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INTRODUCTION 

Regional Setting of the Zambezi Belt 

The Zambezi Belt of Zambia is an east-west trending orogenic 

belt that forms part of the Late Proterozoic Pan-African orogenic 

system that occupies much of southern Africa (Fig. 1). The Pan­

African system is of particular interest as many of the belts in this 

system transect older orogenic belts without offsetting the older 

structural trends. These crosscutting relations preclude the opening 

of major ocean basins along the sites of the Pan-African belts, 

unless subsequent closure and collision fortuitously realigned the 

older trends. This, therefore, suggests that some mechanism other 

than Wilson-cycle plate tectonics may be responsible for the Pan­

African orogenic belts. The Zambezi belt transects the Middle 

Proterozoic, north-east trending Irumide belt, and represents the 

type example of these cross cutting relations (Fig. 1). 

The Zambezi belt is bounded to the south by the Irumide belt, 

Magondi belt, and the Kalahari Craton. To the east it merges with 

the Mozambique Belt, and to the west joins with the Damara Belt. It 
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FIGURE 1. Simplified map of the Precambrian of central and southern 
Africa showing the distribution of cratons - and mobile belts. 
Modified from Hunter and Pretorius (1981). 
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is bounded to the north by the Lufilian Arc, the boundary of which is 

generally taken to be the Mwembeshi dislocation (Fig. 1). 

Geologic Setting of the Ngoma Gneiss 

The Ngoma Gneiss is a north-west trending, linear belt of augen 

gneiss, ranging from 10 to 30 km in width, in the the southwestern 

part of the Zambezi belt (Fig. 2). The Ngoma Gneiss is exposed along 

strike for about 100 km. It is overlain by Mesozoic Karoo 

sedimentary rocks in the southeast and Cenozoic alluvium in the 

northwest. It is in apparent tectonic contact with deformed schists 

and quartzites to the southwest, and marbles and calc-silicate rocks 

to the northeast (Fig. 2). These metasedimentary rocks have been 

correlated with the Middle to Upper Proterozoic Katangan System to 

the north of the Mwembeshi dislocation on lithologic grounds, but 

this needs to be verified. 

The Ngoma Gneiss was originally interpreted to represent 

remobilized Middle Proterozoic crystalline basement thrust to the 

surface during the Zambezi deformation event (Molyneux 1907; Murray­

Hughes and Fitch 1929, in Newton 1960). Later, it was interpreted as 

feldspathized and granitized metasedimentary rocks of the Katangan 

System (Newton 1960). Brown (1966) recognized the granitic nature of 

the Ngoma Gneiss protolith, and reinterpreted the zone as remobilized 

basement. Brown also recognized that the flaggy aspect of the rock, 

interpreted by Newton (1960) as original bedding, instead represented 

a tectonic foliation formed due to intense shearing of the gneiss. 
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Some parts of the gneiss are referred to by Brown as blastomylonites, 

which he believed formed as a result of brittle processes. This is 

attested to by his use of the term "crush-rock" for some parts of the 

Ngoma Gneiss, and by his reference to cataclastic processes in the 

region. 

All of the previous interpretations of the Ngoma Gneiss were 

also applied to the Mpande Gneiss to the east (Fig. 2), and all 

failed to recognize the intrusive nature of the granitic protoliths 

of the gneisses. It was therefore believed that the Zambezi orogen 

lacked the voluminous igneous activity seen in Phanerozoic mountain 

belts. The igneous nature of the Ngoma Gneiss, as well as the Mpande 

Gneiss, has since been documented. The present interpretation of the 

Ngoma Gneiss is that it is a large, syntectonic mylonitized pluton, 

subjected to transverse shearing during the Zambezi orogenic event. 

An age of igneous crystallization of 820 ±7 Ma for the Ngoma Gneiss 

has been shown (Hanson, Wilson, and Wardlaw, In press). Because the 

gneiss has been sheared and mylonitized throughout its extent, it is 

interpreted to have been intruded into a major ductile shear zone, 

termed here the Ngoma Shear Zone. 

