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Summary

Understanding how transcriptional enhancers control over 20,000 protein-coding genes to 

maintain cell type-specific gene expression programs in all human cells is a fundamental challenge 

in regulatory biology. Recent studies suggest that gene regulatory elements and their target genes 

generally occur within insulated neighborhoods, which are chromosomal loop structures formed 

by the interaction of two DNA sites bound by the CTCF protein and occupied by the cohesin 

complex. We review here evidence that insulated neighborhoods provide for specific enhancer-

gene interactions, are essential for both normal gene activation and repression, form a 

chromosome scaffold that is largely preserved throughout development, and are perturbed by 

genetic and epigenetic factors in disease. Insulated neighborhoods are a powerful paradigm for 

gene control that provides new insights into development and disease.

Preamble

Many recent reports describe evidence that specific chromosome structures play important 

roles in gene control. A core principle that has emerged from these studies is that genes and 

their regulatory elements typically occur together within specific DNA loop structures, 

which we have called “insulated neighborhoods”. Here we review evidence that insulated 

neighborhoods are structural and functional units of gene control, and explain how they are 

used during development to control the diverse cell identities that contribute to complex 

animals. We explain how insulated neighborhoods form the mechanistic basis of higher-

order chromosome structures such as Topologically Associating Domains (TADs), discuss 
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how genetic and epigenetic perturbations of neighborhood boundaries contribute to disease, 

and outline how further study of neighborhood structure and function will lead to additional 

insights into development and disease. There are other excellent reviews that provide 

historical perspective and summarize key insights into chromosome structure (Bickmore and 

van Steensel, 2013; Cavalli and Misteli, 2013; de Laat and Duboule, 2013; Dekker and 

Heard, 2015; Dekker and Mirny, 2016; Gibcus and Dekker, 2013; Gorkin et al., 2014; 

Merkenschlager and Nora, 2016; Phillips and Corces, 2009; Phillips-Cremins and Corces, 

2013); here we focus on the insulated neighborhood as a model for further exploration of the 

principles that underpin gene control in mammalian systems.

The enhancer-gene specificity conundrum

Cell type specific gene expression programs in humans are generally controlled by gene 

regulatory elements called enhancers (Buecker and Wysocka, 2012; Heinz et al., 2015; 

Levine et al., 2014; Ong and Corces, 2011; Ren and Yue, 2015). Enhancers, first described 

over 30 years ago (Banerji et al., 1981; Benoist and Chambon, 1981; Gruss et al., 1981), are 

segments of DNA that are typically a few hundred base pairs in length and are occupied by 

multiple transcription factors that recruit co-activators and RNA polymerase II to target 

genes (Bulger and Groudine, 2011; Spitz and Furlong, 2012; Tjian and Maniatis, 1994). 

Tens of thousands of enhancers are estimated to be active in any given human cell type 

(ENCODE Project Consortium et al., 2012; Roadmap Epigenomics et al., 2015). Enhancers 

and their associated factors can regulate expression of genes located far upstream or 

downstream by looping to the promoters of these genes, so the features that cause enhancers 

to regulate only specific genes, generally on their own chromosomes, has been something of 

a mystery for several decades (Figure 1A). This mystery, which we will call the enhancer-

gene specificity conundrum, is important to solve because the majority of disease-associated 

non-coding variation occurs in the vicinity of enhancers and thus likely impacts these 

enhancers’ target genes (Ernst et al., 2011; Farh et al., 2015; Hnisz et al., 2013; Maurano et 

al., 2012).

Some of the specificity of enhancer-gene interactions may be due to the interaction of DNA-

binding transcription factors at enhancers with specific partner transcription factors at 

promoters (Butler and Kadonaga, 2001; Choi and Engel, 1988; Ohtsuki et al., 1998). Each 

cell type expresses hundreds of different transcription factors and these bind to DNA 

sequences in enhancers and in promoter-proximal regions. Diverse factors bound at these 

two sites interact with large cofactor complexes and could, in principle, interact with one 

another to produce some degree of enhancer-gene specificity (Zabidi et al., 2015). It is not 

clear to what extent this mechanism contributes to specific enhancer-gene interactions 

throughout the human genome. Another potential solution to the enhancer-gene specificity 

conundrum lies in insulators, which are regulatory elements that can block the ability of an 

enhancer to activate a gene when located between them (Chung et al., 1993; Geyer and 

Corces, 1992; Kellum and Schedl, 1991; Udvardy et al., 1985). Insulators are bound by the 

transcription factor CTCF (Bell et al., 1999), but only a minority of CTCF sites function as 

insulators (Liu et al., 2015). The features that distinguish the subset of CTCF sites that 

function as insulators are not understood, so the extent to which insulators provide a solution 

to the enhancer-gene specificity conundrum has not been clear (Figure 1B).
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Chromosome structure constrains enhancer-gene interactions

The idea that chromosome structures can influence phenotypic traits is nearly as old as the 

chromosome theory of inheritance (Boveri, 1909), but only recently have studies of 

chromosome structure suggested how enhancers might be constrained to interact with 

specific genes (Figure 2A). In situ hybridization techniques and microscopy have revealed 

that individual interphase chromosomes tend to occupy small portions of the nucleus, called 

“chromosome territories”, rather than spreading throughout this organelle (Cremer and 

Cremer, 2010); interactions between chromosomes would be minimized in this manner. 

