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1. Abstract 

Although the tumor promoting PKC gene was discovered in the 1980s, the exact effects 

of its isoforms are still not completely understood. PKCβ in particular has been implicated as 

having an important role in a multitude of diseases, including cancer, through both cell 

autonomous and cell non-autonomous mechanisms. Interestingly, PKCβ is thought to be 

important in blood vessel formation and inflammation, integral aspects of tumor progression. As 

such, it is critical that the exact function of PKCβ in cancerous tissue be understood. By focusing 

on the role of PKCβ in the tumor, our project helps to establish more conclusively how PKCβ 

contributes to breast tumor progression, both in the tumor cells and cells of the surrounding 

tumor microenvironment, and may potentially lead to the development of more effective 

therapeutics for treatment of various cancer types, including breast cancer.  

2. Introduction  

2.1 Protein Kinase C (PKC) Biological Function 

The role of protein kinase C (PKC) in cancer has been recognized for over 20 years, with 

early studies in the 1980s identifying PKCs as targets of tumor promoting agents [1]. This family 

of serine-threonine kinases is classified into three major groups: the classical, which are Ca
2+

 and 

DAG (diacylglycerol) dependent; the novel, which are activated by DAG; and the atypical, 

which are independent of Ca
2+

 and DAG. The β isoform of protein kinase C is part of the 

classical group, and thus dependent on both Ca
2+

 and DAG. Figure 1 shows a sample classical 

PKC pathway in which phospholipase C (PLC) is activated by ligand and in turn generate DAG 

and IP3 from membrane phospholipids. DAG then moves PKC to the cell membrane while IP3 

potentiates release of intracellular Ca
2+

, both of which are utilized to activate PKC [9]. 
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Figure 1: Classical PKC activation pathway. Adapted from “Protein Kinase C(PKC) family in 

cancer progression” by Koivunen, J. et al. [9] 

 

Some downstream targets of PKC include ERK1/2, GSK-3β, and NFκB, which is an important 

mediator of inflammatory pathways [15]. Moreover, there is extensive crosstalk between the 

different isoforms of PKC, further complicating an examination of PKCβ activity.  

 2.2 Relevance 

Protein kinase C has been shown to be involved in various physiological processes of 

cells, including proliferation, differentiation, apoptosis and migration. In fact, PKCβ is 

overexpressed in many cancers, including colon and prostate cancer [2]. Further studies have 

also demonstrated an important role for PKCβ in the growth of breast cancer cell lines [3]. In 

addition to its cell autonomous role in cancer cell growth, PKCβ has also been shown to be an 

important mediator of vascular endothelial growth factor (VEGF) signaling, which is important 

for tumor angiogenesis. Because of PKC’s obvious role in tumor progression, a multitude of 

inhibitors targeting this family have been developed and tested in multiple cancer models, both 

in mice and more recently in humans [9]. In fact, an inhibitor specific for PKCβ, enzastaurin 
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(LY317615), has been shown to impair VEGF-driven tumor growth in mouse colon cancer and 

renal cell carcinoma xenografts [10]. Additionally, enzastaurin was shown to have 

antiangiogenic effects in other various cancer types, including in lung, breast, ovarian, 

hepatocellular and gastric cancer xenografts [11-13]. Phase II studies are also currently 

underway using this inhibitor for the treatment of gliomas and lymphomas [9].  

Therefore, PKCβ inhibition has a promising future in the field of cancer therapeutics. 

Further analysis of the role of PKCβ during breast cancer progression may uncover novel 

functions of this gene in either tumor cells or other cells of the microenvironment, which may 

lead to more effective therapeutic strategies. The ultimate goal of most cancer researchers is the 

eventual translation of their findings into a clinical setting. Along the same lines, if we are able 

to determine compensatory pathways that are activated in the absence of PKCβ, dual inhibitor 

treatments may be more successful for the treatment of patients. 

