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Summary

Super-enhancers are an emerging sub-class of regulatory regions controlling cell identity and 

disease genes. However, their biological function and impact on miRNA networks are unclear. 

Here we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell 

identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-

miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-

specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 

genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/

DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The 

BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional 

pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction 

with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique 

RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated 

with cancer hallmarks. This study presents principles underlying miRNA biology in health and 

disease and a unrecognized higher-order property of super-enhancers in RNA processing beyond 

transcription.
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Introduction

Gene regulation by cell-type specific enhancers is fundamental to the organization of cell 

identity in development and dysregulation of cellular states in diverse diseases (Lee and 

Young, 2013). Super-enhancers (SEs) are a new class of regulatory regions that consist of 

multiple enhancer-like elements occupied by high densities of master transcription factors 

and Mediator complexes and bearing active chromatin marks such as H3K27Ac (Whyte et 

al., 2013). SEs are spatially closely associated with many protein-coding genes that play 

prominent roles in cell identity and confer exceptional responsiveness to signaling pathways 

(Hnisz et al., 2013; Hnisz et al., 2015). Considerable disease-associated genome sequence 

variation occurs in SEs (Hnisz et al., 2013). Furthermore, expression of SE-associated genes 

is preferentially affected by inhibitors of several transcriptional and chromatin factors such 

as Brd4 and CDK7 (Kwiatkowski et al., 2014; Loven et al., 2013). Although the SE concept 

is useful in identifying regulatory elements important for cell type specification and disease 

pathogenesis, there is a paucity of mechanistic data about their formation and functions 

except for a few recent studies (Hay et al., 2016; Hnisz et al., 2015; Shin et al., 2016). Thus, 

it is still unclear whether they exhibit higher-order properties beyond a simple and linear 

assembly of conventional enhancers and whether SEs solely regulate transcription or also 

affect subsequent RNA processing (Pott and Lieb, 2015).

In addition to transcriptional factors, microRNAs (miRNAs) constitutes another key layer of 

maintenance of cell-type-specific transcriptomes through Argonaute (Ago)-mediated 

posttranscriptional gene regulation. Several cell-type-specific miRNAs are crucial for 

normal development and disease pathogenesis (Park et al., 2010), and a small subset of 

miRNAs dominates the total miRNA pool in various cell types (Landgraf et al., 2007; 

Marson et al., 2008), suggesting these may function as master miRNAs. In addition, high-

throughput assessment of miRNA function by miRNA sensor libraries (Mullokandov et al., 

2012) and Ago2 crosslinking and immunoprecipitation (CLIP) experimental platforms 

(Bosson et al., 2014) have revealed that in many cell types, only a few of the most abundant 

miRNAs dominate posttranscriptional regulation by Ago proteins. These findings highlight 

unique quantitative attributes of miRNA networks, i.e. unprecedentedly high expression bias 

and cell-type specificity. Surprisingly, relationships between SEs and miRNAs have not been 

studied. We postulated that SEs could account for a signal for these attributes of miRNA 

networks.

In this report, we performed a meta-analysis of the relationship between SEs and miRNA 

networks and a comprehensive functional dissection of miRNA-related SEs in multiple cell 

types. By integratively analyzing the connectivity between SEs and miRNAs, miRNA 

function, tissue-specific miRNA expression, and evolutionary conservation of miRNA 

networks, SEs were found to be linked with a few highly abundant and tissue-specific 

miRNAs, designated as master miRNAs in parallel with master transcription factors, in 

normal cells. In addition, widespread alterations of neighbor SEs were observed for multiple 

miRNA genes associated with cancer. A network-based analysis of SE composition revealed 

that SEs and another chromatin signature, broad H3K4me3 domains, largely shape miRNA 

expression hierarchy. Importantly, our functional analyses of miRNA SEs showed that SE 

constituents act cooperatively and boost master miRNA production by facilitating 
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recruitment of Drosha/DGCR8 microprocessor and pri-miRNA processing. Genome-wide 

chromatin binding profiles of DGCR8 and Drosha revealed that SEs are pervasively bound 

by DGCR8 and that associated miRNA units show active chromatin recruitment of Drosha. 

Interestingly, treatment of cells with the Brd4 inhibitor JQ1, which compromises SE 

function, suppressed DGCR8/Drosha recruitment and chromatin-associated pri-miRNA 

processing. Thus SEs have a higher-order property in RNA processing beyond simple 

transcriptional activation.

Results

Super-enhancers mark cell-type-specific and abundant miRNAs

SEs regulate proximal active protein-coding genes within insulated genomic neighborhood 

regions (Dowen et al., 2014). Using the original definition of SEs in mouse embryonic stem 

cells (mESCs), defined by the occupancy of Oct4, Sox2, and Nanog master transcription 

factors (OSN) and Mediator (OSN-Med1 SEs) (Whyte et al., 2013), we assigned each to the 

most proximal promoter of genes including miRNA genes (Marson et al., 2008) (Figure 1A). 

Only a small subset of SEs and typical enhancers (TEs) was spatially closely associated with 

miRNA genes (Figure 1A and Table S1). Two ESC-specific clustered miRNA genes, 

miR-290-295 and miR-106a-363, important for embryonic development and mESC cell 

cycle progression, were identified as super-enhancer-associated miRNAs (SE-miRNAs) 

(Tiscornia and Izpisua Belmonte, 2010). SE-miRNAs and typical-enhancer-associated 

miRNAs (TE-miRNAs) dominated about 60% and 20%, respectively, of the total pool of 

Ago2-dependent miRNAs in endogenous Ago-null mESCs (TT-FHAgo2 cells), which 

express only epitope-tagged Ago2 in an inducible manner (Zamudio et al., 2014) (Figure 

1B). In particular, one SE-miRNA gene, miR-290-295, dominated over 50% of the total 

miRNA pool. SE-miRNAs showed exceedingly high and cell-type-specific expression 

(Figures 1C and 1D). The Ago2 target pool identified by Ago2 CLIP analysis was also 

predominantly occupied with SE-miRNAs (Bosson et al., 2014) (Figure S1A). SE-miRNAs 

showed a high degree of Ago2-dependent target gene repression in TT-FHAgo2 cells (Figure 

S1B).

We next identified SE-miRNAs and TE-miRNAs in four differentiated cell types using SE 

classification defined by four master transcription factors in mouse progenitor B (Pro-B) 

cells (PU.1), myotubes (MyoD), T helper (Th) cells (T-bet), and macrophages (C/EBPα) 

(Whyte et al., 2013) (Table S1). Similar to mESCs, a small subset of enhancers was 

associated with miRNA genes (Figure S1C) and cardinal tissue-specific miRNAs were 

identified as SE-miRNAs (Figures 1E and S1D). These SE-miRNAs included various 

important cell-specific miRNAs: (1) Pro-B cells: miR-142, highly abundant in hematopoietic 

system, and miR-148a, important for plasma cell differentiation (Landgraf et al., 2007; 

Porstner et al., 2015); (2) Myotubes: miR-1/133a2, important for muscle and heart 

development (Zhao et al., 2005); (3) Th cells: miR-142 and miR-210, associated with T cell 

differentiation (Wang et al., 2014b); and (4) Macrophages: miR-511, encoded within 

macrophage-specific mannose receptor (Mrc1) (Squadrito et al., 2012). SE-miRNAs were 

highly cell-type specific relative to TE-miRNAs (Figures 1F and S1E) and showed specific 

and high expression in the miRNA atlas (Figure S1F) (Kuchen et al., 2010; Landgraf et al., 
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2007). In Pro-B and Th cells, overlapping SEs marked miR-142, leading to similar miRNA 

expression patterns in B and T cell lineages (Figure S1G). This suggests that a subset of 

miRNAs is driven by SEs bound by different transcriptional factors in different cell types. 

Collectively, these results strongly suggest that SEs are major drivers of the tissue-specific 

miRNome.

