q, one also tells q, and that if one tells p and tells q, then one tells p and q, can be explicated in a Hintikka-style semantics for proposition embedding verbs. Within that framework every such verb V is associated with a predicate of possible worlds $V_{t, w}$. For example, with T for $t e l l$ and
j for John, the extension of $T_{j, w}$ is the set of worlds compatible with what John tells in w. Then it is laid down that John tells p in world w iff all worlds w^{\prime} for which $T_{3, w}$ holds are worlds in which p is true. This gives us equivalences sheh as:

$$
T(w)(j, p) \Leftrightarrow \forall w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \rightarrow p\left(w^{\prime}\right)\right]
$$

Given that much, (20b) can be represented as (22), and (21) as (23):
$(22) \forall w^{\prime}\left[T_{j, w^{\prime}}\left(w^{\prime}\right) \rightarrow \forall x[G(w)(x) \wedge S(w)(x)] \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]$
(23) $\forall x\left[\left[G(w)(x) \wedge S(w)(x) \rightarrow \forall w^{\prime} T_{j, w}\left(w^{\prime}\right) \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right.$

The equivalence of (22) and (23), and hence of (20b) and (21), is a simple matter of predicate logic.

Turning to the strongly exhanstive reading of (20a), which was given as (20c) above, we notice that it can also be represented as (24):
(24) $\forall w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \rightarrow \forall x\left[\left[G(w)(x) \wedge S\left(u^{\prime}\right)(x)\right] \rightarrow\left[G\left(u^{\prime}\right)(x) \wedge S\left(u^{\prime}\right) \mid x\right)\right]\right]$

Since (24) can be 'tecomposed' into the conjunction of (22), which represents the weakly exlanstive reading, and (25):
(25) $\left.\forall w^{\prime}\left[\mathcal{T}_{j, w}\left(w^{\prime}\right) \rightarrow \forall x\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right] \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S(w)(x)\right]\right]\right]$
the latter gives the additional infomation which distinguishes the strongly exhatative interpetation from the weably exhanstive ome. What this additional information amonnts to, is perhaps more perspicuonsly formulated in (20)*, which is equivalent to (25):
(26) $\forall x\left[\exists w^{f}\left[T_{j, u}\left(w^{i}\right) \wedge G\left(w^{\prime}\right)(x) \wedge S\left(w^{i}\right)(x)\right] \rightarrow[G(w)(x) \wedge S(w)(x)]\right]$

This expresses that if it is compatible with what Joh tells that someone is a girl who slecps. then this person actually is a girl who sleeps. For one

[^4]thing, this means that if John tells of someone that she is a girl who sleeps, which implies that this is compatible with what he tells, then she actually is. (This gives us the factivity of tell when embedding an interrogative.) From the formulation (26) it is also obvious that the possibility that of some individuals John is not sure whether they are girls that are asleep is excluded on the strongly exhaustive reading. If it is compatible with what he tells that someone is a girl who sleeps, then, as (26) implies, she actually is. And from the weakly exhaustive part, expressed in (23), we know that if the latter is the case he tells that she sleeps.

Having thus pinpointed the difference between the weakly and the strongly exhaustive reading, we finally note that we can put together the two conjuncts into which we decomposed (24), viz., (22) and (25), as follows:
(27) $\left.\forall x[\| G(w)(x) \wedge S(w)(x)] \vee \exists u^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \wedge G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]$ $\left.\left[G(w)(x) \wedge S(w)(x) \wedge \forall w^{\prime}\left[T_{j}, w\left(w^{\prime}\right) \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right]\right]$

To see that this is equivalent to the original representation (20c), note that (23) is of the form $\forall x[\phi \rightarrow \psi]$, and (26) is of the form $\forall x[\chi \rightarrow \phi]$, which combine to $\forall x[[\phi \vee x] \rightarrow[\phi \wedge \psi]]$, which is the form of (27). And (27) expresses that if an individual is actually a girl who sleeps or such that it is compatible with what Johu tells that she is a girl who sleeps, then she actually is a girl who sleeps and such that John tells that she is a girl who sleeps.

It is the observation that (27) (also) represents the strongly exhaustive interpretation that forms the basis of our account of quantificational variability, which is presented in section 4. But first we turn to a closer examination of Berman's proposals.

3. Berman's challenge.

In the semantics sketched above, wh-terms do not translate as independent quantificational expressions, but rather function as (restricted) λ abstraction. Yet it seems that, given the (weakly or strongly) exhaustive nature of questions, they in effect inherently amount to universal quantification. Hence the phenomenon of quantificational variability seems to pose a serious problem for this semantics. The following examples, taken from Berman (1991), illustrate what is at stake:
(28) a. The principal usually finds out which students cheat on the final exam.
b. Sue mostly remembers which of her birthday presents arrived special delivery.
c. With few exceptions, Mary knows which students submitted which abstracts to which conferences.
d. Bill seldom acknowledges which colleagues he gets a good idea from.
e. John discovered which books were stolen from the library.