Furthermore, individual chromosomes are partitioned into megabase- sized topologically 

associating domains (TADs), regions with relatively high intradomain DNA interaction 

frequencies as measured by Hi-C chromosome conformation capture data (Dixon et al., 

2012; Nora et al., 2012). These TADs, which have similar boundaries in all human cell types 

examined, have been proposed to constrain enhancer-gene interactions because most DNA 

contacts occur within the TADs (Dixon et al., 2015; Dixon et al., 2012). This structuring of 

the genome helps explain why enhancer-gene interactions rarely occur between 

chromosomes and tend to be constrained within megabase-sized domains. However, they 

provide only limited insight into the molecular mechanisms that engender specific enhancer-

gene interactions within TADs, which contain, on average, about eight genes whose 

expression is weakly correlated.

Further understanding of the mechanisms that engender specific enhancer-gene interactions 

have come from genome-wide maps of the proteins that bind enhancers, promoters and 

insulators, together with knowledge of the physical contacts that occur between these 

elements (Chepelev et al., 2012; DeMare et al., 2013; Dowen et al., 2014; Fullwood et al., 

2009; Handoko et al., 2011; Phillips-Cremins et al., 2013; Tang et al., 2015). In the models 

that emerge from these data, each chromosome contains thousands of DNA loops, formed by 

the interaction of two CTCF molecules bound to different sites, and reinforced by a cohesin 

molecule (Figure 2A). Enhancer-bound proteins are constrained such that they tend to 

interact only with genes within these CTCF-CTCF loops. As described below, the subset of 

CTCF sites that form these “loop anchors” thus function to insulate enhancers and genes 

within the loop from enhancers and genes outside the loop. For these and other reasons, 

these CTCF-CTCF DNA loops have been called “insulated neighborhoods”.

Insulated neighborhoods

Insulated neighborhoods have been defined as chromatin loops that are formed by a CTCF-

CTCF homodimer, co-bound with cohesin, and contain at least one gene (Dowen et al., 

2014; Ji et al., 2016). In human embryonic stem cells (ESCs), there are ~13,000 insulated 

neighborhoods, which range from 25 kb to 940 kb in size, and contain from 1 – 10 genes 

(Figure 2B) (Dowen et al., 2014; Ji et al., 2016). The median insulated neighborhood is 

~190kb and contains 3 genes. These numbers will vary depending on assumptions made for 

filtering genomic data, as described below, but they provide an initial description of genomic 

loops useful for further analysis. We describe below evidence that insulated neighborhood 

loop anchors have insulating properties, that they are largely maintained during 
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development, and that the subset of CTCF sites that form neighborhood loop anchors are 

especially conserved in the human germline and in primates.

Evidence for Insulation

Three lines of evidence argue that insulated neighborhood structures have insulating 

boundaries. The majority of enhancer-gene interactions occur within the insulated 

neighborhoods (Figure 2C). Perturbation of insulated neighborhood anchor sequences leads 

to local gene dysregulation (Figure 2D). Somatic mutations in multiple tumor types alter 

insulated neighborhood anchor sequences in order to activate oncogenes (Figure 2E). These 

lines of evidence, described in more detail below, indicate that the insulating function of the 

neighborhood loop anchors is generally necessary for normal gene activation and repression.

The vast majority of enhancer-gene interactions occur within insulated neighborhoods 

(Dowen et al., 2014; Hnisz et al., 2016; Ji et al., 2016; Phillips-Cremins et al., 2013). For 

example, in human ESCs, ~97% of all enhancer or promoter-related DNA loops occur 

within insulated neighborhood boundaries (Figure 2C) (Ji et al., 2016). Similarly, in T cell 

leukemia cells, ~90% of all enhancer or promoter-related DNA loops occur within insulated 

neighborhood boundaries (Hnisz et al., 2016). It is also possible to estimate each 

neighborhood’s insulation efficacy using an “insulation score.” The insulation score of a 

neighborhood is calculated as the percentage of enhancer-promoter interactions that are fully 

contained within the neighborhood. In human ES cells, 59% of insulated neighborhoods 

have an insulation score of 100%.

Genetic perturbation of neighborhood anchor sequences has provided evidence for their 

structural and functional roles as insulators (Dowen et al., 2014; Flavahan et al., 2016; Hnisz 

et al., 2016; Ji et al., 2016; Narendra et al., 2015). In a dozen loci and in multiple cell types, 

CRISPR/Cas9 deletion of CTCF binding sites at the anchors of insulated neighborhoods 

have been shown to produce changes in the expression of genes within the neighborhoods 

and immediately adjacent to the deleted neighborhood boundary. For example, the 

miR-290–295 miRNA gene cluster, which plays important roles in ES cell pluripotency, 

occurs within an insulated neighborhood together with a super-enhancer; when a CTCF loop 

anchor site of this neighborhood was deleted, there was a reduction in expression of the 

miRNA precursor and activation of an adjacent gene outside of the neighborhood 

concomitant with looping of the super-enhancer to this outside gene (Figure 2D). 