Statement of the Problem 

The purpose of this study was to determine the movement sense of 

the Ngoma Shear Zone, and thereby gain insight into the kinematics of 

the Zambezi Belt. Maps of the foliation patterns and lineation 

trends in three traverses of the shear zone were made, transitions in 
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the mylonitic textures within the shear zone were documented, and 

microstructural techniques were applied to thin sections made from 

samples of mylonites within the shear zone to determine the sense of 

shear displacement. 

METHODOLOGY 

Shear Zone Geometry 

A shear zone is the deep crustal equivalent of a fault, and 

represents a planar zone of concentrated ductile flow that produces 

fault-like displacement of the blocks that bound the shear zone. 

Strain within a shear zone is measured in terms of a strain 

ellipsoid, derived from an original sphere with a center that is the 

origin of a three dimensional Cartesian coordinate system. The 

magnitude and symmetry of strain is related to the change in the 

ratios of the lengths of the three principal axes of the strain 

ellipsoid and their orientations in space. The most basic form of 

shear, or rotational deformation, is known as simple shear. It 

involves movement in just one plane of the strain ellipsoid. 

Figure 3 shows an ideal simple shear zone, where a circle in the xz 

plane is seen to be deformed into an ellipse. During movement in a 

simple shear zone, the direction of principal finite shortening for 

each infinitesimal increment of strain is oriented at 45 degrees to 

the direction of shearing and the shear zone walls. With finite 
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quantities of strain the principal finite shortening direction is 

progressively rotated into parallelism with the shear zone walls 

(Fig. 3). Foliation planes develop normal to the direction of 

principal finite shortening and, therefore, with increasing shear 

strain the foliation planes develop a sigmoidal form, approaching 

parallelism with the shear zone walls near the center of the shear 

where the maximum shear strain occurs (Fig. 3). At the same time, a 

mineral stretching lineation develops on the foliation planes. The 

stretching lineation develops parallel to the direction of finite 

elongation, which is always perpendicular to the direction of finite 

shortening, and coincident with the direction of shear in the shear 

zone (Fig. 3). Thus, in shear zones that have undergone high shear 

strains, the attitude of the foliation planes approximates the 

orientation of the shear zone walls and the attitude of the mineral 

stretching lineation tracks the direction of shearing within the 

zone. Based on these principles, the geometry of shear was 

determined for the Ngoma Shear Zone through systematic mapping of 

foliation and lineation attitudes in the field. 

In nature, it is rare to see a shear zone that has undergone 

ideal simple shear; however, shears involving more complex 

kinematics, i.e., strain in more than one direction, can be 

understood and described by dividing the shear zone into a large 

number of small blocks, within which the strain approximates that 

resulting from simple shear. 
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Development of Mylonites in Shear Zones 

Mylonites are the foliated and lineated ductile fault rocks 

developed in shear zones. Bell and Etheridge (1973) propose the 

following definition: "A mylonite is a foliated rock, commonly 

lineated and containing megacrysts, which occurs in narrow, planar 

zones of intense deformation. It is often finer grained than the 

surrounding rocks, into which it grades." The key to mapping shear 

zones of wide areal extent is the recognition of the presence of 

mylonitic rocks. Recognition is based on both gradational relations 

with coarser-grained wall rocks observable in the field and on the 

presence of textural features typically developed during ductile 

flow. These textural features and their mode of development are 

described in the following paragraphs. 