Super-enhancer-miRNA network and evolution

We characterized SE-miRNAs in diverse human cell types to investigate their role and 

conservation in health and disease. Since H3K27Ac-defined SEs (H3K27Ac SEs) largely 

overlap with OSN and Mediator-defined SEs (OSN-Med1 SEs) in mESCs (Hnisz et al., 

2013), this histone mark is frequently used as a surrogate marker to identify SEs. Using 

H3K27Ac SEs, we generated a catalog of SE-miRNAs and TE-miRNAs across 26 tissue 

types and for 86 human cell and tissue samples including cancer cells (Table S2). These SE-

miRNAs were largely cell-type specific (Figures 2A and 2B). TE-miRNAs were less cell-

type specific (Figure S2A). SE-miRNAs included many highly important human cell-

specific miRNAs (Figures 2C and S2B–S2F): (1) ESC-specific miRNAs: miR-371/372/373, 

miR-302abcd/367, and miR-106a-363; (2) muscle-specific miRNAs: miR-1/133a2; (3) 

neuron-specific miRNAs: miR-9, miR-219, and miR-346 (Wang et al., 2012); (4) 

hematopoietic-specific miRNA: miR-142 and inflammation-related miRNA: miR-155 

(Kuchen et al., 2010); and (5) epithelial-specific miRNAs: miR-200a/200b/429, 

miR-141/200c, and miR-192/194. Interestingly, across a range of digestive organs, SEs 

marked miR-200a/b/429 and miR-141/200c, which play important roles in epithelial-

mesenchymal transition (EMT) (Figure S2F). In addition, we observed widespread 

distribution of SEs around several tumor-suppressive miRNAs such as miR-15a/16-1 and 

let-7 miRNA families (let-7a3/7b) across diverse tissues (Figure S3), suggesting that 

H3K27Ac SEs mark many tissue-specific master miRNAs and additionally some tumor-

suppressive miRNAs important for tissue homeostasis.

Gene Ontology analysis of experimentally validated target genes of SE-miRNAs showed 

that they are linked to biological processes characteristic to the respective cell and tissue 

types (Chou et al., 2015) (Figure 2D). As expected, SE-miRNAs were highly linked to 

transcription regulation, suggesting that SE-miRNAs dynamically crosstalk with master 

transcription factors (Figure 2D, bottom). Previous studies have shown a mutually exclusive 

expression pattern of miRNA and their targets in various tissues and selective avoidance of 

miRNA target sites in coexpressed genes (target avoidance phenomena) (Farh et al., 2005; 

Stark et al., 2005). Because SEs are highly associated with tissue-specific miRNAs, we 

further postulated that connection between SEs and miRNAs are positively associated with 

target avoidance phenomena. A correlation analysis between SE-miRNA connection and 

strength of depletion of target sites in genes coexpressed with miRNAs demonstrated a 

strong tissue-type-dependent positive correlation (Figure 2E). This suggests a co-evolution 

of factors controlling the transcriptome and SE-miRNAs in development.

Network-based understanding of super-enhancer composition

During SE-miRNA analysis, we compared the signals for Mediator and H3K27Ac used for 

SE discovery and found that these two marks capture slightly different miRNAs in mESCs 
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(Figure 3A). H3K27Ac SEs more broadly captured other miRNAs with intermediate 

expression levels, relative to OSN-Med1 SEs (Figure 3A). We next comprehensively and 

quantitatively compared chromatin immunoprecipitation (ChIP)-seq profiles of 64 

transcription-related factors and histone marks for the promoter and enhancer regions of 

miRNA genes (Figures S4A–S4C) (Ang et al., 2011; Hnisz et al., 2013; Lin et al., 2011; 

Marson et al., 2008; Rahl et al., 2010; Schnetz et al., 2010; Whyte et al., 2013; Yue et al., 

2014). In mESCs, the promoters for the top 10 highly expressed miRNA genes were bound 

more broadly by various transcriptional regulators relative to their enhancers, and the 

diversity of the binding pattern for enhancers was more skewed toward highly expressed 

miRNAs (Figures S4A–S4C), suggesting that promoter activation is less cell-type specific 

and that enhancer activity shapes a more biased miRNA expression pattern. H3K27Ac SEs 

marked miRNAs with a boarder pattern of promoter activation as compared to OSN-Med1 

SEs (Figure S4D).

Based on these observations, we postulated that Mediator and H3K27Ac capture slightly 

different gene regulatory platforms. To test this hypothesis, we assembled all potential 

enhancer constituents included in OSN-Med1 and H3K27Ac SEs, quantitated the mESC 

ChIP-seq profiles of 64 transcription-related factors and histone marks for these constituents 

(Figure 3B and Table S3), and adopted coregulation analysis (CRA) toward network-based 

visualization (Figure 3C). The CRA identified several clusters with distinguishable binding 

patterns (clusters 1–6: C1–6) (Figure 3C). C1 enhancer constituents were densely bound by 

many transcription factors, Mediator, Brd4, p300, CBP, Chd7, Brg1, Lsd1, and cohesin 

loading factor Nipbl, indicating probable cores of SEs (Figure 3D). C2 constituents were 

characterized with high signals of H3K4me3, H3K27Ac, NelfA, TBP, and Wdr5, suggesting 

enhancer-like and transcription start site (TSS)-like signature (Figure 3D). Others included 

C4 characterized by CTCF and cohesin, C5 characterized by Spt5 and Ctr9, and C3/C6 with 

preferential enrichment of H3K4me1. We also analyzed recent ChIP-seq profiles for various 

chromatin remodelers and noted that C1 and C2 constituents show differential binding 

patterns of chromatin remodelers (Figure S4E) (de Dieuleveult et al., 2016). In addition, C1 

constituents were associated with higher enhancer RNA (eRNA) production (data not 

shown).

C1 constituents were preferentially contained in OSN-Med1 SEs, but C2 and other 

constituents were preferentially included in H3K27Ac SEs (Figure 3E). As shown in Figure 

3F, H3K27Ac SEs tended to spread over the gene body and C2 constituents tended to 

overlap with broad H3K4me3 peaks around the TSS. Although we set the promoter 

exclusion zone to be 4 to 5kb in discovery of SEs according to the original definition, 

multiple H3K4me3 peaks were still broader than this exclusion zone, thus possibly 

overlapping with some SE regions. A broad H3K4me3 domain is another chromatin 

signature that has been recently described to link cell identity genes with the transcriptional 

consistency of these genes (Benayoun et al., 2014). We further compared C2 constituents 

and broad H3K4me3 domains. We identified 655 broad H3K4me3 peaks (> 4kb) in mESCs 

with standard ChIP-seq analysis approaches (Figure 3G and Table S4). Broad H3K4me3 

domains were associated with many SE-marked cell identity genes such as Oct4, Sox2, 

Nanog, KLF4, and Esrrb and other important ES regulators such as Lin28a and Myc, which 

were not captured by OSN-Med1 SEs. C1 and other constituents rarely overlapped with 
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broad H3K4me3 peaks, however, C2 constituents showed large overlap with broad 

H3K4me3 domains (Figure 3H). Broad H3K4me3 domains marked several H3K27Ac SE-

associated miRNAs, including miR-96/182/183, and other miRNAs with intermediate 

expression levels, such as miR-15a/16-1 and miR-26b (Figure 3I). Comparison of OSN-

Med1 SEs, H3K27Ac SEs, and broad H3K4me3 domains showed that these entities 

delineate quantitative levels of major miRNAs in mESCs (Figure 3J). Therefore, from a 

pragmatic aspect, SE classification defined by Mediator or H3K27Ac show substantial 

overlap and have a simple composition, i.e. clusters of C1 Mediator-bound constituents, but 

also show heterogeneity in connection with broad H3K4me3 domains (Figure 3K). Their 

relationship to relative miRNA levels is summarized in Figure 3K.

CRISPR/Cas9 functional genomics of miRNA super-enhancers

Several recent reports have explored the contribution of the constituent enhancers of SEs to 

expression of mRNA transcripts, with varying results (Hay et al., 2016; Hnisz et al., 2015; 

Shin et al., 2016); it remains unclear whether multiple SE constituents have redundant or 

non-redundant functions in driving the expression of corresponding miRNAs. We performed 

a functional dissection of miRNA SEs in vivo by generating cell lines depleted of individual 

miRNA SE constituents (about 400–700 bp) in multiple cell types through a CRISPR/Cas9-

based approach (Table S5). We analyzed three miRNA SEs: miR-290-295 SE in mESCs, 

miR-1 SE in myotubes, and miR-148a SE in Pro-B cells. Among 7 constituents of 

miR-290-295 SE (E1–E7, Figure 4A), deletion of individual elements except for E6 led to 

substantial decrease (ranging from 50% to 80%) in de novo production of mature miRNAs 

in TT-FHAgo2 mESC background without concomitant changes in other miRNA production 

(Figures 4B and S5A). A 5-fold reduction in expression upon deletion of one constituent of 

a group of six indicates cooperative interactions. As expected from a decrease in these 

miRNAs, these deletions also suppressed expression of Ago2-inducible gene Lin28a, a 

regulator of ES cells (Figure 4B). In the C2C12 cell line, a model for myotube 

differentiation, SE was only observed for one of the two miR-1 genes (miR-1a-1/133a-2) 

and myotube differentiation strongly induced primary miRNAs of only this miRNA gene 

(Figure S5B). Deletion of all 4 constituents of miR-1 SE dramatically suppressed induction 

of miR-1 and miR-133 and myogenic differentiation markers such as Myogenin and muscle 

creatine kinase (MCK), phenocopying miR-1 knockdown phenotype (Chen et al., 2006) 

(Figures 4C–4D and S5C). Furthermore, in Pro-B cells, deletion of 4 out of 5 miR-148a SE 

constituents dynamically suppressed induction of miR-148a during differentiation and 

affected its downstream genes Bach2 and Blimp1 (Porstner et al., 2015) (Figures 4E and 

4F). These data demonstrate that miRNA SEs actually drive corresponding cell-specific 

master miRNAs and affect their downstream pathways and also suggest that multiple SE 

constituents function in a cooperative rather than additive or redundant manner.

