
Interaction of magnetic vortices with defects
A. S. Kovalev, and J. E. Prilepskii

Citation: Low Temperature Physics 44, 663 (2018); doi: 10.1063/1.5041432
View online: https://doi.org/10.1063/1.5041432
View Table of Contents: http://aip.scitation.org/toc/ltp/44/7
Published by the American Institute of Physics

Articles you may be interested in
Localization of magnon modes in a curved magnetic nanowire
Low Temperature Physics 44, 634 (2018); 10.1063/1.5041428

Bullets and droplets: Two-dimensional spin-wave solitons in modern magnonics (Review Article)
Low Temperature Physics 44, 602 (2018); 10.1063/1.5041426

Electric control of cooperative polariton dynamics in a cavity-magnon system
Applied Physics Letters 112, 262401 (2018); 10.1063/1.5024336

Thermal tuning of silicon terahertz whispering-gallery mode resonators
Applied Physics Letters 113, 011101 (2018); 10.1063/1.5036539

Arnold Markovich Kosevich (1928–2006): On the occasion of his 90th birthday
Low Temperature Physics 44, 599 (2018); 10.1063/1.5041425

Dynamic solitons in antiferromagnets (Review Article)
Low Temperature Physics 44, 618 (2018); 10.1063/1.5041427

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/159552147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2029125564/x01/AIP-PT/MontanaInst_LTPArticleDL_0718/Banner---Horizontal-1640x440---Optical-Cavities---3-14-18.png/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Kovalev%2C+A+S
http://aip.scitation.org/author/Prilepskii%2C+J+E
/loi/ltp
https://doi.org/10.1063/1.5041432
http://aip.scitation.org/toc/ltp/44/7
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5041428
http://aip.scitation.org/doi/abs/10.1063/1.5041426
http://aip.scitation.org/doi/abs/10.1063/1.5024336
http://aip.scitation.org/doi/abs/10.1063/1.5036539
http://aip.scitation.org/doi/abs/10.1063/1.5041425
http://aip.scitation.org/doi/abs/10.1063/1.5041427


Interaction of magnetic vortices with defects

A. S. Kovaleva)

B.I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
47 Nauki Prospect, Kharkiv 61103, Ukraine and V.I. Karazin Kharkiv National University, 4 Svobody Square,
Kharkiv 610022, Ukraine

J. E. Prilepskii

Aston University, Birmingham, UK
(Submitted March 2, 2018)

Fiz. Nizk. Temp. 44, 847–856 (July 2018)

Scattering of magnetic vortices and vortex pairs by a magnetic defect in two-dimensional easy-plane

ferromagnets was theoretically studied using classical equations of magnetization dynamics and the

approximation of collective variables for the coordinates of vortices. A defect model was proposed

as a local region of a magnet whose exchange interaction differs from that of the remaining part.

The rotation of the magnetic vortex around the defect and the associated scattering of vortex pairs

(vortex-antivortex bound states) were considered. In the limit of small-angle scattering, analytical

expressions were obtained for the differential scattering cross section and the dependence of the scat-

tering angle on the parameters of the vortex pair, defect and impact distance. The scattering of vortex

pairs by a defect was studied, numerically and qualitatively, in the entire range of scattering parame-

ters. Our study indicated that the impact parameter has critical values at which the scattering pattern

changes in a qualitative manner and defect-localized rotational states of vortex pairs possibly exist.
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Introduction

Important objects in the study of nonlinear magnet

dynamics include solitons of various types, and in particular

topological solitons1,2 which may be represented, for exam-

ple, by vortices in easy-plane ferromagnets.3,4 The study of

vortex excitations in condensed systems is representative of

the traditional field of hydrodynamics, dynamics of superflu-

ids5 and, recently, studies of Bose-Einstein condensation

(BEC).6 Interest in magnetic vortices has recently arisen due

to their possible use in spintronics.7 The unfavorable aspects,

however, include a low displacement rate of vortices and

their strong interaction with impurities. In this regard, vortex

pairs capable of displacement at velocities on the order of

the magnon velocity and excitation by various methods are

promising.8 This, however, gives rise to an important prob-

lem of the interaction of vortex pairs with defects in the

magnetic structure. The dynamics and interaction of mag-

netic vortex pairs has been widely discussed in theoretical

terms.9,10 Less is known about the interaction of isolated

vortices with defects, for which contradictory results have

been obtained.11,12 The dynamics of vortex pairs in the area

of a defect is more complex, as can be judged from the

numerical analysis of this problem in BEC.13 This paper

addresses the interaction of magnetic vortices and vortex

pairs with a defect within the defect model described herein.