The fundamental characteristics that distinguish mylonites from 

the crystalline wall rocks outside a shear zone are the development 

of penetrative planar and linear fabrics and a reduction in grain 

size. A progressive grain size reduction is also characteristic of a 

transition in textures within mylonites that, in general, is related 

to an increasing intensity in shear strain. The textural path marked 

by grain size reduction has been used to define a "mylonite series" 

based on the percentage of porphyroclasts, or relict host rock grains 

that have maintained their original size, relative to the percentage 

of fine-grained matrix. The mylonite series includes 

"protomylonites" with 10 to 50% matrix, "mylonites" with 50 to 90% 

matrix, and "ultramylonites" with greater than 90% matrix (Fig. 4; 
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Figure 4. -Schematic sketches showing textures of protomr-
lonite (.4.), m:rlonite (B), and ultrnm;rlonite ( C). From Higgins (1971). 
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Sibson 1977). Associated with this progressive grain size reduction 

is a transition from wavy, anastomosing foliation planes in 

protomylonites to closely spaced, planar foliation planes in the 

mylonites and ultramylonites. 

The grain size reduction that typifies mylonites was initially 

ascribed to brittle crushing and grinding of the rock mass, or 

cataclasis. It has since been shown to result from ductile 

processes, with brittle mechanisms playing an insignificant role 

(Bell & Etheridge 1973). Recent work has shown that mylonites have 

undergone a reduction in grain size through dynamic recrystalliza­

tion. As shearing begins, strain is accommodated trough dislocation 

glide. As deformation continues, dislocation glide is obstructed due 

to tangling and pinning of dislocations within the crystal lattice, 

producing an effect known as work hardening. Work hardening is 

counteracted by the processes of recovery and dynamic recrystalliza­

tion. Dynamic recrystallization occurs under stress during the 

deformation, and results in grains with high dislocation density 

being replaced by a fine grained mosaic of strain-free grains. The 

driving force for this process is a reduction in the internal strain 

energy of the deformed mineral grain. The reduction, rather than 

increase, in grain size is one of the key characteristics of dynamic 

recrystallization. 

New grains are formed in a number of ways during dynamic 

recrystallization. If, within the crystal, a number of dislocations 

collect in a planar array, known as a wall, the lattice on one side 

11 



of the dislocation wall will be rotated relative to that on the other 

side. This is reflected optically by the presence of subgrains 

within individual crystals. If enough dislocations are swept into 

the wall, the angle of misfit between the subgrains will exceed 10 

degrees, and the two subgrains will have evolved into two discrete 

"new" grains that are relatively strain free. A second type of 

recrystallization occurs by grain boundary migration, in which 

relatively strain free grains with low dislocation densities consume 

their neighbors with high dislocation densities. A third 

possibility is the "nucleation of discrete strain-free grains which 

ultimately grow to produce an aggregate of polygonal grains" (Hobbs, 

Means, and Williams, 1976). These strain-free grains nucleate at 

points of high strain, which are often point defects in the crystal 

lattice. It is important to note that in all three of these 

processes, no new mineral species are introduced into the rock; 

rather, grains of one species are replaced by new grains of the same 

species. In contrast, grains are in some cases replaced by grains of 

another mineral species during deformation. This is known as 

neomineralization, and occurs when metamorphic reactions take place 

simultaneously with recrystallization. 

Grains of different mineral species are more or less likely to 

recrystallize under given pressure and temperature conditions due to 

differences in the efficiency of dislocation glide and recovery. In 

the case of a granitic rock, like those from the Ngoma Shear Zone, 

quartz grains have a number of glide planes along which dislocations 

12 



move, thereby allowing the processes described above to take place 

easily. Feldspar grains, on the other hand, have no easy glide 

planes, due to their crystallographic framework, and therefore 

dislocation glide and recovery are difficult. As a result of this 

difference, the strain is partitioned into the weaker quartz grains, 

which rapidly recrystallize into fine-grained aggregates that wrap 

around the large feldspar grains. This produces the anastomosing 

foliation, or "fluxion structure'', that particularly characterizes 

protomylonites (Fig. 4). 