 2.3 Goals and Hypothesis  
 

For this project, we hypothesized that PKCβ deficient mice would have decreased tumor 

formation and progression in our model of breast cancer. Using genetic mouse modeling, we had 

preliminary data showing breast tumors in mice without the PKCβ gene (PKCβ
ko/ko

) are smaller 

than those in mice with one copy of the gene (PKCβ 
ko/wt

) or control, wild type mice with both 

copies of the gene (PKCβ 
wt/wt

). Further characterization of these tumors was needed to 

determine a possible mechanism through which PKCβ could be promoting tumor growth in this 

model. We determined that the PyMT;PKCβ
ko/ko

 mice produced palpable tumors later than the 

control PyMT;PKCβ 
wt/wt 

mice did. Furthermore, the progression of tumors in the PKCβ
ko/ko

 (the 

double-knockout) mice was slower than it was in the wild-type mice.  
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Our next step was to characterize the tumors to determine the abundance of macrophages 

and other immune cells present, as well as blood vessel formation by endothelial cells, 

angiogenesis. In addition, staining for proliferation was done to determine if PKCβ influenced 

any of the above-mentioned processes. Subsequently, we aimed to determine whether PKCβ 

action in the tumor cells is important mostly within the cell (cell autonomous) or whether its 

function is also important in the tumor microenvironment (cell non-autonomous). Although the 

role of PKCβ in tumor cells and endothelial cells has been well studied, less is known about its 

role in macrophages and fibroblasts during tumor progression. Our experiments using the 

orthotopic injection model have the potential to uncover novel functions of PKCβ in these other 

cell types, which may also be important in tumor progression. During this project, we aimed to a) 

complete the tumor study with enough mice for each genetic group in order to validate our 

preliminary data, b) characterize tumors using various different staining techniques and c) 

determine whether PKCβ action is tumor cell autonomous or whether its function is important in 

the tumor microenvironment as well. 

3. Materials and Methods 

 3.1 PKC;PyMT Mouse Model 

To study the impact of PKCβ on breast cancer initiation and progression, we utilized a 

genetic mouse model in which conventional PKCβ knockout mice have been crossed with mice 

containing the polyoma middle T oncoprotein (PyMT) oncogene [14]. The PyMT model of 

mouse mammary cancer was used because it closely mimics the four stages of human breast 

cancer. The following figure illustrates the four stages of PyMT-mediated cancer, as well as the 

morphology of the stages and biomarkers involved at each stage.  
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Figure 2: The PyMT model of “breast”/mammary cancer. Adapted from “Progression to 

Malignancy in the Polyoma Middle T Oncoprotein Mouse Breast Cancer Model Provides a 

Reliable Model for Human Diseases” by Lin et al. 

 

 

The initial genetic groups of interest are as follows: PyMT;PKC 
wt/wt

(control), PyMT;PKC 
wt/ko

 

(control) and PyMT;PKC 
ko/ko

 (experimental).  

 

Figure 3: Original Breeding Scheme 
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Because we saw a significant difference between the PyMT;PKCβ 
wt/wt 

and PyMT;PKCβ 
ko/ko

 

mice and because it was more feasible to investigate differences between these two groups, we 

bred PyMT male mice with either their knockout experimental or wild type control female non-

PyMT counterparts.  

 

 

Figure 4: Current Breeding Scheme 

 

Since the PyMT oncogene affects breast or in this case, mammary tumor progression, the male 

mice in breeding cages were chosen to carry the PyMT oncogene because it would take them 

much longer, if at all, to grow tumors.  

 3.2 Genotyping 

 After the mice were bred, they were tattooed approximately ten days after birth and a 

small sample of their tails were taken to be genotyped. The tails were digested overnight with 

proteinase K and isolated the next day following a standard DNA isolation protocol. Polymerase 

Chain Reaction (PCR) was used to genotype the mice to determine if they had the PyMT 

oncogene and which PKC genotype (ko/ko, ko/wt, wt/wt) they were. In order to look for the 

genes, we used primers specific and antisense to the DNA sequence of the genes. The primers 

were added to the mix of buffer, DNA, dNTPs, and the enzyme Taq polymerase.  
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 3.3 Tumor Study Protocol: The Genetic Model 

Starting at three months of age, mice with the aforementioned genotypes are palpated bi-

weekly. When palpable tumors were felt, we allowed three weeks for the tumors to progress, 

after which the mammary glands from the mice were harvested. Using this strategy, we were 

able to determine how long it takes the mice to get palpable tumors, as well as the rate of 

progression of the tumors over the three-week time point. At the time of harvest, tumor burden 

was measured as a ratio of tumor weight/total body weight of the mouse, and the total tumor 

volume was calculated for each mouse. To calculate the total tumor volume (v), the tumor length 

(l), width (w), and height (h) were measured and subsequently, the measurements were 

multiplied to determine volume (lxwxh=v). Each tumor was then either frozen or fixed in 

formalin for later histological analysis, or saved to extract DNA, RNA or protein for further 

analysis. In addition to the primary mammary tumors, the lungs from the mice are also fixed in 

formalin for histological analysis.  