These sentences have a reading in which the adverbs of quantification, usually, mostly, with few exceptiona, seldom, seem to have the effect of lending variable quantificational force to the wh-terms in these sentences. Notice that the main verb in (28a). find out, is factive, but that in (28b), remember, is not. Sentence (28e) illustrates that quantificational variability can pertain to several whterms at the same time. And (28 d) shows that it may affect both wh-terms and indefinite terms. Finally, (28e) is a case with a non-explicit adverb of quantification. Berman provides the following paraphrases:
(29) a. For most students who cheat on the final exam, the principal finds out of them that they cheat on the final exam.
b. For most of her birthday presents that arrived special delivery, Sue remembers that they arrived special delivery.
c. For most thiples of a student, an abstract and a conference such that the student submitted the abstract to the conference, Mary knows that the student submitted the abstract to the conference.
d. For few pairs of a colleague and a good idea such that Bill gets the good idea from the colleague does he acknowledge he gets the good idea from the colleague.
e. For all books that were stolen from the library, John discovered that they were stolen from the horary.

If $w h$-phrases inlmently have universal quantificational force, how can we explain the quantificational variabity exemplified by these sentences? Exhanstiveness, even weak exhaustiveness, seems to be at odds with examples like (28a)-(28d). Berman describes the situation in the following way. He notes that although sentence (30) is contradictory, (31) is not:
(30) John knows who is running, but he doesn't know that George is ruming.
(31) John mostly knows who is rnning, but he doesn't know that George is rmming.

Likewise, he observes that although (32c) follows from (32a,b), no such entailment holds between (33c) and (33a,b):
(32) a. John knows who is running.
b. George is rumming.
c. John knows that George is running.
(33) a. John mostly knows who is ruming.
b. George is ruming.
c. John knows that George is running.

These observations, Berman concludes, show that exhaustiveness is not an inherent property of interrogatives, and that hence an altemative account of the semantics of embedded constituent interrogatives is needed.

We will now sketch what we take to be the core of Berman's analysis. Starting point is that wh-phrases should not be treated ass inherently quantificational expressions, but rather in the way indefinites are treated in Lewis/Kamp/Heim-style discourse representation theory.* This means that, like indefintes, wh terms are associated with clauses expressing conditions on free variables. Constituent interrogatives correspond to open formulae. So parallel to example (17) in the previous section, the logical form assigned to (34a) is (34b):
(34) a. which girl(s) sleep(s)
b. $G(x) \wedge S(x)$

A crucial feature of Berman's analysis is that the embedding verbs which we have dubbed 'extensional', such as know and tell, operate on these open sentences directly. As is to be expected, the binding of the free variables is taken care of by implicit or explicit adverbs of quantification. Via a process of presupposition accommodation the open sentence which is the argument of the cmbedding verb is 'raised' to act as the restriction of the quantifier corresponding to the adverb. What we have called 'intensional' verbs, such as wonder, behave differently. however. Such verbs do not take open sentences as such as their argument, but the questions that can be formed from them. In these cases the free variables in the embedred interrogative get bound as a result of this process of question formation.

Before turning to Berman's account of cmbedded constitutnt interrogatives, we first take a look at his rule of question formation. Questions result by prefixing a so called (omorpheme to an open sentence containing one of more occumences of $w h$-terms. The smantic interpretation of

[^5]the Q-morpheme results in a Hamblin-type interpretation of constitnent interrogatives.* It is given in (35):**
(35) $\left.[Q \phi]^{M \cdot g}=\left\{p \mid \exists x_{1} \ldots x_{n}: p=\mathbb{4} \phi\right]^{N, g}\right\}$

The existential quantifiers in this definition bind the free variables introduced by the wh-terms in the open formula ϕ that corresponds to the constituent interrogative. We see that the semantic result of application of the Q-morpheme to the open sentence is a set of propositions that each represent a possible pattial answer. So the interrogative (36a) is represented as (36b), which in terms of the representation language used in this paper amounts to (30 c):
(30) a. Which girl(s) sleep(s)?
b. $Q[G(x) \wedge S(x)]$
c $\lambda p \exists x[p=\lambda u[G(w)(x) \wedge S(w)(x)]]$
Let us now look at Bermm's analysis of embedded constituent interrogatives. We start with the 'intensional' case. As was indicated above, 'intensional' verbs take as their argument the question expressed by the embedeled interrogative. Hence a sontence such as (37a) is assigned the logical form (37b):
(37) a. John wonders which girl(s) sleep(s).
b. W(U.Q[G(x) $\wedge S(x)])$