Super-enhancers boost pri-miRNA processing

miRNAs are generated through two steps of RNase III-dependent cleavage action: cleavage 

of primary miRNA transcript (pri-miRNA) to precursor miRNA (pre-miRNA) by Drosha/

DGCR8 microprocessor complex in nucleus and cleavage of pre-miRNA to miRNA duplex 

by Dicer in cytoplasm. We further analyzed the effects of SE deletions on efficiency of 

miRNA biogenesis. By comparing pri-miRNAs, pre-miRNAs, and mature miRNAs levels, 
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we found that deletion of several miR-290-295 SE constituents modestly (2 to 3 fold) 

suppressed pri-miRNA production and further attenuated the ratio of pre-miRNA and mature 

miRNA to pri-miRNA (2 to 3 fold) (Figure 4G). This trend was also observed for miR-1 SE 

in myotubes (Figure 4H). Interestingly, in Pro-B cells, the effects of deletions of SE 

constituents on pri-miRNAs were minor but the reductions in pri-miRNA processing were 

more pronounced (Figure 4I). These results suggest that SEs enhance pri-miRNA processing 

through an unknown process as well as transcriptional activation.

Association between super-enhancers and DGCR8/Drosha

Drosha and DGCR8 are thought to be recruited cotranscriptionally and to cleave pri-

miRNAs during transcription (Morlando et al., 2008; Nojima et al., 2015). Nuclear Drosha/

DGCR8-mediated pri-miRNA processing is regulated by interaction between Drosha/

DGCR8 and various transcription-related factors and RNA-binding proteins (Ha and Kim, 

2014). ChIP analysis of DGCR8 and Drosha revealed that deletion of SE constituents 

attenuated recruitment of these two proteins to pri-miRNA loci in three cell types in 

accordance with the reduced efficiency of pri-miRNA processing (Figure 5A). Based on 

these data, we postulated that SEs provide an active platform for cotranscriptional pri-

miRNA processing and verified this possibility by genome wide micrococcal nuclease 

(MNase) digestion-coupled ChIP-sequencing (X-ChIP-seq) for DGCR8 and Drosha (Skene 

and Henikoff, 2015). Among identified peaks (Figure S6A and Table S6), highly significant 

ChIP peaks of DGCR8 were observed for the TSS and hairpin (pre-miRNA) regions of SE-

miRNAs, most SEs, and various promoter regions including broad H3K4me3 domains 

(Figures 5B–5C and S6B). Notably, a majority of SEs (87 %) including those associated 

with pluripotency genes Nanog, KLF4, Sox2, and Oct3/4 was pervasively bound by DGCR8 

(Figures 5B and S6C). Drosha binding showed similar but more selected patterns for SEs 

(Figure 5B). Metagene plots showed enrichment of DGCR8 and Drosha in all SEs and 

associated TSSs (Figure 5D) but less enrichment for typical enhancers. According to 

classification of enhancer constituents in Figures 3B–D, we quantitated Drosha/DGCR8 

binding in each constituent (Figure S6D) and found that DGCR8 ChIP profile strongly 

correlates with those of Mediator, Brd4, p300, and CBP, while Drosha overlaps but is biased 

by greater association with Pol II and Ell2 elongation factor (Figure 5E). In addition, we 

analyzed the relationship between Drosha/DGCR8 and mRNA stability for SE-associated 

genes. By analyzing degradome sequencing data (Deg-seq) in mESCs (Karginov et al., 

2010), we identified multiple endonucleolytic cleavage sites, which are attenuated by Drosha 

depletion, for SE- and TE-associated genes (Figure 5F). The Deg-seq data identifies RNA 

with 5′ terminal phosphate in total cellular poly A-selected RNA. If RNA associated with 

SEs is processed by Drosha or Drosha-associated ribonucleases, the resulting RNA would 

have a terminal 5′ phosphate. Figure 5F shows that upon deletion of Drosha there is a 

decrease in Deg-seq reads in the substantial number of Deg-seq events in poly A RNAs from 

both SE- and TE-associated genes. By newly performing chromatin-associated RNA 

(ChrRNA) sequencing in wild-type and DGCR8 knockout mESCs, we found that, 

specifically for SE-associated genes, these Drosha-enhanced Deg-seq events are associated 

with upregulation of chromatin-associated transcripts by DGCR8 depletion (Figure 5G). 

Further, RNAs from the SE-associated genes having Drosha-enhanced Deg-seq peaks have 
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shorter half-lives in the presence of Drosha (Figure 5G), suggesting a unexplored regulatory 

role of Drosha/DGCR8 in RNA stability of SE-associated genes.

Inhibition of super-enhancer-associated miRNA processing by JQ1

The BET bromodomain protein Brd4 densely occupies SEs and pharmacologic inhibition 

with the BET bromodomain inhibitor JQ1 leads to preferential loss of SE components and 

transcription activation relative to TEs, which are also occupied by Brd4, albeit at lower 

densities (Loven et al., 2013). We therefore quantitated the effects of JQ1 on DGCR8 and 

Drosha X-ChIP-seq profiles. We found that JQ1 most dramatically suppressed binding of 

DGCR8 to hairpin regions and TSSs of SE-miRNAs and further preferentially suppressed 

the binding of DGCR8 to SEs and broad H3K4me3 promoters relative to typical enhancers 

and promoters (Figure 6A). In contrast, selective depletion of Drosha was only observed for 

hairpin regions and TSSs of SE-miRNAs and SEs (Figure 6A). The loss of Brd4 leads to 

inhibition of RNA polymerase II pause release, and thus reduces transcriptional elongation 

(Loven et al., 2013). Analysis of gene body distribution of Drosha and DGCR8 revealed that 

distribution of Drosha into elongating gene body regions was suppressed by JQ1 for SE-

associated genes, while DGCR8 was uniformly depleted across both the promoter and gene 

body regions (Figure 6B). This is consistent with similar ChIP-seq patterns for Drosha and 

Pol II (Figure 5E) and the previously reported Drosha and Pol II protein interaction (Gromak 

et al., 2013). To examine the direct consequences of JQ1 on miRNA processing, we 

performed chromatin-associated RNA (ChrRNA) sequencing in wild-type mESCs and pre-

miRNA sequencing in Dicer knockout mESCs where pre-miRNAs cannot be processed and 

are accumulated (Figure 6C). JQ1 (500 nM) preferentially suppressed expression of 

chromatin RNAs from SE-associated genes, consistent with previous findings of preferential 

transcription inhibition for SE-associated genes in cancer cells (Loven et al., 2013) (Figure 

6D). In contrast, for SE-miRNAs, JQ1 upregulated pri-miRNAs and decreased pre-miRNAs, 

suggesting interference with pri-miRNA processing and subsequent pri-miRNA stabilization 

(Figure 6E). In addition, we found that deletions of SE constituents also attenuated 

recruitment of DGCR8 and Drosha to other enhancer constituents (Figure 6F), indicating 

interdependency of SE constituents in miRNA processing. Collectively, these findings 

suggest an unanticipated and special contribution of SEs to chromatin recruitment of 

DGCR8/Drosha and pri-miRNA processing (Figure 6G), as discussed below.