1. Model formulation

A ferromagnet with an isotropic easy-plane magnetic

anisotropy in the classical approach is characterized by

energy1,2

E ¼
ð

edxdy ¼
ð

Ja2
0 rMð Þ2=2þ bM2

z =2

� �
dxdy; (1)

where M is the magnetic moment; J, b are the constants of

exchange interaction and single-ion anisotropy (b > 0) asso-

ciated with the Z axis perpendicular to the easy plane XY.
The dynamics of the vector M may be described by the

Landau-Lifshitz equation (LLE)14

@M=@t ¼ 2l0=�hð ÞM; de=dM½ �; (2)

where l0 is the Bohr magneton. It is convenient to set the

Z-component of the moment m¼Mz/M0 and the azimuthal

angle of its rotation in the XY plane u¼ arctg (My/Mx as

variables, which play the role of canonically conjugated

quantities, in terms of which the Hamiltonian equations and

energy (1) are given by

_u ¼ � 2l0=�hM0ð Þ@e=@m; _m ¼ 2l0=�hM0ð Þ@e=@u; (3)

E ¼ M2
0=2

� � ð
Ja2

0 rmð Þ2= 1� m2ð Þ þ 1� m2ð Þ ruð Þ2
� ��

þbm2dxdy
�
: (4)

As defects with axial symmetry are considered below, it

follows that the Z-projection of the angular momentum K1,2

is conserved in addition to the energy

K ¼ nz �hM0=2l0ð Þ
ð

m x @u=@yð Þ � y @u=@xð Þð Þdxdy: (5)

The static solution of the LLE (3) for the magnetic vor-

tex at the point (x¼X, y¼Y) has the following form

u ¼ q arctg
y� Y

x� X
¼ 6arctg

y� Y

x� X

m ¼ m rð Þ ¼ pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� Xð Þ2 þ y� Yð Þ2

q� �
¼ 6f ; (6)
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where the parameter q¼61 determines the topological

charge of the “vortex” with q ¼ 1 and the “antivortex” with

q¼�1, and parameter p¼61 determines its polarization,

whereas vortex magnetization m(r) is localized in its core

with the size d0 of the order of “magnetic length” l0
¼ a0

ffiffiffiffiffiffiffiffi
J=b

p
.3,4 The topological properties of the vortex deter-

mine its dynamics and are characterized by the value of the

gyro-vector G ¼ �2ppqð�hM0=2l0Þnz.

If the distances between vortices and between these and

the boundaries of the magnet are much greater than the mag-

netic length, and the velocities of the vortices are much

lower than those of magnons c ¼ ð2l0M0=�hÞ
ffiffiffiffiffi
Jb
p

, the vortex

dynamics can be approximately described in terms of the

coordinates of vortex centers RiðtÞ and the Thiele equa-

tions;15 therefore

_Ri;Gi

	 

þ @E=@Ri ¼ 0; (7)

and the energy of the system is reduced15 to the sum

E ¼ �2pJM2
0

X
i<j

pipj ln Ri � Rjj j: (8)

In the same approximation, the angular momentum of

the vortex system equals

K ¼ p�hM0=2l0ð Þ
X

i

piqiR
2
i : (9)

Equation (7) can be given a somewhat different and

sometimes more convenient form4

_Ri ¼ �piruex r ¼ Rið Þ 2l0M0=�hð Þ; (10)

where uex is the distribution of the magnetization field in the

easy plane at the location of the i-th vortex, caused by all the

remaining vortices. The vortex has the energy E0 ¼ pJM2
0

ln ðl=d0Þ, where l is the distance to the nearest boundary of

the magnet, as well as the intrinsic angular moment K0

¼ �hMpq=2l0, where M � M0d2
0 is its magnetization. The

dynamics of vortex pairs and their interaction are presented

a detailed analysis in Refs. 9 and 10. A vortex pair can move

with velocities V < c, and its energy and momentum depend

on the distance L between the vortices and are determined by

the following formulas for the case when V � c

E ¼ 2pJM2
0 ln L=d0ð Þ; P ¼ p�hM0=l0ð ÞL;

V ¼ dE=dP ¼ 2Jl0M0=�hð Þ=L: (11)

