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ABSTRACT 

The absorption of structural vibrations and noise is often essential to structural integrity and operator safety. 

These unwanted vibroacoustic energies are typically broadband, which presents a challenge to traditional 

resonance-based dampers. Additionally, low frequency vibrations and noise are particularly difficult to 

absorb in situations where lightweight solutions are required. Recent studies have shown that utilizing the 

elastic stability limit, or buckling point, can lead to a theoretically unbounded increase in damping ratio. 

Additionally, by embedding distributed masses within acoustic foams, damping is increased far beyond the 

capabilities of foam alone. By taking advantage of both this near-buckling phenomenon and distributed 

masses, this research investigates periodically arranged hyperdamping inclusions within foam for 

lightweight, broadband vibroacoustic damping capabilities. Behavior of hyperdamping metamaterial arrays 

is numerically and experimentally characterized. Acoustic models suggest that hyperdamping inclusions 

are more effective at noise absorption when spread apart, which is reflected in an acoustic and a vibration 

experimental study. An investigation of various arrangements of inclusions shows that having multiple 

inclusions perpendicular to the wave propagation axis is more effective than having multiple inclusions 

along the direction of wave propagation, which suggests that a plane of distributed inclusions most 

effectively increases vibroacoustic energy absorption. Hyperdamping inclusion arrays are demonstrated to 

be robust, in that hyperdamping architectures which are intentionally “mistuned” away from the elastic 

stability limit are still highly effective for broadband attenuation of waves. Hyperdamping inclusions are 

compared to traditional solid elastomer inclusions, and are shown to have comparable or increased energy 

absorption while weighing less. These findings demonstrate a new idea for a lightweight, broadband 

damping material system. The broad applications of this system include numerous vehicle systems, where 

weight is key to performance and high levels of energy dissipation are required.  
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1 INTRODUCTION 

1.1 Vibroacoustic energy and damping 

Vibroacoustic energy, which is a combination of vibration energy and acoustic energy, comes from many 

sources, including internal sources such as engines, thrusters, and turbines, and external sources such as 

road to wheel vibration and fluid turbulence. Absorption of structural vibrations and noise are essential to 

the function of operators, machinery, and equipment. Energy can come from harmonic excitations such as 

engines, but typically comes from spectrally broadband sources. Low frequency vibrations have proven 

particularly difficult to dissipate due to the larger amplitudes at these frequencies [1] and ineffectiveness of 

traditional acoustic foams in this frequency band [2]. Vibroacoustic energy absorption or attenuation 

methods have been explored by many researchers in diverse fields over the years, due to the need for 

material systems with ever increasing performance [3].  

1.2 Significance of research 

Unwanted vibroacoustic energies still present a problem for a wide range of applications and engineered 

systems. Traditional damping methods introduce significant mass to the system, and in many applications, 

such as automotive and aerospace, lightweight solutions are critical to efficiency [4]. While acoustic foams 

can effectively attenuate waves in the mid- to high-frequency range, they are less effective at low frequency 

damping [2]. Damping panels are often used in combination with acoustic foams to enhance low frequency 

damping, yet these panels add significant mass which is not always practical. Broadband, lightweight 

vibroacoustic attenuators are in high demand, due the need for high performance engineered systems [5]. 

1.3 Recent developments in broadband damping 

Resonant metamaterials show promising bandgap energy attenuation, which absorbs large amounts of 

energy in tunable bands [1]. These resonant metamaterials achieve high stiffness and high damping through 

the use of internally resonating lattices within an external frame. Yet, these bands are often narrowband and 

parameter sensitive, which makes them ineffective for situations requiring a robust, broadband energy 

attenuating material system. Most proposed resonant metamaterials are also made of dense materials 

including metals and heavy rubbers [6], which are impractical in situations where lightweight solutions are 

critical. On the other hand, large and broadband attenuation capabilities have been achieved by periodic 

elastic metamaterials that leverage instability mechanisms and negative stiffness [7] [8] [9]. These materials 

utilize a cancellation of positive and negative stiffness to achieve extreme damping. Yet, these too are often 

materials such as acrylic [8], epoxy [9], 3D-printed polymers [10] and other dense materials which may 

add significant mass relative to traditional vibroacoustic attenuators [7].  

Researchers have additionally begun to utilize buckling instability to achieve broadband energy attenuation 

[11] [12]. Shan et al have achieved remarkable energy capture and impact resilience through the use of 

multiple folding mechanisms, which utilizes a parameter sensitive geometry to induce buckling phenomena 

[13]. These buckling phenomena typically require active stress or compression to achieve the correct tuning, 

while a passive system is needed for many applications [11] [14]. Additionally, current mechanisms which 
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utilize buckling phenomena are typically dense, and add significant mass to the engineered system which 

they are protecting.  

While buckling phenomena are known to enhance energy attenuation [15],  utilizing the point of buckling 

rather than utilizing post-buckled phenomena should theoretically provide higher attenuation, due to the 

cancellation of the positive and negative stiffnesses. This cancelation, termed the elastic stability limit [16], 

eliminates the fundamental natural frequency ωn →0. In fact, the damping ratio at the elastic stability limit 

grows theoretically without bound [17] due to the relation for damping ratio 
nmc  2/  where c and m 

are the damping constant and mass, respectively [18]. Despite recent advances, the use of dense materials 

and reliance on parameter-sensitive resonance phenomena make these implementations insufficient for 

lightweight, broadband energy absorption applications. Hyperdamping metamaterials are the first 

realization of a lightweight, robust implementation of critical point damping, for capturing impact energy 

[19], vibration, and acoustic energy [20]. By utilizing the elastic stability limit, hyperdamping materials can 

be used in many situations and configurations, including within foams, box beams, and sandwich panels.  

One promising way to enhance the low frequency energy attenuation capabilities of foam, is the use of 

periodically arranged inclusions within poroelastic foam. These metamaterials of inclusions within foam 

have been shown to significantly improve broadband damping [21] [22], due to the inclusions behaving as 

distributed mass-spring-dampers [23]. These inclusions, which are typically solid metals have been shown 

to improve low frequency vibration and noise attenuation, at a cost of increasing the system mass [24]. 

These distributed inclusions in foam, known commonly as heterogeneous (HG) blankets, are a metamaterial 

which can greatly increase transmission loss for noise and vibration control [25]. Utilizing resonance 

phenomena can significantly reduce the mass of the HG blankets [26], yet results in narrowband absorption 

which is not always sufficient when truly broadband energy capture is required [27]. The effectiveness of 

variety of inclusion shapes beyond small spheres has been examined theoretically and experimentally by 

Groby et al. who found that the filling fraction of inclusions within the foam was found to affect the 

absorption more than the shape of the inclusion [28].By combining the concepts of hyperdamping 

inclusions and periodically arranged inclusions, this research seeks to develop a passive, lightweight, 

broadband energy capture material system. 

1.4 Research goal 

The goal of this research is to numerically and experimentally characterize the behavior of hyperdamping 

metamaterials, which are composed of periodically arranged hyperdamping inclusions within foam, for 

noise and vibration attenuation capabilities. To achieve this goal, finite element models are created to 

determine the acoustic absorption coefficient of the metamaterials and the influence of varied inclusion 

spacing and arrangement. Then through acoustic experiments, models are verified and refined. Additional 

vibration experiments are conducted to subject metamaterial specimens to higher energy inputs and 

examine force transmissibility. These experiments and models allow for comparisons in order to determine 

energy capture enhancements achieved by the hyperdamping metamaterials when compared to the foam 

media itself and to resonant metamaterials.  
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1.5 Overview of thesis 

This thesis is organized as follows. Chapter 2 discusses hyperdamping metamaterial design and finite 

element modeling of hyperdamping metamaterials. Chapter 3 describes the data acquisition apparatus and 

test methods used in the experiments, including both acoustic testing and vibration testing. Chapter 4 

presents the experimental results, and provides numerous discussions on the experimental trends that 

provide new insights regarding the broadband damping capabilities of periodically arranged hyperdamping 

metamaterials. Chapter 5 summarizes the key experimental discoveries of this research and proposes future 

research directions. 
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2 HYPERDAMPING METAMATERIALS 

2.1 Design of hyperdamping metamaterials 

The realization of hyperdamping inclusions utilized in this thesis is based on architected elastomer 

constrained within aluminum shells. Fabrication of hyperdamping inclusions follows the steps taken by  

Harne et al. in a recent characterization of hyperdamping metamaterials containing one inclusion [20]. ABS 

molds are 3D printed (FlashForge Creator Pro) as the negative of the elastomer in two parts, as shown in 

Figure 1. The molds are coated with a release spray (Smooth-On, Inc., Ease Release 200) and sealed 

together with a small bead of wax. Silicone rubber (Smooth-On, Inc., Mold Star 15S) is poured into the 

molds, and cured at room temperature for the recommended time, before being removed from the mold. 

The aluminum shells of inner diameter 16.56 mm and thickness 1.25 mm are cut to 19 mm in length, as is 

the elastomer after sufficient curing time. The elastomer is then cleaned with water to remove dust and wax, 

carefully inserted into the shell, and gently manipulated to ensure it seats correctly. 

 

Figure 1: Molding process: (a) 3D printed mold pieces before joining and sealing with wax, (b) after pouring elastomer 

and allowing recommended curing time, (c) after breaking wax seal and removing shell, (d) after carefully removing from 

base mold. Elastomer is then cut to length and washed. 

A number of parameters can be adjusted to ensure the inclusion is very near to the elastic stability limit, or 

buckling point. In this thesis, rotationally symmetric inclusion designs are utilized, which allow for a global 

buckling to occur [20]. To achieve the critical constraint of the buckling point, the ratio of open to closed 

angle and the ratio of inclusion outer diameter to shell inner diameter are chosen. Variation of the open 

angle ratio is effectively a way to adjust beam thickness, which governs the buckling point [20]. Change of 

the diameter ratio is effectively a way to adjust the compression of the inclusion to induce buckling. A 

parametric finite element (FE) study is conducted in COMSOL Multiphysics, where both open angle ratio 

and diameter ratio are adjusted over the range of values which can be fabricated. By plotting the 

fundamental eigenfrequency, the buckling horizon is determined as the line along which the eigenfrequency 

becomes purely imaginary [20]. This is seen in Figure 2, where any dark blue region is post-buckled. 
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Figure 2: Fundamental eigenfrequency plot showing elastic stability limit and the parameters varied to achieve it. The 

rectangle outside the elastic stability limit “horizon” is likely a numerical error corresponding to two distinct 

configurations.  

Three architectures are molded, using a constant open angle ratio of 0.67. The architectures otherwise are 

designed with diameter ratios of 1.0325, 1.0455, and 1.0547, where the first is not yet buckled, the second 

is very near to buckling, and the third is post-buckled, as guided by the FE model. This can be seen in 

Figure 3,where a control solid elastomer inclusion is shown beside three hyperdamping inclusions showing 

no rotation, very slight rotation, and clear rotation, respectively. Thus, only the diameter ratio influences 

the nearness to buckling. 

 

Figure 3: Four inclusion architectures used: (a) control solid elastomer inclusion and three hyperdamping inclusion s, 

which are (b) not buckled, (c) very nearly buckled, and (d) post-buckled. 

