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Abstract 

Many pellet-reared tiger muskellunge (F• hybrid of female muskellunge Esox masquinongy and 
male northern pike E. lucius) do not survive stocking in reservoirs dominated by bluegill Lepomis 
macrochirus prey. Poor survival may occur because few hybrids capture bluegills. In a previous 
study done in hatchery ponds, only 10% of naive hybrids (those never before exposed to live 
prey) captured bluegills during 15 days. In similar ponds, we tested the effects of predator 
experience (using hybrids previously exposed to bluegill prey), vegetative cover, and bluegill 
density on the number of hybrids capturing prey. Few experienced or naive hybrids captured 
bluegills at low prey density, regardless of the presence or absence of vegetation. When bluegill 
density was increased from 1 to 5 prey/m 2 in ponds or to 40/m • in aquaria, many hybrids 
captured bluegills. Our pond study suggests that most hybrids will not fare well when stocked 
in lakes where only bluegill forage is present. 
Received April 19, 1983 Accepted May 21, 1984 

Esocids have been stocked in lakes and res- 

ervoirs throughout the midwestern United 
States because they are highly regarded as sport 
fish and are reputed to be voracious predators 
(Goddard and Redmond 1978; Haas 1978; Hes- 
ser 1978). One esocid, the tiger muskellunge, 
an F1 hybrid of female muskellunge Esox mas- 
quinongy and male northern pike E. lucius, has 
been favored in many management programs; 
it is as sought after as muskellunge by anglers 
and is more easily reared on artificial diets (Graff 
1978). Unfortunately, survival of tiger muskel- 
lunge after stocking has been low or inconsis- 
tent (Johnson 1978). Poor survival of hybrids 
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may be caused in part by the invulnerability of 
certain prey species. When offered prey of op- 
timum size (as determined from laboratory 
preference experiments), many tiger muskel- 
lunge captured fathead minnows Pimephales pro- 
melas whereas few captured bluegills Lepomis 
macrochirus (Gillen et al. 1981). If stocked in 
centrarchid-dominated reservoirs, hybrids may 
grow slowly, remain in a size range vulnerable 
to predators for prolonged periods (Stein et al. 
1981), and be susceptible to other sources of 
mortality such as disease and starvation. If more 
hybrids captured centrarchid prey, poststock- 
ing survival might increase. 

Pellet-reared tiger muskellunge may capture 
bluegills rarely because of their lack of expe- 
rience with live bluegills. We hypothesized that 
exposure of naive hybrids to bluegills before 
stocking would increase their consumption of 
bluegills compared to hybrids with no previous 
exposure. Experienced esocid predators re- 
quire less time to capture fathead minnows and 
fewer strikes per capture (Gillen et al. 1981). 
Other predators feeding on novel prey show 
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T ̂ BI•E 1 .--Summary of experimental conditions for studies of tiger muskellunge (hybrid) predation. All prey were bluegills 
unless otherwise noted. Each aquarium or pond experiment was duplicated. 

Prey 
Hybrid Vegeta- 

Facility dimen- Den- tion Water 
Experiment sions: length x Length sity Length (mm) density temperature 

type Experimental width x depth Num- range (num- (stems/ 
and number facility (m) ber (mm) ber/m •) Mean Range m •) Mean Range 

Experience 
EI Hatchery 7 x 2 x 1 300 155-170 179 42 21-61 0 

raceway 
EII Ponds 34 x 11 x 1.5 128 a 165-180 1 42 20-59 75 b 

128 c 165-180 1 62 50-83 a 

Vegetation 
VI Quadrats 33 x 16 x 1 125 170-180 1 39 23-52 0 

125 170-180 1 39 23-52 2,000 
VII Aquaria 2 x 0.5 x 0.5 40 175-195 40 39 35-45 1,000 

Density 
DI Ponds 34 x 11 x 1.5 138 185-220 1 44 27-61 75 c 

5 

DII Quadrats 33 x 16 x 1 50 175-195 5 29 18-46 0 
1,000 

DIII Tanks 2.4 (diameter) 3 185-195 1 38 35-40 1,000 
x 1 5 

19 18-20 

22 18-26 

24 21-27 

20 17-23 

14 10-18 

22 20-24 

19 

Experienced hybrids (exposed to bluegills in hatcheries). 
Vegetation within 1 m of shoreline. 
Naive hybrids (never exposed to live prey previously). 
Prey were fathead minnows. 

increased reactive distances, increased tenden- 
cy to attack, and increased success (Beukema 
1968; Ware 1971; Godin 1978; Milinski 1979) 
as their experience with prey increases. The 
experiments of Gillen et al. (1981) also suggest 
that bluegill density and vegetative cover may 
affect hybrid predation on bluegills; that is, pre- 
dation increases if bluegills lose access to the 
refuge of vegetation and become more concen- 
trated. Therefore, we conducted experiments 
to determine the effect of bluegill density and 
vegetative cover on tiger muskellunge preda- 
tion. 