Super-enhancer-associated miRNAs in cancer

SEs associate with key oncogenes in multiple cancer types (Hnisz et al., 2013; Loven et al., 

2013). We finally analyzed SE-miRNAs in 18 human cancer cells covering 9 cancer types 

and compared them to SE-miRNAs found in normal tissue (Figure 7A and Tables S2 and 

S7). The data revealed widespread changes in SE distribution around multiple cancer-related 

miRNAs: i.e. (1) SE loss in over 2 cancer types, (2) SE gain in over 2 cancer types, (3) 

complex pattern: gain or loss in multiple cancer types, (4) relatively specific loss, and (5) 

specific gain of SE around miRNA genes (Figure 7A). By analyzing a database for the 

experimentally verified oncogenic and tumor-suppressive miRNAs (Wang et al., 2014a), 

miRNAs with SE gain in cancer cells were biased toward miRNAs with oncogenic roles, and 

SE loss correlated with tumor-suppressive miRNAs (Figure 7B). These changes included SE 

loss for miR-9 in glioblastoma cells, which is brain-specific and decreases during 
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glioblastoma progression (Kim et al., 2011) (Figure S7A), and SE loss for miR-15a/16-1, a 

tumor suppressive miRNAs, observed in multiple cancer cells with hematopoietic 

malignancies (Figure S7B).

Cancer is a complex disease characterized by a number of hallmark biological capabilities, 

including resistance to cell death, acquisition of invasive or metastatic potential, and 

induction of angiogenesis (Hanahan and Weinberg, 2011). Comprehensive Gene Ontology 

analysis of miRNA target genes (Wang et al., 2014a) showed that the target genes of well-

studied cancer-related miRNAs with SE alterations are associated with the full spectrum of 

cancer hallmarks (Figures 7C and 7D). In addition, several miRNAs with SE alterations, that 

have been recently reported as cancer-related miRNAs, are also linked to wide aspects of 

cancer hallmarks (Figure S7C) (Suzuki et al., 2015).

We further investigated whether SE-miRNAs can be used as biomarkers. By analyzing the 

prognostic impacts of SE-miRNAs in the database of pancreatic cancer, colon cancer, and 

breast cancer derived from The Cancer Genome Atlas (TCGA), we found that miRNAs with 

SE gain, in pancreatic cancer cell, colon cancer cell, and basal-like breast cancer cell, have 

an increased prognostic value in these cancer types, relative to miRNAs with SE loss (Figure 

7E). These miRNAs with SE gain tended to show an association with worse prognosis 

(Figure 7F), suggesting that upregulation of these miRNAs can contribute to progression of 

certain cancer types. We further used SE-miRNAs with increased individual prognostic 

values to generate a possible combined stratifier for survival analysis and observed that high 

score of the miRNA signature represents worse prognosis (Figure 7G). In pancreatic cancer, 

these prognostic miRNAs included miR-10a, miR-31, and miR-30a, that have not been well 

characterized in this cancer type, but documented to mediate tumor progression in other 

cancer types (Lund, 2010) (Figure S7D). Further, in pancreatic cancer cells, loss of SE for 

the EMT-related miRNA, miR-200a/200b/429, was also observed (Figure S7D), but had less 

statistical power. Taken together, this is strong evidence that changes in SEs are a major 

force in cancer progression and that quantification of miRNAs and associated SEs could be 

of prognostic value.

Discussion

SEs are a new class of gene regulatory platforms controlling cell identity and disease genes. 

We have integratively investigated the roles of SEs in miRNA networks and miRNA 

biogenesis. From multiple aspects including expression, function, and evolution, SE 

association is a central principle governing cell-specific miRNA networks. For example, the 

relationship with target avoidance suggests that SEs are part of a homeostatic system that 

controls hierarchy and centricity of cell-type-specific gene regulatory networks. From 

network-based analysis of SE composition, we also observed that SEs are frequently 

associated with broad H3K4me3 domains for cell identity genes and that broad H3K4me3 

peaks are associated with miRNAs with intermediate expression levels, consistent with the 

association between broad H3K4me3 peaks and marginally high expression (Benayoun et 

al., 2014). Thus, broad H3K4me3 domains may be involved in gene networks in a more 

widespread manner than SEs.
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Identification of SE-associated miRNAs in diverse human tissues in this study will hopefully 

provide a valuable resource to use them for diagnosis and manipulation of target cell 

populations in regenerative medicine and synthetic biology. The relationships between SEs 

and miRNAs in cancer further validate the critical role of changes in miRNA activity in this 

disease. Gain of SEs near oncogenic miRNAs in cancer correlates strongly with poor 

prognosis, suggesting that miRNA regulation contributes importantly to the malignant state 

and could be a prognostic marker in cancer. In most cases, the process generating these SEs 

during development of cancer have not been studied. It was recently reported that a somatic 

mutation of a noncoding intergenic element creates a SE upstream of the TAL1 oncogene in 

a subset of T-cell acute lymphoblastic leukemia (Mansour et al., 2014).

Chromatin regulators and transcriptional regulators such as Brd4 and CDK7 are emerging 

attractive targets in cancer therapy. These drugs preferentially inhibit the activity of SEs 

versus TEs, indicating that the former has a cooperative dependence on the targeted 

biochemical processes. SEs are known to be associated with key oncogenes and provide a 

molecular basis for cancer-specific effect of inhibition of Brd4 or CDK7 (Kwiatkowski et 

al., 2014; Loven et al., 2013). Our study demonstrated a novel effect of JQ1: inhibition of 

pri-miRNA processing for SE-miRNAs (see below). Considering that multiple miRNAs with 

SE gain in cancer cells are known to be oncogenic, suppress cell death, and promote 

proliferation and metastatic spread, this novel activity of JQ1 may also partially justify the 

observed response of many cancers to inhibition by the above drugs.

Our functional studies of miRNA-associated SEs revealed several unique characteristics of 

SEs. Most recent SE functional studies have reported cooperativity between multiple 

enhancer constituents (Hnisz et al., 2015; Shin et al., 2016), while another report described 

only additive effects (Hay et al., 2016). Our results suggest that at least some miRNA SE 

constituents act combinatorially and interdependently to control their associated miRNAs. 

Further, our study unveiled a novel dimension of higher-order cooperativity of multiple 

enhancer elements: i.e. regulation of miRNA processing.

Detailed analysis of chromatin recruitment of DGCR8 and Drosha suggests a new model of 

SE-associated miRNA processing (Figure 6G). In this model, the constituents of SEs recruit 

these two co-factors for enhanced processing of pri-miRNAs to pre-miRNAs. Consistent 

with this, we found that SEs are preferentially bound by DGCR8 and Drosha independent of 

whether they are associated with miRNA genes. Considering a recent structure of Drosha/

DGCR8 complex (Kwon et al., 2016), recruitment of DGCR8 to SEs should initiate 

identification of RNA substrates including apical regions of pri-miRNAs and thus enhance 

the effectiveness of Drosha in recognition of pri-miRNA stem structures. Although DGCR8 

recruitment typically spans the SE region, Drosha binding is more concentrated over the 

gene body perhaps to do simultaneous interactions with RNA. Thus, Drosha-mediated pri-

miRNA recruitment and cleavage is probably partially coupled to Pol II elongation. This is 

consistent with the strong correlation of ChIP-seq signals for Drosha, Pol II, and Ell2.

Importantly, both JQ1 treatment and deletion of single constituents of SEs reduced the 

association of DGCR8/Drosha with SE-miRNA loci and the efficiency of processing of pri-

miRNAs to pre-miRNAs. Both of these perturbations impact the cooperativity of SE 
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formation, suggesting that assembly of the SE and associated eRNAs may signal the 

recruitment of these factors. This may also be related to recent reports that both HP1BP3, a 

chromatin associate protein, and hnRNPA2B1, a nuclear RNA binding protein, bind 

DGCR8/Drosha and mediate chromatin recruitment and pri-miRNA binding, respectively 

(Alarcon et al., 2015; Liu et al., 2016). The association of SEs with DGCR8 and Drosha may 

have broader implications in processing of RNA precursors. Drosha-enhanced total cell 

mRNA degradation events have been identified with many SE-associated genes, and are also 

associated with DGCR8-dependent suppression of chromatin-associated SE-gene products. 