Foam samples (The Foam Factory Super Soft Foam) are cut to size, and then cut in half at locations where 

inclusions will be inserted. From each half, a triangular wedge of foam is removed. The portions of the 

remaining channel where in an inclusion will be placed are left empty, while the wedge is cut down to size 
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and reinserted around these locations. This process can be seen in Figure 4, which illustrates the fabrication 

steps for one half of a final test specimen. Adhesive (HDX Spray Adhesive and 3M Super 77 Spray 

Adhesive) is used on all cut surface to ensure the foam and inclusion are held together, as seen in Figure 5. 

For test specimens with multiple inclusions, multiple channels are cut or multiple inclusions are placed into 

each channel, depending on the configuration of the specimen. 

 

Figure 4: Fabrication steps of hyperdamping metamaterials: Cutting foam in half, removing channel, replacing foam, 

adding inclusion. 

 

Figure 5: Foam sample after spray gluing, with the line of glue visible around the edge. Two of these 50 mm samples are 

glued together to create a full 100 mm test specimen. 

2.2 Modeling hyperdamping metamaterials 

To gain insight into the acoustic behavior of periodic hyperdamping inclusions in foam, a finite element 

model is created in COMSOL Multiphysics. To accurately model the metamaterial, a multi-domain model 

is needed with air, foam, shells, and inclusions, as seen in Figure 6. A phenomenological model is used 

rather than a model which recreates the buckling phenomena of the inclusions, due to the already complex 

nature of the model. This phenomenological model uses an artificially high damping within the solid 

domain of the inclusion, as seen in Figure 6, such that the inclusions behave similarly to inclusions which 
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are near to the elastic stability limit. Because of the geometry of the inclusion arrays, a 3D model is 

necessary, which significantly increases the computational cost of the model.  

fixed constraintmic 1 mic 2

air domain

solid domain

poroelastic domain

shell boundary

incident pressure pin

y

z x
plane

waves

 

Figure 6: Acoustic model setup showing key boundary conditions and domain types 

The model is set up with a unit pressure input pin along the left face, with a fixed constraint along the right 

face of the foam. All cylindrical edges are constrained to move only along the direction of wave 

propagation, to recreate the boundary conditions of a standing wave tube. The air is considered as an 

acoustic domain and the foam is a poroelastic domain. Additional air is located in the voids of each 

inclusion. Any boundary between foam and air is treated as an acoustic-porous boundary. The boundary 

between the solid domain inclusion and the foam is treated as a shell boundary. The boundary between 

inclusion and voids is a solid-acoustic boundary, and between the inclusion and foam on top and bottom is 

a solid-porous boundary. If any boundary is not correctly created, the absorption of the specimen will be 

nearly 100 % across all frequencies, because the model cannot resolve the behavior of the model at 

undeclared boundaries. 

To reduce computational cost, a coarse mesh is used on the air and foam. This mesh size smax is limited by 

𝒔𝒎𝒂𝒙 =
𝒄

𝟏𝟎𝒇𝒉𝒊
1 

where c is the speed of sound, and fhi is the highest frequency of interest. A frequency sweep is performed 

from 10 Hz to 2010 Hz, which is close to the range of the standing wave tube. Average pressure is measured 

at the locations of mic 1 and 2, which are set to be the same locations as the locations of the standing wave 

tube. Absorption coefficient can then be found by taking transfer functions between the microphones. The 

measured transfer function is defined by 

𝑯̃(𝒇) =
𝑮𝒙𝒚(𝒇)

𝑮𝒙𝒙(𝒇)
=
𝑿(𝒇)𝒀∗(𝒇)

𝑿(𝒇)𝑿∗(𝒇)
2 
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where Gxy is the cross power spectrum between microphone 1 and 2, Gxx is the auto power spectra of 

microphone 1, X(f) is the FFT of the microphone 1 pressure x(t), Y(f) is the FFT of the microphone 2 

pressure y(t), and * denotes the complex conjugate [29]. Complex reflection coefficient is calculated as 

𝑹̃ =
𝑯̃ − 𝒆𝒋𝒌𝑺

𝒆−𝒋𝒌𝑺 − 𝑯̃
𝒆−𝒋𝟐𝒌(𝒍+𝑺) 3 

where S is the microphone spacing in meters, l is the distance from the specimen to the nearest microphone 

in meters, and k is the wavenumber defined as 

𝒌 =
𝟐𝝅𝒇

𝒄𝟎
4 

where c0 is the speed of sound, 343 m/s. From reflection coefficient, absorption coefficient is then calculated 

as 

𝜶 = 𝟏 − |𝑹̃|
𝟐

5 

Poroelastic models are governed by seven parameters, of which only Young’s modulus, Poisson’s ratio, 

density, and porosity can be easily measured or are known from the manufacturer. Young’s modulus is 

calculated by measuring displacement and load in a load frame with a specimen of known thickness and 

cross-sectional area. Then  

𝐸 =
𝑘Δ𝐿

𝐴
 

where k is the stiffness measured by dividing load by displacement, ΔL is the deformed length, and A is 

the cross sectional area. Poisson’s ratio and porosity are assumed to be 0.44 and 0.99, which are within the 

range of similar foams [30]. Density is listed by the manufacturer [31]. The other three parameters are Biot-

Willis coefficient, tortuosity, and permeability. To accurately model the foam, absorption coefficient is 

measured in a standing wave tube, and then imported into the finite element modeling software. Curve 

fitting is performed with the three unknown parameters, in order to best match the experimental data to the 

model. 
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Figure 7: Absorption coefficient comparison between experiment and simulation for a 100 mm foam sample 

From Figure 7, it is seen that the model and experiment agree very well in the range of 200 Hz to 2000 Hz. 

Below this range, the model diverges from experiment because the model converges on 0, while the 

experiment converges near 0.2. The seven foam properties which results in this curve fit are summarized 

in Table 1. 

Table 1: Foam material properties used for simulations to match simulation to experimental data 

Young’s 

modulus [kPa] 

Poisson’s 

ratio 

Density 

[kg/m3] 

Porosity Biot-Willis 

coefficient 

Tortuosity Permeability 

[m2] 

20.301 0.44 19.222 0.99 0.87 1.29 4.5e-09 

 

A study is conducted for two hyperdamping inclusions with varied spacing, to gain insight into the 

interactions of two hyperdamping inclusions. Inclusion material properties are taken from prior literature 

[20] to be ν=0.33 and E=200×109. Shells are modeled with standard 6061 aluminum material properties. 

Two inclusions are initially placed side-by-side within a 100 mm long by 85 mm diameter sample of foam 

and then brought farther apart along the direction of wave propagation, as illustrated in Figure 8. Inclusions 

are aligned in the z direction, and spaced 38 mm apart in the y direction. The spacing in the direction of 

wave propagation, the x axis, is varied from 0 cm where the inclusions are aligned, to 6 cm where the 

inclusions are very near to the edge of the foam sample. 
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Figure 8: Schematic showing arrangement of inclusions with varying spacing along the axis of wave propagation 

The results of the study can be seen in Figure 9. From this, it can be seen that the addition of two inclusions 

is expected to increase the absorption coefficient in the range of 300 Hz to 1000 Hz. Below this range, the 

model becomes inaccurate due to the model absorption coefficient converging to 0, which is not reflected 

in experiment. While the model does not show much distinction between the spacings in the range of 300 

Hz to 1000 Hz, it does show significant distinction above this range. Above 1000 Hz, the inclusions which 

are side by side actually have a lower absorption coefficient than the foam only, while the inclusions which 

are spaced at 6 cm have a higher absorption coefficient. This suggests that increasing the spacing between 

hyperdamping inclusions will increase their effectiveness at high frequencies, without influencing their 

performance at lower frequencies. 
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Figure 9: Finite element absorption coefficient for two hyperdamping inclusions of varied spacing, compared to a foam 

only simulation 

Next, three distinct arrangements of two inclusions are considered. The arrangements are aligned with the 

axis of wave propagation as the x axis, and the axis of the cylindrical inclusions as the z axis. Based on the 

observation that hyperdamping inclusions are more effective when spread out, the spacing between two 

inclusions in the axis of wave propagation is 50 mm center-to-center, and for two inclusions in the y or z 
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direction, it is 38 mm center-to-center. This is limited by the diameter of the standing wave tube, such that 

the inclusions are not close to the edge of the tube. From Figure 10, it is shown that the model has little 

distinction between the three arrangements. In fact, the 1x2x1 and 1x1x2 arrangements have nearly identical 

absorption coefficient. This suggests that the model does not predict that the two inclusions will have 

meaningful interaction, because the inclusions should vibrate in the x and y directions but not in the z 

direction. Thus, if the model shows a distinction between the 1x2x1 and 1x1x2 arrangements then it shows 

that the inclusions do have interactions. The 2x1x1 arrangement is distinct from the other two arrangements, 

and is slightly less effective in the range of 400 Hz to 1000 Hz, but slightly more effective above this range.  

200 1000 2000

frequency [Hz]

0

0.2

0.4

0.6

0.8

1

a
b
s
o
rp

ti
o
n
 c

o
e
ff
ic

ie
n
t

foam

2x1x1

1x2x1

1x1x2

2x1x1

1x2x1

1x1x2

x

y

z

 

Figure 10: Finite element absorption coefficient for three arrangements of two hyperdamping inclusions, compared to a 

foam only simulation 
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3 EXPERIMENTAL METHODS 

3.1 Acoustic testing sensors, equipment, and data acquisition methods 

Guided by the simulation results, a standing wave tube, or impedance tube, is used to measured absorption 

coefficient using a standard 2-microphone method [29]. A sound source at one end of the tube is located 

sufficiently far from the microphones such that plane waves develop before reaching the microphones, as 

seen in Figure 11. A rigid termination is located after the specimen. A transfer function between the two 

microphones (PCB 130E20) is taken to determine absorption coefficient, which is a measure of how much 

of the incoming waves are attenuated within the specimen [29].  

microphones

sound source

plane

waves

reflected

waves

sample

ri
g
id

 t
e
rm

in
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Figure 11: Impedance tube schematic 

White noise is generated by a computer, which is connected to an amplifier input (AudioSource AMP 100) 

and DAQ system (NI USB-6341). The amplifier output is connected directly to the sound source. Two 

microphones (PCB 130E20) are connected to a signal conditioner (PCB 482C05), which is connected to 

the DAQ system analog inputs. Data is sampled at 65536 Hz for 40 seconds, and bandpass filtered from 40 

Hz to 3000 Hz. The lower bound of testable frequency range is 

𝒇𝒎𝒊𝒏 =
𝟎. 𝟎𝟏𝒄𝟎

𝑺
=
𝟑. 𝟒𝟑

𝑺
6 

which for this tube is 45 Hz and the upper bound is 

𝒇𝒎𝒂𝒙 = 𝐦𝐢𝐧{

𝟎. 𝟓𝟖𝟔𝒄𝟎
𝒅

=
𝟐𝟎𝟏

𝒅
𝟎. 𝟖𝒄𝟎
𝟐𝑺

=
𝟏𝟑𝟕𝟐

𝑺

7 

which for this tube is limited by the tube diameter of 76.2 mm, resulting in an upper limit of 2638 Hz. The 

data is averaged over a 40 second data acquisition period. To compute absorption coefficient, the impedance 

tube must first be calibrated by inserting any specimen and testing with both the standard configuration, 

and a switch configuration in which the microphone locations are physically switched. The calibration 

factor is then 
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𝑯̃𝒄 = (𝑯̃𝑰𝑯̃𝑰𝑰)
𝟏
𝟐 = |𝑯̃𝒄|𝒆