 3.4 Injection Study Protocol 

For the orthotopic injection study, in which we aimed to determine if the function of 

PKCβ is tumor cell autonomous, we injected 3.0 x 10
6
 tumor cells (from the B6 PyMT cell line) 

that were wild type for the PyMT gene into the mammary fat pad (both mammary glands 4 and 

9) of either PKCβ 
ko/ko

 or PKCβ 
wt/wt 

mice. Tumor progression was then monitored, with the 

tumors being palpated once every week. Tissue was harvested between two-three weeks after 

injection. We used the same harvesting protocol for collection of the injected tumors as we used 

in the genetic model. The harvested mammary gland 4 was frozen in OTC sections and 

mammary gland 9 was fixed in formalin. The sections were then cut, with one hematoxylin and 
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eosin (H/E) stained slide per section, and stained for angiogenesis via the Meca32 antibody, 

proliferation via Ki67, and macrophage activity via F4/80 antibody.  

 The B6 PyMT cells to be injected were initially frozen tumor cells. We thawed and 

cultured the cells in media, incubating them at 37°C. The tumor cells were usually split 1:3 once 

they became confluent on the plate. The cells were passaged approximately three or four times 

before they were injected into the mammary fat pads of the mice.  

 3.5 Immunofluorescent Staining Protocol 

 Six sections from three pairs of mice born at the same time were stained for the tumor 

study, with three of the sections from knockout mice and three from wild type mice. Six sections 

were also stained for the injection study in the second part of the project, with three of the 

sections from knockout mice and three from wild type. In order to probe for macrophages, 

proliferation, and angiogenesis, immunofluorescent staining was used on these paraffin sections 

of tissue. The F4/80 primary antibody was utilized to look for inflammation and macrophage 

activity, Ki67 primary antibody for proliferation, and the Meca32 antibody for angiogenesis.  

 3.6 F4/80 and Ki67 Analysis 

 As mentioned, the F4/80 primary antibody was utilized to probe for macrophages. Once 

the sections were stained, they were photographed using a fluorescent microscope. Five pictures 

were taken for each of the slides. The macrophages in each picture were counted using the 

counting tool in Adobe Photoshop CS5. The total nuclei in each picture, which were stained with 

DAPI, were also counted and the number of macrophages was taken as a percent of the total 

number of cells in the picture ((100%)(#macrophages/#DAPI)).  

 Ki67 was used to probe for proliferating cells. Again, the slides for each section were 

photographed using a fluorescent microscope, with five photos of each slide. The cells positive 
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for Ki67 were counted using the counting tool in Adobe Photoshop CS5. The total number of 

nuclei, stained with DAPI, was also counted and the positive Ki67 cells were taken as a 

percentage of the total number of cells stained with DAPI ((100%)(#Ki67/#DAPI)).  

 3.7 Meca32 Analysis 

 In order to examine any angiogenesis occurring in the tumor sections, the Meca32 

primary antibody was utilized. Once the sections were stained, five pictures of each slide were 

taken using a fluorescent microscope. The level of staining in each of the pictures was then 

measured using the photo analysis program Fiji. The amount of staining was quantified as 

percent area stained with Meca32. There were three pairs of mice (three knockouts and three 

wild types), on which tumors were palpated around the same time for the genetic tumor study, 

and three pairs again for the orthotopic injection study.  

 3.8 Statistical Analyses 

 All statistical analyses were conducted by the statistics department. Because the raw data 

sets for this project contained non-normal data points, the Mann-Whitney test was utilized to 

measure statistical significance. This test accounts for the variation present in the data set, and 

gives a p-value to describe the confidence level present in the trends seen in the data. We used a 

p-value of 0.05 as a cut off for confidence level because this cut-off indicated that essentially, the 

trends we saw in data would only have happened 5% of the time spontaneously.  

 

4. Results 

 4.1 Preliminary results 

 During the preliminary phase of this study, the data indicated that there was potentially a 

significant difference in the tumor burdens and tumor volumes of the wild type mice with PKCβ, 
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PyMT;PKCβ 
wt/wt

, and the experimental knockout mice, PyMT;PKCβ 
ko/ko

. In order to further 

examine this difference, PyMT;PKCβ 
wt/wt 

and PyMT;PKCβ 
ko/ko

 mice were bred. From 

preliminary results, we had determined that tumors could be palpated at approximately three 

months of age and, therefore, we utilized that age marker (three months) to begin palpating for 

tumors.  