Let us now consider the dynamics of a vortex pair in an

inhomogeneous infinite two-dimensional ferromagnet with a

magnetic defect representing a radially symmetric region of

radius a with exchange interaction J2 which differs in vol-

ume from exchange J1. The values of the magnetic moment

and the magnetic anisotropy in the defect do not change. It is

assumed that the defect and the surrounding matrix are con-

nected by a “hard” magnetic interaction with an infinite

exchange through the boundary Js¼1. Therefore, the

conditions on the boundary (of circle S of radius a) are repre-

sented in the form of M1jS ¼M2jS and J1dM1=dnjS
¼ J2dM2=dnjS, where all the below values with index 1

refer to the matrix, and with index 2 to the defect area. From

the condition for the applicability of Eqs. (7) and (10), it fol-

lows that the vortices are located at a sufficiently large dis-

tance from the boundary, where m � 1. In this case, the

boundary conditions reduce to the conditions for angular

variable u

u1jS ¼ u2jS; J1du1=dnjS ¼ J2du2=dnjS; (12)

and static fields u1,2(r) of the vortex system outside and

within the defect are determined by equations

J1Du1 ¼ 0 when rj j > a and J2Du2 ¼ 0 when rj j < a:

(13)

The distribution of the vortex field located at distance R
outside the circular region of modified properties and with

boundary conditions (12) is well known.17 For a vortex with

topological charge q, a fictitious vortex with a non-integer

topological charge must be placed inside the defect region at

distance b¼ a2/R from the center

qin ¼ q J2 � J1ð Þ= J2 þ J1ð Þ ¼ qr; (14)

and an antivortex with charge –qin must be placed in the cen-

ter of the defect. [Consideration of the finiteness of the

exchange across the boundary (Js 6¼ 1) leads to the replace-

ment of qin ! qeff ¼ � 1� f JSð Þqinð Þ, where function f (Js)

rapidly varies from zero to unity with increasing Js (Ref.

17)]. The field inside the defect is determined by a fictitious

vortex with charge qout ¼ q� qin ¼ qð1� rÞ at point R.

Thus, for a vortex with q ¼ 1 at point R (R,0), fields u1 and

u2 outside and inside the defect are defined by expressions

u1 ¼ arctg y= x� Rð Þ
� �

þ r arctg y= x� bð Þ
� �

�r arctg y= xð Þ
� �

; (15)

u2 ¼ 1� rð Þ arctg y= x� Rð Þ
� �

þ rp: (16)

To describe the scattering of a vortex pair outside the

defect (a vortex with charge q ¼ 1 at point R1(X1, Y1) and an

antivortex with charge q¼ –1 at the point R2(X2, Y2), let us

place fictitious vortices at points b1(x1, y1) and b2(x2, y2)

inside the defect region (see Fig. 1). All the vortices are

assumed to have one polarization pi ¼ 1. Fictitious vortices

at the origin are compensated, and the problem reduces to

finding the field of two actual and two fictitious vortices.

Fig. 1. Distribution of actual and fictitious vortices in the problem of a vor-

tex pair in a system with a magnetic defect.
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Motion integrals E and K make it possible to solve the prob-

lem of vortex pair dynamics. Positions and charges of virtual

vortices are expressed as follows

bi ¼ a2=Ri; xi ¼ a2Xi=R2
i ; yi ¼ a2Yi=R2

i ;

q1 ¼ r; q2 ¼ �r: (17)

Accordingly, when determining the field inside the

defect, it is necessary to place virtual vortices with charges

~q1 ¼ 1� r and ~q2 ¼ r� 1 at the locations of actual vortices

R1 and R2. Thus, the fields outside and inside the defect are

defined as follows

uout ¼ arctg
y� Y1

x� X1

� arctg
y� Y2

x� X2

þr arctg
y� y1

x� x1

� r arctg
y� y2

x� x2

; (18)

uin ¼ 1� rð Þarctg
y� Y1

x� X1

� 1� rð Þarctg
y� Y2

x� X2

: (19)

“External fields” ui,ext, acting on each vortex of the pair

are determined by the fictitious vortices and the field of

the “complementary” vortex of the pair from the sum (18).

Knowledge of these fields is sufficient for constructing the

dynamics of the initial vortex pair in the framework of Eq. (10).