Methods 

All hybrids were reared on dry pellet food at 
the Ohio Department of Natural Resources' 
Kincaid Fish Farm, Latham, Ohio. Fish that were 
fed pellets exclusively were considered naive, 
whereas those that had eaten live prey at least 
once before being tested were considered ex- 
perienced. For pond experiments, hybrids were 
stocked immediately after transport from the 
hatchery. Water temperatures during pond ex- 
periments were measured with a maximum- 
minimum thermometer submerged to a depth 
of 1 m. Secchi-disc transparency ranged from 

0.6 to 1.5 m. In the laboratory, hybrids were 
maintained before experiments in a 500-liter 
tank at 15-19 C and fed pellets. All experiments 
were replicated once. We analyzed variation be- 
tween replicates with Wilcoxon signed-rank tests 
and pooled data if replicates did not differ (P > 
0.05), unless otherwise stated. 

Predator Experience 
We hypothesized that a greater number of 

experienced predators compared to naive pred- 
ators would capture bluegills. In these "expe- 
rience experiments," we first allowed hybrids 
to gain experience with live prey (EI, Table 1) 
by feeding them bluegills at high densities in a 
hatchery trough. After 2 weeks we dissected a 
sample of 20 hybrids to estimate the proportion 
that were eating bluegills; 19 had bluegills in 
their stomachs. We then stocked 128 of these 

experienced hybrids in each of two ponds at the 
Ohio Department of Natural Resources' Lon- 
don Fish Farm (EII, Table 1). Ponds were 1.5 
m deep and contained a moderate (range 2- 
35%) bottom cover of Ceratophyllurn spp. and 
filamentous algae. Reed canary grass Phalaria 
arundacea and terrestrial grasses grew in the 
littoral zone within 1 m of the pond margin. 
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One day after fish were stocked, we added 
500 optimum-sized bluegills (25% of hybrid to- 
tal length) to each pond, thus approximating 
that prey density (1/m 2) found in Ohio reser- 
voirs (Stein et al. 1982). The results of this ex- 
periment were compared to previous studies 
(Gillen et al. 1981) in which naive tiger muskel- 
lunge were fed bluegills in these same ponds. 
To assess if hybrids were behaving as in pre- 
vious experiments, we also stocked two other 
randomly assigned ponds with 128 naive hy- 
brids and 500 optimum-sized fathead minnows 
per pond (40% of hybrid total length). To main- 
tain nearly constant prey density, we added prey 
every 4 days, making conservative estimates of 
losses due to hybrid predation and assuming no 
prey losses to avian predators. By day 22, blue- 
gills were growing out of the size range pre- 
ferred by hybrids (mean length of bluegills had 
increased from 42 to 58 mm), whereas hybrids 
had grown little. To remedy this problem, we 
doubled the ration added after day 22, which 
increased bluegill density from 1.0 to 1.2/m 2 
and thus reduced the mean length of bluegills 
to 52 mm (determined when all prey were re- 
trieved from drained ponds). 

After prey were stocked, 15 hybrids were 
sampled every 4 days for 29 days. Hybrids were 
weighed (to 0.1 g), measured (total length, to 1 
mm), and dissected. Stomach contents were 
identified to fish species or invertebrate phy- 
lum. The proportion of tiger muskellunge con- 
taining fish prey was then calculated. 

Our estimate of predation, the proportion of 
hybrids containing fish, was conservative and 
included only those predators that had eaten 
and still contained food in their stomachs when 

captured. Bevelhimer (1983) indicated that 
stomach contents of hybrids were not complete- 
ly evacuated in 24 hours. If daily ration was one 
bluegill per hybrid per day, then on the day of 
sampling, we estimated the number of hybrids 
in the whole population that captured a daily 
ration. Rarely were hybrids found with more 
than one bluegill in their stomachs. Error in the 
estimate might have arisen from sampling every 
4 days but should affect all treatments equally 
and should not obscure differences among them. 