Furthermore, when genes occur within multiple nested insulated neighborhoods, deletion of 

multiple boundary sites were required to observe changes in gene expression (Dowen et al., 

2014). Thus, insulated neighborhood boundaries constrain the activity of enhancers to genes 

within the neighborhood. Insulated neighborhood boundaries are also necessary to maintain 

repression of genes within the neighborhood; deletion of a CTCF anchor of an insulated 

neighborhood containing a Polycomb repressed gene led to the activation of that gene 

(Dowen et al., 2014).

The finding that cancer cells can activate oncogenes through somatic mutations or epigenetic 

modifications that disrupt insulated neighborhood boundaries provides additional evidence 

that neighborhood loop anchors have functional insulating properties (Figure 2E) (Flavahan 

et al., 2016; Hnisz et al., 2016; Katainen et al., 2015). Silent proto-oncogenes typically occur 
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within insulated neighborhoods and genetic modification of the neighborhood loop anchors 

can cause activation of these oncogenes (Flavahan et al., 2016; Hnisz et al., 2016). Somatic 

mutations occur frequently and recurrently in the loop anchors of oncogene-containing 

Insulated neighborhoods in a variety of cancer cells (Figure 2E). Indeed, the CTCF DNA-

binding motif in loop anchor regions is among the most altered human transcription factor-

binding sequence in cancer cells (Ji et al., 2016). These observations are consistent with the 

idea that mutations that alter the loop anchor sites of oncogene-containing insulated 

neighborhoods make an important contribution to the misregulation of gene expression that 

is inherent to the cancer state (Flavahan et al., 2016; Hnisz et al., 2016; Katainen et al., 

2015).

Maintenance of loop anchors during development

The majority of insulated neighborhoods that have been mapped in human ES cells appear to 

be maintained during development because the experimental evidence indicates that CTCF 

binding and CTCF-CTCF loop structures are very similar in many other human cells (Ji et 

al., 2016). This constitutive behavior is consistent with the observation that CTCF is 

expressed in all cell types examined (Phillips and Corces, 2009). While different cell types 

share very similar insulated neighborhood boundaries, the enhancer-gene interactions that 

occur within these neighborhoods are cell-type specific because enhancer activity is cell-

type specific (Figure 3) (Ji et al., 2016; Smith et al., 2016).

Evolutionary conservation

The CTCF sites that form insulated neighborhood boundaries are evolutionarily conserved. 

Human germline variation is rare in CTCF binding sites at insulated neighborhood 

boundaries and few GWAS variants occur in these sites (Ji et al., 2016). Analysis of CTCF-

binding sites across primates indicates that the DNA sequence in anchor regions of insulated 

neighborhoods is far more conserved in primates than in regions bound by CTCF that do not 

participate in neighborhood loops (~55% of CTCF binding sites in the human genome do 

not appear to participate in insulated neighborhood loops) (Ji et al., 2016).

A subset of CTCF-CTCF loops connect enhancers and promoters, while others contribute 
to recombination

Although most CTCF-CTCF loops form insulated neighborhoods (Figure 2C), a subset of 

CTCF-CTCF loops (~19% in hESCs) occur at enhancer-promoter interaction sites. We infer 

that these interactions facilitate gene activation; previous studies have noted that some genes 

interact with their enhancers by this mechanism (Ong and Corces, 2014).

CTCF- and cohesin-associated loops also play essential roles in V(D)J recombination of the 

immunoglobulin heavy-chain in developing lymphocytes. Recombinase-assisted 

rearrangements of DNA segments encoding regions of antigen binding receptors occur 

during the development of cells of the adaptive immune system. CTCF-CTCF looping has 

been implicated in bringing these segments into spatial proximity and also in constraining 

the off-target effects of the recombinase (Dong et al., 2015; Hu et al., 2015). Thus a subset 

of CTCF-CTCF loops have evolved to control DNA recombination. It is possible that these 
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CTCF-CTCF loops and the enhancer-promoter CTCF-CTCF loops may also act as insulated 

neighborhoods.

Insulated neighborhoods are the mechanistic basis of TADs

TADs are megabase- sized domains with relatively high DNA interaction frequencies and 

are identified using a Hidden Markov Model-based analysis of Hi-C chromosome 

conformation capture data (Dixon et al., 2012; Nora et al., 2012). Two observations argue 

that TADs are generally composed of, and likely structured by, insulated neighborhoods.

Cohesin ChIA-PET data was used to identify insulated neighborhoods and the enhancer-

promoter interactions that occur within them because cohesin occupies both CTCF-CTCF 

insulators and enhancer-promoter interaction sites (Kagey et al., 2010). This ChIA-PET 

DNA interaction data is biased: it is enriched for interaction sites where cohesin is present. 

Hi-C interaction data does not have this bias: it identifies interactions that should be 

independent of the functions of any one protein. Nonetheless, the TADs identified by 

processing Hi-C data with the Hidden Markov algorithm (Dixon et al., 2012; Nora et al., 

2012) can also be identified when this algorithm is used to process cohesin ChIA-PET data 

(Ji et al., 2016). Murine and human ESC ChIA-PET data, processed with the same Hidden 

Markov Model, captures most TAD boundaries derived from Hi-C data in murine and 

human ESCs (Figure 4A). These results suggest that insulated neighborhoods are a major 

structuring component of TADs.