2. Dynamics of an isolated vortex in the magnetic defect field

Let us consider the dynamics of an isolated vortex with

q¼ p ¼ 1 in the defect field in the proposed model. The

magnetization pattern is determined by formulas (15) and

(16). It follows from Ref. 7 that the vortex rotates around the

defect in a circular orbit with radius R, which determines the

energy and momentum of the system

EV ¼ pJ1M2
0 ln l=d0ð Þ � pJ1M2

0 r ln 1� a2=R2
� �

; (20)

KV ¼ �hM0=2l0ð ÞpR2: (21)

The second term in Ref. 20 describes the interaction of a

vortex with a defect, qualitatively coinciding with the one

given by Pereira et al.12 With R� a, the interaction energy

Eint � pJ1M2
0ra2=R2 ¼ J1M2

0d=R2;

where the defect characteristic d ¼ rpa2 is proportional to

its area and varies from pa2 for a non-magnetic defect to pa2

for a “hard magnetic” defect. The first limit is of particular

interest since it also describes the situation with a superfluid

liquid with an impermeable region. In the case of a large

defect area and the vortex moving along the boundary at dis-

tance D from it with a� D� l0, it follows from Ref. 20 that

Eint � �pJ1M2
0rlnðD=aÞ, which corresponds to the motion

along the half-space boundary with velocity V ¼ J1M2
0l0r=

�hD. With a finite radius of the defect, it follows from Eq. (7)

that the rotational speed of the vortex can be expressed as

V ¼ �J1M0

2l0

�h
r

a2

R R2 � a2ð Þ : (22)

The vortex is “captured” by a defect and rotates around

it with velocity / 1=R3 at large distances. The direction of

rotation depends on the properties of the defect. As the

exchange decreases compared to the matrix exchange (in

particular, for a nonmagnetic defect), the vortex rotates

counterclockwise, and in the case of a larger exchange, it

rotates clockwise.

3. Motion of the vortex pair in the presence of a magnetic
defect

We now turn to the study of vortex pair dynamics in the

case of a defect (Fig. 2). (In the proposed model, the defect

does not generate its own field when no vortices are present).

The vortex pair before scattering (t¼ –1) has dimension L0

and “impact parameter” q. Let us find the dependence of the

scattering angle of pair v ¼ vðq; L0Þ on the impact parameter

and pair dimension L0. Dimension L0 determines the energy

of the system, and together with q, the angular momentum,

i.e., two motion integrals. Below, R1 (�1, Y1) is the coordi-

nate of a vortex with charge q¼ 1, and R2 (�2, Y2) is the

coordinate of an antivortex with charge q¼ –1. The angle

between vectors R1 and R2 is denoted as u. Positions of ficti-

tious vortices are determined by the position of the vortices

of the pair, and the problem only reduces to the motion of

these two quasiparticles. Accordingly, the dynamical system

with two degrees of freedom and two independent integrals

of motion is integrated in quadratures. Knowledge of the

magnetization field (18) outside the defect makes it possible,

through (10), to write the equations of motion of the vortices

within the pair. Let us introduce a new time variable

s ¼ 2J1M0l0=�hð Þt, in terms of which Eq. (10) can be rewrit-

ten as Rs ¼ �ruex or

dX1;2

ds
¼ Y2 � Y1

R2
1 � 2R1R2 þ R2

1

6r
Y1;2

R2
1;2 � a2

� �

7r
Y1;2R2

2;1 � Y1;2a2

R2
1R2

2 � 2a2R1R2 þ a4
; (23)

dY1;2

ds
¼ X1 � X2

R2
1 � 2R1R2 þ R2

2

7r
X1;2

R2
1;2 � a2

� �

6r
X1;2R2

2;1 � X2;1a2

R2
1R2

2 � 2a2R1R2 þ a4
; (24)

Fig. 2. Scattering of a vortex-antivortex pair on a circular ferromagnetic

defect in the case of a low magnetic defect with J2 < J1. Vortex pair trajec-

tories (a) and corresponding “phase portrait” (b).
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where R2
i ¼ X2

i þ Y2
i and R1R2 ¼ X1X2 þ Y1Y2. These equa-

tions admit analytical solution in the small-angle scattering

approximation as well as the study by the methods of the

qualitative theory of dynamical systems, and numerical

investigation in a wide range of values of L0, q and r.

Equations (23) and (24) coincide with those obtained in the

Thiele approach from formulas (7) with the knowledge of

the total energy of the system. It can be easily obtained by

formulas (18) and (19), and an expression for energy (4) in

the basic approximation with m¼ 0

E ¼ 2pJ1M2
0 ln

R12

d0

þpJ1M2
0rln

R2
1R2

2 � 2R1R2a2cosuþ a4

R2
1 � a2

� �
R2

2 � a2
� �

 !
; (25)

where R12 tð Þ ¼ R1 � R2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � 2R1R2a2cosuþ R2
2

p
is

the distance between the vortices of the pair, which is differ-

ent from the initial value of L0 and depends on time. The first

term in (25) corresponds to the intrinsic energy of the pair

(11), and the factors ðR2
1 � a2Þ and ðR2

2 � a2Þ in the second

term correspond to the interaction of each vortex of the pair

with the defect (see Ref. 20) The total energy includes an

additional term associated with the interaction of the vortices

of the pair “through the defect.” The argument of the loga-

rithm in the second term of (25) is greater than unity; with r
< 0, the low magnetic defect attracts the pair; with r > 0,

the hard magnetic defect repels it.