Vegetation 

To determine whether or not vegetation de- 
creases the number of naive hybrids capturing 
bluegills, we manipulated the amount of vege- 

tative cover and noted changes in hybrid pre- 
dation in both pond and laboratory experi- 
ments. Pond experiments (VI, Table 1) were 
conducted at Hebron (Ohio) National Hatchery 
in a single pond that was divided into four quad- 
rats by 9.2-mm-mesh nets. Two vegetated quad- 
rats contained dense rye grass Lolium perenne 
(2,000 stems/m•; mean height • 70 cm) and two 
cleared quadrats contained rye grass mowed to 
a height of 5 cm. We examined presence and 
absence of vegetation rather than a range of 
densities because we were interested only in ex- 
treme changes in the number of predators cap- 
turing bluegills. We stocked each quadrat with 
125 naive hybrids followed by 500 optimum- 
sized bluegills per quadrat. Hybrids were sam- 
pled and prey replaced every 4 days for 16 days 
and the proportion of hybrids containing blue- 
gills determined. 

Laboratory experiments by Gillen et al. (1981) 
demonstrated that many tiger muskellunge cap- 
ture bluegills (40/m •) in a 700-liter aquarium 
without structure. To determine if structure 

would reduce number of hybrids capturing 
bluegills, we repeated these experiments in the 
same aquarium with added structure (VII, Ta- 
ble 1). Vegetation was simulated with 0.5-m 
lengths of yellow polypropylene rope (4 mm 
diameter), attached to the aquarium bottom at 
a density of 1,000 stems/m •. Free ends of the 
rope floated to the surface, simulating a dense 
stand of vegetation flexible enough to allow free 
movement of both predators and prey. 

We introduced into the tank 40 naive hybrids, 
starved for 24 hours, along with optimum-sized 
bluegills and added bluegills three times a day 
to maintain their density at 40 per tank or 40/ 
m •. Then, each day for 5 days, we randomly 
removed 20 hybrids and determined the pro- 
portion eating fish, either by dissection or by 
inspection of body contours. Dissection always 
confirmed results (either presence or absence 
of prey in stomach) of inspection. We returned 
inspected fish to the aquarium; dissected fish 
were replaced in the same proportion (naive: 
experienced) as that revealed by stomach anal• 
ysis. This procedure insured no change in group 
learning conditions and maintained constant 
predator density. 

Prey Density 
To determine the influence of prey density, 

we conducted an experiment in 0.05-hectare 
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F1GUI•E 1 .--(A) Proportions of naive and experienced tiger 
muskellunge that consumed fish prey in O. 5-hecta re ponds. 
Naive fish had been fed on commercial pellets before they 
were stocked in ponds with fathead minnows; experienced 
fish had eaten bluegills in the hatchery before they were 
stocked in ponds with bluegills. (B) Growth of naive and 
experienced tiger muskellunge. Each point in each panel 
represents 30 predators (15 per pond), except on the last 
sample day when 13 predators per pond were collected. 

4 or 22 prey. The densities established (1 or 
5/m 2) closely approximated prey densities used 
in pond experiments. We inspected body con- 
tours of predators daily for 3 days in the low- 
prey-density experiment and daily for 4 days in 
the high-density experiment. 

Results 

Predator Experience 

When stocked in ponds, as few experienced 
hybrids as naive hybrids (Gillen et al. 1981) cap- 
tured bluegills (Wilcoxon signed-rank sum test; 
P > 0.44). Also, the percentage of experienced 
hybrids preying on bluegills was significantly 
less than that of naive hybrids preying on fat- 
head minnows (Wilcoxon signed-rank sum test; 
P < 0.01; Fig. 1). Mean percentage of hybrids 
that ate fathead minnows was 72%. Mean per- 
centage of hybrids that ate bluegills never ex- 
ceeded 25% except at the end of 4 weeks when 
ponds were drained and the percentage in- 
creased to 92%. 