Microstuctural Analysis 

Determining movement sense in shear zones that cut crystalline 

rocks can pose a problem, as unequivocal evidence such as offset 

marker horizons is typically missing. Simpson and Schmid (1983), 

however, showed that various microstructural features can be used to 

determine the shear sense in these zones. In this study, 

microstructural features known as "asymmetric augen structures" were 

used to determine the shear sense. The term "augen" refers to large, 

relict porphyroclasts set in a finer-grained matrix. In the Ngoma 

Gneiss, the augen are feldspar porphyroclasts that behave as 

relatively rigid, coarse grains in a ductile quartz matrix. The 

feldspar porphyroclasts in the gneiss have undergone dynamic 

recrystallization along their margins, where strain is greatest, 

together with neomineralization, where the feldspar margins were 

13 



replaced by fine grained aggregates of quartz. As the deforming 

matrix shears past the rigid augen, the weaker, dynamically 

recrystallized grains are drawn out into tails extending from the 

porphyroclasts. These tails develop asymmetrically with respect to 

the flattening foliation, extending from opposite "corners" of the 

porphyroclast in the direction of relative movement of the adjacent 

shear zone walls (Fig. Sa). In determining the sense of shear, a 

line of symmetry through the center of the porphyroclast and parallel 

to the foliation is located. The asymmetric disposition of the tails 

on either side of the line of symmetry indicates the sense of shear 

(Fig. Sb). Examining a large number of such "augen structures", 

viewed in a section cut perpendicular to the mylonitic foliation and 

parallel to the mineral lineation, will indicate the sense of shear 

in a ductile shear zone, though it will not yield information about 

the magnitude of displacement. 

MESOSCOPIC STRUCTURAL ANALYSIS 

Ductile shearing has affected the entire extent of the Ngoma 

Gneiss, so that the granite protolith has been everywhere tranformed 

into mylonite. The planar and linear fabric elements that 

characterize mylonites are well developed throughout the gneiss belt 

(Figs. 6a-6c). 

During the course of 3 field seasons, measurements of the 

14 
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b 

Line of symmetry 

Figure 5. a) Schematic diagram of asymmetric augen structures within 
foliation planes. Modified from Simpson & Schmid (1983). 
b) Schematic diagram of asymmetric augen structure showing 
line of symmetry. Modified from Simpson (1986). 
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a 

b 

Figure 6. a) Outcrop of mylonites in the Magoye River showing the typical 
flaggy aspect of the foliation planes (arrow) dipping to the 
north. b) Flaggy mylonites in Kaya Stream. Hammer rests on a more 
massive horizon of ultramylonite. 
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c 

Figure 6c. Mylonite in the Nkonkola traverse showing horizontal mineral 
stretching lineation developed on mylonitic foliation surface. 
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attitudes of mylonitic foliation planes and associated mineral 

stretching lineation attitudes were made by T.J. Wilson and R.E. 

Hanson along 3 traverses across the strike of the Ngoma Gneiss. As 

part of this study, maps of the foliation and lineation attitudes 

were made, and equal area projections of the lineations and poles to 

the foliation planes were constructed for each traverse to illustrate 

the average orientations in each, and to expose variations or 

systematic changes in the orientation of the fabrics along strike. 

A geologic map of the Ngoma Gneiss, showing the location of the 

three traverses from which data were collected is presented in Figure 

7. A detailed map of the structural data collected along the 

Nkonkola traverse is shown in Figure 8, and Figure 9 shows these data 

plotted on an equal area projection. One can see that the poles to 

the mylonitic foliation planes are all clustered in the southwest 

quadrant of the stereoplot, indicating a dominant west-northwest 

strike and a moderate to steep north-east dip of the foliation. The 

lineations are horizontal or close to horizontal, and trend nearly 

parallel to the strike of the foliation (Fig. 6c). 

A structural map and stereoplot of data from the Magoye River 

traverse are presented in Figures 10 and 11. As in the Nkonkola 

traverse, the lineations are nearly horizontal and trend to the west­

northwest or east-southeast close to the strike of the foliation. 

The poles to foliation, however, show two distinct clusters: one in 

the northeast quadrant and a denser second one in the southwest 

quadrant. The two clusters approximate a girdle distribution, 

18 
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Figure 8. Structural map of the Nkonkola traverse. 
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See Fig. 8 for key to symbols. 
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reflecting an episode of late- or post-Zambezi folding that locally 

affected this area. The dense point maximum in the southwest 

quadrant indicates a dominant northeast dip in this area. 