If we compare this analysis with the one given in the previous section we notice that in both the argument of the verb is a question, which in its turn determines answerhood. However, the analyses differ substantially in

[^6]their view on the nature of answers, and hence questions. The analysis of section 2 associates an interrogative in a world with one complete true answer. In Berman's analysis an interrogative is linked to the same set of all possible partial answers in every world. From this set we can extract the true partial answers in a world, by selecting the propositions which are true in that world. That, in effect, would amount to Karttunen's analysis.* If we take the intersection of the resulting set of propositions, we end up with the weakly exhaustive analysis outlined in the previous section. And if we add a clause stating that no other individuals satisfy the relation on which the interrogative is based, the strongly exhaustive analysis results. It is worth noticing that Berman could have chosen any of these alternative interpretations of the Q -morpheme. The only thing that is essential for his approach is that the Q morpheme takes care of the binding of the variables introduced by the $w h$-terms in the embedded interrogative. Of course, the choice between these alternatives, Hamblin-type, Karttunen-type, weakly exhaustive, strongly exhaustive, is not a matter of taste but has to be made on empirical and methodological grounds, as we have argued extensively elsewhere.

Now we come to Berman's account of the 'extensional' cases. As we said above, Berman assumes that these verbs operate on the open formulae associated with the constituent interrogatives, and not on the questions that can be formed from them. A further assumption which he makes, in line with the standard approach to adverbs of quantification,** is that the logical form of sentences such as (38a) and (39a) is a tripartite structure. The three constituents of this structure are: an adverb of quantification (if no adverb occurs, universal quantification is the default); the restriction of the quantification; and the nuclear scope of the quantification. Consider the following simple examples, one with and one without an explicit adverb of quantification:
(38) a. John usually knows which girl(s) sleep(s).
b. $\left.\operatorname{most}_{x}[G(x) \wedge S(x)][\kappa(j, \operatorname{gir}](x) \wedge S(x))\right]$
(39) a. John tells which girl(s) slecp(s).
b. $\mathrm{ALL}_{x}[G(x) \wedge S(x)[T(j, \operatorname{gin} \mid(x) \wedge S(x)]]$

The logical forms (38b) and (39b) illustrate the general pattern. The nuclear scope consists of the embedding verb and its two arguments: the subject and the open formula corresponding to the constituent interrogative. The restriction is formed by the same open formula. It gets there

[^7]via the process of presupposition accommodation. In case of verbs such as know, this process operates with the presupposition standardly associated with factive verbs. In case of non-factive verbs such as tell, the assumption has to be made that such verbs are factive when embedding an interrogative, despite the fact that they are not factive in general. The adverb quantifies non-selectively over the free variables in its arguments, and thus takes care of the binding.

In Berman's analysis the difference between the 'intensional' and the 'extensional' cases is taken to reside in different structural properties of the sentences in question. It is assumed that a sentence such as (37a), in which the intensional verb wonder occurs, does not give rise to a tripartite structure becanse wonder is not factive and because it operates on questions rather than open formulae. In the resulting logical form there are no free variables left for an adverb of quantification to bind, since they are bound already by the Q-morpheme. Hence such sentences do not exhibit quantificational variability.

Let us now turn to an evaluation of Berman's proposal. The main thing to note is that at essential points his analysis of embedded and nonembedded interrogatives is not in accordance with some of the general assumptions outlined in the introductory section. The 'stand alone' and embedded occurrences of interrogatives are not treated uniformly throughout. Remarkable is the radical difference between the kind of semantic object associated with an interrogative embedded by a verb like wonder and that expressed by an interrogative that is the argument of verbs such as know and tell. The latter verbs operate on open formulae, not on questions, as the former do. Also note that these open formulae as such cannot be associated with answers to the corresponding questions. A reasonable semantics for sentences of this type results not simply after combining the verb with its argument. but only after the subscquent procedure of accommodating the embedded interrogative as a presupposition in the restriction of an (implicit or explicit) adverb of quantification. Also, this procedure requires an assumption of factivity for such verbs as tell which ascribes them the property of presupposing their argument just in cases this is an interrogative. This makes a lexical semantic property dependent on a structural syntactic one, which is unusual, to say the least. Finally, observe that this difference in type of semantic objects prohibits a uniform account of coordination and entailment.