𝒋𝝓𝒄 8 

where HI is the previously defined transfer function for the standard configuration, and HII is the transfer 

function for the switched configuration. Then, 

𝑯 =
𝑯̃

𝑯̃𝒄

9 

where 𝐻̃ is the measured transfer function. Reflection coefficient is then 

𝑹̃ =
𝑯̃− 𝒆𝒋𝒌𝑺

𝒆−𝒋𝒌𝑺− 𝑯̃
𝒆−𝒋𝟐𝒌(𝒍+𝑺) 10 

and absorption coefficient is 

𝜶 = 𝟏− |𝑹̃|
𝟐

11 

Octave band and one-third octave band, which are standard industry measures, are then computed by 

𝜶𝑶𝑩 =
𝟏

𝒏
∑𝜶𝒇𝒊

𝒏

𝒊=𝟏

12 

where n is the number of frequency bins in the octave band or one-third octave band and fi is a frequency 

bin in the desired octave or one-third octave band. The octave bands located within the frequency range of 

the standing wave tube are 

Table 2: Octave bands contained within standing wave tube frequency range 

Lower Band Limit [Hz] Center Frequency [Hz] Upper Band Limit [Hz] 

44.2 62.5 88.4 

88.4 125 176.8 

176.8 250 353.6 

353.6 500 707.1 

707.1 1000 1414.2 
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and the one-third octave bands are 

Table 3: one-third octave bands contained within standing wave tube frequency range 

Lower Band Limit [Hz] Center Frequency [Hz] Upper Band Limit [Hz] 

44.2 49.6 55.7 

55.7 62.5 70.2 

70.2 78.7 88.4 

88.4 99.2 111.4 

111.4 125 140.3 

140.3 157.4 176.8 

176.8 198.4 222.7 

222.7 250 280.6 

280.6 315 353.6 

353.6 396.9 445.4 

445.4 500 561.2 

561.2 630 707.1 

707.1 793.7 890.9 

890.9 1000 1122.5 

1122.5 1259.9 1414.2 

1414.2 1587.4 1781.8 

 

For transmission loss measurement, the rigid termination of the impedance tube is replaced by an additional 

length of tube, as seen in Figure 12. This additional tube has two microphones between the specimen and 

an anechoic termination. A two-load method is utilized to measure transmission loss, where the specimen 

is tested first with an open-ended tube and then with an anechoic termination [32]. The only change to the 

DAQ system used for the impedance tube setup is the addition of two microphones (PCB 130E20). 

microphones

sound source

plane

waves

reflected

waves

sample

microphones

transmitted

waves

anechoic termination

 

Figure 12: Transmission loss tube schematic. Anechoic termination is removed for open-ended tests 
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For each microphone, the measured transfer function is 

𝑯𝒏,𝒓𝒆𝒇 =
𝑮𝒏,𝒓𝒆𝒇

𝑮𝒓𝒆𝒇,𝒓𝒆𝒇
13 

where Gn,ref is the cross power spectrum to the reference signal and Gref,ref is the reference autospectrum. 

Complex pressure amplitude is then calculated for both upstream and downstream direction of the 

specimen, and for both positive and negative phase, which are defined as 

𝑨 = 𝒋
𝑯𝟏,𝒓𝒆𝒇𝒆

−𝒋𝒌𝒍𝟏 −𝑯𝟐,𝒓𝒆𝒇𝒆
−𝒋𝒌(𝒍𝟏+𝒔𝟏)

𝟐 𝐬𝐢𝐧𝒌𝒔𝟏
14 

𝑩 = 𝒋
𝑯𝟐,𝒓𝒆𝒇𝒆

𝒋𝒌(𝒍𝟏+𝒔𝟏) −𝑯𝟏,𝒓𝒆𝒇𝒆
𝒋𝒌𝒍𝟏

𝟐 𝐬𝐢𝐧𝒌𝒔𝟏
15 

𝑪 = 𝒋
𝑯𝟑,𝒓𝒆𝒇𝒆

𝒋𝒌(𝒍𝟐+𝒔𝟐) −𝑯𝟒,𝒓𝒆𝒇𝒆
𝒋𝒌𝒍𝟐

𝟐 𝐬𝐢𝐧𝒌𝒔𝟐
16 

𝑫 = 𝒋
𝑯𝟒,𝒓𝒆𝒇𝒆

−𝒋𝒌𝒍𝟐 −𝑯𝟑,𝒓𝒆𝒇𝒆
−𝒋𝒌(𝒍𝟐+𝒔𝟐)

𝟐 𝐬𝐢𝐧𝒌𝒔𝟐
17 

where s1 and s2 are the spacing between the upstream microphones and downstream microphones 

respectively, and l1 and l2 are the distances from the specimen front face to the nearest microphone on the 

upstream and downstream side, respectively [32]. From these, the acoustic pressure and particle velocity 

on both faces of the specimen (x=0 and x=d) are found to be 

𝒑𝒐 = 𝑨 + 𝑩 18 

𝒑𝒅 = 𝑪𝒆−𝒋𝒌𝒅 +𝑫𝒆𝒋𝒌𝒅 19 

𝒖𝟎 =
𝑨 − 𝑩

𝝆𝒄
20 

𝒖𝒅 =
𝑪𝒆−𝒋𝒌𝒅 −𝑫𝒆𝒋𝒌𝒅

𝝆𝒄
21 

Then, the transfer matrix for the specimen is calculated for each load case 

𝑻 = [

𝒑𝟎𝒂𝒖𝒅𝒃 − 𝒑𝟎𝒃𝒖𝒅𝒂
𝒑𝒅𝒂𝒖𝒅𝒃 − 𝒑𝒅𝒃𝒖𝒅𝒂

𝒑𝟎𝒃𝒑𝒅𝒂 − 𝒑𝟎𝒂𝒑𝒅𝒃
𝒑𝒅𝒂𝒖𝒅𝒃 − 𝒑𝒅𝒃𝒖𝒅𝒂

𝒖𝟎𝒂𝒖𝒅𝒃 − 𝒖𝟎𝒃𝒖𝒅𝒂
𝒑𝒅𝒂𝒖𝒅𝒃 − 𝒑𝒅𝒃𝒖𝒅𝒂

𝒑𝒅𝒂𝒖𝟎𝒃 − 𝒑𝒅𝒃𝒖𝟎𝒂
𝒑𝒅𝒂𝒖𝒅𝒃 − 𝒑𝒅𝒃𝒖𝒅𝒂

] 22 

where a denotes the anechoic termination case and b denotes the open ended case. The transmission 

coefficient of the specimen is defined as 
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𝒕 =
𝟐𝒆𝒋𝒌𝒅

𝑻𝟏𝟏 + (
𝑻𝟏𝟐
𝝆𝒄

) + 𝝆𝒄𝑻𝟐𝟏 + 𝑻𝟐𝟐

23
 

and the transmission loss of the specimen is 

𝑻𝑳 = 𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 |
𝟏

𝒕
| 24 

which, due to the use of a standing wave tube measurement, is more specifically referred to as normal 

transmission loss, due to the normal incidence of the sound source. Transmission loss, more generally, is a 

measure of the ratio of incident power Wi to transmitted power Wt defined as 

𝑻𝑳 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 |
𝑾𝒊

𝑾𝒕
| 25 

3.2 Force transmissibility sensors, equipment, and data acquisition methods 

Force transmissibility is measured by using an electrodynamic shaker (Labworks LT-140-110) to excite 

specimens. A force transducer between the shaker and specimen (PCB 208C02) measures the input force, 

and a second force transducer (PCB 208C01) between the specimen and a rigid termination measures the 

output force as seen in Figure 13. An accelerometer (PCB 352C33) and the two force transducers are 

connected to a signal conditioner (PCB 482C05). The accelerometer signal is then used by the shaker 

controller (Vibration Research VR 9500), which is input to the shaker amplifier (Labworks PA-141). The 

signal conditioner output is connected to a DAQ system analog input (NI PXIe-6368 card within NI PXIe-

1073 chassis). The entire test setup is rigidly fixed to an isolation table (Newport SMART TABLE UT2). 

The controller is given time to ramp-up the excitation to 0.1 m/s2 RMS (root mean square) across the 

frequency band of 20 Hz to 600 Hz before data is collected. Data is sampled at 8192 Hz and bandpass 

filtered from 20 Hz to 600 Hz. The data is averaged over a 60 second data collection period. For this low 

level of RMS acceleration, the linear force transmissibility is computed as the frequency domain transfer 

function between the output to input force. 
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Figure 13: Force transmissibility (a) schematic and (b) test setup
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4 RESULTS AND DISCUSSION 

4.1 Influence of spacing between inclusions 

Rigid inclusions in poroelastic media are shown to have an effective area, or footprint, over which the 

stiffness of the distributed mass-spring-damper can be considered [22]. To investigate the footprint of 

hyperdamping inclusions, two inclusions are initially placed side-by-side within a 100 mm long by 85 mm 

diameter sample of foam and then moved farther apart along the direction of wave propagation, in the same 

manner as the simulation. Inclusions are aligned in the z direction, and spaced 38 mm apart in the y 

direction. The spacing in the direction of wave propagation, the x axis, is varied from 0 cm where the 

inclusions are aligned, to 6 cm where the inclusions are very near to the edge of the foam sample. 

The results of this study are presented in Figure 14. As seen in Figure 14 (a), absorption coefficient is lower 

for the control solid elastomer inclusions at 0 cm spacing and at 6 cm spacing, compared to the sample of 

foam alone. This may be due to the aluminum shell reflecting more sound waves than the foam would 

alone. Because the foam samples are 100 mm thick, their absorption is already quite high, which makes 

increasing it difficult. For the control solid elastomer inclusions at 3 cm spacing, absorption coefficient is 

increased in the range of 100 Hz to 1000 Hz. Figure 14 (b) shows the transmission loss for the control solid 

elastomer inclusions of varied spacing. From this, it can be seen that the 0 cm and 6 cm spacings decrease 

the transmission loss in the range of 100 Hz to 250 Hz and 400 Hz to 1000 Hz. However, in the range of 

250 Hz to 400 Hz, transmission loss is significantly increased. The 3 cm spacing is again the most effective, 

as it increases the transmission loss across the entire frequency range, and increases transmission loss by 

the most in the 250 Hz to 400 Hz range. 
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Figure 14: Changing spacing between control solid elastomer inclusions (a) absorption coefficient and (b) transmission 

loss; Changing spacing between hyperdamping inclusions (c) absorption coefficient and (d) transmission loss 