The structural map and stereoplot of the Kaya Stream traverse is 

shown in Figures 12 and 13. In this area the data are somewhat more 

dispersed. The lineations are still close to horizontal, trending 

west-northwest or east-southeast, and the distribution of foliation 

poles is again denser in the southern half of the plot, indicating a 

dominant northerly dip direction. The poles to foliation in this 

traverse display a more typical girdle distribution than the one seen 

in Figure 10, and again reflect the late, local folding. 

Because the dominant dip direction in all domains of the Ngoma 

Gneiss is to the northeast, and foliation in areas unaffected by the 

later folding dips to the northeast, it is inferred that the 

foliation throughout the shear zone originally dipped to the 

northeast. Fold hinge lines observed in the field were measured and 

found to be parallel to the mineral lineations. The fold axes 

derived from the girdle distributions in the stereoplots are also 

seen to be parallel to the mineral lineations. These relations 

indicate that the lineations were not reoriented during folding, and 

represent the direction of shearing throughout the shear zone. 
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MICROSCOPIC STRUCTURAL ANALYSIS 

Sample Preparation 

Hand samples of mylonitic rocks were collected along each of the 

traverses and oriented by marking a horizontal strike line on a 

foliation surface, with an arrow in the recorded strike direction and 

a tick mark on the strike line indicating the dip direction (Fig. 

14a). From a number of these samples, thin sections were made in 

three mutually perpendicular orientations: perpendicular to foliation 

and parallel to lineation, perpendicular to foliation and 

perpendicular to lineation, and parallel to foliation and parallel to 

lineation. These three sections from each sample are referred to as 

sections "a", "b", and "c", respectively (Fig. 14b). From the 

remaining samples, thin sections were made only in the "a" 

orientation (Table 1). In the "a" sections, notches were cut down 

plunge of the lineation and in the dip direction of the foliation. 

Notches were cut in the dip direction of foliation and down dip of 

the foliation in the "b" sections, and down dip of the foliation and 

down plunge of the lineation in the "c" sections. These notches 

allow one to reconstruct the orientations of the samples as they were 

in the field, after the thin section has been examined. 

Microstuctures in the Mylonites 

In the suite of rocks used in this study, it was found that the 

feldspar porphyroclasts in the protomylonites are very coarse, 
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Figure 14. a) Technique used to orient hand samples in the field. 
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Table 1 

Sample Number of 
Sections 

a 

1-22 1 
1-27b 1 
1-33 1 
1-34 1 
1-37 1 
1-38(3) 1 
1-38(3)a 1 
1-38(3)b 1 
B-61 1 
B-62 1 
B-64 1 
B-66 2 
B-68 2 
B-69 1 
B-70 1 
B-71 2 
B-72 2 
B-87 1 
B-88 2 
B-89 2 
B-90 2 
B-91 2 
B-92 1 
B-93 2 
B-94 2 
B-95 2 
3-91 1 
3-92 1 
3-94 1 
3-94 1 
3-95 1 
3-96 2 
3-97 2 
3-128 1 
3-128c 1 

Key: L = Left lateral 
R = Right lateral 
A = Ambiguous 
N = Not oriented 

b 

1 
1 

1 

1 

1 

1 

1 
1 

1 
1 

1 

1 

1 
1 

c 

1 
1 
1 
1 

1 

1 

1 

1 
1 

1 
1 

1 

1 

1 
1 

* = Not plotted on maps 
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reaching a diameter of up to 1 cm. The feldspars typically show only 