The angular momentum of the pair is expressed through

the initial data and is equal to

K ¼ p�hM0=2l0ð Þ R2
1 � R2

2

� �
¼ p�hM0=l0ð Þ L0qð Þ: (26)

Knowledge of motion integrals E and K makes it possi-

ble to study the dynamics of the vortex pair using qualitative

analysis on the “phase plane” which can be conveniently

represented by the distance of the antivortex (closely adja-

cent to the defect) to center R2 and angle u. From (25) and

(26) in the small-angle scattering approximation with

q� a; L0, it follows that

u� L0=R2
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�qþL0=2ð Þ R2þqð Þþ aL0=R2ð Þ2

q
; (27)

which provides an insight into the dynamics of the system

on plane u, R2. The corresponding phase trajectory is shown

in Fig. 2(b), where the dotted line depicts the trajectory for

the rectilinear motion of the vortex pair in the absence of a

defect (a¼ 0), and point c corresponds to the trajectory point

closest to the defect [line c in Fig. 2(a)].

4. Small-angle scattering of vortex pairs

Small-angle scattering is easy to investigate analytically.

As variables, let us introduce the coordinates of the center of

the vortex pair r¼ (x, y) and the vector of “vortex dipole”

d¼ 2b, which determines the dimension of pair R12 tð Þ
¼ L tð Þ ¼ 2b

x ¼ X1 þ X2ð Þ=2; y ¼ Y1 þ Y2ð Þ=2;

u ¼ bx ¼ X1 � X2ð Þ=2; v ¼ by ¼ Y1 � Y2ð Þ=2: (28)

The new variables are shown in Fig. 3, where v denotes the

scattering angle. In the new variables, dynamic equations

(23) and (24) are given by

rs; n½ � ¼ b=2b2 þ f � sð Þbþ hn; (29)

bs; n½ � ¼ �srþ hb; (30)

where n is the unit vector perpendicular to the plane of the

system, and the coefficients of the equations only depend on

the moduli of vectors r(s) and b(s)

h ¼ ra2ð Þ8b2L0q=PQ; f ¼ ra2ð Þ2=Q;

s ¼ ra2ð Þ4b2 r2 þ b2 � a2ð Þ=PQ;

P ¼ r2 þ b2 � a2ð Þ2 � L0qð Þ2; Q ¼ Pþ 4a2b2:

For small-angle scattering, one can use the separation of

time scales: the “rapid” motion of the pair center [coordi-

nates (x,y)] with velocity V � 1/L and the “slow” change in

its shape and direction of motion [coordinates (u,v)]. All the

terms of the equations, except the first on the right-hand side

(29), have factors ra2 � d characterizing the “capacity” of

the defect. The terms on the right-hand side (29) have the

following orders of magnitude (left to right): 1/b, ra2ð Þb=q4,

ra2ð Þb3=q6, ra2ð Þb3=q6, and on the right-hand side (30)—

ra2ð Þb2=q5 and ra2ð Þb4=q7. Therefore, the deviation of the

pair trajectory from the linear path is small, with q� ab
� aL0. In the basic approximation, from (29) we obtain a

solution for the free motion of a pair with dimension L0:

r0 ¼ q; s=L0ð Þ ¼ q; tðJ1M0l0=�hL0Þð Þ and r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ s2=

p
L2

0,

which agrees with solution (11) (dotted lines in Fig. 3), and

in this approximation b ¼ b0 ¼ u0 ¼ L0=2; v0 ¼ 0. For a

small pair with L� r, i.e., with b� q, Eq. (30) takes the

form of bs;n½ � ¼ �sr, or when taking into account the type

of the basic approximation: vs ¼ �sq and us ¼ ss=L0, where

s � ra2L2
0=ðq2 þ s2=L2

0Þ
3
. The integration gives the asymp-

totics of the vortex pair reversal with s!61 : v 61ð Þ
¼ 7ðpa2rÞ3L3

0=16q4. The angle of its rotation for half the

scattering time is equal to D � 2v=L0 (Fig. 3), and the total

scattering angle v ¼2D. Therefore, dependence v ¼ v (q) is

defined by the following formula

v q; L0ð Þ ¼ 3dL2
0=4q4: (31)

From the second equation for the pair dipole, we find a

change in its size during the scattering of L ¼ L0ð1� ra2L2
0=

q4Þ: when the pair is repelled from the defect (r > 0), it

Fig. 3. Low-amplitude scattering of a vortex pair (hard magnetic impurity).
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shrinks in the interaction area and it stretches out when

attracted to the defect (r < 0).

