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Abstract

In this paper, we consider the inverse problem of determining the additive time- and
space-dependent perfusion coefficient in the parabolic heat equation. Using initial and
boundary conditions as well as temperature measurements at an interior space location
and at the final time ensure that the inverse problem has a unique solution. However,
the problem is still ill-posed since small errors in the input data cause large errors in the
output solution. For the numerical discretization, the finite difference method combined
with a regularized nonlinear optimization are employed. Numerical results are illustrated
in order to show the efficiency of the adopted computational methods.

Keywords: Inverse problem; finite-difference method; nonlinear optimization; regular-
ization; bioheat equation; perfusion coefficient.

1 Introduction

Inverse problems for the parabolic heat equation consisting of determining the unknown
radiative/absorbtion/perfusion coefficient depending on both time and space have recently
received some attention, [1,4,5,11]. The knowledge of this physical property is very impor-
tant in understanding the heat transfer in biological tissues, [13]. Its direct measurement
is not available in the general case when it depends on both space and time. However,
it can be inferred by inverse methods based on the measurement of the interior temper-
ature, as considered in [14]. On the other hand, this formulation means that infinitely
many intrusive measurements of temperature with thermocouples embedded inside the
material are necessary at all space points and for all times. A possible alternative to this
general inverse modelling is to restrict the generality of the coefficient by seeking it as
a sum of a function dependent of time and one dependent of space. This additive class
in which the admissible coefficient is sought allows to formulate an inverse problem for
which a single measurement of the temperature in time at a fixed space point and one
in space at a fixed instant are sufficient to ensure that the identification is possible. A
similar approach has previously been investigated in related problems concerned with the
identification of an additive heat source, [6,7]. However, the inverse heat source problem
is linear whilst the coefficient identification problem investigated in this paper is nonlinear
and this significantly complicates its study.

The paper is structured as follows: In Section 2, the mathematical formulation of the
inverse problem is given. In Section 3, the numerical solution of direct problem based
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on finite difference method (FDM) with Crank-Nicolson scheme is briefly introduced. In
Section 4, the numerical approach to solve the inverse problem based on a minimiza-
tion algorithm is presented. Numerical results are presented and discussed in Section 5.
Finally, conclusions are presented in Section 6.

2 Mathematical formulation

Fix the parameters L > 0 and T > 0 representing the length of a finite slab and the
time duration, respectively. Denote by QT = {(x, t)|0 < t < T, 0 < x < L} the solution
domain. We consider the parabolic heat equation

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) +

(
f(t) + g(x)

)
u(x, t), (x, t) ∈ QT , (1)

where f(t) and g(x) are coefficient functions to be identified together with the temperature
u(x, t). Equation (1) has to be solved subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ L, (2)

the homogeneous Neumann boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, 0 ≤ t ≤ T, (3)

and the additional temperature measurements

u(X0, t) = β(t), 0 ≤ t ≤ T, (4)

at a fixed space location 0 < X0 < L, and

u(x, T ) = ψ(x), 0 ≤ x ≤ L, (5)

at the final time t = T . The conditions (3) express that the ends {0, L} of the finite slab
(0, L) are insulated. In order to avoid non-uniqueness reproduced by the trivial identity
f(t) + g(x) = f(t) + c + g(x) − c, where c is an arbitrary non-zero constant, we take a
fixing condition, say at x = X1 fixed in (0, L), assuming that

g(X1) = α (6)

is given. Alternatively, one could have a fixing condition on f instead of (6). In the
above equations, the functions φ, β, ψ and the constant α are given, whilst the triplet of
functions f(t), g(x) and u(x, t) are unknown. Further, assume that the conditions (2)–(5)
are compatible, i.e.

φ′(0) = φ′(L) = ψ′(0) = ψ′(L) = 0, β(0) = φ(X0), β(T ) = ψ(X0). (7)

The existence and uniqueness of a classical solution to the inverse problem (1)–(7) were
established in [11] and, for convenience, the uniqueness theorem is stated correctly and
proved in Appendix A. We note that we do not take X0 to be a boundary point because
the proof in [11] starts by applying equation (1) and using (4) at x = X0 ∈ (0, L). Without
going in too much detail, for illustration it is useful to state the unique solvability of the
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inverse problem (1)–(7) in a particular case, as follows.

Proposition 1. Suppose

0 < φ ∈ C4([0, L]), 0 < ψ ∈ C4([0, L]), 0 < β ∈ C1([0, T ]) (8)

and assume that

ψ(x) = cφ(x), x ∈ [0, L], (9)

where c = β(T )/β(0). Then the inverse problem (1)-(7) has a unique solution (u, f, g) ∈(
C2(QT ) ∩ C1(QT )

)
× C1([0, T ])× C1([0, L]) which is explicitly given by

u(x, t) =
β(t)

β(0)
φ(x), (x, t) ∈ QT , (10)

f(t) =
β′(t)

β(t)
− α− φ′′(X1)

φ(X1)
, t ∈ [0, T ], (11)

g(x) = −φ
′′(x)

φ(x)
+ α +

φ′′(X1)

φ(X1)
, x ∈ [0, L]. (12)

Proof. We proceed as in [11] and remark that from (1)–(3) using the maximum principle
for the parabolic heat equation we have that u > 0 in QT and let us put

u = ev. (13)

Then equations (1)–(5) become

vt(x, t) = vxx(x, t) + v2x(x, t) + f(t) + g(x), (x, t) ∈ QT , (14)

v(x, 0) = ln(φ(x)) =: Φ(x), x ∈ [0, L], (15)

vx(0, t) = vx(L, t) = 0, t ∈ [0, T ], (16)

v(x, T ) = ln(ψ(x)) =: Ψ(x), x ∈ [0, L], (17)

v(X0, t) = ln(β(t)) =: β1(t), t ∈ [0, T ]. (18)