a small number of twins cutting across the grain, and most have a 

number of fractures running across them. The length of the tails of 

recrystallized material developed from these grains is hard to 

determine, as other porphyroclasts interfere with them. The tails 

are distinct, and the degree of asymmetry tends to be higher than in 

the mylonites and ultramylonites. The foliation planes in these 

rocks are defined, in part, by laminae of quartz grains that are 

coarser than the bulk of the quartz grains in the matrix. These 

laminae of relatively coarse-grained quartz typically are the tails 

of the augen structures. The quartz grains show a large range in 

size, and display very little undulose extinction. The foliation 

planes anastomose more strongly around the porphyroclasts in the 

protomylonites than in the other mylonites (Fig. lSa). A type of 

microstucture known as S-C fabric is displayed by the protomylonites, 

and is more easily seen in outcrop and hand sample than in thin 

section (Fig. 16). S-C fabric results when two distinct planar 

surfaces are developed in a mylonite. The "S" or "schistosit~" 

surfaces mark the flattening foliation developed at 45 degrees to the 

direction of shearing. The "C" or "cisaillement" surfaces are "shear 

surfaces'', that form parallel to the direction of shearing, and "are 

considered to be spaced slip surfaces with a sense of shear the same 

as that of the over-all shear zone" (Simpson & Schmid, 1983). 

Porphyroclasts in the mylonites are highly fractured and 

twinned. Many of them are replaced by quartz on their margins, and 
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a 

b 

Figure 15. Photomicrographs of typical a) protomylonite, 
mylonite & c) ultramylonite from the suite of 
used in this study. Field of view in each is 
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Figure 15c. 
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Figure 16. Protomylonite with well developed S-C fabric (arrows). 
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show core and mantle structure, in which the "core" porphyroclast is 

"mantled" by very fine grains of the same mineral species. This 

structure forms due to the preferential development of new grains 

aound the more highly strained margin of an older grain. The 

porphyroclasts in the mylonites are finer grained than those in 

protomylonites, ranging in diameter from approximately 1 mm to 5 mm. 

The volume of the rock that the porphyroclasts represent is less than 

in the protomylonites; however, because of their finer grain size, 

there are more of them in a given volume of rock. The tails are less 

asymmetric than in the protomylonites, and not as well defined, 

because the grains in the tails look much like those in the matrix 

(Fig. 15b). Their length is variable, ranging from a length on 

either side about equal to half the diameter of the porphyroclast, to 

a length about four times the diameter of the porphyroclasts. Quartz 

grains show two distinct size populations, and the foliation planes 

are defined by alternating horizons of fine and coarse grains. Many 

of the grains show undulose extinction, indicating they are in a 

strained state. 

The feldspars in the ultramylonites are much closer in size to 

the quartz matrix. These porphyroclasts are highly twinned, and are 

replaced by quartz on their margins. Many of them have been 

completely replaced by quartz. This is evidenced by aggregates of 

coarse quartz grains that have the shape of a feldspar porphyroclast 

when viewed in plane light. Feldspar porphyroclasts are only 

marginally coarser grained than the matrix, the largest of them being 
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less than 1 mm in diameter. Some of the ultramylonites completely 

lack porphyroclasts (Fig. lSc). The tails around the feldspar 

porphyroclasts have been largly replaced by quartz and, where they 

are visible, appear to be close to symmetric. The quartz is very 

fine grained and equigranular. Foliation planes are defined by 

laminae of slightly coarser grained quartz matrix, by laminae of 

quartz which have the same crystallographic orientation and therefore 

go extinct at the same position, and by thin laminae of mica. Only a 

few of the larger quartz grains show undulose extinction. 

Shear Sense Determinations 

Because the plane perpendicular to the foliation and parallel to 

the lineation records the maximum shear displacement, only the "a" 

sections were utilized to determine the sense of shear, using the 

methods of Simpson and Schmid (1983) discussed previously. This was 

fairly straightforward for some samples. Many of the samples, 

however, contain augen with tails that are close to symmetric. 