ChIA-PET data revealed that at least 50% of TADs have TAD-spanning CTCF-CTCF loops 

(Ji et al., 2016) and are thus insulated neighborhoods. Because the existing ChIA-PET data 

is not saturating, this is a minimal estimate; it is possible that the majority of TADs have 

TAD-spanning CTCF-CTCF loops. Some TADs appear to be a single insulated 

neighborhood, while others consist of multiple nested or multiple independent insulated 

neighborhoods (Figure 4B–D). TADs were originally discovered using Hi-C data that had 

~40kb resolution, and improvements of the experimental and analytical aspects of Hi-C 

methods revealed that many TADs are composed of smaller TAD-like domains at higher 

resolution (Schmitt et al., 2016). It is thus possible that all high-resolution TADs are 

insulated neighborhoods and vice-versa, and so the CTCF-CTCF loops that encompass 

insulated neighborhoods, together with the enhancer-promoter loops within them, likely 

form the mechanistic basis of most interphase chromosome structures.

Relationships between insulated neighborhoods and other DNA loop 

models

Mammalian chromosome loop structures have been reported in multiple studies, which have 

used different descriptors for these loops, including sub-TADs, loop domains, and CTCF-

contact domains (Phillips-Cremins et al., 2013; Rao et al., 2014; Tang et al., 2015). An 

analysis of the structures described in these studies suggests that they generally represent the 

same structural unit as the insulated neighborhoods described here (Figure 5).
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Pioneering studies using 5C-technology first described TAD subtopologies, termed “sub-

TADs”, together with the structuring proteins CTCF and cohesin, at seven genomic loci in 

murine ESCs (Phillips-Cremins et al., 2013). Sub-TADs were found to be constitutively 

present in multiple cell types and cell type-specific enhancer-promoter contacts occurred 

within sub-TAD boundaries (Phillips-Cremins et al., 2013). Examination of several of the 

sub-TAD loop structures (e.g., at the Nanog and Olig1-2 loci) reveals that they are among 

the insulated neighborhoods described for murine ESCs (Dowen et al., 2014; Phillips-

Cremins et al., 2013). Although these early studies of sub-TAD structures did not test the 

insulating properties of the sub-TADs, this may be one of the earliest descriptions of what 

we now term insulated neighborhoods. Another study used high-resolution hi-C technology 

to identify ~5,000 chromatin loops whose boundaries are occupied by CTCF and cohesin in 

multiple human cell types; these were termed “loop domains” (Rao et al., 2014). This and 

other studies have noted that the DNA binding motif of CTCF is asymmetric and thus 

directional, and the CTCF anchors of >90% the loop domains occur in a convergent 

orientation (de Wit et al., 2015; Gomez-Marin et al., 2015; Guo et al., 2015; Ji et al., 2016; 

Vietri Rudan et al., 2015). The convergent orientation of CTCF motifs in the anchors is also 

a general feature of insulated neighborhoods (Ji et al., 2016). A recent study mapped CTCF-

associated contacts genome-wide using CTCF ChIA-PET and revealed ~2,000 “CTCF-

contact domains (CCDs)” in human cells (Tang et al., 2015). CTCF-contact domains are 

clusters of CTCF-associated chromatin loops that appear separated from other CTCF-

associated loops. The vast majority of RNA Polymerase II-associated interactions (e.g. 

enhancer-promoter loops) were found to occur within the boundaries of CTCF-contact 

domains. The anchor sites of CTCF contact domains are bound by CTCF and cohesin, and 

the CTCF anchors of ~90% of the CTCF contact domains occur in a convergent orientation 

(Tang et al., 2015). These features suggest that CTCF contact domains are either insulated 

neighborhoods or clusters of insulated neighborhoods.

Comparison of insulated neighborhoods with loop domains and CTCF contact domains in 

the same cell type suggests extensive overlap between these structures. For example, 70% of 

loop domains, and 54% CTCF contact domains have the same boundaries as an insulated 

neighborhood in human lymphoblastoid cells (Rao et al., 2014; Tang et al., 2015). 

Differences in experimental and analytical methods can explain many of the differences in 

loop structures reported by various studies; indeed, similarities among loop structures are 

more evident when data are analyzed with increasing stringency (Figure 5).

Insulated neighborhoods, gene regulation and disease

Gene regulation

Studies of gene control at imprinted loci were among the first to reveal the importance of 

CTCF loops in gene control and the role of DNA methylation in control of CTCF-associated 

loops. Parent-of-origin specific gene activity at the imprinted IGF2/H19 locus is controlled 

by allele-specific CTCF-CTCF interactions that constrain enhancer-gene contacts in a DNA 

methylation-dependent manner (Figure 6A) (Kurukuti et al., 2006; Murrell et al., 2004). An 

insulated neighborhood on the maternal allele allows an enhancer-promoter interaction that 

activates the H19 gene but not the IGF2 gene, which is excluded from the neighborhood. A 
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larger insulated neighborhood is formed on the paternal allele to allow an enhancer-promoter 

interaction that activates the IGF2 gene. Paternal allele-specific DNA methylation of a 

CTCF site in the H19 promoter region abrogates CTCF binding, thus causing differential 

CTCF-CTCF loop formation while silencing H19 expression (Bell and Felsenfeld, 2000; 

Hark et al., 2000; Kanduri et al., 2000; Szabo et al., 2000). Individuals who lose these allele-

specific insulated neighborhoods develop Beckwith-Wiedemann syndrome (when both 

alleles have the paternal type of insulated neighborhood; Figure 6B) or Silver-Russell 

syndrome (when both alleles have the maternal type of insulated neighborhood; Figure 6C) 

(Nativio et al., 2011).