From (9), (15) and (17) one can see that

Ψ(x) = Φ(x) + ln(c), x ∈ [0, L]. (19)

Differentiating equation (14) with respect to x we get

vtx(x, t) = vxxx(x, t) + 2vx(x, t)vxx(x, t) + g′(x), (x, t) ∈ QT . (20)
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Now differentiating (20) with respect to t and using (17) we obtain, [11],

wt(x, t) = wxx(x, t) + 2
(∫ t

T

w(x, τ)dτ + Ψ′(x)
)
wx

+2
(∫ t

T

wx(x, τ)dτ + Ψ′′(x)
)
w(x, t), (x, t) ∈ QT , (21)

where

w(x, t) = vtx(x, t). (22)

Also, from (15)–(17), (19) and (20) one can derive that

w(0, t) = w(L, t) = 0, t ∈ [0, T ], (23)

w(x, T )− w(x, 0) = vxxx(x, T ) + 2vx(x, T )vxx(x, T ) + g′(x)− vxxx(x, 0)

−2vx(x, 0)vxx(x, 0)− g′(x) = Ψ′′′(x) + 2Ψ′(x)Ψ′′(x)− Φ′′′(x)− 2Φ′(x)Φ′′(x) = 0,

x ∈ [0, L]. (24)

Then, one can observe that the initial boundary value problem for the parabolic equation
(21) has only the trivial solution w ≡ 0. Hence, from (22) we obtain

v(x, t) = a(t) + b(x). (25)

Then, (14)–(19) give

a′(t) = b′′(x) + b
′2(x) + f(t) + g(x), (x, t) ∈ QT , (26)

Φ(x) = ln(φ(x)) = a(0) + b(x), x ∈ [0, L], (27)

b′(0) = b′(L) = 0, (28)

Φ(x) + ln(c) = Ψ(x) = ln(ψ(x)) = a(T ) + b(x), x ∈ [0, L], (29)

β1(t) = ln(β(t)) = a(t) + b(X0), t ∈ [0, T ]. (30)

From (26), we immediately obtain that

f(t) = a′(t)− C, g(x) = −b′2(x)− b′′(x) + C, (31)

where C is some arbitrary constant. From (27), (29) and (30) we obtain

b(x) = ln(φ(x)) + const., a(t) = ln(β(t)) + const. (32)

Then, using (13), (25) and (32) we obtain that

u(x, t) = C1β(t)φ(x) (33)
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for some constant C1,

f(t) =
β′(t)

β
− C, g(x) = −φ

′′(x)

φ(x)
+ C. (34)

Imposing (6) we obtain C = φ′′(X1)
φ(X1)

+ α from which (11) and (12) follows. Finally, from

(4), (7) and (33) we obtain that C1 = 1/β(0) from which (10) folows. This completes the
proof of the proposition.

This proposition is useful because it indicates how to construct analytical solutions
of the inverse problem (1)–(7) for which numerical methods can be assessed, see later on
Examples 1 and 2 in Section 5.

Although the inverse problem (1)–(7) is uniquely solvable it is still ill-posed since small
errors in the input measured data (4) and (5) cause large error in the output solution for
f and g. Therefore, in the numerical computation the main focus is on the development
of stable optimization algorithms, [10], as will be described in Section 4. But before we
do that, in the next section we briefly describe the FDM employed for discretising the
direct problem.

3 Numerical solution of direct problem

In this section, we consider the direct initial boundary value problem given by equations
(1)–(3) when f and g are given. We use the finite-difference method (FDM) with a
Crank-Nicholson scheme, [12], which is unconditionally stable and second-order accurate
in space and time. The discrete form of the direct problem is as follows. We denote
u(xi, tj) = ui,j, f(tj) = fj and g(xi) = gi, where xi = i∆x, tj = j∆t for i = 0,M, j = 0, N,
and ∆x = L

M
, ∆t = T

N
.

Considering the general partial differential equation

ut = G(x, t, u, uxx), (35)

the Crank-Nicolson method, [12], discretises (35), (2) and (3) as

ui,j+1 − ui,j
∆t

=
1

2
(Gi,j +Gi,j+1), i = 1, (M − 1), j = 0, (N − 1), (36)

ui,0 = φ(xi), i = 0,M, (37)

u1,j − u−1,j
2(∆x)

=
uM+1,j − uM−1,j

2(∆x)
= 0, j = 1, N, (38)

where

Gi,j = G
(
xi, tj, ui,j,

ui+1,j − 2ui,j + ui−1,j
(∆x)2

)
,

Gi,j+1 = G
(
xi, tj+1, ui,j+1,

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(∆x)2

)
,

i = 0,M, j = 0, (N − 1) (39)

and u−1,j and uM+1,j for j = 1, N are fictitious values at points located outside the
computational domain. For our problem, equation (1) can be discretised in the form of
(35) as

−Aui−1,j+1 + (1 +Bj+1)ui,j+1 − Aui+1,j+1 = Aui−1,j + (1−Bj)ui,j + Aui+1,j, (40)
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for i = 0,M, j = 0, (N − 1), where A =
(∆t)

2(∆x)2
, Bi,j =

(∆t)

(∆x)2
− (∆t)

2
(fj + gi).