Changing the spacing of two hyperdamping inclusions shows more influence on absorption coefficient than 

changing the spacing of two control solid elastomer inclusions. The 6 cm spacing is the only spacing to 

increase absorption coefficient broadband, while the other two spacings decrease the absorption coefficient 

slightly in the range of 400 Hz to 700 Hz, and above 1000 Hz. This result contrasts with the simulation, 

where all spacings increased the absorption coefficient. This suggests that the model does not accurately 

simulate the change in absorption coefficient between a pure foam specimen and a hyperdamping 

metamaterial specimen. However, it does follow the same trend that the increased spacing between two 

inclusions increases effectiveness at noise control. For transmission loss shown in (d), the 6 cm spacing is 

again the only spacing which is shows a broadband increase in transmission loss. However, the 0 cm and 3 

cm spacing are both effective at increasing transmission loss in the range of 250 Hz to 350 Hz. 
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The same specimens are tested by an electrodynamic shaker for force transmissibility, which gives a much 

higher level of input energy compared to acoustic tests, and may cause nonlinear response. When compared 

to the force transmission through the poroelastic foam specimen itself, the mass from the inclusions in the 

metamaterial specimens causes a resonance in the region of 50 Hz to 125 Hz, yet as seen in Figure 15, the 

resonance changes based on the inclusion architecture and the spacing between inclusions. The resonance 

peak tends to occur at a higher frequency when the inclusions are spaced apart by 3cm than 6 cm, and is 

lowest in frequency when the inclusions are directly beside each other. From approximately 150 Hz to 500 

Hz, force transmissibility tends to decrease with the addition of two inclusions. Above 500 Hz, the low-

level dynamics of the force expander plates are more prominent than the dynamics of the specimens so that 

the force transmission associated with the specimens above 500 Hz is effectively negligible. It can be seen 

in Figure 14(b) that for the control solid elastomer inclusions, the 0 cm spacing decreases force 

transmissibility more than the other spacings in the 150 Hz to 225 Hz band, while the 6 cm spacing 

decreases force transmissibility more than the other spacings above 300 Hz. On the other hand, for all three 

hyperdamping architectures in Figure 14(d), the 0 cm and 6 cm spacing tend to have similar force 

transmissibilities in the 150 Hz to 225 Hz band, while the 6 cm spacing has the greatest decrease in force 

transmissibility above 300 Hz, which suggests that hyperdamping inclusions are more effective at reducing 

force transmissibility and therefore increasing energy absorption when spread out. 
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Figure 15: Force transmissibility with changing spacing for (a) control solid elastomer inclusions (b) hyperdamping 

architecture 1 inclusions (c) hyperdamping architecture 2 inclusions (d) hyperdamping architecture 3 inclusions 

One-third octave band is a summation of a frequency response over defined frequency ranges, in order to 

quantify system response over defined bands. In the case of force transmissibility, this summation provides 

a measure of energy transmission capability over each band, so reducing the one-third octave band values 

corresponds to a reduction in force transmissibility and an increase in energy absorption. To quantify the 

resonance behavior, which is a result of the added mass, the sum of one-third octave bands from 50 Hz to 

125 Hz is taken and shown in Figure 16 (a). It can be seen that between the three spacing groups, the 

magnitude remains around 5 to 6 dB. The same summation is performed across the attenuation band of 157 

Hz to 500 Hz, in order to quantify the effectiveness of inclusions to decrease force transmission, which is 

seen in Figure 16 (b). The magnitudes of the 6 cm group are clearly reduced from the magnitudes of the 0 
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cm and 3 cm group. This reduction in cumulative one-third octave bands means that all architectures are 

more effective at attenuating vibrations when spread out, while the resonance is not significantly increased. 
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Figure 16: Cumulative one-third octave band with changing spacing in (a) resonance region of 50 Hz – 125 Hz and (b) 

attenuation region of 157 Hz – 500 Hz 

4.2 Influence of arrangement of inclusions 

To further investigate the interactions that may occur among inclusions, arrangements of 2 inclusions are 

considered in each of the x, y, and z direction previously defined. Guided by the fact that absorption 

coefficient and transmission loss are increased by hyperdamping inclusions which are spread apart, and that 

force transmissibility is decreased more by inclusions which are far apart, spacing between inclusions in 

the direction of wave propagation is 50 mm center-to-center. Spacing in the y and z directions is constrained 

by the size of the standing wave tube, such that the inclusions are not too close to the edge of the tube. 

Because of this constraint, spacing in the y and z direction is chosen to be 38 mm center-to-center, which 

is the maximum possible spacing. 

Arrangements of two inclusions are shown in Figure 17. It is seen that absorption coefficient and 

transmission loss increase broadband for all arrangements, when compared to the foam baseline specimen. 

Both absorption coefficient and transmission loss tend to increase more for the 1x2x1 and 1x1x2 

arrangements than for the 2x1x1 arrangement. This suggests that a “screen” approach would most 

effectively capture incoming noise. The specific architecture used has the most influence for the y direction, 

in both absorption coefficient and transmission loss. This is likely due to interactions between the two 

inclusions, which resonate primarily in the x and y direction due to their geometry. 
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Figure 17: All architectures of 2x1x1 (a) absorption coefficient and (b) transmission loss; all architectures of 1x2x1 (c) 

absorption coefficient and (d) transmission loss; all architectures of 1x1x2 (e) absorption coefficient and (f) transmission 

loss 



30 

 

When comparing among the three hyperdamping architectures, where A is not buckled, B is very nearly 

buckled, and C is post-buckled, neither of the architectures is distinctly more effective than the others. For 

the 2x1x1 and 1x2x1 arrangements, architecture A increases absorption coefficient the most, but does not 

do the same for transmission loss. For the 1x1x2 arrangement, architecture C increases both absorption 

coefficient and transmission loss more than the other architectures at most frequencies. This suggests that 

hyperdamping is a robust phenomenon, which is effective at noise capture not just at the elastic stability 

limit, but also slightly before and beyond it. This is in contrast to many recent advancements in 

vibroacoustic energy control, which are sensitive to parameter tuning, such as multiple folding mechanisms 

[13]. 

To better quantify the influence of arrangement, the absorption coefficient and transmission loss are 

compared directly between arrangements for both the control solid and the hyperdamping architecture A, 

as seen in Figure 18. From this, it is clear that an arrangement with two inclusions in the direction of wave 

propagation, noted here as 2x1x1, has a broadband lower absorption coefficient and transmission loss than 

arrangements of two inclusions perpendicular to the direction of wave propagation. This suggests that the 

2x1x1 arrangement is less effective at broadband noise capture than the 1x2x1 arrangement and the 1x1x2 

arrangement. On the other hand, for the control solid inclusions, the y and z directions have similar 

absorption levels, with the y direction having slightly higher transmission loss than the z direction. For the 

hyperdamping inclusions, there is more distinction between the different arrangements of two inclusions. 

Interestingly, the hyperdamping arrangement of two inclusions in the direction of wave propagation appears 

to decrease the transmission loss at low frequencies, while the control solid elastomer inclusion does not. 
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Figure 18: All arrangements of 2 control solid elastomer inclusions (a) absorption coefficient and (b) transmission loss; all 

arrangements of 2 hyperdamping A inclusions (c) absorption coefficient and (d) transmission loss 

The specimens of varying arrangement are tested with an electrodynamic shaker to determine force 

transmissibility. In Figure 19, each architecture is compared for each arrangement of two inclusions. For 

the 2x1x1 arrangement in Figure 19 (a), the different architectures have a similar response in the attenuation 

band of 150 Hz to 500 Hz. The resonance occurs at about 100 Hz for all architectures, though it varies in 

shape and amplitude. The hyperdamping architectures all have a lower resonance amplitude, which may be 

in part due to their decreased mass compared to the control solid inclusions. For the 1x2x1 arrangement in 

Figure 19(b), there is greater change in force transmissibility between inclusion architectures in the 

attenuation band, and the hyperdamping architectures clearly decrease force transmissibility by more than 

the control solid elastomer inclusions. For the 1x1x2 arrangement in Figure 19 (c), there is less distinction 

between the architectures. Yet, the hyperdamping architectures are more effective than the control solid. 
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For both the 1x2x1 and 1x1x2 arrangements, the control solid elastomer inclusions have resonances at 

lower frequency than the hyperdamping inclusions, although all tend to occur at similar amplitudes, and 

the hyperdamping architectures share similar resonance shapes. Because the 1x2x1 and 1x1x2 arrangements 

have similar resonances, this resonance is most likely due to the lumped motion of the inclusions and not 

due to interactions between the inclusions. On the other hand, interactions between the inclusions likely do 

influence the resonance shape, because the 2x1x1 arrangement has a different shape, which may be due to 

the fact that the inclusions are spread farther apart for this arrangement. 
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Figure 19: Force transmissibility for arrangements of 2 inclusions (a) 2x1x1, (b) 1x2x1, and (c) 1x1x2 
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To better compare between arrangements, arrangements are plotted together for each architecture in Figure 

20. From this, it can be seen that the 1x1x2 arrangement tends to have the lowest force transmissibility 

across the previously defined attenuation band of 157 Hz to 500 Hz for metamaterials of all inclusion 

architectures. This, combined with the fact that the 1x2x1 arrangement shows more distinction between 

architectures than the 2x1x1 arrangement, suggests that the screen approach previously suggested may be 

the most effective method of attenuating both noise and vibrations. This approach would entail one layer 

of hyperdamping inclusions arranged in a grid. While a multi-layer grid would improve the effectiveness, 

it would result in diminishing returns and may also significantly increase the thickness of foam required. 

With this screen approach in mind, foams thinner than the 100 mm samples studied here could be utilized. 

Additionally, while tailoring the spacing in the z direction would have some role on the effectiveness of the 

metamaterial, it seems that tailoring the spacing in the y direction would have a much greater influence the 

capabilities of the metamaterial, due to the interactions between inclusions in this direction. 
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Figure 20: Force transmissibility for all arrangements of two inclusions of (a) control solid elastomer inclusions, (b) not 

yet buckled hyperdamping inclusions, (c) very nearly  buckled hyperdamping inclusions, and (d) post-buckled 

hyperdamping inclusions 

By taking the summation of the one-third octave bands over the resonance and attenuation bands, the 

performance of the inclusion arrangements can be quantified as the increase in force transmissibility over 

the resonance band and decrease in force transmissibility in the attenuation band, as previously defined. As 

shown in Figure 21, resonance energy tends to be between 6 dB and 7 dB. The magnitude is slightly lower 

for the 1x2x1 arrangements than the other arrangements, but because the resonances are so close in 

magnitude it is likely that the resonance behavior in this band is due to lumped motion of the inclusions, 

while the arrangement only slightly affects this behavior. On the other hand, the attenuation band clearly 

shows that energy is reduced the most by the 1x1x2 arrangement for all architectures of hyperdamping, and 

for the control solid elastomer inclusions. While the 1x2x1 arrangement showed the most distinction 

between different architectures, it also shows the highest cumulative one-third octave band, which is not 

apparent from the narrowband plots alone. While the 1x2x1 arrangement is more effective than the 2x1x1 
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arrangement across most frequencies, it also shows a slightly higher amplitude resonance near 375 Hz, 

which may be the cause of the high cumulative one-third octave band. Thus, depending on the desired 

frequency range of attenuation, a 2x1x1 or 1x2x1 may be better suited. 
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Figure 21: Cumulative one-third octave band for each arrangement of two inclusions in (a) resonance region of 50 Hz – 