Similarly, the obtained result follows from the formula

for the low-amplitude scattering of ordinary particles,18 if

we rewrite it as

v ¼ � 2q=P0V0ð Þ
ð1
q

dr dU=drð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � r2

p
;

where the momentum and velocity of the vortex pair at infin-

ity (11) are equal to P0 ¼ p�hM0L0=l0 and V0 ¼ 2J1l0M0=
�hL0, and the potential energy is equal to the total energy of

the vortex pair in defect field (25), which reduces in the con-

sidered limit to E � ðrpa2ÞJ1M2
0L2

0=r4. Recently, methods

have been developed for the generation of vortices and vor-

tex pairs in BEC, as well as vortices and skyrmions in mag-

nets under the action of a high-frequency field and under

laser and thermal effects.13,19 The associated generation of a

great number of vortex excitations and their directed motion

cause problems in terms of averaging the results,20 and it is

of interest to calculate the differential scattering cross sec-

tion of the vortices and vortex pairs on the ensemble of

defects. Calculated in the usual way18 for a two-dimensional

case, this quantity is equal toX
qð Þ ¼ dq=dvj jdv ¼ 3prð Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aL0=32

p
v�5=4dv:

5. Scattering process for arbitrary parameters of vortex pairs
and defects

Although the small-angle scattering makes the main

contribution to the differential scattering cross section, we

find it interesting to study this process for arbitrary relations

of the task parameters: a, r, L0 and q. Scattering in the gen-

eral case was considered numerically in the framework of

Eqs. (23) and (24) using the MAPLE software. Scattering

angle v is determined using only dimensionless combina-

tions of parameters L0, a and q. The method of collective

variables implies the inequality L0, D� l0, where D is the

smallest distance from the vortices to the boundary of the

defect. Despite the fact that the conditions for the applicabil-

ity of Eqs. (23) and (24) are violated as to critical parameter

ratios when the vortices move sufficiently close to the

boundaries of the defect (D� l0), the obtained results quali-

tatively give a general characteristic of the dynamics of the

“vortex pair-defect” system. The nature of scattering is dif-

ferent for repulsive (for r > 0) and attractive (for r < 0)

defects. Parameter a varies in the interval of –1< r < 1. Let

us present the results for the most characteristic cases r¼ 1

and r¼ –1. The latter is of particular interest, as the data for

the magnetic system are then transferred to the important

problem of the interaction of vortex pairs with a solid inclu-

sion in a superfluid liquid.

5.1. Scattering of pairs by an attractive (non-magnetic) defect

As an example, Fig. 4(a) shows numerical results for the

dependence of scattering angle v on impact parameter q in

limit r¼�1 for fixed values of defect radius a¼ 2 and pair

dimension L0¼ 1. It varies significantly with a critical value

of impact parameter q¼qc � 3.4. Limit q� qc corresponds

to the small-angle scattering discussed above; however, with

q¼qc, the scattering scenario changes. When q > qc, both

vortices of the pair envelop the defect on one side [Fig.

2(a)]; when q < qc, then, in the process of scattering, the

pair decays into two vortices that bypass the obstacle from

different directions, and again restores itself as a single

object after passing through the defect [Fig. 5(a)]. When

q<qc and q ! qc, the trajectory of the antivortex moving

near the defect surface changes dramatically [Fig. 5(b)]: for

some part of the trajectory, it travels in the direction opposite

to the rotation of the pair vortex. As soon as the sign of (q –

qc) changes, the difference in the directional angles of vec-

tors R1 and R2 changes abruptly by 2p. As q ! 0, the dis-

tance of the vortices to the defect boundary tends to D � L0/

2, since the energy of the vortex pair is distributed almost

equally between two pairs of vortices with their images

Fig. 4. Dependence v¼ v (q) with L0¼ 1 and a¼ 2 (a), the “phase portrait”

of the vortex pair scattering on plane u, R2 with different values of q (b),

dependence qc¼qc(L) (c).
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[Fig. 5(a)]. These results are qualitatively consistent with

those given in Ref. 13 for the repulsive impurity in BEC.

(The repulsive impurity in BEC corresponds to the attractive

magnetic defect).