At each time step tj+1, for j = 0, (N − 1), using the homogeneous Neumann boundary
conditions (38), the above difference equation can be reformulated as a M ×M system of
linear equations of the form,

Luj+1 = Euj, (41)

where

uj+1 = (u0,j+1, u1,j+1, ..., uM,j+1)
T,

L =


1 +B0,j+1 −2A 0 ... 0 0 0
−A 1 +B1,j+1 −A ... 0 0 0

...
...

...
. . .

...
...

...
0 0 0 ... −A 1 +BM−1,j+1 −A
0 0 0 ... 0 −2A 1 +BM,j+1

 ,

and

E =


1−B0,j 2A 0 ... 0 0 0

A 1−B1,j A ... 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ... A 1−BM−1,j A
0 0 0 ... 0 2A 1−BM,j

 .

4 Numerical approach to solve the inverse problem

In this section we wish to obtain simultaneously the unknown functions f(t) and g(x) in
the inverse problem (1)–(7) reformulated as minimizing the regularized objective function

F(f, g) = ‖u(x, T )− ψ(x)‖2 + ‖u(X0, t)− β(t)‖2 + β1‖f(t)‖2 + β2‖g(x)‖2

+ (g(X1)− α)2, (42)

where β1 ≥ 0 and β2 ≥ 0 are regularization parameters, and the norm is usually the
L2-norm. Assuming, for convenience, that we take X0 ∈ (0, L) such that there exists
i0 ∈ {1, ...,M} for which X0 = xi0 , in discrete form (42) becomes

F(f ,g) =
L

M

M∑
i=1
i 6=i0

[
u(xi, T )− ψ(xi)

]2
+
T

N

N∑
j=1

[
u(X0, tj)− β(tj)

]2
+ (g(X1)− α)2

+ β1

N∑
j=1

f 2
j + β2

M∑
i=1

g2i . (43)
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The value for i = i0 in the first sum has been excluded in order to avoid duplicating the
compatibility condition (in (7)) u(X0, T ) = u(xi0 , T ) = β(T ) = β(tN) = ψ(xi0) = ψ(X0).
The minimization of (43) is performed using the MATLAB toolbox routine lsqnonlin,
which does not require supplying by the user the gradient of the objective function, [9].
This routine attempts to find the minimum of a sum of squares by starting from the
arbitrary initial guesses f (0),g(0) for f ,g, respectively. We have compiled this routine with
the following parameters:

• Algorithm = Trust-Region-Reflective (TRR), [2].

• Number of variables M = N.

• Maximum number of iterations, (MaxIter) = 400.

• Maximum number of objective function evaluations, (MaxFunEvals) = 102×(number
of variables.)

• Termination tolerance on the function value, (TolFun) = 10−20.

• x Tolerance, (xTol) = 10−20.

• The lower and upper bounds, LB and UB, are LB = −103 ∗ ones(1, length(f ,g))
and UB = 103 ∗ ones(1, length(f ,g)).

The inverse problem under investigation is solved subject to both exact and noisy data
which are numerically simulated as

βε1(tj) = β(tj) + ε1j, j = 1, N, (44)

ψε2(xi) = ψ(xi) + ε2i, i = 1,M, i 6= i0, (45)

where ε1j and ε2i are random variables generated from Gaussian normal distributions
with mean zero and standard deviations σ1 and σ2 given by

σ1 = p× max
t∈[0,T ]

|β(t)|, σ2 = p× max
x∈[0,L]

|ψ(x)|, (46)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ε1 = (ε1j)j=1,N , ε2 = (ε2i)i=1,(M−1), as follows:

ε1 = normrnd(0, σ1, N), ε2 = normrnd(0, σ2,M − 1). (47)

5 Numerical results and discussion

In this section, we present a few examples in order to test the accuracy and stability of the
numerical methods introduced in Sections 3 and 4, respectively. The root mean square
errors (rmse) are used to evaluate the accuracy of the numerical results as follows:

rmse(f) =

√√√√ 1

N

N∑
j=1

(
fnumerical(tj)− f exact(tj)

)2
, (48)
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rmse(g) =

√√√√ 1

M

M∑
i=1

(
gnumerical(xi)− gexact(xi)

)2
. (49)

In all examples we take, for simplicity, T = 1, L = 1 and X0 = X1 = L/2 = 0.5.
Consequently, i0 = M/2 in (43). In all the inverse calculations we take M = N = 40.

5.1 Example 1

We consider the inverse problem (1)–(7) with unknown coefficients f(t) and g(x) and
solve this inverse problem with the input data

φ(x) = u(x, 0) = x2(x− 1)2 + 1, (50)

β(t) = u(0.5, t) =
17

16
(1 + t), ψ(x) = u(x, 1) = 2

(
x2(x− 1)2 + 1

)
,

α = g(0.5) =
16

17
. (51)

From this data one can observe that the conditions of Proposition 1 of Section 2 are
satisfied and hence the inverse problem has a unique solution given by (10)–(12) which
yield

f(t) =
1

1 + t
, g(x) =

−2 + 12x− 12x2

1 + x2 − 2x3 + x4
, (52)

u(x, t) =
(
x2(x− 1)2 + 1

)
(1 + t). (53)

We take the inital guess as

f 0(t) = 1− t

2
, g0(x) =

{
−2 + 100

17
x, 0 ≤ x ≤ 0.5,

66
17
− 100

17
x, 0.5 < x ≤ 1,

(54)

which are straight lines passing through f(0) = 1, f(1) = 1/2, and g(0) = −2, g(0.5) =
16/17, g(1) = −2.