Hybrids that were fed fathead minnows grew 
significantly faster than those that were fed 
bluegills (test for the equality of linear regres- 
sion slopes; P -< 0.05; Fig. 1). Hybrids feeding 
on fathead minnows grew from a mean length 
of 172 to 261 mm whereas those in bluegill 
ponds reached 193 mm in the same time. 

ponds at London Fish Farm (DI, Table 1). In 
each of four ponds, we stocked 138 hybrids, 
then randomly chose two ponds to stock with 
500 bluegills and two to stock with 2,500 blue- 
gills. All bluegills were of optimal size. Secchi- 
disc depth was about 1 m. Every 4 days for 22 
days, we removed, measured, and weighed 15 
hybrids and analyzed their stomach contents to 
determine the proportion consuming bluegills. 

A second and similar experiment was con- 
ducted in the divided pond (VI) at the Hebron 
National Fish Hatchery where we had already 
established and maintained bluegill density at 
1/m 2 and where 50 experienced hybrids re- 
mained in each quadrat. We added 2,000 blue- 
gills to all quadrats to bring prey density to 5/m 2 
(DII, Table 1). Every 2 days for 7 days, we sam- 
pled and handled 15 hybrids as described pre- 
viously. 

On a smaller scale, we filled outdoor tanks 
with 1,000 artificial stems/m"(DIII, Table 1), 
then introduced three naive hybrids and either 

Vegetation 

Presence or abundance of vegetation did not 
affect proportion of tiger muskellunge preying 
on bluegills. In ponds, proportions of hybrids 
capturing bluegills (1 prey/m 2) did not differ 
between vegetated and cleared quadrats (Wil- 
coxon signed-rank sum test; P > 0.25; Fig. 2, 
A panels), and was never more than 17% (means: 
vegetated quadrats = 4%, cleared quadrats = 
7%). Hybrids increased in length only 10 mm 
in both quadrats. 

A small tear (0.13 x 0.3 m) was found at the 
base of the netting separating one set of cleared 
and vegetated quadrats, which explained why 
on day 13, 24 more hybrids had been sampled 
in the cleared quadrat than had been stocked. 
Because results in these quadrats were statisti- 
cally similar to those in the separated quadrats 
(Wilcoxon signed-rank sum test; P > 0.31), they 
were included in the analysis. 

As in pond experiments, laboratory experi- 
ments (VII) showed no effect of vegetation on 
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FIGURE 2.--Proportions of naive tiger muskellunge that 
ate bluegills in vegetated (1,800 stems /m 2) and cleared 
(vegetation mowed to a height of 5 cm) O.05-hectare quad- 
rats. Each point (A panels) represents 30 predators (15 
per replicated quadrat). Prey density was increased from 
1/m • (A panels) to 5 / m 2 (B panels) on day 20 indicated 
by the arrow. Each point (B panels) represents 11 to 47 
hybrids. 

predation. At high bluegill densities (40/m2), 
over 90% of hybrids consumed bluegills on day 
1 and the proportion remained high through 
the end of the experiment, though structure in 
the aquarium was dense. In the absence of cov- 
er, 78% of hybrids consumed bluegills (40/m 2) 
in an aquarium (Gillen et al. 1981). 

Prey Density 

Increased prey density significantly increased 
the proportion of hybrids preying on bluegills. 
In pond experiments (DI), more hybrids cap- 
tured bluegills at prey densities of 5/m 2 than 
at densities of 1/m • (Wilcoxon signed-rank sum 
test; P -• 0.05; Fig. 3). Percentage of hybrids 
consuming bluegills was 14% and 26% for low 
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BLUEGILL PREY (5/m 2) 

95% CONFIDENCE I 

BLUEGILL PREY (I/•) 
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25 

FIGURE 3.--Proportions of naive tiger muskellunge that 
ate bluegills stocked at two densities (1 and 5/m •) in 
O. 05-hectare ponds. Each point represents 30 predators 
(15 per replicate pond), except on the last sample day 
when the number sampled varied from 11 to 39 per pond. 

and high densities of bluegills, respectively. 
These results were significantly different, but 
were not large enough to cause differential 
growth (test for equality of regression slopes; 
P -• 0.05). Hybrids feeding at low prey density 
grew from a mean length of 202 to 209 mm 
whereas those at high density grew from 206 
to 210 mm. 

When we increased bluegill density at the end 
of the vegetation experiments in the divided 
pond (DII), percentage of hybrids feeding in- 
creased significantly from a daily mean of 6% 
to 55% (Wilcoxon rank-sum test; P -• 0.05; Fig. 
2). Growth of hybrids averaged only 1-2 mm 
in any quadrat during this short experiment. 