125 Hz and (b) attenuation region of 157 Hz – 500 Hz 

Next, two arrangements of four inclusions are considered. Due to the size of the samples, only two of the 

possible three arrangements are considered: 2x2x1 and 2x1x2. The a 1x2x2 arrangement does not fit within 

the 85 mm diameter foam samples. Due to the numerous fabrication steps required to create these four 

inclusion samples, acoustic testing results in poor data due to the samples not seating correctly within the 

standing wave tube. Yet, these samples give quality force transmissibility data showing clear and consistent 

trends due to the differing boundary conditions between acoustic tests and shaker tests. The force 

transmissibility results are shown in Figure 22. From these plots, it is seen that the 2x2x1 arrangement 

increases the resonance amplitudes more than the 2x1x2 arrangement, yet results in more change in force 

transmissibility between architectures in both the resonance and attenuation bands. This again reflects the 

fact that inclusions interact more in the y direction, which has previously been defined as the direction 

perpendicular to the center axis of the shells, and perpendicular to the direction of wave propagation, than 

in the z direction, which is aligned with the central axis of the shells. This reinforces the previous conclusion 

that tailoring the spacing between inclusions in the directions of motion, namely the x and y directions in 

this study, will result in more change than tailoring the spacing between inclusions perpendicular to the 

direction of motion, namely the z direction in this study. 
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Figure 22: Force transmissibility for all architectures with four inclusions arranged as (a) 2x2x1 and (b) 2x1x2 

To quantify the influence of changing the number of inclusions, one-third octave band is summed across 

the previously defined resonance band and attenuation band as shown in Figure 23. Unsurprisingly, as the 

number of inclusions increases, the resonance energy increases and the attenuation energy decreases in 

most cases. Interestingly, this is not true for the hyperdamping B architecture. This may be attributed in 

part to the fact that the hyperdamping B four inclusion arrangement had a higher frequency resonance than 

all other arrangements, which may have affected the lower part of the attenuation band. On the other hand, 

the overall results do follow the expected trends, wherein vibration attenuation can be increased in the 

attenuation band at the cost of an increase in the resonance band. This suggests that for situations with 

higher frequency inputs, utilizing more inclusions of any architecture will result in greater vibration 

reduction, but for purely broadband inputs, the benefit of reduced higher frequency vibrations will come 

with a tradeoff at lower frequencies, which must be kept in mind for each specific application. 
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Figure 23: Cumulative one-third octave band with changing number of inclusions for each architecture in (a) resonance 

region of 50 Hz – 125 Hz and (b) attenuation region of 157 Hz – 500 Hz
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5 CONCLUSION 

Lightweight, broadband damping material systems are needed in a wide range of applications with 

unwanted vibrations or noise, where increasing weight comes as a penalty to application efficiency. Many 

traditional solutions either add significant mass, or are narrowband dampers that utilize resonance 

phenomena. Hyperdamping metamaterials composed of one inclusion near its elastic stability limit 

embedded within foam have previously been demonstrated to increases absorption and decrease force 

transmissibility compared to foam alone. Yet, a practical realization of hyperdamping is likely to required 

multiple hyperdamping inclusions arrayed with foam. 

Periodically arranged hyperdamping inclusions embedded in foam are characterized for noise and vibration 

reduction capabilities in this research. This characterization is intended to guide the design of future 

hyperdamping metamaterial arrays for both spacing and arrangement of inclusions, in addition to 

demonstrating the robustness of hyperdamping inclusions. 

Finite element models of hyperdamping metamaterials demonstrate that the inclusions are more effective 

at increasing acoustic absorption coefficient when spread far apart, while also demonstrating that have two 

inclusions perpendicular to the direction of wave propagation will be more effective than have two 

inclusions parallel to the direction of wave propagation. However, this model is phenomenological and thus 

does not accurately quantify the increase in absorption coefficient, so results must be examined qualitatively 

between designs. 

Acoustic and vibration experiments demonstrate that hyperdamping metamaterials are more effective when 

inclusions are spread apart, as evidence by a broadband increase in absorption coefficient and transmission 

loss, and a broadband reduction in force transmissibility. This result verifies the phenomenological 

simulation. 

Arrays of two inclusions are shown to be more effective when arranged perpendicular to the direction of 

wave propagation compared to being parallel to the direction of wave propagation. This suggests that a 

“screen” design would most effectively capture incoming noise and vibrations. This also suggests that 

having multiple layers of this screen would increase vibroacoustic damping, but with diminishing returns 

where each added layer increases the damping by less than the previous layer. 

Increasing the number of inclusions is seen to decrease force transmissibility in the attenuation band, while 

increasing it in the resonance band, as intuition would suggest. This tradeoff must be considered when 

designing hyperdamping metamaterial arrays in order to determine the optimal number of inclusions to use 

depending on the desired bandwidth of attenuation. 

Hyperdamping metamaterials are seen to be as or more effective at attenuating vibroacoustic energy for all 

arrangements of two inclusions, while providing such attenuation with reduced mass compared to 

conventional solid inclusions. Additionally, hyperdamping is shown to be robust wherein all three 

hyperdamping architectures perform comparably despite the architectures being intentionally fabricated so 

that one is not yet buckled, one is very nearly buckled, and one is post-buckled. This robustness means that 
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hyperdamping is not a parameter sensitive phenomenon, and can still be effective even when it is not ideally 

tuned. 

5.1 Future Investigations 

The behavior of periodically arranged hyperdamping inclusions within foam is investigated with extensive 

experimental studies and simulations. These findings lay a guide for the implementation of multiple 

hyperdamping inclusions within foam in order to increase vibroacoustic attenuation. The results may be 

used to guide further simulations of hyperdamping metamaterials, including a refined acoustic model to 

include transmission loss computation. Modeling the hyperdamping inclusions to explicitly buckle remains 

a challenging problem, due to the multi-level contact between air, elastomer, shell, and foam. Yet, an 

explicit model could predict absorption more accurately for lower frequencies, and may reduce 

inconsistencies between simulation and experiment. Additionally, it could be utilized to model force 

transmissibility of a harmonically excited specimen, which is not possible with a phenomenological model. 

The major limitation for studies of a higher number of inclusion is the diameter of the standing wave tube 

used for acoustic measurements. While standing wave tubes are a convenient tool for small samples, larger 

samples are often tested in anechoic-reverberant transmission loss suites. The use of an anechoic-

reverberant chamber would allow much larger samples with more inclusions embedded within, in order to 

expand on the concept of a screen approach of energy capture using hyperdamping inclusions. 

While this study used a rotationally symmetric hyperdamping inclusion geometry with 7 voids, further 

studies may characterize a more optimal geometry to further decrease inclusion mass while increasing 

vibroacoustic attenuation beyond what has already been achieved. Additionally, the size of the inclusions 

used in this study presented challenges due to the size of the standing wave tube used. Fabrication of smaller 

inclusions has not yet been realized due to the limitations of the current fabrication method. Yet, smaller 

inclusions distributed more closely together may prove to be an effective method of energy capture. 
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6 APPENDIX 

6.1 Sample absorption coefficient MATLAB code 

%% data acquisition toolbox NI 
clear all 
warning off 

  
%% acquire data? 
dataacquire=1; % yes for acquire 

  
%% experimental setup parameters 
d.test_name='10323d_067r_2x1x1'; % specimen label 

  
%% impedance tube parameters 
d.mic_spacing=3*.0254; % m 
d.mic_dist=3.5*.0254; % m 
d.temp= (72-32)/1.8; % room temperature in Celsius 
d.press=101.325e3; % pressure Pa 
d.cspeed=20.047*sqrt(273.15+d.temp); % m/s speed of sound in room 

  
%% data acquisition setup parameters 
d.fs=65536; % sampling frequency [Hz] 
d.wind=@hann; % window type for averages 
d.seconds=40; % [s] seconds of data acquisition,  
d.filter_data_lo=40; % [Hz] of low pass cut off frequency 
d.filter_data_hi=3000; % [Hz] of high pass cut off frequency 
%% fft computation parameters 
d.time_sampled_per_fft=1; % [s] seconds of data acquisition over which fft is 

evaluated 
d.spacing_cts=round(d.fs*d.time_sampled_per_fft); % number of samples to use 

in FFT to obtain freq_spacing 
d.fft_numbers=floor(d.fs*d.seconds/d.spacing_cts); % number of ffts to 

compute/loop through 
d.nft=2^nextpow2(d.spacing_cts); % number of samples next to power of 2 for 

spacing_cts 

  
%% filename for save d structure 
c=clock; % grab the time-stamp, eliminates possibility of data overwrite 
d.filename=[num2str(c(1)) '_' num2str(c(2),'%02.0f') '_' 

num2str(c(3),'%02.0f') '_' num2str(c(4),'%02.0f') num2str(c(5),'%02.0f') 

'_impedance_tube_' d.test_name '.mat']; 
saveon=1; % save the data? 

  
%% sensor sensitivity  
d.sensor{1}='PCB_130E20_SN_43104_microphone'; 
d.sensor{2}='PCB_130E20_SN_43105_microphone'; 
d.ch_sens(1)=1/0.030871; % [Pa] from 1/[mV/Pa] % PCB_130E20_SN_43104 

Microphone 
d.ch_sens(2)=1/0.028170; % [Pa] from 1/[mV/Pa] % PCB_130E20_SN_43105 

Microphone 

  
%% mean sensor values [V] for each channel, to be subtracted from the input 

before sensitivity to [units] 
d.data_mean(1)=0; % mean PCB_130E20_SN_43104 Microphone voltage [V] 
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d.data_mean(2)=0; % mean PCB_130E20_SN_43105 Microphone voltage [V] 

  
%% if for data acquisition 
if dataacquire==1 % 1=yes for acquire     

     
%% identify connected devices 
devices=daq.getDevices; 
% once obtained, ensure using correct device name in below session and 

acquire lines 

  
%% acquire data 
s=daq.createSession('ni'); 
s.addAnalogInputChannel('Dev1',0,'Voltage'); % add input channels 
s.addAnalogInputChannel('Dev1',1,'Voltage'); 
s.Rate=d.fs; % set output and measuring frequency [Hz] 
s.DurationInSeconds=d.seconds; % [s] duration of data acquisition 
[d.data,d.time_series]=s.startForeground; 
d.nn_chan=min(size(d.data)); 

  
%% bandpass filter data 
clear ch_f 
d.nn_chan=min(size(d.data)); 
% 

myfilt=designfilt('lowpassiir','filterorder',4,'passbandfrequency',d.filter_d

ata_hi,'PassbandRipple',0.01,'samplerate',d.fs); 
myfilt=designfilt('bandpassiir','filterorder',4,'HalfPowerFrequency1',d.filte

r_data_lo,'HalfPowerFrequency2',d.filter_data_hi,'samplerate',d.fs); 
for iii=1:d.nn_chan  
ch_f(:,iii)=filtfilt(myfilt,d.ch_sens(iii)*(d.data(:,iii)-d.data_mean(iii))); 

%  
end 

  
%% 
end 

  
%% 
d.data_filt=ch_f; % re-assign filtered data from local to structure variable 
%% post-process data 
% post-processing results for noise 

  

  
% load calibration data for transfer functions due to microphone variations 

  
load('calibrate_Hca_12_09.mat'); 
d.Hca=Hca; 

  
clear ch_ft gxy gxx coh tf y 
d.inst_mean=[];d.f_ft=[];d.ch_ft_a=[];d.gxx_a=[];d.gxy_a=[];d.coh_a=[];d.tf_a

=[]; 
for ooo=1:2*d.fft_numbers-1 %  1:d.fft_numbers for no overlap. 