This correlates with a mRNA having a short half-life, a common feature of regulatory genes 

such as transcription factors. Thus there maybe a new miRNA-independent function of 

Drosha/DGCR8 in control of SE function which could be mediated by association with other 

mRNA stability regulators, given a recent report for an interaction between DGCR8 and 

exosome complexes (Macias et al., 2015). Drosha/DGCR8-mediated fine regulation of SE-

associated transcripts may empower flexibility to a SE system by facilitating resolution of a 

master transcription factor network when shifting to other cell states. m6A mRNA 

methylation of pluripotency genes has also been suggested to enhance rewiring of 

pluripotency network toward differentiation in ESC (Geula et al., 2015). Perhaps, higher-

order cooperativity of SEs and association with RNA processing steps detailed here for 

miRNA genes will also be manifested in a range of cotranscriptional RNA processing events 

including RNA splicing and RNA modification. Further analysis of SEs may revise 

conventional enhancer models and provide new molecular insights for transcriptional 

perturbation in cancer therapy.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Phillip A. Sharp (sharppa@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—V6.5 mESCs, DGCR8 knockout mESCs, and Dicer knockout mESCs were 

cultured in Dulbecco’s Modified Eagle’s Medium (Thermo Scientific) supplemented with 

HEPES pH 7.0, 15% fetal bovine serum (FBS), 1000 U/ml leukemia inhibitory factor 

(Chemicon/Millipore), 0.1 mM l-glutamine, penicillin and streptomycin, and 0.11 mM β-

mercaptoethanol. TT-FHAgo2 mESCs lack all endogenous Argonaute proteins (Ago1–4) 

and express only tagged Ago2 (FHAgo2) in a doxycycline-inducible manner (Zamudio et 

al., 2014). TT-FHAgo2 mESCs were maintained in standard mESC culture conditions with 

0.1 μg/ml doxycycline (Dox, Sigma). In TT-FHAgo2 mESCs, FHAgo2 was induced by 48 

hr Dox treatment (2.5 μg/ml) after 96 hr Dox starvation. C2C12 cell line was obtained from 

the American Type Culture Collection (ATCC) and grown under typical C2C12 myoblast 

conditions. Myotube formation of C2C12 cells was induced by 72 hr treatment of DMEM 

with 2 % horse serum (Thermo Scientific) and 1x selenium, transferrin, and insulin. 38B9 

Pro-B cell line was maintained in RPMI1640 medium supplemented with 10% FBS and β-

mercaptoethanol. 38B9 cells were stimulated with imatinib (Sigma, 1 μM) for 4 days. JQ1 

was kindly provided by James Bradner, Dana Farber Cancer Institute.
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METHOD DETAILS

CRISPR/Cas9 functional genomics—SE constituents (400–700 bp) were deleted in 

TT-FHAgo2 mESCs, C2C12 myoblasts, and 38B9 Pro-B cells using CRISPR/Cas9 system. 

In mESCs, three plasmids, pS001 containing CAG promoter and Cas9, modified from 

pX330, and two sgRNA vectors containing U6 promoter-sgRNA cassette and PGK-puroR or 

PGK-blastR (pGL3-U6-sg-PGK-PuroR and pGL3-U6-sg-PGK-blastR), were transfected 

into cells using Lipofectamine 2000. 1 day after transfection, cells were replated and 24 hrs 

later selected by puromycin (2 μg/ml) and Blasticidin S (5 μg/ml) for 3 days. Subsequently, 

puromycin and Blasticidin S were withdrawn to allow individual clones to grow up. Clones 

were picked and verified by PCR genotyping and sequencing. For deletion of enhancer 

constituents in myoblast and Pro-B cells, two Cas9 vectors (pS002 containing U6-sgRNA 

and CAG-Cas9-P2A-puroR and pS003 containing U6-sgRNA and CAG-Cas9-P2A-blastR) 

modified from pX330 were used. These vectors containing two sgRNAs were introduced 

into C2C12 and 38B9 cells using Lipofectamine 2000 and Nucleofector, respectively. After 

selection with puromycin (2 μg/ml) for 3–4 days, the remaining cells were isolated as clones 

and verified by PCR genotyping and sequencing. The sgRNA sequences and sequences of 

deleted regions are described in Table S5.

RNA expression analysis—qRT-PCR assays were performed for evaluation of the 

expression levels of genes and primary, precursor, and mature miRNAs, as previously 

described (Suzuki et al., 2009). Total RNA and small RNA fraction were extracted by 

miRNeasy Mini Kit (Qiagen). For detection of genes and primary miRNAs, total RNA was 

subjected to reverse transcription using random hexamers and SuperScript III First-Strand 

Synthesis System (Invitrogen) according to the manufacturer’s instructions. qRT-PCR was 

performed using PowerUp SYBR Green Master Mix (Thermo Scientific) and the 7500 Fast 

Real-Time PCR System (Applied Biosystems). Mature miRNAs were quantitated using total 

RNA, Mir-X™ miRNA qRT-PCR SYBR® Kit (Clontech), and the primers identical to 

sequences of mature miRNAs. For detection of pre-miRNAs, small RNA fraction was 

subjected to reverse transcription with miScript RT II kit (Qiagen) and HiFlex buffer and 

analyzed using miScript SYBR Green PCR kit and miScript Precursor assays (Qiagen). 

Results were normalized to GAPDH or U6. The primer sequences used are described in 

Table S5.

DGCR8/Drosha ChIP-qPCR and X-ChIP sequencing—ChIP-qPCR analysis was 

performed according to our previous report (Suzuki et al., 2009). MNase ChIP-seq (X-ChIP-

seq) was performed as previously developed (Skene and Henikoff, 2015). Cells were treated 

with DMSO or JQ1 (500 nM) for 12 hrs before ChIP-seq analysis. Cells were crosslinked 

for 10 min at room temperature by the addition of one-sixth of the volume of 6 % 

formaldehyde solution (diluted from methanol-free formaldehyde (Thermo Scientific)) to 

the growth media followed by 5 min quenching with 250 mM glycine. Cells were washed 

twice with cold PBS, then the supernatant was aspirated and the cell pellet was flash frozen 

in liquid nitrogen. Frozen crosslinked cells were stored at −80 °C. Cell pellets were 

resuspended in ChIP Lysis buffer and ChIP Dilution buffer, treated with MNase for 30 min 

at 37 °C followed by quenching with EDTA and EGTA, and further sonicated for 10 cycles 

at 30 s each with BioRupter. MNase-digested and sonicated lysates were cleared, incubated 
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overnight at 4 °C with 10 μg DGCR8 or Drosha antibody, and further incubated with pre-

washed Dynabeads Protein G (Thermo Scientific) for 2 hrs. Beads were washed two times 

with sonication buffer, one time with sonication buffer with 500 mM NaCl, one time with 

LiCl wash buffer, and one time with TE with 50 mM NaCl. After resuspension in elution 

buffer and reversal of crosslink at 65 °C overnight, RNA and protein were digested using 

RNase A and Proteinase K, respectively, and DNA was purified with phenol chloroform 

extraction and ethanol precipitation. After end-repair and A-tailing, ChIP DNA or whole cell 

extract DNA (50 ng) were ligated to diluted Illumina Adaptor Oligos and size-selected by 

two step AMPure bead selection (0.9x and 1.8x). After 16 cycle amplification with Phusion 

HF DNA polymerase, libraries were size-selected with 1.8x AMPure beads and analyzed by 

Illumina HiSeq 2000 for 40 bases in single end read mode. Reads were aligned to the mouse 

genome build mm9 using bowtie 1.0.1 (Langmead et al., 2009). The following parameters 

were used: −n 2, −e 70, −m 1, −k 1, and −l 40. ChIP-seq peaks were called using MACS 

version 1.4.2. (model-based analysis of ChIP-seq) (Zhang et al., 2008) with a p value 

threshold of enrichment of 1 x 10−6. ChIP-seq read density was calculated as described in 

(Hnisz et al., 2013; Whyte et al., 2013).

Traveling ratio, Degradome sequencing, and mRNA half-life—Drosha/DGCR8 

traveling ratio (TR) was calculated according to the previous report (Rahl et al., 2010) with 

minor modification. We calculated the TR by dividing the average read number in promoter-

proximal H3K4me3 peaks including TSS by that on the gene body (H3K4me3 peak at TSS 

to 2 kb downstream of the end of gene) for DGCR8-bound or Drosha-bound genes. We 

analyzed Deg-seq data from (Karginov et al., 2010). We calculated Deg-seq read abundance 

at Deg-seq peaks in mESCs for Deg-seq libraries with/without Drosha depletion, and 

determined Deg-seq peaks, which read abundance decreased in Drosha-KO library, as 

Drosha-enhanced Deg-seq peaks. Genome-wide mRNA half-life data in mESCs was from 

(Sharova et al., 2009).