Considering no noise and no regularization in the measurement data (4) and (5),
respectively, the objective function (43), as a function of a number of iterations plotted
in Figure 1, shows a rapid decrease to a low value of O(10−29) in 19 iterations. Figure 2
shows the exact and numerical solutions of the functions f(t) and g(x), respectively. From
this figure one it can be seen that very accurate solutions are obtained.
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Figure 1: Objective function (43) for Example 1 with no noise and no regularization.
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Next, we add a small amount of p = 0.01% noise to the measured data (4) and (5).
Then we expect that regularization is needed in order to achieve stable and accurate
results. The decreasing convergence of the objective function (43), as a function of the
number of iterations is shown in Figure 3 with and without regularization. Figure 4 shows
the graphs of the recovered functions. From Figure 4 it can be seen that, as expected,
when β1 = β2 = 0 we obtain unstable and inaccurate solutions because the problem is
ill-posed and very sensitive to noise. Thus regularization is needed in order to stabilise
the solutions. We selected by trial and error the regularization parameters β1 = 10−9 and
β2 = 10−7 which give stable and reasonable accurate solutions for the functions f(t) and
g(x). For more elaborate choices of multiple regularization parameters, see [1, 5].

The related numerical results for the temperature u(x, t) with p = 0.01% noise, and
with and without regularization, are presented in Figure 5 showing good agreement with
the exact solution (53).

Other details about number of iterations, the number of function evaluations, the
value of the objective function (43) at final iteration, the rmse(f) and rmse(g) in (48)
and (49), respectively, and the computational time are given in Table 1. Overall, from this
table as well as from Figures 1-5 it can be seen that accurate and stable numerical results
are rapidly achieved by the iterative MATLAB toolbox routine lsqnonlin minimizing the
objective function (43).
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Figure 2: (a) Coefficient f(t) and (b) coefficient g(x), for Example 1 with no noise and no

regularization.
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Table 1: Number of iterations, number of function evaluations, value of the objective func-
tion (43) at final iteration, rmse(f) and rmse(g), and computational time, for Example
1.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = 10−9, β2 = 10−7)

Number of iterations
Number of function evaluations
Value of objective function
(43) at final iteration
rmse(f)
rmse(g)
Computational time (sec)

19
1660
4.4E-29

0.0013
0.0156
163

36
3071
6.5E-11

0.1454
0.6698
306

46
3901
3.2E-6

0.1024
0.1634
386
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Figure 3: Objective function (43), for Example 1 with p = 0.01% noise, with and without
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Figure 5: The exact and approximate solutions for the temperatures u(x, t), for Example 1,

with (a) β1 = β2 = 0 and (b) β1 = 10−9, β2 = 10−7, for p = 0.01% noise. The absolute error

between them is also included.

5.2 Example 2

Consider the inverse problem (1)–(7) with the input data

φ(x) = u(x, 0) = 2 + cos(πx), (55)

β(t) = u(0.5, t) = 2e
t2

1+t , ψ(x) = u(x, 1) =
√
e(2 + cos(πx)), α = g(0.5) = 0. (56)

As in Example 1, the conditions of Proposition 1 are satisfied and the unique solution of
the inverse problem (1)–(7) is given by (10)–(12) which yield

f(t) =
t(t+ 2)

(t+ 1)2
, g(x) =

π2 cos(πx)

2 + cos(πx)
, (57)

u(x, t) = e
t2

1+t

(
2 + cos(πx)

)
. (58)
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We take the inital guess as

f 0(t) = 0, g0(x) =

{
π2

3
− 2π2

3
x, 0 ≤ x ≤ 0.5,

π2 − 2π2x, 0.5 < x ≤ 1.
(59)

Analogous quantities and conclusions to Figures 1–4 and Table 1 of Example 1 are pre-
sented and obtained in Figures 6–9 and Table 2 of Example 2.
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Figure 6: Objective function (43), for Example 2 with no noise and no regularization.
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Figure 7: (a) Coefficient f(t) and (b) coefficient g(x), for Example 2 with no noise and no

regularization.
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Table 2: Number of iterations, number of function evaluations, value of the objective func-
tion (43) at final iteration, rmse(f) and rmse(g), and computational time, for Example
2.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = 10−12, β2 = 10−11)

Number of iterations
Number of function evaluations
Value of objective function
(43) at final iteration
rmse(f)
rmse(g)
Computational time (mins)

16
1411
4.9E-27

0.0077
0.0025
2

39
3320
1.5E-10

0.1462
1.2917
5

52
4316
1.02E-8

0.1084
1.2847
7
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Figure 8: Objective function (43), for Example 2 with p = 0.01% noise, with and without

regularization.
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Figure 9: (a) Coefficient f(t) and (b) coefficient g(x), for Example 2 with p = 0.01% noise,

with and without regularization.

5.3 Example 3

The previous examples possessed an analytical solution available for the triple
(u(x, t), f(t), g(x)). In this section, we investigate an example for which an analytical
solution for u(x, t) is not available. We take the initial condition (2) given by

u(x, 0) = φ(x) =


1, 0 ≤ x < 1/4,
5
4
− x, 1/4 < x ≤ 1/2,

x+ 1
4
, 1/2 < x ≤ 3/4,

1, 3/4 < x ≤ 1,

(60)

which represents a non-smooth function. In the absence of an analytical solution for
u(x, t) being available we generate the input data (4) and (5) numerically by solving first
the direct problem given by (1)–(3) with φ(x) given by (60), and the known functions

f(t) = 1 + t, g(x) = 1 + x, (61)

using the FDM described in Section 3.
The numerical results for β(t) and ψ(x) in equations (4) and (5), respectivly, are shown

in Figure 10, for various M = N ∈ {20, 40, 80}. From this figure, it can be seen that the
numerical solution is convergent as the FDM mesh size decreases.
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In order to avoid committing an inverse crime the mesh that is used for numerically
simulating the measured data (4) and (5) by solving the direct problem is more dense
than the one used for the solution of the inverse problem, [8]. Consequently, in the inverse
problem we use the FDM with M = N = 40 and half of the data for β and ψ obtained
from solving the direct problem with M = N = 80. We also take the initial guess as

f 0(t) = 1, g0(x) = 1. (62)