1:2*d.fft_numbers-1 with half-overlap as defined below in trunc 
    trunc=(ooo-1)*d.spacing_cts/2+1:ooo*d.spacing_cts/2+d.spacing_cts/2; % 

define truncation in time : gives half-overlap of windowed averages is the 

ooo=1:2*d.fft_numbers-1 
    for iii=1:d.nn_chan 
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    d.inst_mean(ooo,iii)=mean(d.data_filt(trunc,iii)); % mean of 

instantaneous data stream for the channel 
    

y(:,iii)=fft(d.data_filt(trunc,iii).*window(d.wind,length(trunc)),d.nft)/(d.s

pacing_cts*mean(window(d.wind,length(trunc)))); 
    ch_ft(:,iii,ooo)=2*abs(y(1:d.nft/2+1,iii)); % magnitude of single-sided 

fourier transform 
    gxx(:,iii,ooo)=y(:,iii).*conj(y(:,iii)); % auto power spectrum 
    if iii>0 
    gxy(:,iii,ooo)=y(:,1).*conj(y(:,iii)); % cross power spectrum, 

referencing input force 
    end 
    end 

  
end 

  
for iii=1:d.nn_chan 
d.ch_ft_a(:,iii)=mean(squeeze(ch_ft(1:d.nft/2+1,iii,:)),2); % average fft of 

signal  
d.gxx_a(:,iii)=mean(squeeze(gxx(1:d.nft/2+1,iii,:)),2); % average 

autospectrum of signal 
d.gxy_a(:,iii)=mean(squeeze(gxy(1:d.nft/2+1,iii,:)),2); % average 

autospectrum of signal 
end 

  
d.gxy_a=d.gxy_a(:,2); % only retain the cross-spectrum for the second channel 
d.tf_a=d.gxy_a./d.gxx_a(:,1)./d.Hca; % transfer function after calibration 
% d.tf_a=d.gxy_a./d.gxx_a(:,1); % transfer function before calibration 
d.coh_a=abs(d.gxy_a).^2./d.gxx_a(:,1)./d.gxx_a(:,2); %coherence for the 

standard and switched configurations 

  
d.f_ft=d.fs/2*linspace(0,1,size(d.ch_ft_a,1))'; 

  
% reflection coefficient, specific acoustic impedance, absorption coefficient 
d.reflect_coef=(d.tf_a-exp(j*2*pi*d.f_ft/d.cspeed*d.mic_spacing))./(exp(-

j*2*pi*d.f_ft/d.cspeed*d.mic_spacing)-d.tf_a).*exp(-

j*2*2*pi*d.f_ft/d.cspeed*(d.mic_spacing+d.mic_dist)); % reflection 

coefficient 
d.spec_imp=(1+d.reflect_coef)./(1-d.reflect_coef); % specific acoustic 

impedance 
d.absorp_coef=1-abs(d.reflect_coef).^2; % absorption coefficient 

  
%% save data 
if saveon==1 
    d.data_filt=[]; 
    d.inst_mean=[]; 
    d.meansq=[]; 
    d.corr=[]; 
    d.lags=[]; 
    d.tf_here_est=[]; 
    d.tf_here_gxy=[]; 
    % drop original data and time series to reduce file size 
    d.data=[]; 
    d.time_series=[]; 
    save(d.filename,'d'); 
end 



46 

 

  
%% octave and one-third octave bands 

 
ob=1e3*2.^[-6:4]; % octave band center frequencies [Hz] 
ob_lo=ob./2.^(1/2); % octave band center frequency lower [Hz] 
ob_hi=ob.*2.^(1/2); % octave band center frequency higher [Hz] 
otob=1e3*2.^([-18:12]/3); % one-third octave band center frequencies [Hz] 
otob_lo=otob./2.^(1/6); % one-third octave center frequency lower [Hz] 
otob_hi=otob.*2.^(1/6); % one-third octave center frequency higher [Hz] 

  
% determine octave and one-third octave band absorption coefficients 
% octave band 
for jjj=1:length(ob) 
ind1=max(find(d.f_ft<=ob_lo(jjj)));  
ind2=max(find(d.f_ft<=ob_hi(jjj)));  
ac_ob(jjj)=1/(ind2-ind1+1)*sum(d.absorp_coef(ind1:ind2)); 
end 
% one-third octave band 
for jjj=1:length(otob) 
ind1=max(find(d.f_ft<=otob_lo(jjj)));  
ind2=max(find(d.f_ft<=otob_hi(jjj)));  
ac_otob(jjj)=1/(ind2-ind1+1)*sum(d.absorp_coef(ind1:ind2)); 
end 
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6.2 Sample transmission loss MATLAB code 

%% data acquisition toolbox NI 
clear all 

  
warning off 
%% DAT 
% post-processing for transmission loss tube 
% measure the transmission coefficient and transmission loss under noise 
%% acquire data? 
dataacquire=1; % yes for acquire 
%% experimental setup parameters 
d.test_name='10547_A6'; % name the file with specimen tested  

  
% note: for 2load method, run open end first (remember to clear),after the 

test, do not 'clear', and then run the anechoic termination;  
% and remember to comment out the 'clear all' on top of the code 
d.twoload=1; % 2 load method, 1 for anechoic termination, 2 for open end 

  
%% filename for save d structure 
c=clock; % grab the time-stamp, eliminates possibility of data overwrite 
d.filename=[num2str(c(1)) '_' num2str(c(2),'%02.0f') '_' 

num2str(c(3),'%02.0f') '_' num2str(c(4),'%02.0f') num2str(c(5),'%02.0f') 

'_transmission_loss_tube_' d.test_name '.mat']; 
saveon=1; % save the data? 
%% transmission loss tube and specimen parameters 
d.mic_spacing_1=3*.0254; % [m] distance between two microphones on the 

speaker side 
d.mic_spacing_2=3*.0254; % [m] distance between two microphones on the 

termination side 
d.mic_dist_1=3.5*.0254; % [m] distance from specimen's front surface (closer 

to speaker) to the nearest microphone on speaker side 
d.mic_dist_2=(10.5 + 5)*.0254; % [m] distance from specimen's front 

surface(closer to speaker) to the nearest microphone on termination side 

  
d.temp=(72-32)/1.8; % [celcius] room temperature  
d.press=101.325e3; % pressure [Pa] 
d.rho=1.290*(d.press/1000/101.325)*(273.15/(273.15+d.temp)); % [kg/m^3] air 

density 
d.cspeed=20.047*sqrt(273.15+d.temp); % [m/s] speed of sound in room 
d.spec_thick=.101; % [m] thickness of the specimen 

  
%% data acquisition setup parameters 
d.fs=65536; % [Hz] sampling frequency 
d.wind=@hann; % window type for averages 
d.seconds=40; % [s] seconds of data acquisition 
d.filter_data_lo=40; % [Hz] of low pass cut off frequency 
d.filter_data_hi=3000; % [Hz] of high pass cut off frequency 

  
%% fft computation parameters 
d.time_sampled_per_fft=1; % [s] seconds of data acquisition over which fft is 

evaluated 
d.spacing_cts=round(d.fs*d.time_sampled_per_fft); % number of samples to use 

in fft to obtain freq_spacing 
d.fft_numbers=floor(d.fs*d.seconds/d.spacing_cts); % number of ffts to 

compute/loop through 
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d.nft=2^nextpow2(d.spacing_cts); % number of samples next to power of 2 for 

spacing_cts 

  
%% sensor sensitivity 
d.sensor{1}='PCB_130E20_SN_43104'; 
d.sensor{2}='PCB_130E20_SN_43105'; 
d.sensor{3}='PCB_130E20_SN_43101'; 
d.sensor{4}='PCB_130E20_SN_43102'; 
d.sensor{5}='loudspeaker_reference'; 
d.ch_sens(1)=1/0.030871; % [Pa] from 1/[mV/Pa] % PCB_130E20_SN_43104 

Microphone 
d.ch_sens(2)=1/0.028170; % [Pa] from 1/[mV/Pa] % PCB_130E20_SN_43105 

Microphone 
d.ch_sens(3)=1/0.029931; % [Pa] from 1/[mV/Pa] % PCB_130E20_SN_43101 

Microphone 
d.ch_sens(4)=1/0.028522; % [Pa] from 1/[mV/Pa] % PCB_130E20_SN_43102 

Microphone 
d.ch_sens(5)=1; % [V] reference loudspeaker 

  
%% mean sensor values [V] for each channel, to be subtracted from the input 

before sensitivity to [Pa] 
d.data_mean(1)=0; % mean PCB_130E20_SN_43104 Microphone voltage[V] 
d.data_mean(2)=0; % mean PCB_130E20_SN_43105 Microphone voltage[V] 
d.data_mean(3)=0; % mean PCB_130E20_SN_43101 Microphone voltage[V] 
d.data_mean(4)=0; % mean PCB_130E20_SN_43102 Microphone voltage[V] 
d.data_mean(5)=0; % mean reference loudspeaker voltage [V] 

  
%% if for data acquisition 
if dataacquire==1 % 1=yes for acquire 

     

%% identify connected devices 
devices=daq.getDevices; 
% once obtained, ensure using correct device name in below session and 

acquire lines 

  
%% acquire data 
s=daq.createSession('ni'); 
s.addAnalogInputChannel('Dev1',0,'Voltage'); % add input channels 
s.addAnalogInputChannel('Dev1',1,'Voltage'); 
s.addAnalogInputChannel('Dev1',2,'Voltage'); 
s.addAnalogInputChannel('Dev1',3,'Voltage'); 
s.addAnalogInputChannel('Dev1',4,'Voltage'); 
s.Rate=d.fs; % set output and measuring frequency [Hz] 
s.DurationInSeconds=d.seconds; % [s] duration of data acquisition 
[d.data,d.time_series]=s.startForeground; 
d.nn_chan=min(size(d.data)); 

  
%% bandpass filter data 
clear ch_f 
myfilt=designfilt('bandpassiir','filterorder',4,'HalfPowerFrequency1',d.filte

r_data_lo,'HalfPowerFrequency2',d.filter_data_hi,'samplerate',d.fs); 
for iii=1:d.nn_chan  
ch_f(:,iii)=filtfilt(myfilt,d.ch_sens(iii)*(d.data(:,iii)-d.data_mean(iii)));  
end 
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%%  
end 

  
%% 
d.data_filt=ch_f; % re-assign filtered data from local to structure variable 

  
%% post-process data 
clear ch_ft gxy gxx coh tf y 
d.inst_mean=[];d.f_ft=[];d.ch_ft_a=[];d.gxx_a=[];d.gxy_a=[];d.coh_a=[];d.tf_a

=[]; 
for ooo=1:2*d.fft_numbers-1 %  1:d.fft_numbers for no overlap. 