It seems to us that an analysis that does accord with the general assumptions made in the introductory section, and which is able to explain the differences in possible quantificational varability in terms of a general mechamism, is to be preferred. Therefore, we will outline in the next section
how the semantics of interrogatives described above can be made to handle the phenomenon of quantificational variability.

4. Berman's challenge met.

We will show how the analysis of section 2 can be made to neet Berman's challenge stepwise. We start by showing how quantificational maiability can be had on the weak exhaustiveness view, since the latter is nearest to Berman's own analysis. Then we will strengthen the result to comply with strong exhanstiveness.

Recall from section 2 that in a weakly exhaustive analysis, a scutence like (40a) is translated as (40b). The latter is equivalent to (40c), which we could also write in 'adverbs of (quatification'-style as (40d):
(40) a. John tells which girl(s) sleen(s).
b. $T(w)\left(j, \lambda w^{\prime} \forall x\left[[G(w)(x) \wedge S(w)(x)] \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(r)\right]\right)\right.$
c. $\forall x\left[\left[G(w)(x) \wedge S\left(w^{\prime}\right)(x)\right] \rightarrow T(u)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)\right]$
d. $A L_{x}\left[G\left(w^{\prime}\right)(x) \wedge S(w)(x)\right]\left[T(w)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)\right]$

The last representation is virtually the same as what results in Berman's analysis, but notier that it is obtaned without having to assume that tell is factive, and without presupposition accomodation, due to the fact that the embedded interrogative is assigued a moning of its own.

But, as we saw in the previous section, the reason for Berman to deviate from this straghtforward analysis are sentences containing explicit. adverbs of quantification, such as (41a). As we remarked earlier it seems an inherent feature of both the weakly and the strongly cxhaustive analysis that wh-terms have unisersal quatificational fores. So the problem is how we can get rid of the unversal quantificier Ant. and 'replace' it by the
 Berman assigns to (41at):
(41) a. John usually tells which girl(s) sleop(s).
b. $\operatorname{most}_{x}\left[G\left(w^{\prime}\right)(x) \wedge S(w)(x)\right]\left[T(w)\left(j, \lambda w^{\prime}\left\{G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)\right]$

This is were dynamic semantics comes in.
In dynamic semantics* indefinites are not analyzed as introducing free variables, as in discourse representation theory, but as quantificational expressions in their own right. A simple donkey sontenee like (42a) is translated as (42b). The dynamic inteqpretation assigue to the existontial quantifier makes (42b) equivalent to the orchary translation (42c) in standard prodicate logic:

[^8](42) a. If John owns a donkey he beats it
b. $\exists x[D(x) \wedge H(j, x)] \rightarrow B(j, x)$
c. $\forall x[[D(x) \wedge H(j, x)] \rightarrow B(j, x)]$

The interpretation of the existential quantifier in dynamic semantics ensures that the existentially quantified antecedent of (42b) outputs assignments in which the value of the variable x is a donkey that John owns. The interpretation of the implication as a whole is defined in such a way that it takes all such output assignments, and checks whether the values of x satisfy the consequent, i.c., whether they are indeed beaten by John. If so, the implication is considered true. So the truth conditions of (42b) in dynamic semantics are the same as the truth conditions of (42c) in ordinary static semantics. The relevant fact that we make use of here is that in dynamic semantics the following equivalence holds without the usual restriction that x does not occur freely in the consequent:

$$
\exists x \phi \rightarrow \psi \Leftrightarrow \forall x[\phi \rightarrow \psi]
$$

Observe that, given this fact, in dynamic semantics (40c) is equivalent to (43):
(43) $\exists x[G(w)(x) \wedge S(w)(x)] \rightarrow T(w)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)$

What we need to know next is how adverbs of quantification can be dealt with in a dynamic framework. Following the proposals of Dekker and Chierchia this can be done as follows.* As we noted above, a formula of the form $\exists x \phi$ outputs all those assignments that assign values to x that satisfy ϕ. This makes the variable x available for further quantification. And because of that, the adverb of quantification in $A Q_{x}[\exists x \phi][\psi]$ can quantify over the output of $\exists x \phi$, and require that a Q-amount of such outputs satisfy the condition ψ. In other words, given the dynamic interpretation of the existential quantifier we obtain equivalences of the following form:

$$
A Q_{x}[\exists x \phi][\psi] \Leftrightarrow Q_{x}[\phi][\psi]
$$

where Q is the ordinary quantifier corresponding to the adverb of quantification $A Q$, even though the variable x is existentially quantified in the antecedent.

[^9]For the purposes of the present paper, this much suffices, and we must refer to reader to the papers by Dekker and Chierchia for a substantiation of this claim and more details.