 4.2 PKCβ in the genetic model 

 For this project, we hypothesized that deletion of PKCβ would cause decreased tumor 

formation and progression in a mouse model of breast cancer. Using genetic mouse modeling, 

we determined that the PKCβ 
ko/ko

 mice produced smaller palpable tumors than the control  

PKCβ 
wt/wt 

mice did.  

      

 

Figure 5: Representative pictures of wild type and experimental mice for the genetic model. The 

circle indicates the tumor in mouse mammary gland 1.  

 

 

Figure 5 shows a representative example of the visual difference in tumor size. The circle 

on the dissection pictures shows the mammary tumor in mammary gland 1 of the mouse. From 

the pictures, it is evident that the PyMT;PKCβ 
wt/wt 

control genotype has a much greater tumor 

load than the PyMT;PKCβ 
ko/ko

 experimental genotype. Furthermore, analysis of data for tumor 

PyMT;PKC 
wt/wt

 PyMT;PKC 
ko/ko
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burden and tumor volume for the genetic model revealed a statistically significant difference 

between our two groups of interest, PyMT:PKCβ 
wt/wt 

and PyMT:PKCβ 
ko/ko

, with a p-value of 

0.0418.  

 

 

Figure 6: Graphical representation of the differences in tumor burden observed during the tumor 

study, using the Mann-Whitney statistical test.  

 

These data indicate that the absence of PKCβ in the mouse model has a measurable impact on 

the mammary tumor phenotype.  

 Furthermore, we also noted the time when the first tumor was palpated, the time-to-tumor 

ratio, in order to calculate a survival curve. With a p-value of 0.057, the survival plot appears to 

be trending towards significance, indicating that there is likely a trend between the knockout 
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experimental mice and the wild-type control mice. This data suggested that the mammary tumors 

in the wild-type mice tend to progress faster than they do in the knockout mice.  

 

Figure 7: Survival plot for time to tumor for the PyMT;PKCβ 
wt/wt

 control and PyMT;PKCβ 
ko/ko

 

mice. 

 

 

 4.3 PKCβ in the orthotopic injection model 

 In order to determine if PKCβ function was cell autonomous or non-cell autonomous, we 

injected B6 PyMT tumor cells into the mammary fat pad of either PKCβ 
ko/ko

 or PKCβ 
wt/wt 

mice. 

The cultured cells went through approximately three to four passages before being injected into 

both mammary glands four and nine; 3.0x10
6
 PyMT B6 cells were injected. Once tumors were 

palpated to 1-cm and harvested, tumor burden and tumor volume were measured. There were 15 

mice in the PKCβ 
wt/wt

 control group and 15 mice in the PKCβ 
ko/ko

 experimental group. We 
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observed similar differences in tumor volume, strong evidence supporting the tumor-promoting 

role of PKCβ in the tumor microenvironment.  

 

Figure 7: Graphical representation of the differences in total average tumor volume observed 

during the orthotopic injection study, using the Mann-Whitney statistical test.  

 

Analysis of these data revealed that on average the PKCβ 
wt/wt

 mice had a greater tumor volume 

than the PKCβ 
ko/ko

 mice did. This result was statistically significant with a p-value of 0.0471.  

 4.4 PKCβ does not appear to influence angiogenesis  

 A review of past literature about PKCβ had indicated its importance in various cellular 

processes, including angiogenesis. Using immunofluorescent staining, we probed for 

vascularization with the Meca32 antibody.  
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Figure 8: Representative pictures of Meca32 Immunofluorescent staining for angiogenesis in the 

genetic tumor study and orthotopic injection study.  

 

 

 We had initially hypothesized that vascularization of the tumor tissue might be able to 

explain, at least in part, the difference in tumor burden observed between the two groups of 

interest (PyMT;PKCβ 
wt/wt

 and PyMT;PKCβ 
ko/ko

) in the genetic model. However, further 

analysis of the staining revealed little difference in vascularization between the two groups. In 

fact, with a p-value of 0.199,  any difference that was present was not statistically significant.  

Furthermore, the tumor samples from the injection model were stained with the Meca32 

antibody and subsequently analyzed for their level of angiogenesis. With a p-value of 0.967, any 

differences between the control PKCβ 
wt/wt

 and the experimental PKCβ
 ko/ko

 groups for  

angiogenesis were not statistically significant for the injection model as well. For both the 

genetic model and the injection model, the staining was analyzed using the Fiji program to 

measure the percent area covered by the staining compared to the area covered in the picture.   