Figures 17a & 17b show typical asymmetric and symmetric augen 

structures from this suite of samples. One cannot unambiguously 

determine asymmetry by visual inspection alone in the more symmetric 

augen structures. To try and determine the asymmetry of these augen, 

a drawing tube was used. The image of an individual augen was 

projected onto graph paper, and then the sample rotated with the 

stage and the paper moved up or down until the line of symmetry of 

the augen and one of the horizontal lines of the graph paper 
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Figure 17a. Photomicrograph of typical asymmetric augen structure 
from suite of samples used. Field of view is 14 mm. 
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Figure 17b. Photomicrograph of typical symmetric augen structure 
from suite of samples used. Field of view is 18 mm. 
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coincided. The outline of the porphyroclast and tails was then 

traced out. From this tracing it was possible to detect minor 

asymmetries not otherwise apparent (Fig. 18). The shear sense 

determinations were then plotted on the stream traverse maps, and 

from these the overall sense of shear for the shear zone was 

determined. 

Table 1 lists all the sections used in determining the sense of 

movement in the Ngoma Shear Zone. I examined the entire suite of 

samples once and recorded the shear-sense results, then examined them 

all a second time without looking at the original results. A 

comparison of the two data sets indicated that the results were 

consistent for all but two of the sections. The sections that 

yielded inconsistent results are ultramylonites that were very 

ambiguous, as all the augen structures were very close to symmetric, 

and yielded conflicting results within a single section. A sense of 

shear for these sections was obtained by counting the number of augen 

structures in each section showing left-lateral shear and the number 

showing right-lateral shear, and assuming that the sense of shear 

represented by the majority of augen structures was the true shear 

sense. Apparently, individual augen structures in these sections 

were close enough to symmetric to yield opposing results on different 

examinations. From 13 samples, more than one "a" section was made 

(Table 1). Shear sense determinations from multiple sections of the 

same sample were 100% consistent. Each section was also examined by 

Dr. Wilson and those results were compared to mine. Of 42 sections 
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examined by both of us, the results of 36 were consistent. This 

indicates that the methods used are reliable. 

Of 48 sections total, 5 were rejected as ambiguous, and 5 were 

not of use either because they were not oriented in the field or 

because the attitudes of the foliation and lineation where they were 

collected were not recorded (Table 1). Three of the sections used, 

denoted by an asterisk in Table 1, were collected from localities 

outside of the three traverses, and therefore are not shown on any of 

the maps. 

A total of 25 shear sense determinations were made 21 of them 

(84%) indicate left-lateral shear displacement. They are distributed 

on the maps as follows: 6 in the Nkonkola south traverse, 5 of them 

sinistral (Fig. 19), 9 in the Magoye River traverse, 8 of them 

sinistral (Fig. 20), and 8 in the Kaya Stream traverse, 6 of them 

sinistral (Fig. 21). Two from the Magoye traverse, one showing 

left-lateral and one showing right-lateral displacement, are in 

localities where late, local folding reoriented the foliation planes 

so that they now dip south. These samples, denoted on the map by an 

asterisk, have been plotted with the shear sense as it would be if 

the folding were removed, as the folding took place after shearing • 
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Figure 19. Map of Nkonkola traverse showing shear sense determinations • 
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Figure 20. Map of Magoye River traverse showing shear sense determinations. 
See Fig. 19 for key to symbols • 

42 



+:-
­

w
 

• 

N
 r 

• 
• 

s 

2
K

M
 

• 
• 

• 
• 

• 

K
ay

a 
S

tr
ea

m
 

' ' \ \..
.._

 .....
.. 

--
\ \ 

N
 

\ \ 

" 
....

....
. \ \ \ 

• \ \ \ \ \ 

F
ig

u
re

 
21

. 
M

ap
 o

f 
K

ay
a 

S
tr

ea
m

 t
ra

v
er

se
 s

ho
w

in
g 

sh
ea

r 
se

n
se

 d
et

er
m

in
at

io
n

s.
 

S
ee

 F
ig

. 
19

 
fo

r 
ke

y 
to

 s
ym

bo
ls

. 