1:2*d.fft_numbers-1 with half-overlap as defined below in trunc 
    trunc=(ooo-1)*d.spacing_cts/2+1:ooo*d.spacing_cts/2+d.spacing_cts/2; % 

define truncation in time : gives half-overlap of windowed averages is the 

ooo=1:2*d.fft_numbers-1 
    for iii=[5 1 2 3 4]%1:d.nn_chan 
    d.inst_mean(ooo,iii)=mean(d.data_filt(trunc,iii)); % mean of 

instantaneous data stream for the channel 
    

y(:,iii)=fft(d.data_filt(trunc,iii).*window(d.wind,length(trunc)),d.nft)/(d.s

pacing_cts*mean(window(d.wind,length(trunc)))); 
    ch_ft(:,iii,ooo)=2*abs(y(1:d.nft/2+1,iii)); % magnitude of single-sided 

fourier transform 
    gxx(:,iii,ooo)=y(:,iii).*conj(y(:,iii)); % auto power spectrum 
    if iii>0 
    gxy(:,iii,ooo)=y(:,iii).*conj(y(:,5)); % cross power spectrum 
    end 
    end 

  
end 

  
for iii=[5 1 2 3 4]%1:d.nn_chan 
d.ch_ft_a(:,iii)=mean(squeeze(ch_ft(1:d.nft/2+1,iii,:)),2); % average fft of 

signal  
d.gxx_a(:,iii)=mean(squeeze(gxx(1:d.nft/2+1,iii,:)),2); % average auto-

spectrum of signal 
d.gxy_a(:,iii)=mean(squeeze(gxy(1:d.nft/2+1,iii,:)),2); % average cross-

spectrum of signal 
d.tf_a(:,iii)=d.gxy_a(:,iii)./d.gxx_a(:,5); % transfer function before 

calibration 
d.coh_a(:,iii)=abs(d.gxy_a(:,iii)).^2./abs(d.gxx_a(:,5))./abs(d.gxx_a(:,iii))

; % coherence for the standard and switched configuration 
end 

  
d.f_ft=d.fs/2*linspace(0,1,size(d.ch_ft_a,1))'; % redefine frequency vector 

  
%% complex pressure amplitude from bloton measurement eq (19) 
% x1,x2,x3,x4 according to bolton measurement's Fig.1 
d.x1=-(d.mic_dist_1+d.mic_spacing_1); 
d.x2=-d.mic_dist_1; 
d.x3=d.mic_dist_2; 
d.x4=d.mic_dist_2+d.mic_spacing_2; 

  
d.k=2*pi*d.f_ft/d.cspeed; % wave number 
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% complex pressure amplitude for positive, upstream direction 
d.pre_amp_A=d.gxx_a(:,5).^(1/2)*j.*(d.tf_a(:,1).*exp(j*d.k*d.x2)-

d.tf_a(:,2).*exp(j*d.k*d.x1))./(2*sin(d.k*(d.x1-d.x2))); 

  
% complex pressure amplitude for negative, upstream direction 
d.pre_amp_B=d.gxx_a(:,5).^(1/2)*j.*(d.tf_a(:,2).*exp(-j*d.k*d.x1)-

d.tf_a(:,1).*exp(-j*d.k*d.x2))./(2*sin(d.k*(d.x1-d.x2))); 

  
% complex pressure amplitude for positive, downstream direction 
d.pre_amp_C=d.gxx_a(:,5).^(1/2)*j.*(d.tf_a(:,3).*exp(j*d.k*d.x4)-

d.tf_a(:,4).*exp(j*d.k*d.x3))./(2*sin(d.k*(d.x3-d.x4))); 

  
% complex pressure amplitude for negative, downstream direction 
d.pre_amp_D=d.gxx_a(:,5).^(1/2)*j.*(d.tf_a(:,4).*exp(-j*d.k*d.x3)-

d.tf_a(:,3).*exp(-j*d.k*d.x4))./(2*sin(d.k*(d.x3-d.x4))); 

  
% acoustic pressure and particle velocity on both sides of specimen 
d.pre_x0=d.pre_amp_A+d.pre_amp_B; % acoustic pressure on front surface(closer 

to speaker) of specimen 
d.pre_xd=d.pre_amp_C.*exp(-

j*d.k*d.spec_thick)+d.pre_amp_D.*exp(j*d.k*d.spec_thick); % acoustic pressure 

on back surface (closer to termination) of specimen 
d.par_vel_x0=(d.pre_amp_A-d.pre_amp_B)/d.rho/d.cspeed; % particle velocity on 

front surface (closer to speaker) of specimen 
d.par_vel_xd=(d.pre_amp_C.*exp(-j*d.k*d.spec_thick)-

d.pre_amp_D.*exp(j*d.k*d.spec_thick))/d.rho/d.cspeed; % particle velocity on 

back surface (closer to termination) of specimen 

  
%% transfer matrix for 1 load method 
if d.oneload==1 
    % elements of transfer matrix, see E2611-09 eq (24) 
    

d.tr_ma_11=(d.pre_xd.*d.par_vel_xd+d.pre_x0.*d.par_vel_x0)./(d.pre_x0.*d.par_

vel_xd+d.pre_xd.*d.par_vel_x0); % T11 
    d.tr_ma_12=(d.pre_x0.^2-

d.pre_xd.^2)./(d.pre_x0.*d.par_vel_xd+d.pre_xd.*d.par_vel_x0); % T12 
    d.tr_ma_21=(d.par_vel_x0.^2-

d.par_vel_xd.^2)./(d.pre_x0.*d.par_vel_xd+d.pre_xd.*d.par_vel_x0); % T21 
    d.tr_ma_22=d.tr_ma_11; % T22=T11 
else 
    %% pressure and particle velocity for 2 load method 
    if d.twoload==1 
        d.p0_a=d.pre_x0; 
        d.pd_a=d.pre_xd; 
        d.u0_a=d.par_vel_x0; 
        d.ud_a=d.par_vel_xd; 
        d.p0_b=p0_b; 
        d.pd_b=pd_b; 
        d.u0_b=u0_b; 
        d.ud_b=ud_b; 

        
    else 
        p0_b=d.pre_x0; 
        pd_b=d.pre_xd; 
        u0_b=d.par_vel_x0; 
        ud_b=d.par_vel_xd; 
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    end 
% transfer matrix for 2 load method 
d.denom=d.pd_a.*d.ud_b-d.pd_b.*d.ud_a; 
d.tr_ma_11=(d.p0_a.*d.ud_b-d.p0_b.*d.ud_a)./d.denom; 
d.tr_ma_12=(d.p0_b.*d.pd_a-d.p0_a.*d.pd_b)./d.denom; 
d.tr_ma_21=(d.u0_a.*d.ud_b-d.u0_b.*d.ud_a)./d.denom; 
d.tr_ma_22=(d.pd_a.*d.u0_b-d.pd_b.*d.u0_a)./d.denom; 
end 

  
%% calculation of acoustic properties 
% transmission coefficient, transmission loss 
d.trans_coef=2*exp(j*d.k*d.spec_thick)./(d.tr_ma_11+d.tr_ma_12/d.rho/d.cspeed

+d.rho*d.cspeed*d.tr_ma_21+d.tr_ma_22); % transmission coefficient 
d.trans_loss=20*log10(abs(1./d.trans_coef)); % [dB] transmission loss 

  

% reflection coefficient, absorption coefficient, specific acoustic impedance 
d.reflect_coef=(d.tr_ma_11+d.tr_ma_12/d.rho/d.cspeed-

d.rho*d.cspeed*d.tr_ma_21-

d.tr_ma_22)./(d.tr_ma_11+d.tr_ma_12/d.rho/d.cspeed+d.rho*d.cspeed*d.tr_ma_21+

d.tr_ma_22); % reflection coefficient 
d.absorp_coef=1-abs(d.reflect_coef).^2; % aborption coefficient 
d.spec_imp=(1+d.reflect_coef)./(1-d.reflect_coef); % specific acoustic 

impedance 

  
%% save data 
if saveon==1 
    d.data_filt=[]; 
    d.inst_mean=[]; 
    % drop original data and time series to reduce filesize 
    d.data=[]; 
    d.time_series=[]; 
    save(d.filename,'d'); 
end 

  
%% octave and one-third octave bands 
ob=1e3*2.^[-6:4]; % octave band center frequencies [Hz] 
ob_lo=ob./2.^(1/2); % octave band center frequency lower [Hz] 
ob_hi=ob.*2.^(1/2); % octave band center frequency higher [hz] 
otob=1e3*2.^([-18:12]/3); % one-third octave band center frequencies [Hz] 
otob_lo=otob./2.^(1/6); % one-third octave center frequency lower [Hz] 
otob_hi=otob.*2.^(1/6); % one-third octave center frequency higer [Hz] 

  
% determine octave and one-third octave band transmission loss 
% octave band 
for jjj=1:length(ob) 
ind1=max(find(d.f_ft<=ob_lo(jjj)));  
ind2=max(find(d.f_ft<=ob_hi(jjj)));  
ac_ob(jjj)=1/(ind2-ind1+1)*sum(d.trans_loss(ind1:ind2)); 
end 
% one-third octave band 
for jjj=1:length(otob) 
ind1=max(find(d.f_ft<=otob_lo(jjj)));  
ind2=max(find(d.f_ft<=otob_hi(jjj)));  
ac_otob(jjj)= sum(abs(d.trans_loss(ind1:ind2)).^2); 
end 

  



52 

 

6.3 Sample force transmissibility MATLAB code 

%% data acquisition toolbox NI  
clear all 
warning off 

  
%%  
% preset post-processing built for constant-frequency & frequency-sweep 
% experiments, for random experiments, and for ring-down experiments. 

  
% the excitation parameters are not defined here, because they are presumed  
% to either be nill (for 'ring-down') or governed by the vibration controller 
% such as the Vibration Research VR9500 

  
% thus, if using the controller for excitation purposes, the input 
% parameters for the controller are determined via the post-processing 
% here and the first channel is presumed to be the control accelerometer. 

  
% for 'ring-down' type experiments, one must correctly identify the 
% associated input channels with the responses of interest 

  
%% acquire data? 
dataacquire=1; % yes for acquire 

  
%% post-processing relevant parameters 
% test types are:  
% 'sine' which is either frequency sweep or constant-frequency sinusoid 
% 'random' which is random excitation 
% 'ring-down' which are impulses on test components, used to determine 

natural frequencies and damping ratios 
% NOTE: each test may require a modified hi and lo frequency cutoff set for 

the digital filtering 
d.test_type='random'; 

  
%% test specimen name 
d.specimen='10547_2x1x1_ft'; % specimen name, or no_specimen if none 

  
%% data acquisition setup parameters 
d.fs=8192; % sampling frequency [Hz] 
d.wind=@hann; % window type for averages 
d.seconds=60; % [s] seconds of data acquisition, determined according to 

Vibration Research VR9500 controller test setup 
d.filter_data_lo=10; % [Hz] of low pass cut off frequency 
d.filter_data_hi=600; % [Hz] of high pass cut off frequency 

  
%% fft computation parameters 
% for 'sine' and 'random' tests only 
% TIME_SAMPLED_PER_FFT is very important towards quality of post-processed 
% data. If first attempt is not so great, try greater and lesser values. 
d.time_sampled_per_fft=2; % [s] seconds of data acquisition over which fft is 

evaluated 
d.spacing_cts=round(d.fs*d.time_sampled_per_fft); % number of samples to use 

in FFT to obtain freq_spacing 
d.fft_numbers=floor(d.fs*d.seconds/d.spacing_cts); % number of ffts to 

compute/loop through 
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d.nft=2^nextpow2(d.spacing_cts); % number of samples next to power of 2 for 

spacing_cts 

  
%% filename for save d structure 
c=clock; % grab the time-stamp, eliminates possibility of data overwrite 
d.filename=[num2str(c(1)) '_' num2str(c(2),'%02.0f') '_' 

num2str(c(3),'%02.0f') '_' num2str(c(4),'%02.0f') num2str(c(5),'%02.0f') '_' 

d.test_type '_' d.specimen '.mat']; 
saveon=1; % save the data? 