Given these two facts of dynamic semantics, we may rest assured that when an implicational structure of the form (44a) is combined with an adverb of quantification, it can be represented as in (44b), which in the dynamic framework is equivalent with (44c):
(44) a. $\exists x \phi \rightarrow \psi$
b. $A Q[\exists x \phi][\psi]$
c. $Q_{x}[\phi][\psi]$

Once we know this much, sentences with adverbs of quantification no longer present a problem. Consider again example (41a), repeated below as (45a). We know that we can represent its meaning without the adverb of quantification in the form of the implicational structure (45b), which is equivalent with (45 c). The result of combining it with the adverb of quantification can be represented as in (45 d), which is equivalent with (45e):
(45) a. John usually tells which girl(s) sleep(s).
b. $\forall x\left[[G(w)(x) \wedge S(w)(x)] \rightarrow T(w)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)\right]$
c. $\exists x[G(w)(x) \wedge S(w)(x)] \rightarrow T(w)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)$
d. USUALLY $[\exists x[G(w)(x) \wedge S(w)(x)]]\left[T(w)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)\right]$
e. $\operatorname{most}_{x}[G(w)(x) \wedge S(w)(x)]\left[T(w)\left(j, \lambda w^{\prime}\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right)\right]$

In this way we can obtain the meanings Berman wants to assign to sentences like (45 a), but in a more straightforward and simple way. We make use of extensionality of the verb tell without having to assume it to be factive when embedding an interrogative. Interrogatives are assigned an independent and uniform (weakly) exhaustive interpretation. And the quantificational variability induced by the occurrence of adverbs of quantification is obtained by making use of equivalences which rest on independently motivated clauses in dynamic semantics.

This shows how Berman's readings of sentences with adverbs of quantification can be obtained by combining the weakly exhaustive interpretation of interrogatives from section 2 with a dynamic semantic approach to quantification. However, we argued earlier that the weakly exhaustive interpretation is not the right one, and that strong exhaustiveness is needed. Let us repeat what is at stake here. Consider (46a,b,c):
(46) a. John knows which girl(s) sleep(s).
b. Of every girl who sleeps, John knows that she is a girl who sleeps.
c. Of no girl who doesn't sleep, John believes that she is a girl who sleeps.

In section 1 we argued that (46a) entails both (40b) and (46c). However, a weakly exhaustive interpretation only accounts for the entailment between (46a) and (46b), but it does not give us the other one. The latter entailment is what strong exhaustiveness adds to weak exhaustiveness: If it is compatible with what John knows that an individual is a girl who sleeps, ther she actually is.*

Similar observations can be made with respect to sentence (47a), which differs from (46a) only in that it contains the adverb of quantification usually. Again, the a-sentence should entail both the b-and the c-sentence, but the weakly exhaustive reading accounts only for the first entailment:
(47) a. John usually knows which girl(s) sleep(s).
b. Of most girls who sleep, John knows that they are girls who sleep.
c. Of few girls who don't sleep, Jolin believes that they are girls who sleep.

Establishing the truth conditions of sentences such as (47a) is a complicated matter. In order to decide whether (47a) is true or not, we need access to two sets of individuals: the set of individuals that actually are girls who sleep; and the set of individuals of whom it is compatible with John's information that they are girls who sleep. In order to see what the actual truth conditions are, observe that the latter set may contain not only individuals that actually are girls that sleep, but also individuals of whom John wrongly believes that they are, and individuals of whom he is in doubt as to whether they are girls who sleep or not. Notice further that individuals that actually are girls who sleep may be lacking from it. So from the two sets we start out with we can construct four other sets: the set of individuals John has a definite and correct opmion about; the set containing the individuals about whon he has a wrong opinion; the set consisting of the ones he is in doubt about; and the set containing the ones he misses. The truth conditions of (47a) can be stated in terms of a comparison between the union of the last three sets with the first one: the cardinality of the first should be (considerably) less than that of the second.

Now we turn to quantificational variability and strong exhaustiveness. Repeated below as (48) is the representation of the strongly exhaustive analysis sentence (46a) which we gave at the end of section 2 :

$$
\begin{align*}
& \forall x\left[\left[\left[G\left(w^{\prime}\right)(x) \wedge S(w)(x)\right] \vee \exists w^{\prime}\left[T_{j, w}\left(w^{t}\right) \wedge G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right] \rightarrow\right. \tag{48}\\
& \left.\left[G(w)(x) \wedge S(w)(x) \wedge \forall w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right]\right]
\end{align*}
$$

[^10]Within the framework of dynamic semantics this is equivalent to (49):

$$
\begin{align*}
& \exists x\left[[G(w)(x) \wedge S(w)(x)] \vee \exists w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \wedge G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right] \rightarrow \tag{49}\\
& {\left[G(w)(x) \wedge S(w)(x) \wedge \forall w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right]}
\end{align*}
$$

And this represents the required strongly exhaustive interpretation. Notice that we obtain this result without recourse to the assumption that sentences like this contain an implicit adverb of quantification.