Chromatin-associated RNA sequencing—Cells were treated with DMSO or JQ1 (500 

nM) for 12 hrs before fractionation. Cellular fractionation was performed according to the 

following procedures. Briefly, cells were trypsinized, washed with cold PBS, and 

resuspended in cold lysis buffer (10 mM Tris pH 7.4; 150 mM NaCl; 0.15% NP-40; RNase 

inhibitor). After 5 min incubation on ice, the suspension was layered over 1 ml sucrose 

buffer (10 mM Tris pH 7.4; 150 mM NaCl; 24% sucrose) and centrifuged (5 min, 3500 g). 

After removal of supernatant, nuclei pellet was briefly rinsed with cold PBS, resuspended in 

250 μl Glycerol buffer (20 mM Tris pH 7.4; 75 mM NaCl; 0.5 mM EDTA; 50% Glycerol), 

and mixed with 250 μl nuclear lysis buffer (10 mM Tris pH 7.4, 7.5 mM MgCl2, 0.2 mM 

EDTA, 0.3 M NaCl, 1 M Urea, 1% NP-40) by vortexing for 4 sec. After 2 min incubation on 

ice, samples were centrifuged for 2 min at full speed. The remaining chromatin pellet was 

rinsed with cold PBS and resuspended in QIAzol lysis agent. RNA was extracted using 

QIAshredder and miRNeasy Mini Kit (Qiagen). After removal of rRNA by Ribo-Zero rRNA 

removal kit (Illumina), DNA libraries were generated using TruSeq Stranded Total RNA LT 

Sample Prep Kit and analyzed by NextSeq. Reads were mapped to mm9 assembly and 

ChrRNA abundance at gene level was estimated using TopHat (version 2.0.12.) and 

Cufflinks (version 2.2.0.) (Trapnell et al., 2012). For quantification of pri-miRNAs, reads 
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were mapped to mm9 assembly with bowtie 1.0.1 (Langmead et al., 2009), allowing two 

mismatches, and quantitated as the numbers of reads that mapped to pre-miRNA and 

flanking 100 base pair regions in a reads per million scale.

Precursor miRNA sequencing—Cells were treated with DMSO or JQ1 (500 nM) for 6 

or 12 hrs. Small RNA fraction from Dicer KO mESCs was extracted by miRNeasy Mini Kit 

(Qiagen). Small RNA fraction was subjected to library preparation using the NEBNext 

Small RNA Library Prep Set for Illumina (New England Biolabs) and analyzed by Illumina 

HiSeq 2000. Sequences from the Illumina HiSeq 2000 Sequencing system were processed 

for adaptor removal and size exclusion of sequences < 15 nt with Cutadapt. Filtered reads 

were mapped to mm9 assembly with bowtie 1.0.1 (Langmead et al., 2009), allowing two 

mismatches. Pre-miRNA expression levels were computed as the number of reads that 

mapped to pre-miRNA in miRBase v18..

Computational methods for super-enhancer-associated miRNAs in mESCs and mouse cell 
types

Super-enhancers in mouse cell types—Genomic coordinates of SEs and TEs in five 

mouse cell types (ESCs, Pro-B cells, myotubes, Th cells, and macrophages) were 

downloaded from (Whyte et al., 2013). All analyses were carried out using RefSeq 

(NCBI37/mm9) mouse gene annotations. ChIP-seq profiles were presented using a reads per 

million per base pair (rpm/bp) scale.

Assigning enhancers to miRNA genes—To assign each enhancer to a gene and a 

miRNA gene, we calculated the distances from the center of the enhancer to the TSS of each 

gene (NCBI37/mm9) and the center of promoter of each miRNA gene, which was 

previously defined in a systematical manner (Marson et al., 2008). The enhancer was then 

assigned to the closest gene and the closest miRNA gene. To identify enhancer-associated 

miRNAs, we calculated the linkage score (S) between miRNA genes and enhancers by the 

following formula: S (b/a) = (Y−X) / (X+Y), where X and Y are the distances from the 

enhancer to the closest miRNA gene and the closest gene, respectively. In Figure 1A, 

parameters a and b correspond to (X+Y) / 21/2 and (Y−X) / 21/2, respectively. In Figure 1B, 

for each miRNA gene, only the closest enhancer was considered, and expression levels of 

the closest miRNAs from each enhancer in TT-FHAgo2 ESC cells were plotted versus the 

linkage score. Since we observed an increase of cumulative distribution curve around S 

value 0.2 for typical enhancers, we categorized miRNA genes with S value below 0.2 as 

enhancer-associated miRNAs.

Profiles of miRNA expression, Ago2-bound RNAs, and iCLIP in mESCs—We 

used our previous data of profiling of miRNA expression and Ago2-bound RNAs (Zamudio 

et al., 2014) and Ago2 iCLIP (Bosson et al., 2014) in TT-FHAgo2 cells. Expression levels of 

miRNAs in V6.5 mESCs (Figure 3A) were analyzed using the dataset in a previous report 

(Marson et al., 2008).

Calculating miRNA tissue-specificity scores—Tissue specificity scores for miRNAs 

based on miRNA expression status were calculated using miRNA expression atlas (Landgraf 
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et al., 2007) and the similar approach to evaluate information content as described in a 

previous report (Landgraf et al., 2007). Briefly, miRNA expression data was transformed 

into a matrix of normalized frequencies of miRNA expression across samples via first 

normalization in each tissue type and second normalization for each miRNA species. For 

each miRNA, specificity score (SPmiRNA) was calculated as follows: SPmiRNA = 

log2(number of tissue types) + ΣGt*log2(Gt), where Gt is normalized frequency of miRNA 

in the corresponding tissue type. miRNAs with high tissue specificity show high specificity 

scores.

Ago2-dependent target repression in TT-FHAgo2 cells—We analyzed the data of 

RNAseq in TT-FHAgo2 cells with/without doxycycline treatment (Bosson et al., 2014). 

Paired-end reads were mapped to mm9 assembly with the TopHat program (version 2.0.12.) 

using the mm9 GTF file. FPKM data was generated with Cufflinks (version 2.2.0.) (Trapnell 

et al., 2012) and analyzed after a maximum filter of FPKM > 1. Ago2-dependent target 

repression was assessed by the median change in expression of 8mer miRNA targets relative 

to non-miRNA target genes and Kolmogorov–Smirnov test between samples with/without 

doxycycline treatment.

Expression of SE-miRNAs and TE-miRNAs in diverse mouse tissues—In Figure 

S1F, we analyzed the miRNA expression data from (Kuchen et al., 2010) and (Landgraf et 

al., 2007).

Computational methods for super-enhancer-associated miRNAs in human samples

Super-enhancers and SE-miRNAs in human samples—Genomic coordinates of 

SEs and TEs in 86 human samples were downloaded from (Hnisz et al., 2013). All analyses 

were carried out using RefSeq (GRCh37/hg19) human gene annotations. ChIP-seq profiles 

were presented using a reads per million per base pair (rpm/bp) scale. Enhancer-associated 

miRNAs were identified in the same approach as identification of mouse enhancer-

associated miRNAs. Since H3K27Ac SEs tend to cover broader genomic regions, we 

calculated the distances from the center of the enhancer to the center of promoter of each 

miRNA gene (Marson et al., 2008) and the position of each miRNA hairpin and used for 

further assignment.

Correlation between SE-miRNAs and target avoidance—For each SE-miRNA, SE-

miRNA scores were calculated in the corresponding tissue type as follows: SE-miRNA = 

(number of tissue types in which SE associates with the respective miRNA)/(total number of 

tissue types, i.e. 26). In the tissue types without association between SEs and miRNAs, SE-

miRNA scores were set to 0. We performed cross-correlation analysis between the resultant 

SE-miRNA association matrix composed of SE-miRNA scores and target density map, 

which includes negative log10 p value for depletion of miRNA targets assessed by 

Kolmogorov–Smirnov test (Farh et al., 2005), and summarized Pearson correlation 

coefficients in Figure 2E.

SE-miRNAs in cancer—Distribution of SE-miRNAs was compared between each cancer 

cell line and the corresponding normal tissue. Gain and loss of SEs in one or more than one 
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cancer cell line were presented in Figure 7A. Functional assignment for tumor-suppressive 

miRNAs or oncogenic miRNAs was performed based on the description in OncomiRDB, 

which comprehensively curated the publications of cancer-related miRNAs (Wang et al., 

2014a). Proportion of numbers of the reports describing tumor suppressive roles or 

oncogenic roles of miRNAs in each group defined in Figure 7A was displayed in Figure 7B.