  
%% sensor sensitivity  
d.sensor{1}='PCB_352C33_SN_LW194781_accelerometer_on_shaker_with_VR9500_contr

oller'; 
d.sensor{2}='PCB_208C02_SN_LW43427_force_transducer_input_from_shaker'; 
d.sensor{3}='PCB_208C01_SN_LW43812_force_transducer_output_at_base'; 
d.ch_sens(1)=1/.0533; % (m/s^2)/V  % PCB 333B40 accelerometer 
d.ch_sens(2)=1/.01161; % N/V % PCB 208C02 force transducer 
d.ch_sens(3)=1/.1125; % N/V % PCB 208C01 force transducer 

  
%% mean sensor values [V] for each channel, to be subtracted from the input 

before sensitivity to [units] 
d.data_mean(1)=0; %  
d.data_mean(2)=0; %  
d.data_mean(3)=0; %  

  
%% if for data acquisition 
if dataacquire==1 % 1=yes for acquire     

     
%% identify connected devices 
devices=daq.getDevices; 
% once obtained, ensure using correct device name in below session and 

acquire lines 

  
%% acquire data 
s=daq.createSession('ni'); 
s.addAnalogInputChannel('Dev3',0,'Voltage'); % add input channels 
s.addAnalogInputChannel('Dev3',6,'Voltage'); 
s.addAnalogInputChannel('Dev3',5,'Voltage'); 
s.Rate=d.fs; % set output and measuring frequency [Hz] 
s.DurationInSeconds=d.seconds; % [s] duration of data acquisition 
[d.data,d.time_series]=s.startForeground; 
d.nn_chan=min(size(d.data)); 

  
%% bandpass filter data 
clear ch_f 
d.nn_chan=min(size(d.data)); 
myfilt=designfilt('bandpassiir','filterorder',4,'HalfPowerFrequency1',d.filte

r_data_lo,'HalfPowerFrequency2',d.filter_data_hi,'samplerate',d.fs); 
for iii=1:d.nn_chan 
ch_f(:,iii)=filtfilt(myfilt,d.ch_sens(iii)*(d.data(:,iii)-d.data_mean(iii))); 

%  
end 

  
end 
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%% 
d.data_filt=ch_f; % re-assign filtered data from local to structure variable 

  
%% post-process data 
%% 
if strcmp(d.test_type,'sine')==1 
%% 
clear ch_ft gxy gxx coh tf y 
d.inst_mean=[];d.f_ft=[];d.meansq=[];d.corr=[];d.lags=[];d.ch_ft_instavg=[];d

.freq_instavg=[];d.tf_est_instavg=[];d.gxx_instavg=[];d.gxy_instavg=[]; 
for ooo=1:2*d.fft_numbers-1 %  1:d.fft_numbers for no overlap. 

1:2*d.fft_numbers-1 with half-overlap as defined below in trunc 
    trunc=(ooo-1)*d.spacing_cts/2+1:ooo*d.spacing_cts/2+d.spacing_cts/2; % 

define truncation in time : gives half-overlap of windowed averages is the 

ooo=1:2*d.fft_numbers-1 
    for iii=1:d.nn_chan 
    d.inst_mean(ooo,iii)=mean(d.data_filt(trunc,iii)); % mean of 

instantaneous data stream for the channel 
    

y(:,iii)=fft(d.data_filt(trunc,iii).*window(d.wind,length(trunc)),d.nft)/(d.s

pacing_cts*mean(window(d.wind,length(trunc)))); 
%     y(:,iii)=fft(d.data_filt(trunc,iii),d.nft)/(d.spacing_cts); % take fast 

fourier transform of data 
    ch_ft(:,iii,ooo)=2*abs(y(1:d.nft/2+1,iii)); % magnitude of single-sided 

fourier transform 
    d.f_ft=d.fs/2*linspace(0,1,d.nft/2+1)'; % define frequency vector 
    gxx(:,iii,ooo)=y(:,iii).*conj(y(:,iii))/2; % auto power spectrum 
    if iii>0 
    gxy(:,iii,ooo)=y(:,iii).*conj(y(:,1))/2; % cross power spectrum, 

referencing input force 
    end 
    if iii>2 
        

tf_est(:,iii,ooo)=tfestimate(d.data_filt(trunc,2),d.data_filt(trunc,iii),[],[

],d.nft,d.fs); % transfer function estimate 
    end 

  
    d.meansq(iii,ooo)=mean((d.data_filt(trunc,iii)-d.inst_mean(ooo,iii)).^2); 

% mean-square system response [units]^2, with mean eliminated 
    [d.corr(:,iii,ooo),d.lags]=xcorr(d.data_filt(trunc,iii)-

d.inst_mean(ooo,iii),d.data_filt(trunc,iii)-d.inst_mean(ooo,iii),'unbiased'); 

% autocorrelation of the signal 
    end 

  
    [mmx,ind]=max(squeeze(ch_ft(5:end,1,ooo))); % grab max and location of 

max for first channel, control accelerometer, to identify the instantaneous 

frequency [Hz] 
    % the above look forward by 4 indices is to eliminate potential for high 

DC component (due to signal shift) which will mislead results 
    ind=ind+4; % look forward to accommodate above processing 
    d.freq_instavg(ooo)=d.f_ft(ind); % [Hz] mean instantaneous excitation 

frequency 
    d.ch_ft_instavg(ooo,:)=max(squeeze(ch_ft(ind-2:ind+2,:,ooo)),[],1); % the 

signals' FFT amplitude at this instantaneous frequency [units] 
    d.gxx_instavg(ooo,:)=max(squeeze(gxx(ind-2:ind+2,:,ooo)),[],1); % the 

signals' autospectral density at this instantaneous frequency [units^2] 
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    d.gxy_instavg(ooo,:)=max(squeeze(gxy(ind-2:ind+2,:,ooo)),[],1); % the 

signals' cross spectral density at this instantaneous frequency [units^2] 
    d.tf_est_instavg(ooo,:)=max(squeeze(tf_est(ind-2:ind+2,:,ooo)),[],1); % 

the signals' transfer function at this instantaneous frequency [units^2] 

     
    indt=ind; % hold index 

  
end 

 
%% 
end 
%% 
%% 
if strcmp(d.test_type,'random')==1 
%% 
clear ch_ft gxy gxx coh tf y 
d.inst_mean=[];d.f_ft=[];d.ch_ft_a=[];d.gxx_a=[];d.gxy_a=[];d.tf_est_a=[]; 
for ooo=1:2*d.fft_numbers-1 %  1:d.fft_numbers for no overlap. 

1:2*d.fft_numbers-1 with half-overlap as defined below in trunc 
    trunc=(ooo-1)*d.spacing_cts/2+1:ooo*d.spacing_cts/2+d.spacing_cts/2; % 

define truncation in time : gives half-overlap of windowed averages is the 

ooo=1:2*d.fft_numbers-1 
    for iii=1:d.nn_chan 
    d.inst_mean(ooo,iii)=mean(d.data_filt(trunc,iii)); % mean of 

instantaneous data stream for the channel 
    

y(:,iii)=fft(d.data_filt(trunc,iii).*window(d.wind,length(trunc)),d.nft)/(d.s

pacing_cts*mean(window(d.wind,length(trunc)))); 
    ch_ft(:,iii,ooo)=2*abs(y(1:d.nft/2+1,iii)); % magnitude of single-sided 

fourier transform 
    d.f_ft=d.fs/2*linspace(0,1,d.nft/2+1)'; % define frequency vector 
    gxx(:,iii,ooo)=y(:,iii).*conj(y(:,iii))/2; % auto power spectrum 
    if iii>1 
    gxy(:,iii,ooo)=y(:,2).*conj(y(:,iii))/2; % cross power spectrum, 

referencing input force 
    end 
    if iii>2 
        

tf_est(:,iii,ooo)=tfestimate(d.data_filt(trunc,2),d.data_filt(trunc,iii),[],[

],d.nft,d.fs); % transfer function estimate 
    end 
    end 

 
end 

  
for iii=1:d.nn_chan 
d.ch_ft_a(:,iii)=mean(squeeze(ch_ft(1:d.nft/2+1,iii,:)),2); % average fft of 

signal  
d.gxx_a(:,iii)=mean(squeeze(gxx(1:d.nft/2+1,iii,:)),2); % average 

autospectrum of signal 
d.gxy_a(:,iii)=mean(squeeze(gxy(1:d.nft/2+1,iii,:)),2); % average 

crosspectrum of signal 
d.tf_est_a(:,iii)=mean(squeeze(tf_est(1:d.nft/2+1,iii,:)),2); % average 

transfer functions 
end 
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ob=1e3*2.^[-6:4]; % octave band center frequencies [Hz] 
ob_lo=ob./2.^(1/2); % octave band center frequency lower [Hz] 
ob_hi=ob.*2.^(1/2); % octave band center frequency higher [hz] 
otob=1e3*2.^([-18:12]/3); % one-third octave band center frequencies [Hz] 
otob_lo=otob./2.^(1/6); % one-third octave center frequency lower [Hz] 
otob_hi=otob.*2.^(1/6); % one-third octave center frequency higer [Hz] 

  
% determine octave and one-third octave band force transmissibility 

  
% octave band 
for jjj=1:length(ob) 
ind1=max(find(d.f_ft<=ob_lo(jjj)));  
ind2=max(find(d.f_ft<=ob_hi(jjj)));  
tf_ob(jjj)=1/(ind2-ind1+1)*sum(abs(d.tf_est_a(ind1:ind2,3)).^2); 
end 
% one-third octave band 
for jjj=1:length(otob) 
ind1=max(find(d.f_ft<=otob_lo(jjj)));  
ind2=max(find(d.f_ft<=otob_hi(jjj)));  
tf_otob(jjj)= sum(abs(d.tf_est_a(ind1:ind2,3)).^2); 
end 

  
%% 
end 

  
%% 
if strcmp(d.test_type,'ring-down')==1 
%% 
clear ch_ft gxy gxx coh tf y 
% identify start and stop times 
ind1=max(find(d.time_series<=14.6)); 
ind2=max(find(d.time_series<=15)); 
trunc=ind1:ind2; 
d.nft=2^nextpow2(length(trunc)); % number of samples next to power of 2 for 

spacing_cts 
for iii=1:d.nn_chan 
    

y(:,iii)=fft(d.data_filt(trunc,iii).*window(d.wind,length(trunc)),d.nft)/(len

gth(trunc)*mean(window(d.wind,length(trunc)))); 
    ch_ft(:,iii)=2*abs(y(1:d.nft/2+1,iii)); % magnitude of single-sided 

fourier transform 
    d.f_ft=d.fs/2*linspace(0,1,d.nft/2+1)'; % define frequency vector 
end 
d.f_ft=d.fs/2*linspace(0,1,d.nft/2+1)'; % define frequency vector 

 
end 

 
%% save data 
if saveon==1 
    d.data_filt=[]; 
    d.inst_mean=[]; 
    d.meansq=[]; 
    d.corr=[]; 
    d.lags=[]; 
    save(d.filename,'d'); 
end 