Also, we know that given the dynamic treatment of adverbs of quantification
(47a) can be represented as (50):
(50) uSUALLY $\left.\left[\exists x[\mid G(w)(x) \wedge S(w)(x)] \vee \exists w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \wedge G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right]$ $\left[G(w)(x) \wedge S(w)(x) \wedge \forall w^{\prime}\left[T_{j, w}\left(w^{t}\right) \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right]$
And (50), we know, is equivalent with (51):

$$
\begin{align*}
& \operatorname{Most}_{x}\left[[G(w)(x) \wedge S(w)(x)] \vee \exists w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \wedge G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right] \tag{51}\\
& {\left[G(w)(x) \wedge S(w)(x) \wedge \forall w^{\prime}\left[T_{j, w}\left(w^{\prime}\right) \rightarrow\left[G\left(w^{\prime}\right)(x) \wedge S\left(w^{\prime}\right)(x)\right]\right]\right]}
\end{align*}
$$

This gives the right quantificational results. According to the restriction clause the quantification is over individuals that are either girls that actually sleep or individuals of whom it is compatible with what John tells that they are girls who sleep (or both). The quantifer requires that most of them should be girls who sleep and that John should tell that they are. It is easy to see that this strongly exhaustive interpretation entails Berman's weakly exhaustive reading. For if we simply drop the second disjunct in the restriction clause in (51) the number of individuals quantified over becomes potentially less. If John is correct about most individuals in the larger set, then he is certainly also right about most individuals in potentially smaller set.

The quantifiers ALL and MOST that correspond to the adverbs always and usually have in common that they are upward monotonic. Let us conclude this section with an investigation of two downward monotonic cases. If we replace MOST in (51) by FEW, we may observe that because of the downward monotonicity of FEW, Berman's weakly exhaustive interpretation now entails the strongly exhaustive one, rather than the other way around, as in the case of ALL and mOST. To see that this is so, suppose that of about 50 percent of the ginls that are asleep, John tells that they are, then according to Berman's analysis it is false that John seldomly tells which girl(s) sleep(s), even if at the same time John tells of a large amount of individuals that are not girls that sleep, that they are. This is clearly not correct. The strongly exhaustive analysis correctly predicts that in this case it is true that John rarely tells which girl(s) sleep(s). If we look at
the individuals that actually sleep and at those that actually do not but of whom John tells that they do, then he is correct only in few cases.

With no things are slightly different. In that case the two approaches give equivalent results. This can be seen as follows. The second disjunct in the restriction clause potentially adds cases that have to be taken into consideration. But if it really adds an individual, this should not be a girl that actually sleeps, i.e., this should not be an individual that already satisfies the first disjunct of the restriction clause. But such individuals cannot satisfy the nuclear scope clause, since they will not satisfy the first conjunct of it. These results seem to be in accordance with the facts.

The discussion of these examples shows that quantificational variability and strong exhaustiveness, contrary to appearance and Berman, are not incompatible. Recasting the analysis of section 2 in the framework of a dynamic semantics allows us to retain the original strongly exhaustive interpretation of interogatives, which is in accordance with the general assumptions laid down in section 1 , and to account for the phenomenon of quantificational variablity in embedded interrogatives.

5 Final remarks.

First of all, we want to draw attention to what seems to be a rather fundamental difference between the approach presented in the previous section, and Berman's way of dealing with quantificational variability. The two approaches resemble each other in that both associate sentences containing adverbs of quantification with tripartite structures in which an adverb of quantification takes a restriction clause and a nuclear scope clause as arguments. But the approaches differ not only in what they consider to be the contents of the arguments of the adverb, but also in how they arrive at them. In Berman's case the restriction clause is formed by accommodating a factive presupposition. The analysis presented in the previous section derives the contents of both arguments of the adverb by 'decomposing' the meaning of the sentence without the adverb into two parts, that can be viewed as the antecelent and the consequent of an implicational structure. In Berman's case the relevant presupposition is identical to the propositional argument of the main verb, and hence extractable from surface syntactic structure. In our analysis the restriction clause and the muclear scope clause cannot be determined at this level. For the surface form of these sentences is not that of an implication. However, we have shown that their semantic representations can be cast in this format within a dynamic framework. So, this analysis seems bound to the view that it is only on the basis of the semantic content of an entire sentence that we can
determine what constitutes the restriction and the nuclear scope of an adverb of quantification occurring in it, and that its syntactic structure does not suffice. We are not sure what conclusions can be drawn from this, but we note that this aspect of our analysis seems to be in line with Roberts' argument that domain restriction in general is not simply a matter of what she calls a 'structure driven algorithm', but largely depends on different kinds of contextual (semantic and pragmatic) factors.*