Early studies of gene control at the beta-globin locus also demonstrated the importance of 

CTCF and its looping interactions in developmental control (Hou et al., 2008; Splinter et al., 

2006; Tolhuis et al., 2002). In vertebrates, the beta globin locus contains a cluster of fetal 

and adult globin genes, and the developmental control of these genes is exerted by an 

upstream regulatory element called the locus control region (LCR) (Figure 6D). In erythroid 

cells expressing globin genes, a large CTCF-CTCF loop encompasses the beta-globin genes 

and the locus control region (LCR), consistent with the organization of the locus in an 

insulated neighborhood. In fetal brain cells, CTCF binding to one of the beta-globin loop 

anchor regions is absent and CTCF-CTCF loop formation is not detected (Splinter et al., 

2006; Tolhuis et al., 2002), which suggests that tissue-specific CTCF-CTCF loops 

participate in developmental gene control.

Recent studies further support the view that the loop anchors of insulated neighborhoods 

play key roles in gene control. As described above, the vast majority of enhancer-promoter 

interactions occur within insulated neighborhoods in embryonic stem (ES) cells, and genetic 

perturbation of insulated neighborhood anchors leads to misregulation of local genes 

(Dowen et al., 2014; Ji et al., 2016). Positional information in the developing embryo 

depends on the precise expression of Homeobox (Hox) genes, and CTCF sites located 

within a Hox gene cluster play a critical role in proper expression of Hox genes (Narendra et 

al., 2015); some of these critical CTCF sites form insulated neighborhood anchors in ES 

cells. Hereditary mutations that invert or delete a TAD boundary at the EPHA4 locus have 

recently been linked to limb malformations in humans (Lupianez et al., 2015), and this TAD 

has a TAD-spanning CTCF-CTCF loop in ES cells, indicating that it is an insulated 

neighborhood. Inversion of a CTCF anchor has also been shown to cause altered enhancer-

promoter contacts at the protocadherin locus (Guo et al., 2015). The effect of insulated 

neighborhoods on signal-responsive gene expression also supports the concept of insulation; 

gene activation by NOTCH signaling in T-cells was found to be restricted to genes that occur 

within the same CTCF-CTCF loops as NOTCH-dependent enhancers (Wang et al., 2014).

Altered neighborhoods in cancer

Recent studies have revealed that mutations that alter the loop anchor sites of oncogene-

containing insulated neighborhoods make an important contribution to the misregulation of 

gene expression that is inherent to the cancer state (Flavahan et al., 2016; Hnisz et al., 2016; 

Katainen et al., 2015). Somatic mutations occur frequently and recurrently in loop anchors 

of oncogene-containing insulated neighborhoods in a variety of cancer cells and the CTCF 
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DNA-binding motif in loop anchor regions is among the most altered human transcription 

factor-binding sequence in cancer cells (Flavahan et al., 2016; Hnisz et al., 2016; Katainen et 

al., 2015). DNA hypermethylation occurs in some cancer cells, and tumor-specific DNA 

methylation has recently been implicated in the disruption of CTCF binding, alteration of 

chromosome structure and dysregulation of oncogene expression (Flavahan et al., 2016). 

Furthermore, chromosomal rearrangements such as translocations or deletions which 

activate oncogenes also disrupt insulated neighborhoods around those genes without altering 

the sequence of the gene itself (Groschel et al., 2014; Hnisz et al., 2016). Cancer genome 

sequencing has revealed that somatic mutations occur in CTCF and cohesin coding 

sequences in various solid tumors and leukemias (Lawrence et al., 2014), and it seems likely 

that these mutations contribute to oncogenesis by altering insulated neighborhoods.

Disease-associated variation in loop anchors

Genetic variants occur rarely in insulated neighborhood anchors. However, allelic non-

coding variants in CTCF loop anchors have been shown to correlate with allele-specific 

enhancer-promoter interactions (Tang et al., 2015). Among these, one variant, associated 

with asthma, disrupts CTCF binding and CTCF loop formation (Tang et al., 2015). A recent 

human population genetics study showed several genetic variants linked with an individual's 

lipid profile (e.g., LDL, HDL) and present within at least 1% of the population were found 

within CTCF binding sites (UK10K Consortium et al., 2015), and it is possible that these 

variants disrupt CTCF binding at insulated neighborhood boundaries. With the new 

knowledge of CTCF loop anchors in human cells, geneticists will likely identify additional 

genetic variants that contribute to non-cancer disease through disruption of insulators.