The objective function (43) with no noise and no regularization, as a function of the
number of iterations, is plotted in Figure 11. From this figure it can be seen that a rapid
monotonic decrease to a low value of O(10−28) is achieved in about 12 iterations.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

t

β(t
)

 

 

M=N=20

M=N=40

M=N=80

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
18

18.5

19

19.5

20

x

ψ(
x)

 

 

M=N=20

M=N=40

M=N=80

Figure 10: (a) The numerically convergent solutions for β(t) and (b) ψ(x), for Example 3 with

various mesh sizes M = N ∈ {20, 40, 80} for the direct problem.

Figure 12 shows the exact and numerical solution of the unknown coefficients f(t) and
g(x), and one can see that the stable and accurate solutions are obtained.
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Figure 11: Objective function (43), for Example 3 with no noise and no regularization.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

t

f(t
)

 

 

Exact solution
Final iteration
Initial guess

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

1

1.2

1.4

1.6

1.8

2

x

g(x
)

 

 

Exact solution
Final iteration
Initial guess

Figure 12: (a) Coefficient f(t) and (b) coefficient g(x), for Example 3 with no noise and no

regularization.

Next, we add p = 0.01% noise to the measurements data (4) and (5). The objective
function (43), as a function of the number of iterations is shown in Figure 13 with and
without regularization. Figure 14 presents the graphs of the recovered functions. From
this figure one can observe that, as expected, when β1 = β2 = 0 we obtain unstable
and inaccurate solutions because the problem is ill-posed and very sensitive to noise. So,
regularization is needed in order to stabilize the solution which is achieved by selecting
β1 = β2 = 10−5, as illustrated in Figure 14.
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Table 3: Number of iterations, number of function evaluations, value of the objective func-
tion (43) at final iteration, rmse(f) and rmse(g), and computational time, for Example
3.

Numerical outputs
p = 0
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 0)

p = 0.01%
(β1 = β2 = 10−5)

Number of iterations
Number of function evaluations
Value of objective function
(43) at final iteration
rmse(f)
rmse(g)
Computational time (sec)

12
1079
5.00E-28

0.0036
1.4E-6
95

18
1577
5.2E-9

0.3373
0.5775
141

42
3486
1.9E-3

0.0446
0.1424
343
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Figure 13: Objective function (43), for Example 3 with p = 0.01% noise, with and without

regularization.
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Figure 14: (a) Coefficient f(t) and (b) coefficient g(x), for Example 3 with p = 0.01% noise,

with and without regularization.

Finally, the other details about number of iterations, the number of function evalua-
tions, the value of the objective function (43) at final iteration, the rmse(f) and rmse(g)
in (48) and (49), respectively, and the computational time, are given in Table 3. From
this table it can be seen that accurate and stable numerical results are achieved if regu-
larization is employed when inverting noisy data.

6 Conclusions

This paper has presented the determination of the time and space-dependent perfusion
coefficient from data measurements in the one-dimensional parabolic heat equation. The
direct solver based on a Crank-Nicolson finite difference scheme was employed. The
resulting inverse problem has been reformulated as a constrained regularized minimization
problem which was solved using the MATLAB optimization toolbox routine lsqnonlin.
The numerically obtained results are shown to be stable and accurate.
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Appendix A

Take X0 = π and throughout we shall use Wirtinger’s inequality

‖h‖L2(0,π) ≤ ‖h
′‖L2(0,π), ∀h ∈ C1[0, π] with h(0) = h(π) = 0. (A.1)

Inverse Problem: Let T > 0 and denote QT = (0, π)× (0, T ). Find the triplet

(u(x, t), f(t), g(x)) ∈ (C2(QT ) ∩ C1(QT ))× C1[0, T ]× C1[0, π] =: S (A.2)

satisfying the problem

ut = uxx +
(
f(t) + g(x)

)
u, (x, t) ∈ QT , (A.3)

u(x, 0) = φ(x), x ∈ [0, π], (A.4)

ux(0, t) = ux(π, t) = 0, t ∈ [0, T ], (A.5)

u(x, T ) = ψ(x), x ∈ [0, π], (A.6)

u(X0, t) = β(t), t ∈ [0, T ], (A.7)

g(X1) = α, (A.8)

where X0 and X1 are fixed points in (0, π).
We suppose that the input data (A.4)–(A.7) satisfy the compatibility conditions

φ′(0) = φ′(π) = ψ′(0) = ψ′(π) = 0, β(0) = φ(X0), β(T ) = ψ(X0). (A.9)

Theorem 1. (Uniqueness)
Suppose φ and ψ ∈ C4[0, π] and β ∈ C1[0, T ] satisfy φ > 0, ψ > 0 and β > 0 and the
compatibility conditions (A.9). Assume further that

? ? ? (A.10)

Then the inverse problem (A.3)–(A.8) has at most one classical solution in the space
S defined in (A.2).
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Lemma 1. Let z1 ≥ 0, a ∈ (0, 1), c ≥ 0, b > 0 satisfy

4bc ≤ (1− a)2, (A.11)

1− a−
√

(1− a)2 − 4bc

2b
≤ z1 ≤

1− a+
√

(1− a)2 − 4bc

2b
. (A.12)

Define the sequence

zn+1 = azn + bz2n + c, n ≥ 1. (A.13)

Then (zn)n≥1 is a decreasing sequence and, in particular,

0 ≤ zn ≤ z1, n ≥ 1. (A.14)

Proof: Let n = 1 in (A.13) to obtain

z2 = az1 + bz21 + c.