A clear idea of the scattering nature is provided by its

analysis on “phase plane” u, R2. For r¼ –1, expression (25)

implies dependences u¼u(R2) for different impact parame-

ters q and energies of the vortex pair E ¼ 2pM2
0ln L0=d0ð Þ:

sin2 u
2

� �
¼ L2

0 R1R2� a2ð Þ2� R1�R2ð Þ2 R2
1� a2

� �
R2

2� a2
� �

4R1R2 R2
1� a2

� �
R2

2� a2
� �

� a2L2
0

� � :

(32)

Since R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ 2qL0

p
, expression (32) defines depen-

dence u¼u(R2, q, L0). It is qualitatively shown in Fig. 4(b),

where the shaded area with R2 < a corresponds to the defect

area. As coordinate R2 of the antivortex approaches a small

distance to this boundary, the conditions for applicability of

the analysis are violated; however, we shall use the results

obtained for a qualitative understanding of the scattering

process.

The areas q > qc in Fig. 4(b) correspond to type (b)

“trajectories” for which, before and after scattering, the

angle between the radius vectors of the vortices is equal to

zero. When q < qc, the scattering process corresponds to the

shaded area (d) of the trajectories for which the angle

between the radius vectors changes during scattering by 2p
(i.e., one of the paired vortices “envelops” the defect). In the

case of “end-on” collision at q¼ 0 (boundary line q in the

figure), the vortices bypass the defect from different sides

with a minimal distance to its boundary R0, which depends

on relation l¼ L0/2a and for z¼R0/a is defined by equation

z3 � lz2 � z� l ¼ 0 : R0 � L0=2 at L0 � a and R0 � a
þL0=2 for L0 � a. “Phase trajectories” of type (d) close to

the separatrix (g) correspond to actual trajectories such as

those shown in Fig. 4(c). In a certain time interval, the vorti-

ces of the pair rotate in the opposite direction, and this inter-

val increases in limit q ! qc. “Saddle point” s of the phase

portrait corresponds to value q¼ qc. It follows, from Eqs.

(23) and (24), that this point corresponds to the in-phase

rotation of the vortex pair around the defect. However, this

motion is unstable, which is typical for saddle points, and

vortices (see Fig. below) begin to rotate in opposite direc-

tions. From Eq. (32) at u¼ 0, it follows that, at the critical

point for large dimensions of the pair (L0 > a), we have

qc � L0=2þ 3a2=3L
1=3
0 [Fig. 4(c)]. At the limit of R2 � a2=3

L
1=3
0 � a; the condition of applicability of the equation is

fulfilled. Figure 4(c) shows dependence qc¼ qc(L0) derived

numerically for a¼ 2. The impact parameters under which

the pair does not break apart near the defect are shaded. In

Fig. 4(a), point B marks a peculiarity, and a vertical dashed

line marks a breakdown along the axis of impact distances.

Dependence qc¼ qc(L0) is practically linear across the entire

range of changes in the impact distance, except for the area

of small impact parameters of the order of quantities L0 and

a. Dependence qc¼qc(L0) for a¼ 0.5 is additionally pro-

vided for comparison. The results of the analysis indicate

that critical value qc at r¼ –1 exists for any values of the

pair and defect dimensions.

The analysis of the phase portrait indicates that there

is an area of completely different dynamics [line (f) in

Fig. 4(b)] for values R2 that are smaller than the separatrix

(g). It corresponds to rotation of the vortex pair near the

defect. Parameter L0 no longer denotes the dimension of the

pair when it approaches infinity, but remains a characteristic

of the system energy. In this case, the vortex and the antivor-

tex rotate in the opposite direction with different velocities.

Their motion is two-frequency and occurs with two incom-

mensurable frequencies in the general case. A typical form

of this rotation, which was obtained numerically, is shown in

Fig. 5(c) for the following initial conditions: R1 t ¼ 0ð Þ ¼ 2:8;
R2 t ¼ 0ð Þ ¼ 0:8; M t ¼ 0ð Þ ¼ R2

1 � R2
2 ¼ 7:2.

5.2. Scattering of pairs by a repulsive defect

When r > 0 (“hard magnetic” defect), a vortex pair

repels from it and its scattering varies significantly. Let

us study the limit r¼ 1 (J2 ! 1) and consider the scat-

tering process on the “phase plane” u, R2. In this case,

instead of relation (32), we have connection u(R2) as

follows

Fig. 5. Dependence of the scattering pattern of the vortex pair with q < qc for different dimensional ratios of the pair and the defect: L0¼ 2, a¼ 0.5, q� qc

(a) and L0¼ 1, a¼ 0.5, q � qc (b). Rotation pattern of the vortex pair around the defect at a¼ 2, M¼ 7.2, L � 2, q¼M/2L0 � 1.8 (c).