Target genes of disease-associated enhancer variation

Insulated neighborhood models provide a new approach to identify the target genes of 

disease-associated enhancer variation. Tens of thousands of non-coding genetic variants have 

been linked with various human diseases and traits in genome-wide association studies 

(GWAS), and the majority of these variants occur in enhancers (Ernst et al., 2011; Farh et 

al., 2015; Hnisz et al., 2013; Maurano et al., 2012). The identification of the target genes of 

these variants is challenging because proximity-based assignment has proven, in some cases, 

to be inaccurate. Mapping interactions between enhancers and promoters in disease-relevant 

cells improves the accuracy of the assignment (Grubert et al., 2015; McGeachie et al., 2016; 

Pomerantz et al., 2009), but this is not always feasible. Because insulated neighborhoods 

tend to be shared by different cell types, existing maps of insulated neighborhoods should 

allow investigators to develop a hypothesis regarding the potential target genes of enhancer-

associated variation (Figure 7A). For example, a recent study revealed that a genetic variant 

associated with obesity and previously assigned to the FTO gene in fact has no impact on 

FTO, but affects the IRX3 and IRX5 genes (Claussnitzer et al., 2016). Although the variant 

is located in an intronic enhancer within FTO, both IRX3 and IRX5 are located in the same 

insulated neighborhood as the variant (Figure 7B). Similarly, functional investigation of a 

genetic variant associated with Type 2 diabetes, and previously assigned to the CDC123 and 

CAMK1D genes based on proximity, revealed that the variant affects the distal CAMK1D 
gene and not CDC123 (Fogarty et al., 2014; GTEx Consortium, 2015). Examination of 

insulated neighborhood structures reveals that CAMK1D is located in the same 
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neighborhood as the variant, whereas CDC123 is not (Figure 7C). These examples suggest 

that insulated neighborhood maps can facilitate the identification of genes affected by non-

coding genetic variants.

Epigenetic editing of insulated neighborhood structures

The CTCF binding site in insulated neighborhood loop anchors is hypomethylated (Ji et al., 

2016); DNA methylation abrogates CTCF DNA binding (Bell and Felsenfeld, 2000; Hark et 

al., 2000; Kanduri et al., 2000; Szabo et al., 2000). This suggests that site-specific 

methylation and demethylation of a neighborhood anchor can alter neighborhood structures. 

Indeed, targeted methylation of a neighborhood anchor site with a dCas9-DNA-

metyltransferase-3 fusion protein has been shown to disrupt the neighborhood (Figure 8A) 

(Liu et al., 2016). Similarly, targeted de-methylation with a dCas9-TET fusion protein has 

been demonstrated (Amabile et al., 2016; Liu et al., 2016), and this strategy could be used to 

restore an insulated neighborhood whose anchor site is disrupted by aberrant DNA 

methylation (Figure 8B). These tools might evolve to be useful for therapeutic purposes.

Challenges

How dynamic and heterogeneous are insulated neighborhood loops?

The example of CTCF-CTCF loop and gene control at the imprinted IGF2/H19 locus 

suggests that the neighborhoods are sufficiently stable to prevent development of the 

diseases associated with neighborhood dysregulation. Furthermore, the striking similarity of 

TAD boundaries across cell types (Dixon et al., 2015; Dixon et al., 2012), which we argue is 

produced largely by insulated neighborhood structures (Figure 4A), suggests that these 

neighborhoods are rather stable. However, the dynamics of the loop structures that form 

insulated neighborhoods, and the enhancer-promoter interactions within them, are not yet 

understood. Similarly, the cell-to-cell heterogeneity of DNA loop structures is not 

understood, and the extent to which allele-specific loops occur is not clear. The fraction of 

time that CTCF is bound to a loop anchor site, the fraction of time that it spends in a 

dimerized state, and the extent to which CTCF switches its dimeric partner are three of the 

elements that factor into a potential solution to these questions. The experimental 

approaches used thus far to identify CTCF loops generally depend on the study of 

populations of cells, and thus the present data are inadequate to address questions of 

dynamics. Improvements in single-cell technologies will be needed to reveal the dynamics 

of insulated neighborhoods and enhancer-promoter interactions.

Computational simulations of chromosome loops have led to the suggestion that only a 

subset of insulated neighborhoods occur in each cell within a population at any given time, 

and to the hypothesis that an extrusion model can facilitate enhancer-promoter interactions 

and lead to insulation in all cells (Doyle et al., 2014; Fudenberg et al., 2016; Giorgetti et al., 

2014; Sanborn et al., 2015). This model postulates that chromosome loops are formed by the 

extrusion of chromatin by an “extrusion complex”, an entity that acts as a molecular motor 

to draw DNA through a cohesin complex (reviewed in (Dekker and Mirny, 2016)). In this 

model, the extruded DNA loop forms CTCF-CTCF loop when the cohesin-containing 

extrusion complex is blocked by a pair of convergently oriented CTCF molecules bound to 
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two sites in the extruded DNA. Because transcription initiation by RNA polymerase II 

includes cohesin loading at the enhancer-promoter junction (Kagey et al., 2010), and two 

RNA molecules can transcribe bi-directionally from promoters and enhancers (Core et al., 

2008; Seila et al., 2008; Sigova et al., 2013), it is possible that RNA polymerase II plays a 

role in this postulated extrusion. Condensin II, which is loaded onto DNA at sites of 

transcription initiation together with cohesin (Dowen et al., 2013), is another candidate 

“extrusion complex” factor. These extrusion models have yet to be tested experimentally.

To what extent are insulated neighborhoods shared across cell types?

Most genomic data is inherently noisy and is filtered to provide an interpretation at some 

arbitrarily chosen confidence interval. The experimental approaches used to determine DNA 

interactions, which include Hi-C and ChIA-PET technologies, produce especially noisy data. 