Using (A.13) and (A.12) it follows that 0 ≤ z2 ≤ z1. Let n ≥ 2 and suppose by
mathemaical induction that zn ≤ zn−1 and wish to show that zn+1 ≤ zn.
From (A.13) and zn ≤ zn−1 we have that

zn+1 = azn + bz2n + c ≤ azn−1 + bz2n−1 + c = zn,

which concludes the proof of lemma.

Proof of Theorem 1.
We follow Savateev (1995) and first remark that from the maximum principle, the
Harnack inequality and hypotheses of the theorem we can demonstrate that any
smooth solution to the inverse problem satisfies

u > 0 in QT . (A.15)

Then we can define

u = ev (A.16)

and, for the new function v, equations (A.3)–(A.7) recast as

vt = vxx + v2x + f(t) + g(x), (x, t) ∈ QT , (A.17)

v(x, 0) = Φ(x) := ln(φ(x)), x ∈ [0, π], (A.18)

vx(0, t) = vx(π, t) = 0, t ∈ [0, T ], (A.19)

v(x, T ) = Ψ(x) := ln(ψ(x)), x ∈ [0, π], (A.20)

v(X0, t) = β1(t) := ln(β(t)), t ∈ [0, T ]. (A.21)
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Differentiating (A.17) with respect to x we eliminate f(t) and obtain

vtx = vxxx + 2vxvxx + g′(x), (x, t) ∈ QT . (A.22)

Differentiating (A.22) with respect to t we eliminate g′(x) and obtain

wt = wxx + 2
(∫ t

T

w(x, τ)dτ + Ψ′(x)
)
wx + 2

(∫ t

T

wx(x, τ)dτ + Ψ′′(x)
)
w,

(x, t) ∈ QT , (A.23)

where

w = vtx. (A.24)

Gathering (A.18)–(A.20) and (A.22) we can obtain:

w(x, T )− w(x, 0) = θ(x), x ∈ [0, π], (A.25)

w(0, t) = w(π, t) = 0, t ∈ [0, T ], (A.26)

where

θ(x) =
d

dx

[ψ′′(x)

ψ(x)
− φ′′(x)

φ(x)

]
. (A.27)

With the unknown functions f(t) and g(x) eliminated we shall now show that the
problem (A.23), (A.25) and (A.26) has a unique solution.
Set N := w(1) − w(2), where w(i), i = 1, 2 are two solutions of (A.23), (A.25) and
(A.26) and let us show that N ≡ 0. We have that N satisfies the problem

Nt = Nxx + 2
(
w(1)
x

∫ t

T

N(x, τ)dτ +Nx

∫ t

T

w(2)(x, τ)dτ

+w(1)

∫ t

T

Nx(x, τ)dτ +N

∫ t

T

w(2)
x (x, τ)dτ

)
, (x, t) ∈ QT , (A.28)

N(x, T )−N(x, 0) = 0, x ∈ [0, π], (A.29)

N(0, t) = N(π, t) = 0, t ∈ [0, T ]. (A.30)

Multiply (A.28) with N and integrate over QT to obtain, using (A.26), (A.29) and
(A.30), that∫

QT

N2
x(x, t)dxdt = 2

∫ T

0

∫ π

0

Nx(x, t)
[
w(1)(x, t)

∫ T

t

N(x, τ)dτ

+N(x, t)

∫ T

t

w(2)(x, τ)dτ
]
dxdt, (A.31)

where we have used that (A.28) can be rewritten as

Nt = Nxx + 2
[ ∂
∂x

(
w(1)(x, t)

∫ t

T

N(x, τ)dτ
)

+
∂

∂x

(
N(x, t)

∫ t

T

w(2)(x, τ)dτ
)]
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and integration by parts. Let us first rewrite (A.31) as

1

2

∫
QT

N2
x(x, t)dxdt = I1 + I2, (A.32)

where

I1 =

∫ T

0

∫ π

0

Nx(x, t)w
(1)(x, t)

(∫ T

t

N(x, τ)dτ
)
dxdt, (A.33)

I2 =

∫ T

0

∫ π

0

Nx(x, t)N(x, t)
(∫ T

t

w(2)(x, τ)dτ
)
dxdt. (A.34)

We shall employ Cauchy’s inequality and Wirtinger’s inequality (A.1) repeatedly, as
follows:

I1 ≤
(∫

QT

N2
x(x, t)dxdt

)1/2
J1, (A.35)

where

J2
1 :=

∫ T

0

∫ π

0

{(
w(1)(x, t)

)2(∫ T

t

N(x, τ)dτ
)2}

dxdt

=

∫ T

0

∫ π

0

{(∫ x

0

w(1)
x (y, t)dy

)2(∫ T

t

N(x, τ)dτ
)2}

dxdt. (A.36)