668 Low Temp. Phys. 44 (7), July 2018 A. S. Kovalev and J. E. Prilepskii



cos u ¼ 1

4a2R1R2

�
R2

1 þ a2
� �

R2
2 þ a2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � a2
� �

R2
2 � a2

� �q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � a2
� �

R2
2 � a2

� �
þ 4a2L2

0

q �
; (33)

where R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

2 þ 2qL0

p
. It describes the scattering process

for different values of q, L0, and a, and is shown in Fig. 6(b).

A numerical solution of Eqs. (23) and (24) for a large-size

pair at L0¼ 6� a¼ 0.5 gives the dependence of the scatter-

ing angle on the impact parameter, as shown in Fig. 6(a),

which resembles the dependence in the case of an attracting

defect with the changing sign (q – qc). There is also a critical

value qc of the impact parameter at which the scattering pat-

tern changes, but now it only exists at sizes of the pair that

are larger than the critical size Lc ¼ a 1þ
ffiffiffi
5
p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi
5
pp

� a 	 6:66, depending on the size of the defect [Fig. 6(c)].

For a fixed pair size L > Lc (a), the scattering process

changes with a change in the impact distance. When q > qc

(L, a), both vortices of the pair remain on the same side of

the defect throughout the process, which corresponds to type

(b) lines in Fig. 6(b). When q ¼qc [line (g) in Fig. 4(b)], a

bifurcation takes place, breaking the pair into two vortices

that bypass the defect from different sides. With further

decrease of q, the vortices envelop the defect and the relative

angle between them changes by 2p [type (d) lines] in the

scattering process.

In an end-on collision (q¼ 0 and line q in the figure),

the minimum distance from the vortices to the defect surface

depends on the size of the pair. When L0 � a, we have

Rmin
2 � L0=2, whereas for L0� a, a minimal approach to the

defect is Rmin
2 � a � L0=2. The phase portrait also shows the

possibility of a two-frequency rotation of the vortex pair

around the defect (shaded area f near the surface of the

defect).

The situation changes for vortex pairs of small size

when L < Lc (a) [left vertical dashed line in Fig. 6(c)]. They

do not pass through the defect, and are instead reflected from

it. As the impact distance decreases, the scattering angle

increases from zero to p, and with q! 0, the minimum dis-

tances of the vortices to the defect surface tend to zero:

Rmin
2 � aþ q2L0=2a2 and Rmin

1 � aþ qL0=a. (However, it

should be recalled that, in this case, the applied technique of

collective variables becomes invalid since the velocities of

the vortices increase indefinitely, exceeding the velocity of

the ferromagnet with spin waves).

Conclusion

In the approximation of the collective variables tech-

nique, the scattering of magnetic vortex pairs by a magnetic

defect in a two-dimensional easy-plane ferromagnet was

analyzed analytically, numerically, and qualitatively. A

defect model was proposed in the form of a circular region

of a magnet with an exchange interaction that differs from

that in the bulk of the magnet and varies from zero to infin-

ity. The motion of single vortices and vortex pairs in the

neighborhood of the defect was studied. For the small-angle

scattering, the dependence of the scattering angle of the vor-

tex pair on the impact distance was analytically obtained and

the differential scattering cross-section was calculated. With

an arbitrary relation of the parameters of the vortex pair and

the defect, the dependence of the scattering angle on the

impact distance was numerically obtained and investigated

by qualitative methods on the phase plane. In the case of a

nonmagnetic impurity, the results agree qualitatively with

the data from a numerical analysis of the interaction of vor-

tex pairs with defects in BEC. The existence of bound states

of a vortex pair with a defect in the form of a two-frequency

counter-rotating vortex and antivortex around the defect was

indicated. In a particular case, the results describe the motion

of vortices and vortex pairs in the presence of a circular

impermeable region in the superfluid liquid and BEC.

This work was supported by the Scientific Project No.

4/17-N of the National Academy of Sciences of Ukraine and

Scientific Program No. 1.4.10.26/F-26-4.

Fig. 6. Dependence v¼ v(q) with L0¼ 6 and a¼ 0.5 for the repulsive defect

(a), the “phase portrait” of the scattering dynamics of the pair (b), and

dependence of the critical impact distance on the dimensions of the vortex

pair and the defect (c). The inserts (a) show qualitatively the trajectories of

the vortices in the scattering process.
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