• 
• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

DISCUSSION 

Reconnaissance structural mapping in the Late Proterozoic 

Zambezi Belt has shown that the Ngoma Gneiss consists dominantly of 

mylonitic rocks and therefore represents a crustal-scale ductile 

shear zone (Hanson, Wilson, and Wardlaw, In press). Although the 

magnitude of shear displacement has yet to be determined, this study 

has documented the geometry and sense of shearing within the Ngoma 

Shear Zone. 

The regional dip of foliation planes in the Ngoma Gneiss is to 

the north. This geometry lead previous workers to interpret it as a 

zone of south-directed thrusting (De Swardt & Drysdall, 1964). At 

the time, the relation between lineation attitudes and movement sense 

in sheared rocks was not fully understood and, thus, the the 

lineation trends were not seen as evidence against this model. As 

described previously, it is now recognized that mylonitic foliation 

planes develop parallel to the shear zone walls, and that lineations 

developed on mylonitic foliation planes are parallel to the movement 

direction in a ductile shear zone. 

The orientations of foliation planes and of lineations developed 

on the foliation were measured along three traverses within the Ngoma 

Gneiss. Each of these traverses spans nearly the entire width of the 

gneiss belt, and the three are spread along 60 kilometers, almost the 
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entire length of the shear zone. The data collected from these 

traverses show that the mylonitic foliation planes in the Ngoma 

Gneiss possess a regionally consistent, moderate dip towards the 

north, with only local reorientation to a southward dip in discrete 

zones of open, late- to post-Zambezi folding. The gneiss belt 

therefore represents a northward-dipping ductile shear zone. 

Lineation trends developed on the foliation planes are consistently 

close to horizontal, and were not reoriented by the later folding. 

The Ngoma Shear Zone therefore represents a zone of transcurrent 

movement, not thrusting • 

The sense of shear was determined using the methods of Simpson 

and Schmid (1983). The consistency tests applied in this study 

indicate that these methods yield reliable results. The methods are 

easily applied to protomylonites and mylonites displaying low to 

moderate strains in which the augen structures are distinctly 

asymmetric. In highly strained rocks such as the ultramylonites, the 

augen structures tend to become nearly symmetric, and ultimately 

completely disappear due to pervasive dynamic recrystallization and 

neomineralization. To try and resolve the sense of shear in these 

rocks, a modification of the method was devised in this study. A 

drawing tube was used to trace the augen structures on graph paper in 

order to determine whether subtle asymmetries were present. In 

general, this method produced more convincing results than visual 

inspection alone. 

The modified method was not always successful in obtaining a 
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satisfactory shear sense result. In some samples the near-symmetric 

augen structures yielded opposing shear directions, and these samples 

had to be rejected as ambiguous. A possible explanation for the 

mixed results in these ambiguous sections is that the sense of 

asymmetry in near-symmetric augen structures is easily reset by 

minor, late-stage shearing. For example, small magnitude movements 

with shear sense different from the overall sense may occur during 

relaxation after the main stress regime is relieved, and may only be 

recorded in the near-symmetric augen structures in high strain zones. 

The problem of symmetric augen structures does not preclude the 

utilization of microstructural shear sense determinations in high 

strain shear zones. Because the mylonites in a shear zone typically 

grade into the blocks that bound them, and because zones of 

relatively high and low strain commonly develop within large-scale 

shear zones, if one traverses a shear zone, these regions of low and 

moderate strain should be encountered. Samples taken from these 

regions should contain asymmetric augen structures which can be used 

to determine the sense of shear. 

The shear-sense determinations made in this study show the Ngoma 

Shear Zone to be the site of left-lateral transcurrent shearing. The 

shear-sense data are reasonably consistent across the span of the 

shear zone. Although a number of sections did yield a right-lateral 

shear sense, they are spread throughout the belt, and are everywhere 

outnumbered by those showing left-lateral movement. It is known that 

some late- or post-Zambezi folding has taken place in the region • 
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This indicates that there was some tectonic activity after the main 

shearing event, and this movement may have been responsible for 

changing the sense of shear shown by some of the augen structures, 

and could account for the dispersion in the results • 
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