Genetic Tumor Study using Mann-Whitney Test            Orthotopic Injection Study using Mann-Whitney Test 

PyMT;PKCβ 
wt/wt

      PyMT;PKCβ 
ko/ko

          PKCβ 
wt/wt

                 PKCβ 
ko/ko

 

p-value= 0.199              p-value= 0.967 

Orthotopic Injection Study Meca32 Staining 

 

Genetic Tumor Study Meca32 Staining 

 

N=15 N=15 N=15 N=15 
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 4.5 PKCβ does influence inflammation 

 Since PKCβ is also involved in inflammatory and immune responses, we examined the 

populations of macrophages present in the tumor cells. We utilized the F4/80 primary antibody 

and an immunofluorescent secondary antibody to probe for macrophages. While counting the 

number of macrophages in each picture, we observed a marked difference between the average 

numbers of macrophages present in the PyMT;PKC 
wt/wt

 control group and the PyMT;PKC 
ko/ko

 

experimental group.  
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Figure 9: Representative pictures of F4/80 Immunofluorescent staining for inflammation and 

immune response in the genetic tumor study and orthotopic injection study. 

 

Analysis of the F4/80 staining data revealed a significant difference in the average 

number of macrophages in each of the groups. On average for the genetic tumor study, the wild-

type control mice appeared to have markedly greater inflammation in terms of macrophages than 

Genetic Tumor Study using Mann-Whitney Test             Orthotopic Injection Study using Mann-Whitney Test 

PyMT;PKCβ 
wt/wt

      PyMT;PKCβ 
ko/ko

           PKCβ 
wt/wt

                  PKCβ 
ko/ko

 

p-value= 0.002               p-value= 0.901 

Orthotopic Injection Study F4/80 Staining  Genetic Tumor Study F4/80 Staining  

N=15 N=15 N=15 N=15 
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the experimental knockout mice did. The analysis supported our observations during the 

analysis/counting phase.  

 Similarly, we examined the number of macrophages in the injection study. Counting the 

macrophages for the two groups and subsequent analysis of the data revealed that there was no 

significant difference between the PKCβ
wt/wt

 and PKCβ
ko/ko

 groups.  Figure 9 shows 

representative pictures of the F4/80 macrophage staining for both the genetic tumor study and for 

the orthotopic injection study.  

4.6 PKCβ function does appear to affect proliferation of tumor cells  

 In addition to probing for angiogenesis via the Meca32 antibody and inflammation via 

the F4/80 antibody, we also examined the levels of proliferation in the tumor tissue.  
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Figure 10: Representative pictures of F4/80 Immunofluorescent staining for inflammation and 

immune response in the genetic tumor study and orthotopic injection study. 

 

 

Genetic Tumor Study using Mann-Whitney Test                  Orthotopic Injection Study using Mann-Whitney Test 

PyMT;PKCβ 
wt/wt

      PyMT;PKCβ 
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            PKCβ 
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          PKCβ 
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p-value= 0.0003              p-value= 0.561 

Orthotopic Injection Study Ki67 Staining  
Genetic Tumor Study Ki67 Staining  

N=15 N=15 N=15 N=15 
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 We utilized the Ki67 antibody to probe for proliferating and cell division. As can be seen 

from the representative pictures, in the genetic model, we found a large difference between the 

control PyMT;PKCβ 
wt/wt

 mice and the experimental PyMT;PKCβ 
ko/ko

 mice. The wild-type mice 

appeared to have much more Ki67 staining, indicating that those tumor cells were more 

proliferative than those of the knockout mice. In fact, further analysis of the data revealed a p-

value of 0.0003, indicating that the disparity between the two groups of interest was statistically 

significant. Additionally, we examined proliferation in the orthotopic injection study using the 

same counting method we had utilized for analysis of the Ki67 tumor study data. There appeared 

to be no significant difference between the PKCβ 
wt/wt

 control group and the PKCβ 
ko/ko

 

experimental group, as seen from the p-value of 0.561.  

5. Discussion 

5.1 The genetic basis of PKCβ function 

In addition to being involved in various physiological and cellular processes, PKCβ has 

been found to play an important role in various types of cancer. PKCβ expression has been 

shown to be upregulated in colon and prostate cancers, and downregulated in bladder cancer. 