Furthermore, DNA interaction data can be sparse – especially when using small numbers of 

cells. These features of the data makes it challenging to provide good estimates of the extent 

to which all the DNA loop structures of any one cell type are shared by another cell type, but 

comparisons can be made for the set of loops that meet high-confidence criteria in similar 

experimental data from two or more cell types. Studies on TADs have estimated that most 

TAD boundaries are shared by any two cell types (Dixon et al., 2015; Dixon et al., 2012). 

Studies on insulated neighborhoods have estimated that approximately 80% of neighborhood 

boundaries of shared by any two cell types (Hnisz et al., 2016; Ji et al., 2016). Given the 

sparsity of data, and the noise in these datasets, it is possible that the vast majority of TADs 

and insulated neighborhoods are shared by most cell types, although there is some evidence 

that CTCF binding and CTCF-CTCF loop formation can be cell type-specific (Narendra et 

al., 2015; Splinter et al., 2006; Tolhuis et al., 2002; Wang et al., 2012). A broader survey of 

cell types will be needed to determine the extent to which cell type-specific insulated 

neighborhoods exist in human cells.

How are insulated neighborhood loop anchors regulated?

DNA methylation plays a key role in CTCF-CTCF loop anchor control and gene control, as 

illustrated in the imprinted IGF2/H19 locus (Figure 6), but the regulatory mechanisms that 

produce site-specific methylation of loop anchors are not well-understood. In Drosophila, a 

number of proteins have been identified that influence CTCF binding and insulator function 

(Phillips-Cremins and Corces, 2013), but it is not clear whether similar proteins might 

contribute to regulation of mammalian loop anchors. CTCF-binding to DNA can also be 

modulated by post-translational modifications such as poly-ADP ribosylation (Ong et al., 

2013). Non-coding RNA has also been implicated in regulation of CTCF binding to DNA at 

certain loci (Saldana-Meyer et al., 2014). Future studies will need to address the extent to 

which CTCF modifications and RNA modulate neighborhood loop anchors.

How does a loop insulate?

With the 2-dimensional representations of loops shown here, it is reasonable to ask how an 

insulated neighborhood boundary suppresses enhancer-promoter loop formation across the 

boundaries. An element in a 2-D chromatin loop should be able to contact elements in other 

loops. Additional structuring of the neighborhood, such as condensing the looped chromatin 

into a compact ball, would reduce the opportunity to interact with other neighborhoods. One 
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candidate for such a factor is Condensin II, which is loaded onto active promoters together 

with cohesin (Dowen et al., 2013). Condensin is known to inhibit transvection in Drosophila 
polytene chromosomes, where it presumably prevents interactions between two alleles (Hartl 

et al., 2008). Other proteins, such as the Polycomb repressive complex (Francis et al., 2004), 

may contribute to effectively condense a silent insulated neighborhood.

Do loop anchors vary in insulation strength?

Early efforts to quantify insulation on a genome-wide scale suggest that differences in 

insulation strength at CTCF anchors might occur, and perhaps correlate with certain 

genomic features (Phillips-Cremins and Corces, 2013). Insulated neighborhoods can have 

boundaries with multiple CTCF binding sites and can be nested within larger insulated 

neighborhoods. These features appear to produce a higher “insulation score” for enhancers 

and genes within the neighborhood and may thus represent a safeguard against perturbation. 

For example, the β-globin genes are located in nested neighborhoods, and perturbation of 

the inside neighborhood anchors has little effect on globin gene expression (Bender et al., 

2006). In ES cells, deletion of multiple boundary sites were required to observe changes in 

gene expression at certain loci (Dowen et al., 2014). Interestingly, a recent study found that a 

set of adjacent neighborhoods show evidence of “merging” together during the 

differentiation of germinal center B cells (Bunting et al., 2016), indicating that the insulating 

properties of some neighborhoods may be under developmental control. Additional study is 

necessary to understand the structural and mechanistic features that contribute to insulator 

strength.

What additional mechanisms contribute to enhancer-gene specificity?

The insulated neighborhood model can explain how enhancer-promoter specificity is 

obtained when a single gene occurs together with its regulatory elements within the 

neighborhood, but it does not fully explain enhancer-promoter specificity when multiple 

genes are present. We estimate that in neighborhoods with two genes, the activity of the two 

is coherent in 60% (both are active or both are silent). The tendency for these two-gene 

neighborhoods to have coherent on or off activities suggests that genes in these 

neighborhoods may often be co-regulated. Indeed, recent evidence in Drosophila suggests 

that an enhancer can target all genes within an insulated chromatin structure (Fukaya et al., 

2016). Further regulation may occur post-transcriptionally (e.g., microRNAs), which could 

account for differential transcript accumulation. As noted above, it is also possible that some 

degree of enhancer-gene specificity is obtained through the interaction of specific factors 

bound at enhancer and promoters (Zabidi et al., 2015).