Use that (∫ x

0

w(1)
x (y, t)dy

)2
≤
(∫ x

0

|w(1)
x (y, t)|dy

)2
≤
(∫ π

0

|w(1)
x (x, t)|dx

)2
,

(∫ T

t

N(x, τ)dτ
)2
≤

(∫ T

t

(∫ x

0

Nx(y, τ)dy
)
dτ

)2

≤

(∫ T

t

(∫ x

0

|Nx(y, τ)|dy
)
dτ

)2

≤

(∫ T

t

(∫ π

0

|Nx(x, τ)|dx
)
dτ

)2

≤ πT

∫
QT

|Nx(x, t)|2dxdt,

where we have used (A.26) and (A.29). Introducing these into (A.36) we obtain

J2
1 ≤ πT

∫ T

0

∫ π

0

(∫ π

0

|w(1)
x (x, t)|dx

)2(∫ T

0

∫ π

0

|Nx(x, t)|2dxdt
)
dxdt

≤ πT
(∫

QT

|Nx(x, t)|2dxdt
)
π

∫ T

0

(∫ π

0

|w(1)
x (x, t)|dx

)2
dt

≤ π3T
(∫

QT

|Nx(x, t)|2dxdt
)∫ T

0

(∫ π

0

|w(1)
x (x, t)|2dx

)
dt. (A.37)

Combining this with (A.35) we obtain

I1 ≤
(∫

QT

|Nx(x, t)|2dxdt
)
π3/2T 1/2

(∫ T

0

(∫ π

0

|w(1)
x (x, t)|2dx

)
dt

)1/2

=
(∫ T

0

‖Nx(., t)‖2L2(0,π)dt
)
π3/2T 1/2

(∫ T

0

‖w(1)
x (., t)‖2L2(0,π)dt

)1/2
. (A.38)
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Similarly, we can estimate I2 as follows. From (A.34) we have

I2 ≤
(∫

QT

N2
x(x, t)dxdt

)1/2
J2, (A.39)

where

J2
2 :=

∫ T

0

∫ π

0

{
N2(x, t)

(∫ T

t

w(2)(x, τ)dτ
)2}

dxdt.

In (A.37), just replacing w(1) by N and N by w(2) we get

J2
2 ≤ π3T

(∫
QT

|w(2)
x (x, t)|2dxdt

)∫ T

0

(∫ π

0

|Nx(x, t)|2dx
)
dt. (A.40)

Finally, combining (A.39) and (A.40) we obtain

I2 ≤ π3/2T 1/2
(∫ T

0

‖Nx(., t)‖2L2(0,π)dt
)(∫ T

0

‖w(2)
x (., t)‖2L2(0,π)dt

)1/2
. (A.41)

Combining (A.38) and (A.41) in (A.32) we obtain∫ T

0

‖Nx(., t)‖2L2(0,π)dt

≤ 2π3/2T 1/2

∫ T

0

‖Nx(., t)‖2L2(0,π)dt

[(∫ T

0

‖w(1)
x (., t)‖2L2(0,π)dt

)1/2
+
(∫ T

0

‖w(2)
x (., t)‖2L2(0,π)dt

)1/2]
. (A.42)

It remains to estimate the terms in the square bracket of (A.42).
Define

ω(x, t) = eαtw(x, t)

where α > 0 will be prescribed later. Then (A.23), (A.25) and (A.26) become

ωt = ωxx + 2
(∫ t

T

ω(x, τ)e−ατdτ + Ψ′(x)
)
ωx

+2
(∫ t

T

ωx(x, τ)e−ατdτ + Ψ′′(x)
)
ω + αω, (A.43)

ω(x, T )e−αT − ω(x, 0) = θ(x), x ∈ [0, π], (A.44)

ω(0, t) = ω(π, t) = 0, t ∈ [0, T ]. (A.45)

As in Savateev (1995), consider the sequence of linear problems

ωn+1
t = ωn+1

xx + 2
(∫ t

T

ωn(x, τ)e−ατdτ + Ψ′(x)
)
ωnx

+2
(∫ t

T

ωnx(x, τ)e−ατdτ + Ψ′′(x)
)
ωn + αωn, (A.46)
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ωn+1(x, 0) = ωn(x, T )e−ατ − θ(x), x ∈ [0, π], (A.47)

ωn+1(0, t) = ωn+1(π, t) = 0, t ∈ [0, T ], (A.48)

for n ≥ 0, starting with ω0 ≡ 0.
Multiply (A.46) by ωn+1 and integrate by parts with respect to x in L2(0, π) using
(A.48) to obtain

1

2

d

dt
‖ωn+1(., t)‖2L2(0,π) + ‖ωn+1

x (., t)‖2L2(0,π) = α(ωn, ωn+1)L2(0,π)

−2
((∫ t

T

ωn(x, τ)e−ατdτ + Ψ′(x)
)
ωn, ωn+1

x

)
L2(0,π)

, n ≥ 0. (A.49)

In what follows, we write ‖.‖L2(0,π) as ‖.‖.
We shall repeatedly apply the Young’s inequality

ab ≤ a2

2ε
+
εb2

2
valid for any ε > 0 (A.50)

and the Wirtinger’s inequality (A.1).
We estimate each term in the right hand side of (A.49). Using (A.48), (A.1) and
(A.50) we get

α(ωn, ωn+1) ≤ α2‖ωn‖2 +
1

4
‖ωn+1‖2 ≤ α2‖ωnx‖

2 +
1

4
‖ωn+1

x ‖2, n ≥ 0, (A.51)

2
((∫ t

T

ωn(x, τ)e−ατdτ
)
ωn, ωn+1

x

)
≤ 8

∫ π

0

(ωn)2
(∫ t

T

ωne−ατdτ
)2
dx+

1

8
‖ωn+1

x (., t)‖2

= 8

∫ π

0

(ωn)2
[ ∫ t

T

e−ατ
(∫ x

0

ωnx(y, τ)dy
)
dτ
]2
dx+

1

8
‖ωn+1

x (., t)‖2

≤ 8Tπ

∫ π

0

(
ωn(x, t)

)2
dx
(∫ T

0

∫ π

0

(
ωnx(x, t)