Gene ontology and cancer hallmark analysis—A list of the experimentally validated 

human miRNA target interaction was downloaded from miRTarBase (Chou et al., 2015). For 

the target genes of miRNAs with human SEs (Figure 2D) and with SE gain or loss (Figures 

7C and 7D), gene ontology (GO) analyses were performed using Database for Annotation, 

Visualization, and Integrated Discovery (DAVID; http://david.abcc.ncifcrf.gov). A threshold 

p value score of 10−3 was used. The following gene ontology categories were used as 

proxies for the characteristic cancer hallmark traits.

1. Evading Growth Suppressors: GO:0007049, Cell cycle; GO:0008283, Cell 

proliferation

2. Avoiding Immune Destruction: GO:0002682, Regulation of immune system 

process

3. Enabling Replicative Immortality: GO:0007568, Aging

4. Tumor-Promoting Inflammation: GO:0006954, Inflammatory response

5. Activating Invasion: GO:0034330, Cell junction organization

6. Inducing Angiogenesis: GO:0001525, Angiogenesis

7. Genome Instability: GO:0006281, DNA repair

8. Resisting Cell Death: GO:0012501, Programmed cell death; GO:0010941, 

Regulation of cell death

9. Deregulating Cellular Energetics: GO:0006091, Generation of precursor 

metabolites and energy

10. Sustaining proliferative signaling: GO:0007173, Epidermal growth factor 

receptor signaling pathway; GO:0048008, Platelet-derived growth factor receptor 

signaling pathway

For miRNAs which have been recently reported as cancer-related miRNAs and were not 

captured by GO analysis, association between these miRNAs and cancer hallmark traits is 

shown in Figure S7C according to the miRNA function described in OncomiRDB and 

literature search (Suzuki et al., 2015; Wang et al., 2014a).

TCGA data analysis—TCGA data analysis was performed for pancreatic 

adenocarcinoma (PAAD), colon adenocarcinoma (COAD), and breast cancer (BRCA). For 

these tumor types, miRNA expression data and clinical data were downloaded from The 

Cancer Genome Atlas (TCGA) Data Portal (https://tcga-data.nci.nih.gov/tcga/) in October of 

2015. For all miRNAs, regression coefficients and p values were estimated using a univariate 

Cox regression model. In breast cancer, we used the data of SE-miRNAs in luminal and 
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basal-like types. Comparison of p values and coefficients was performed with Wilcoxon 
signed rank sum test (Figures 7E and 7F). Stratifier models (Figure 7G) were generated 

using miRNAs showing p < 0.05 (PAAD and BRCA) or p < 0.1 (COAD). Risk scores were 

calculated by a combination of the expression levels of selected miRNAs weighted by their 

respective Cox regression coefficients according to a previous report (Lossos et al., 2004) by 

the following formula: “risk score” = Σ (regression coefficient) x (expression value of each 

prognostic miRNA). Survival analysis was performed using the survival package of R. P 

values were calculated using two-tailed log-rank test.

ChIP-seq profiling and coregulation analysis

Identifying ChIP-seq enriched regions—Mouse and human sequencing reads were 

aligned to the mouse genome build mm9 and the human genome build hg19, respectively, 

using bowtie 1.0.1 (Langmead et al., 2009). The following parameters were used: -n 2, -e 70, 

-m 1, -k 1, and -l, set to the read length of the data being aligned. ChIP-seq peaks were 

called using MACS version 1.4.2. (Zhang et al., 2008) with parameters -p 1e-9, –keep-dup = 

auto, -w –S –space = 50, and -g mm (or hs).

ChIP-seq read density analysis—ChIP-seq read density was calculated as described in 

(Hnisz et al., 2013; Whyte et al., 2013). Briefly, ChIP-seq reads aligning to the region were 

extended by 200bp and the density of reads per base pair (bp) was calculated. This density 

was normalized to the millions of mapped reads contributing to the density, measured in 

reads per million per base pair (rpm/bp).

ChIP-seq profiling for miRNA promoters and enhancers—ChIP-seq density was 

calculated for promoters of each miRNA gene (Marson et al., 2008) and putative enhancer 

regions (promoter +/− 20kb) (Figures S4A–C). Representative connections between 

transcriptional regulators and miRNAs were visualized using Cytoscape (Figure S4D).

Identifying H3K27Ac super-enhancers in mESCs—Enhancers were stitched and SEs 

were identified using ROSE (https://bitbucket.org/young_computation/rose), as described in 

(Loven et al., 2013; Whyte et al., 2013). ROSE was run with a stitching distance of 12,500 

bp and a TSS exclusion zone size of 2,500 bp, excluding 5,000bp around TSS.

Coregulation analysis—For coregulation analysis, summits of MACS peaks for ChIP-

seq of 64 factors were first assembled, extended by 300bp, and then merged. ChIP-seq 

densities for the enhancer constituents included in OSN-Med1 SEs and H3K27Ac SEs were 

analyzed by coregulation analysis (CRA). After background subtraction and factor-based 

normalization, CRA was performed using Pearson correlation coefficients (cutoff 0.75) for 

ChIP-seq density data and BioLayout Express3D (Theocharidis et al., 2009). The merged 

ChIP-seq profiles of Oct4, Sox2, and Nanog (OSN) were also analyzed.

Identifying broad H3K4me3 domains—According to a previous report (Benayoun et 

al., 2014), broad H3K4me3 peaks were called in mESCs using the MACS2 version 2.0.10 

(Feng et al., 2012) with default settings, adding the “–broad option”. Peaks were assigned to 

the closest gene. Peaks longer than 4kb were called as broad H3K4me3 domains.
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QUANTIFICATION AND STATISTICAL ANALYSIS

In Figures 5 and 6, statistical significance was evaluated with Wilcoxon signed rank sum 

test. In TCGA data analysis (Figure 7), comparison of p values and coefficients in Cox 

regression model was performed with Wilcoxon signed rank sum test. Survival analysis was 

performed using the survival package of R. P values were calculated using two-tailed log-

rank test.
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Highlights

• Super-enhancers and broad H3K4me3 domains shape miRNA expression 

atlas.

• Super-enhancer constituents act together and boost pri-miRNA processing.

• Brd4 inhibition inhibits chromatin DGCR8/Drosha recruitment and miRNA 

processing.

• Alterations of super-enhancers for multiple cancer-related miRNAs.
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Figure 1. Super-enhancers mark cell-type-specific and abundant miRNAs
(A) Assignment of super-enhancers (SEs) and typical enhancers (TEs) to the proximal genes 

and miRNA genes. The distances from enhancers to the closest genes (X axis) and the 

closest miRNA genes (Y axis) are compared. Super-enhancers (SEs) and typical enhancers 

(TEs) spatially closely associated with miRNA genes (i) and with non-miRNA genes (ii) 

represent dots near and far from the red diagonal, respectively.

(B) Contribution of enhancer-miRNA assignment to miRNA expression status in mESCs. 

The linkage score (b/a) along X axis, determined by two parameters (a, b) in Figure 1A, 

represents a relative relationship between distances from enhancers to the closest miRNA 

genes and the closest genes, as an indicator of relative closeness between SE/TEs and the 

nearest miRNA genes (See STAR methods). For each miRNA gene, only the closest 

enhancer is considered, and expression levels of the closest miRNAs from each enhancer in 

TT-FHAgo2 ESC cells (Y axis, right) are plotted versus the linkage score. Red lines indicate 

cumulative distribution curve of total miRNA expression (Y axis, left). Dots in the pink and 

yellow shades indicate SE- and TE-associated miRNAs, respectively.
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(C) Box plots of miRNA expression and Ago2-bound miRNA reads from SE-associated, 

TE-associated, and other miRNAs.

(D) Plots of expression levels and tissue-type specificity scores (See STAR methods) for SE-

miRNAs (red), TE-miRNAs (yellow), and other miRNAs (black).

(E) ChIP-seq profiles for master transcription factors, OSN in ESCs, PU.1 in Pro-B cells, 

and MyoD in myotubes, around miR-290-295, miR-148a, and miR-1/133a2.

(F) Venn diagrams of SE-miRNAs and TE-miRNAs in ESCs (blue border), Pro-B cells 

(green border), and myotubes (orange border).

See also Table S1 and Figure S1.

Suzuki et al. Page 24

Cell. Author manuscript; available in PMC 2018 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. SE-miRNAs in many human cell types and target avoidance phenomenon
(A) Heatmap showing the classification of SE-miRNAs across 26 human cell and tissue 

types. Each row is a miRNA gene and red color indicates the miRNA being associated with 

SEs in the respective cell type.