In outdoor tanks (Dill), proportion of feed- 
ing hybrids varied directly with prey density. 
The mean percentage of hybrids that ate blue- 
gills was 11% at low prey density (1/m•), never 
exceeding 33%. In contrast, the mean percent- 
age eating bluegills was 75% at high prey den- 
sity (5/m•). 

Frequency of prey sizes eaten by hybrids in 
pond experiments corresponded closely to the 
frequency of prey sizes offered (Tomcko 1982). 
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This close correspondence suggests that the sizes 
computed by Gillen et al. (1981) as "optimal" 
were readily eaten by the hybrids. 

Discussion 

Predaceous fishes capture more prey when 
they become experienced with that prey (Hoog- 
land et al. 1956; Ware 1971; Godin 1978; Milin- 
ski 1979; Werner et al. 1981), when they forage 
in open water compared to dense structure (Glass 
1971; Coen et al. 1981; Savino and Stein 1982), 
and when prey are dense (Holling 1966; Ware 
1972). Therefore, we hypothesized that pred- 
ator experience, low vegetation density, and 
high prey density should increase tiger muskel- 
lunge predation on bluegills. Regardless of 
whether hybrids were experienced or naive, or 
in dense vegetation or open water, most did not 
capture bluegills. Only at high prey densities 
(>5/m 2) did many tiger muskellunge capture 
bluegills. Tiger muskellunge response to prey 
density suggested a typical vertebrate function- 
al response to prey density (Holling 1966), 
though a range of prey densities is necessary to 
fully define functional response. 

Experienced tiger muskellunge responded, as 
do other experienced predators, to novel prey 
offered at high density; they learned to capture 
or avoid prey. Ware (1971) found that juvenile 
rainbow trout Salrao gairdneri exposed for 11 
days to novel, inanimate prey (liver chunks at 
15/m 2) required less time to complete feeding 
sequences and attacked prey from longer dis- 
tances than did naive fish. Similarly, as bluegills 
became more experienced with species of Chi- 
ronomus (> 50/m •) and Daphnia (100/m•), their 
capture rate increased (Werner et al. 1981). Both 
northern pike and European perch Perca flu- 
viatilis learned to avoid threespine and tenspine 
sticklebacks Gasterosteus aculeatus and Pygosteus 
pungilius (Hoogland et al. 1956; prey densities 
>-5/m". In our experiments, many tiger mus- 
kellunge apparently learned to capture bluegills 
after exposure to high-density bluegill prey 
(179/m •, EI). But this learning did not increase 
captures at the low prey density (1/m •, EII) 
commonly found in reservoirs. 

Our experiments were not designed to ex- 
plain why tiger muskellunge differed from oth- 
er predators in their response to vegetation. 
Tiger muskellunge have a different morphol- 
ogy and use different strike tactics than other 

predators when feeding on fathead minnows in 
the absence of structure (Webb 1983). How 
predator hunting techniques change in the 
presence of structure is unknown. 

Both our field and laboratory experiments 
indicate that many hybrids captured fathead 
minnows compared to the few hybrids that cap- 
tured bluegills. This difference may arise be- 
cause of prey-species characteristics. Bluegills 
are more maneuverable than fathead minnows 

(Tomcko 1982; Moody et al. 1983), and their 
spines and deep body contribute to relatively 
long handling times by hybrids (Gillen et al. 
1981). In general, other esocids readily con- 
sume soft-rayed and fusiform prey (Mauck and 
Coble 1971; Weithman and Anderson 1977; 
Goddard and Redmond 1978; Stein et al. 1982; 
Tomcko 1982). The presence of soft-rayed prey 
in reservoirs may increase hybrid growth and 
probably their survival. 

Bluegill density, rather than vegetation den- 
sity or experience of the predator, may be an 
important consideration when hybrids are 
stocked in a reservoir. Because centrarchid- 

dominated forage bases are common in Ohio 
reservoirs, because centrarchids commonly oc- 
cur at densities below 1/m •, and because few 
hybrids capture bluegills at this density, growth 
of hybrids stocked in these waters could be poor 
and survival low. In waters where other soft- 

rayed or fusiform prey such as gizzard shad Dor- 
osoma cepedianum are available, hybrids may be 
stocked with an expectation of reasonable 
growth and success. 
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