Future perspective

Evidence that proper activation and repression of genes is dependent on the integrity of 

insulated neighborhoods argues that these are structural and functional units of mammalian 

gene control. insulated neighborhoods provide a new framework for investigating gene 

control and interpreting the effects of non-coding genetic variation. A fuller understanding 

of the normal and abnormal control of any gene will require consideration of the potential 

contribution of any regulatory elements within its neighborhood and the possibility of loop 
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anchor regulation. New insights into the role of genome structure in selective gene control in 

development and disease will be accelerated with improvements in technologies to map 

chromosome structures at improved resolution, ideally in an allele-specific fashion in single 

cells.
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Figure 1. The enhancer-gene specificity conundrum
A. Model of a genomic region encompassing an enhancer and two genes. The features that 

cause an enhancer to regulate only specific genes are still not fully understood, which we 

refer to as the enhancer-gene specificity conundrum

B. Model of a genomic region encompassing an enhancer and two genes with the 

transcription factor CTCF bound in-between. CTCF is a component of enhancer-blocking 

insulators, but which CTCF-bound sites function as an insulator in vivo is still unclear.
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Figure 2. Insulated neighborhoods
A. Hierarchy of chromosome structures: Chromosome territories, Topologically Associating 

Domains and insulated neighborhoods. Anchor refers to the CTCF-bound site interacting 

with another CTCF-bound sites, both co—bound by a cohesin ring.

B. Features of insulated neighborhoods in human embryonic stem cells (ESCs). The values 

displayed for the size range and number of genes represent the middle 95% of the data 

range.

C. Evidence for insulation of insulated neighborhoods: 97% Enhancer-gene interactions 

occur within insulated neighborhoods in human ESCs.

D. Evidence for insulation of insulated neighborhoods: Deletion of insulated neighborhood 

anchors leads to gene misregulation.

E. Evidence for insulation of insulated neighborhoods: Mutations of insulated neighborhood 

anchors in tumor cells leads to oncogene activation.
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Figure 3. Insulated neighborhoods in development
Cell-specific enhancer-gene interactions occur within insulated neighborhoods that are 

generally maintained in different cell types. Left side displays a linear model of a genomic 

region encompassing a gene associated with cell type-specific enhancers, the right side 

displays the insulated neighborhood model of the locus.
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Figure 4. Insulated neighborhoods are the mechanistic basis of TADs
A. Hi-C and cohesin ChIA-PET identify similar Topologically Associating Domains (TAD). 

Bars indicate the TADs identified using Hi-C and ChIA-PET in human ESCs at the genomic 

region whose co-ordinates are indicated in the bottom.

B. Model of a TAD that consists of an insulated neighborhood

C. Model of a TAD that consists of nested insulated neighborhoods

D. Model of a TAD that consists of two insulated neighborhoods, nested within a TAD-

spanning CTCF-CTCF loop
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Figure 5. Relationships between insulated neighborhoods and other DNA loop models
DNA loops at the EYA1 genomic locus generated using three different types of chromatin 

contact data in lymphoblastoid cells. Displayed are the cohesin ChIA-PET interactions 

(Heidari et al., 2014) used to identify insulated neighborhoods, Hi-C data (Rao et al., 2014) 

used to identify “Loop Domains”, and CTCF ChIA-PET data (Tang et al., 2015) used to 

identify “CTCF contact domains”. Increased stringency filtering of the CTCF ChIA-PET 

data reveals a chromosome structure similar to the insulated neighborhoods and Loop 

Domain. The coordinates of the genomic region are displayed at the bottom.
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Figure 6. Insulated neighborhoods at the IGF2/H19 and ß-globin locus
A. Insulated neighborhood model at the maternal and paternal alleles of the imprinted 

IGF2/H19 locus. On the maternal allele, CTCF binding at the imprint control region 

upstream of the H19 gene creates an insulated neighborhood around H19 and an enhancer, 

which prevents the enhancer from activating the IGF2 gene. On the paternal allele the 

imprint control region is methylated which leads to repression of the H19 gene, and 

prevention of CTCF binding. On this allele, a large insulated neighborhood is formed 

allowing the downstream enhancer to activate the IGF2 gene. Black lollipops indicate DNA 

methylation. The insulated neighborhood models are displayed on the right.

B. Lack of methylation at the imprint control region upstream of H19 and the presence of 

the large insulated neighborhood on the maternal IGF2/H19 allele occur in patients with 

Beckwith-Wiedemann syndrome.

C. Methylation at the imprint control region upstream of H19 and the presence of the small 

insulated neighborhood on the paternal IGF2/H19 allele occurs in patients with Silver-

Russell syndrome.

D. Insulated neighborhood model at the β-globin locus containing a cluster of globin genes 

and an upstream locus control region (LCR).
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Figure 7. Insulated neighborhoods as a method to identify target genes of disease-associated 
enhancer variation
A. (Top) Assignment of an enhancer-associated Single Nucleotide Polymorphism (SNP) to a 

gene based on linear proximity. (Bottom) Assignment of a SNP to a gene based on the 

insulated neighborhood model.

B. Model of the insulated neighborhood organization at the FTO-IRX3-IRX5 locus.

C. Model of the insulated neighborhood organization at the CDC123-CAMK1D locus.
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Figure 8. Neighborhood perturbation and repair through site-specific DNA methylation
A. Targeting a dCas9-DNA-methyltransferase 3a/3l (Dnmt3a/3l) fusion to an insulated 

neighborhood anchor leads to DNA methylation, abrogation of CTCF binding and loss of 

neighborhood integrity. Black lollipops indicate DNA methylation.

B. Targeting a dCas9-TET (Ten-eleven translocation) fusion to an aberrantly methylated 

insulated neighborhood anchor leads to DNA de-methylation, and restoration of 

neighborhood integrity.
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