(B) Specificity of SE-miRNAs and TE-miRNAs. Y and X axis indicate number of miRNA 

genes and number of observed cell types when a miRNA is associated with a super-enhancer 

(SE-miRNA) and a typical enhancer (TE-miRNA).

(C) Examples of representative SE-miRNAs observed in diverse tissue types. miR-15a/16-1 

are associated with SEs in multiple hematopoietic cell types and other cell types (*).

(D) Gene Ontology terms for target genes of SE-miRNAs with corresponding p values.

(E) Cross-correlation analysis between SE-miRNA association and miRNA target density 

map. Pearson correlation coefficients between the SE-miRNA association matrix and target 
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density map including negative log10 p value for depletion of miRNA targets assessed by 

Kolmogorov–Smirnov test (Farh et al., 2005) are shown (See STAR methods).

See also Table S2 and Figures S2 and S3.
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Figure 3. Network-based visualization of super-enhancer composition
(A) Quantitative contribution of expression of miRNAs associated with OSN-Med1 SEs and 

H3K27Ac SEs to the total miRNA pool in V6.5 mESCs.

(B) Analysis strategy for classification of SE constituents.

(C) Correlation networks of ChIP-seq profiles of 64 factors for 2401 enhancer constituents 

included in OSN-Med1 and H3K27Ac SEs, determined by coregulation analysis.

(D) Heatmap showing background-subtracted and normalized ChIP-seq density for enhancer 

constituent clusters. Each row represents a enhancer constituent.
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(E) Pie charts showing distribution of numbers of enhancer constituents (C1–6) included in 

each OSN-Med1 or H3K27Ac SE.

(F) Gene track of Nanog locus.

(G) Distribution of H3K4me3 breadth in ESCs, with a subset of exceptionally broad 

H3K4me3 peaks.

(H) Genomic interval overlap between SE constituents (C1, C2) and broad H3K4me3 peaks.

(I, J) Overlap (I) and expression levels (J) of miRNAs associated with OSN-Med1 SEs, 

H3K27Ac SEs, and broad H3K4me3 peaks.

(K) Relationship between Mediator/H3K27Ac-defined SEs and broad H3K4me3 domains.

See also Tables S3 and S4 and Figure S4.
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Figure 4. CRISPR/Cas9 functional genomics of miRNA super-enhancers
(A) Top: ChIP-seq binding profiles of Oct4, Sox2, Nanog (OSN), and Mediator (Med1) at 

the miR-290-295 locus in mESCs. Bottom: Scheme of miR-290-295 pathway.

(B) RT-qPCR showing expression levels of mature miR-290-295 and Lin28a in TT-FHAgo2 

mESCs deleted of SE constituent with/without Ago2 induction by doxycycline (Dox).

(C) Top: ChIP-seq binding profiles of MyoD at the miR-1a-1/133a-2 locus in myotubes. 

Bottom: Scheme of miR-1/133 pathway.
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(D) RT-qPCR showing expression levels of mature miR-1a and myogenic differentiation 

markers in C2C12 cells deleted of SE constituent with/without differentiation medium 

(DM).

(E) Top: ChIP-seq binding profiles of PU.1 and Mediator (Med1) at the miR-148a locus in 

Pro-B cells. Bottom: Scheme of miR-148a pathway.

(F) RT-qPCR showing expression levels of mature miR-148a, Bach2, and Blimp1 in Pro-B 

cells deleted of SE constituent with/without stimulation by imatinib (IM).

(G–I) Comparison of pri-miRNA, pre-miRNA, and mature miRNA expression levels in 

Ago2-induced TT-FHAgo2 cells (G), differentiated C2C12 myotubes (H), and imatinib-

stimulated Pro-B cells (I) with SE constituent deletion.

Data are represented as mean + SD from two biological replicate experiments.

See also Table S5 and Figure S5.
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Figure 5. Association between super-enhancers and DGCR8/Drosha
(A) ChIP-qPCR analysis showing recruitment of DGCR8 and Drosha to pri-miRNA loci in 

Ago2-induced TT-FHAgo2 mESCs, differentiated C2C12 myotubes, and imatinib-

stimulated Pro-B cells with deletion of SE constituents. % input values were normalized 

with pri-miRNA expression levels. Data are represented as mean + SD.

(B) Distribution of p values of DGCR8 and Drosha ChIP peaks mapping to various genomic 

regions. Hairpin indicates genomic loci corresponding to pre-miRNAs. Insets show fraction 

of SEs and TEs containing at least one DGCR8 or Drosha peak.

(C) ChIP-seq profiles of DGCR8 and Drosha at the miR-290-295 locus in mESCs.
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(D) Metagene profiles of ChIP density of DGCR8 and Drosha across TEs, SEs, and gene 

bodies in mESCs.

(E) Hierarchical clustering of ChIP-seq binding profiles of Drosha/DGCR8 and other factors 

in SE constituents defined in Figures 3B–D. Pearson correlation coefficients between each 

factor are shown.

(F) Identification of Drosha-enhanced endonucleolytic mRNA cleavage events in mESCs. 

Cumulative frequency of Deg-seq read abundance at Deg-seq peaks in wild type (WT) and 

Drosha KO mESCs is shown.

(G) Impact of Drosha-enhanced mRNA cleavage events on the response of abundance of 

chromatin-associated RNA (ChrRNA) for DGCR8 depletion (left) and mRNA half-life 

(right) of SE-associated genes in mESCs.

See also Table S6 and Figure S6.
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Figure 6. Inhibition of super-enhancer-associated miRNA processing by JQ1
(A) Boxplot showing changes in ChIP-seq density of DGCR8 and Drosha in TSS and 

hairpin (pre-miRNA) regions of SE-miRNAs, enhancers, and promoters after JQ1 treatment 

(500 nM, 12 hr).

(B) Boxplot showing changes in ChIP-seq density of DGCR8/Drosha in the promoter-

proximal region and elongating gene body region and DGCR8/Drosha traveling ratio for 

transcriptionally active and DGCR8/Drosha-bound genes after JQ1 treatment (500 nM, 12 

hr). Left panel shows schema of the calculation of traveling ratio.

(C) Gene track of rRNA-depleted ChrRNA sequencing and pre-miRNA sequencing at 

miR-290-295 locus (JQ1: 500 nM, 12 hr).

(D) Effects of JQ1 (500 nM) on ChrRNA abundance (12 hr) at gene levels in V6.5 mESCs.

(E) Effects of JQ1 (500 nM) on chromatin-associated pri-miRNA expression (12 hr) in V6.5 

mESCs and pre-miRNA expression (6 and 12 hr) in Dicer (Dcr) knockout mESCs.

(F) Interdependency of SE constituents for DGCR8 and Drosha recruitment. ChIP-qPCR 

results for SE constituents are shown. Data are represented as mean + SD.

(G) Model of SE-regulated pri-miRNA processing.
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Figure 7. Super-enhancer-associated miRNAs in cancer
(A) Comparison of distribution of SEs around miRNA genes in normal tissues and in cancer 

cells. Each row is a miRNA gene. In the left part, colored box indicates miRNAs associated 

with SEs in the respective samples, and color indicates distinct tissue types (blue: neuronal, 

red: hematopoietic, green: digestive tract, orange: pancreas, purple: breast, light purple: 

lung, gray: others). In the right part, red and blue boxes indicate gain and loss of SEs in the 

respective tissue types, respectively.

(B) Pie charts showing functional assignment of miRNAs with SE loss or gain into tumor-

suppressive or oncogenic groups.
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(C) Cancer hallmark-related Gene Ontology terms enriched in target genes of miRNAs with 

SE loss or gain, with corresponding p values.

(D) Association between SE-miRNAs and cancer hallmark traits adapted from (Hanahan 

and Weinberg, 2011).

(E, F) Survival impacts of SE-miRNAs. The distribution of −log10 (p value) (E) and Cox 

coefficient (F) in a single miRNA-based univariate Cox proportional hazard model are 

shown for individual miRNAs. * P < 0.05 with Wilcoxon signed rank sum test.

(G) Compound SE-miRNA signatures. Subsets of miRNAs with an individual prognostic 

value of 0.05 or 0.1 are selected in select cancer cells and used as a stratifier for Kaplan–

Meier survival analysis. P values were calculated with two-tailed log-rank test.

See also Tables S2 and S7 and Figure S7.
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