Additionally, transgenic mice overexpressing PKCβII have hyperproliferation of the colonic 

epithelium and are sensitive to carcinogen-induced colon cancer [7]. Furthermore, PKCβ appears 

to be activated in response to VEGF receptor activation, and is important mediator of VEGF 

induced proliferation of endothelial cells. In vitro studies found that inhibition of PKCβ inhibited 

the growth of several breast cancer cell lines, but not normal mammary epithelial cells [3]. As 

such, PKCβ is an obvious target for further study.  

 The in vivo studies conducted in this project revealed that PKCβ has a measurable impact 

on mammary tumors. The significant difference between the control PyMT;PKCβ 
wt/wt

 and 
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experimental PyMT;PKCβ 
ko/ko

 groups indicated that PKCβ deficiency leads on average to 

smaller total tumor volumes. Moreover, PKCβ also leads to a decreased tumor burden in these 

mice. These results imply that the presence of PKCβ affects important aspects of tumor growth 

to be able to produce such significant differences in the in vivo genetic mouse model of breast 

cancer.  

 While conducting the genetic study, we also recorded the time in days when the first 

mammary tumor was palpated. The p-value for the time-to-tumor ratio, p=0.057, indicated that 

although not statistically significant, the data set was trending towards significance. The wild-

type mice appeared to have a much faster progression of the tumors once they were first 

palpated, whereas the knockout mice appeared to have slower progression of the disease after 

first palpation. Additionally, a large number of the PKCβ wild-type mice (PyMT;PKCβ 
wt/wt

) had 

palpable tumors at 110 days, while tumor initiation in the knockout mice (PyMT;PKCβ 
ko/ko

) was 

more variable, although generally later than 110 days as seen in Figure 7. Even though this data 

is not significant with a p-value of 0.057, it is important to note that it is trending towards 

significance, indicating that the potential delay in tumor progression observed in the knockout 

might be a demonstrable effect.  

 In order to explicate these results, we conducted further staining and subsequent analysis. 

The three main areas we examined were angiogenesis due to the link between PKCβ and VEGF, 

inflammation  since PKCβ function also affects NFκB, and proliferation, as overexpression of 

PKCβ was previously shown to induce hyperproliferative colonic epithelium [7]. In the genetic 

model, we discovered that PKCβ wild-type mice produced hyperproliferative mammary tumor 

cells and tended to have more inflammation in the tumor tissue. The PKCβ deficient mice did not 
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exhibit either of these phenotypes in their mammary tumor tissues, indicating that PKCβ 

function is likely influencing cell division and immune/inflammatory responses in the mice.  

 5.2 PKCβ function in the tumor microenvironment 

 To further examine whether PKCβ function in our mouse model was cell-autonomous or 

non cell-autonomous, we conducted the orthotopic injection study. The mammary tumor burden 

in this study tended to be significantly higher for the PKCβ 
wt/wt

 mice than for the PKCβ 
ko/ko

 

mice. However, in contrast to the results of the staining for the tumor study, although we found 

that there was a statistically significant different between the PKCβ 
wt/wt

 mice and PKCβ 
ko/ko

 

mice in the injection study, our staining revealed no significant difference in the levels of 

endothelial cells (angiogenesis and vascularization), macrophages (inflammation), and cell 

division (proliferation). Nevertheless, the fact that there appeared to be a difference in tumor 

burden for the injection study indicates that PKCβ may play a more involved role in the tumor 

microenvironment, hinting at a non cell-autonomous function for this tumor promoting gene. 

Further research is needed to determine conclusively if PKCβ functions largely in a cell 

autonomous or non cell-autonomous manner in breast cancer models. 

5.3 Future Directions 

Since the injection study implied that PKCβ might function non cell-autonomously in the 

tumor stroma, conditional knockout mice for various stromal compartments are necessary. Once 

those mice have been obtained, a genetic tumor study, similar to the tumor study conducted 

during this project, is needed.  

In addition, PKC β is further implicated in obesity as previous work from the Mehta lab 

has shown that loss of PKC β function protects mice against diet-induced obesity. Since it has 

been established that obesity is a risk factor for breast cancer in post-menopausal women, PKC β 
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may contribute to development of breast cancer. As such, the link between PKCβ and obesity 

needs to be further explored. In the future, with PyMT;PKCβ
wt/wt

 control mice and PyMT;PKCβ 

ko/ko
 mice on a high fat, obesity-inducing diet, a genetic study could be conducted. This study 

would reveal whether PKCβ function in obese mice induces more aggressive, more frequent, or 

earlier mammary tumors.  
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