)2
dxdt

)
+

1

8
‖ωn+1

x (., t)‖2

= 8Tπ‖ωnx(., t)‖2
(∫ T

0

‖ωnx(., t)‖2dt
)

+
1

8
‖ωn+1

x (., t)‖2. (A.52)

The final term in (A.49) is estimated as (use (A.1))

2
(

Ψ′(x)ωn, ωn+1
x

)
≤ 8

∫ π

0

Ψ
′2(x)

(
ωn(x, t)

)2
dx+

1

8
‖ωn+1

x (., t)‖2

≤ 8
(

max
x∈[0,π]

Ψ
′2(x)

)
‖ωnx(., t)‖2 +

1

8
‖ωn+1

x (., t)‖2. (A.53)

Combining (A.51)–(A.53) in (A.49) we obtain

1

2

d

dt
‖ωn+1(., t)‖2 + ‖ωn+1

x (., t)‖2 ≤ ‖ωnx(., t)‖2
{
α2 + 8 max

x∈[0,π]
Ψ

′2(x)

+8Tπ
(∫ T

0

‖ωnx(., t)‖2dt
)}

+
1

2
‖ωn+1

x (., t)‖2, (A.54)
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or,

d

dt
‖ωn+1(., t)‖2 + ‖ωn+1

x (., t)‖2 ≤ 2
{
α2 + 8 max

x∈[0,π]
Ψ

′2(x)

+8Tπ
(∫ T

0

‖ωnx(., t)‖2dt
)}
‖ωnx(., t)‖2, n ≥ 0. (A.55)

Integrate (A.55) with respect to t from 0 to T and use (A.44) and (A.45) to obtain

‖ωn+1(., T )‖2 +

∫ T

0

‖ωn+1
x (., t)‖2dt ≤ 2‖θ‖2 + 2e−2αT

[
‖ωn(., T )‖2

+e2αT
(
α2 + 8 max

x∈[0,π]
Ψ

′2(x)
)∫ T

0

‖ωnx(., t)‖2dt

]
+ 16Tπ

(∫ T

0

‖ωnx(., t)‖2dt
)2
. (A.56)

Put

yn = ‖ωn(., T )‖2 +

∫ T

0

‖ωnx(., t)‖2dt. (A.57)

From (A.42) and (A.57) we require

4π3/2T 1/2y
1/2
1 < 1. (A.58)

Take b = 16πT, c = 2‖θ‖2, a = 2e−2αT . According to the conditions of Lemma 1 we
require

a = 2e−2αT ∈ (0, 1), (A.59)

1− a = 1− 2e−2αT ≥
√

4bc = 8
√

2πT ||θ||, (A.60)

1− a−
√

(1− a)2 − 4bc

2b
≤ y1 ≤

1− a+
√

(1− a)2 − 4bc

2b
. (A.61)

Also, to satisfy (A.13), see (A.56), we observe that

ayn + by2n + c = 2e−2αT
(
‖ωn(., T )‖2 +

∫ T

0

‖ωnx(., t)‖2dt
)

+16πT
(
‖ωn(., T )‖2 +

∫ T

0

‖ωnx(., t)‖2dt
)2

+ 2‖θ‖2 ≥ yn+1, n ≥ 0, (A.62)

provided that

e2αT
(
α2 + 8 max

x∈[0,π]
Ψ

′2(x)
)
≤ 1. (A.63)

But since y0 = 0 we use (A.62) only for n ≥ 1 and we just need to estimate y1.
For n = 0, the system (A.46)-(A.48) gives

ω1
t = ω1

xx, (x, t) ∈ QT , (A.64)
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ω1(x, 0) = −θ(x), x ∈ [0, π], (A.65)

ω1(0, t) = ω1(π, t) = 0, t ∈ [0, T ]. (A.66)

Separation of variables gives

ω1(x, t) =
∞∑
n=1

An sin(nx)e−n
2t, ω1

x(x, t) =
∞∑
n=1

nAn cos(nx)e−n
2t, (A.67)

where

An = − 2

π

∫ T

0

θ(x) sin(nx)dx, n ≥ 1. (A.68)

Then

‖ω1(., T )‖2 =
∞∑
n=1

A2
ne
−2n2T , ‖w1

x(., t)‖
2 =

∞∑
n=1

n2A2
ne
−2n2t,∫ T

0

‖w1
x(., t)‖

2dt =
1

2

∞∑
n=1

A2
n

(
1− e−2n2T

)
, (A.69)

and

y1 = ‖ω1(., T )‖2 +

∫ T

0

‖ω1
x(., t)‖

2dt =
1

2

∞∑
n=1

A2
n

(
1 + e−2n

2T
)
. (A.70)

Remark that from (A.70)

||θ||2

2
=

1

2

∞∑
n=1

A2
n ≤ y1 ≤

∞∑
n=1

A2
n = ‖θ‖2. (A.71)

Note that if ||θ||= 0 then y1 = 0.
Provided that there exists α > 0 satisfying (A.59)–(A.61) and (A.63) we can apply
the Lemma 1 and conclude that yn is decreasing sequence and

0 ≤ yn ≤ y1, ∀n ≥ 1. (A.72)

Passing to the limit as n→∞, and using (A.42) and (A.58) are obtains that

||Nx(., t)||2L2(0,π)= 0, ∀t ∈ [0, T ], (A.73)

and here Nx(., .) ≡ 0 or using (A.30) that N ≡ 0. Thus the uniqueness of solution
holds under the above caveat.
Remark that a necessary condition to satisfy (A.59) and (A.63) is

ln(2)

2T
≤ α ≤ 1√

2
. (A.74)
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