Another remark we want to make is that in the analysis proposed in the previous section, a crucial feature of Berman's analysis, viz., that wh-terms are to be treated in the same way as indefinites, playes no role. Treating them like indefinites in a dynamic framework would mean translating them in terms of dynamic existential quantification. But this we did not do. (We did make use of dynamic existential quantification, but not in the translation of wh-terms as such, but only in order to arrive at the required implicational structure.) Still, it might be interesting to point out that we might do so if for whatever reason this seems to be desirable after all. We have seen that if existential quantification is dynamic, we can 'disclose' the property $\lambda x \phi$ from the existentially quantified formula $\exists x \phi$. This means that in the end it makes no difference whether we deal with $w h$-terms as a form of restricted λ-abstraction, or as dynamic existential quantification.

A perlaps more interesting observation is that in some cases indefinites behave like wh-terms. It seems that a sentence like (52a) has a reading (maybe it is even its most likely one) in which it is equivalent with (52 b):
(52) a. John (usually) knows whether a girl sleeps.
b. John (usually) knows which girl(s) sleep(s).

On a dynamic account of indefinites, this reading easily falls out.
In fact, even universally quantified terms sometimes lend themselves to quantificational variability, viz., in sentences with so-called pair-list readings. Sentence (53a) has a reading on which it is equivalent with (53b).
(53) a. John (usually) knows which professor recommended every/each student.
b. John (usually) knows which professor recommended which student.

Elsewhere** we have given an analysis of a sentence like (53a) which makes it equivalent to (53 b). That being so, such sentences lend themselves equally easily to quantificational variability.

The following sentence is a variant of Berman's sentence (28c), cited in section 3. It contains a wh-term, an indefinite and a universally quantified

* See Roberts (1991).
** See Groenendijk \& Stokhof (1984, chapter 6).
term, and illustrates that all three of them can be subject to binding by the same adverb of quantification:
(54) With few exceptions, Mary knows which abstract every student submitted to a conference.

The conslusion we draw from these observations is that although it may be appealing at first sight to treat $w h$-terms in the same way as indefinites in order to account for quantificational variability, in fact this hypothesis seems unwarranted. As the example (54) indicates, we can treat them either as restricted A-abstraction, or in terms of dynamic existential quantification, or in terms of universal quantification. It does not really matter. As long as we assign interrogatives a strongly exhaustive interpretation, quantificational variability can be accounted for in any of these three alternatives.

References

Belnap, N. D. jr (1981), "Approaches to the Semantics of Questions in Natural Language. Part I', ms., Pittsburgh.
Berman, S. (1990), 'Towards the Semantics of Open Sentences: Wh-Phrases and Indefinites', in L. Torenvhet \& M. Stokhof, eds., Proceedings of the Seventh Amsterdam Colloquium, ILLc/Department of Philosophy, Amsterdam, 53-77.
Berman, S. (1991), On the Semantics and Logical Form of Wh-Clauses, dissertation, University of Massachusetts.
Chierchia, G. (1992), 'Anaphora and Dynamic Binding', Linguistics and Philosophy 15.2: 111-184.
Dekker, P. (1992), 'An Update Semantics for Dynamic Predicate Logic', in P. Dekker \& M. Stokhof, eds., Proceedings of the Eighth Amterdam Colloquinm, ILLC/Department of Philosophy, Amsterdam, 113-132.
Groenendijk, J. \& M. Stokhof (1982), 'Semantic Analysis of Wh-Complements', Linguistics and Philosophy 5.2:175-233.
Groenendijk, J. \& M. Stokhof (1984), Studies on the Semantics of Questions and the Pragmatics of Answers, dissertation, University of Amsterdam.
Groenendijk, J. \& M. Stokhof (1989), 'Type-Shifting Rules and the Semantics of Interrogatives', in G. Chierchia, B. H. Partee \& R. Tumer, eds, Properties, Types and Meaning. Volume II: Semantic Issues, Kluwer, Dordrecht, 21-68.
Groenendijk, J. \& M. Stokhof (1990), 'Dynamic Montague Grammar’, in L. Kálmán \& L. Pólos, eds., Papers from the Second Symposium on Logic and Language, Akadémiai Kiadó, Budapest, 3-48.

Groenendijk, J. \& M. Stokhof (1991), 'Dynamic Predicate Logic', Linguistics and Philosophy 14.1, 39-100.
Hamblin, C. L. (1973), 'Questions in Montague English', Foundations of Language 10, 41-53.
Heim, I. (1982), The Semantics of Definite and Indefinite Noun Phrases, dissertation, University of Massachusetts, Amherst.
Kamp, J. A. W. (1981), 'A Theory of Truth and Semantic Representation', in J. Groenendijk, T. Janssen, \& M. Stokhof, eds., Formal Methods in the Study of Language, Mathematical Centre, Amsterdam, 277-321. Also in J. Groenendijk, T. Janssen, \& M. Stokhof, eds., 1984, Truth, Interpretation and Information, Frois, Dordrecht, 1-41
Karttunen, L. (1975), 'Syntax and Semantics of Questions', Linguistics and Philosophy 1.1:3-44.
Lewis, David (1975), 'Adverbs of Quantification', in E. L. Keenan, ed., Farmal Semantics of Natural Language, Cambridge University Press, Cambridge, 3-15.
Roberts, C. (1991), 'Domain Restriction in Dynamic Semantics', ms., Department of Linguistics, Ohio State University

[^0]: * Behap (op. cit.) calls this the 'independent meaning thesis'. It can be viewed as a special instance of the principle of compositionality, given a certain rather natural view on the syntactic status of moleded interrogatives.
 * The empirical problems with this claim, for example those concerning non-boolean coordination and fiee choice permisson, are not relevant for the issues discussed in this papere.

[^1]: * Bemman (1991) See also Berman (1990).

[^2]: * Ser Grompmbigh a Stokhof (1992.1984).

[^3]: * Se Gromemajijs S. Stokhor (1082,1084, 1989) for more dotals.

[^4]: * Representations which make use of the compatibility predicate induced by proposition embedding verbs are more perspicuous, at least for our present purposes, and we will use them in what follows when appropriate. But note that we can get on more familiar type of representation back, if we want (or necd) to. For example, (26) is equivalent with:
 (27) $\forall x\left[\neg \vee w^{\prime}\left[T_{3, w}\left(u^{\prime}\right) \rightarrow \neg\left[G\left(w^{\prime}\right)(x) \wedge S\left(u^{\prime}\right)(x)\right]\right] \rightarrow[G(w)(x) \wedge S(w)(x)]\right.$ which, using the Hintikka style deffition in the other direction, gives us:
 (28) $\forall x\left[-T(u)\left(j, \lambda w^{t}-\left[G\left(u^{\prime}\right)(x) \wedge S\left(w^{t}\right)(x)\right]\right) \rightarrow\left[G\left(u^{\prime}\right)(x) \wedge S(w)(x)\right]\right.$

[^5]: * Sce Lewis (1975), Kamp (1981), Heim (1982),

[^6]: * See Hamblin (1973).
 ** Notice that the interpretation scheme for the Q-morpheme does not give proper results in case we are dealing with a sentential interrogative. Since in that case the sentence does not contain wh-terms, no existential quantifiation would be involved. The result would be $[Q \phi]^{M . g}=\{p \mid p=$ $\left.[0]^{M, g}\right\}$. This gives us only the proposition expressed by o. i.e, only the "positive' answer. But that is not the only possible answer. Hence, in case of sentential interrogatives, we should rather interpret the Q-morpheme as follows: $\left[Q \rho \rrbracket^{M \cdot g}=\left\{p \mid p=\llbracket \rho \rrbracket^{M \cdot g} \vee p=\left[\neg \phi \rrbracket^{M, g}\right\}\right.\right.$. In fact, this flaw in Berman's analysis is directly related to the matter of exhaustiveness. For recall that the gencral scheme for interrogative formation that was stated in the previous section. which starts from an n-place relation, with sentential intermgatives in the case of $n=0$, and which lets the question be the equivalence relation on possible worlds of having the same (positive) cxtension. results in strongly exhustive readings.

[^7]: * See Karttunen (1977).
 ** See Lewis (1975).

[^8]: * See Groenendijk \& Stokhof (1990,1901).

[^9]: * See Dekker (1992), Chierchia (1902). What is said in the text makes use of only a small part of their analyses. For example, we completely disregard the issue of symmetric versus non-symmetric readings, which both Dekker and Chierchia discuss extensively.

[^10]: * Another relevant observation is that weak exhaustiveness predicts that Noone is running entals Everyone knows who is running, and that John tells that everyone is running entails John tells who is running. In our opinion this is not quite what one would like to have.

