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Abstract

We present a local density estimator based on first order statistics. To esti-
mate the density at a point, x, the original sample is divided into subsets and
the average minimum sample distance to x over all such subsets is used to define
the density estimate at x. The tuning parameter is thus the number of subsets
instead of the typical bandwidth of kernel or histogram-based density estima-
tors. The proposed method is similar to nearest-neighbor density estimators
but it provides smoother estimates. We derive the asymptotic distribution of
this minimum sample distance statistic to study globally optimal values for the
number and size of the subsets. Simulations are used to illustrate and compare
the convergence properties of the estimator. The results show that the method
provides good estimates of a wide variety of densities without changes of the
tuning parameter, and that it offers competitive convergence performance.

Keywords: Density estimation, nearest-neighbor, order statistics

1 Introduction

Nonparametric density estimation is a classic problem that continues to play an im-
portant role in applied statistics and data analysis. More recently, it has also become
a topic of much interest in computational mathematics, especially in the uncertainty
quantification community where one is interested in, for example, densities of a large
number of coefficients of a random function in terms of a fixed set of deterministic
functions (e.g., truncated Karhunen-Loève expansions). The method we present here
was motivated by such applications.

Among the most popular techniques for density estimation are the histogram
[Scott, 1979, Scott, 1992], kernel [Parzen, 1962, Scott, 1992, Wand and Jones, 1995]
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and orthogonal series [Efromovich, 2010, Silverman, 1986] estimators. For the one-
dimensional case, histogram methods remain in widespread use due to their sim-
plicity and intuitive nature, but kernel density estimation has emerged as a method
of choice thanks, in part, to recent adaptive bandwidth-selection methods provid-
ing fast and accurate results [Botev et al., 2010]. However, these kernel density
estimators can fail to converge in some cases (e.g., recovering a Cauchy density
with Gaussian kernels) [Buch-Larsen et al., 2005] and can be computationally ex-
pensive with large samples (O (N2), for a sample size N). Note that histogram
estimators are typically implemented using equal-sized bins, and nearest-neighbor
density estimators can be roughly thought as histograms whose bins adapt to the
local density of the data. More precisely, let X1, . . . , XN be iid variables from
a distribution with density, f , and let X(1), . . . , X(N) be the corresponding order
statistics. For any x, define Yi = |Xi − x| and Dj(x) = Y(j). The k-nearest-

neighbor estimate of f is defined as (see [Silverman, 1986] for an overview): f̂N(x) =
(CN/N )/[ 2Dk(x) ], where CN is a constant that may depend on the sample size.
We may think of 2Dk(x) as the width of the bin around x. The value of CN is
often chosen as CN ≈ N1/2 but some effort has been directed towards its optimal se-
lection [Fukunaga and Hostetler, 1973, Hall et al., 2008, Li, 1984], with some recent
work involving the use of order statistics [Kung et al., 2012]. One of the disadvan-
tages of nearest-neighbor estimators is that their derivative has discontinuities at the
points (X(j) + X(j+k))/2, which is caused by the discontinuities of the derivative of
the function Dk(x) at these points. This is clear in Figure 1, which shows plots of
Dk(x) for a sample of size N = 125 from a Cauchy(0, 1) distribution with k = 1 and
k = round(

√
N). One way to obtain smoother densities is using a combination of

kernel and nearest-neighbor density estimation where the nearest-neighbors technique
is used to choose the kernel bandwidth [Silverman, 1986]. We introduce an alterna-
tive averaging method that improves smoothness and can still be used to obtain local
density estimates.

The main idea of this paper may be summarized as follows: Instead of using the
kth nearest-neighbor to provide an estimate of the density at a point, x, we use a
subset-average of first order statistics of |Xi − x|. So, the original sample of size
N is split into m subsets of size s each; this decomposition into subsets allows the
control of the asymptotic mean squared error (MSE) of the density estimate. Thus,
the problem of bandwidth selection is transformed into that of choosing an optimal
number of subsets. This density estimator is naturally parellelizable with complexity
O
(
N1/3

)
for parallel systems.

The rest of this article is organized as follows. In Section 2 we develop the theory
that underlies the estimator and describe asymptotic results. In Sections 3 and 4 we
describe the actual estimator and study its performance using numerical experiments.
A variety of densities are used to reveal the strengths and weaknesses of the estimator.
We provide concluding remarks and generalizations in Section 5. Proofs and other
auxiliary results are collected in Appendix A. From here on, when we refer to the size
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of a sample set being the power of the total number of samples, we assume that it
represents a rounded value, for example, k =

√
N ⇒ k = round(

√
N).

2 Theoretical framework

Let X1, . . . , XN be iid random variables from a distribution with invertible CDF, F ,
and PDF f . Our goal is to estimate the value of f at a point, x∗, where f(x∗) > 0, and
where f is either continuous or has a jump discontinuity. The non-negative random
variables Yi = |Xi−x∗| are iid with PDF: g(y) = f(y+x∗) + f(x∗− y). In particular,
f(x∗) = g(0)/2. Thus, an estimate of g(0) leads to an estimate of f(x∗). Furthermore,
g is more regular than f in a sense described by the following lemma (its proof and
those of the other results in this section are collected in Appendix A).

Lemma 1. Let f and g be as defined above. Then:

(i) If f has left and right limits at x∗ (i.e., it is either continuous or has a jump
discontinuity at x∗), then g is continuous at zero.

(ii) If f has left and right derivatives at x∗, then g has a right derivative at zero.
Furthermore, if f is differentiable at x∗, then g′(0) = 0.

The original question is thus reduced to the following problem: Let X1, . . . , XN

be iid non-negative random variables from a distribution with invertible CDF, G, and
PDF g. The goal is to estimate g(0) > 0 assuming that g is right continuous at zero.
The continuity at zero comes from Lemma 1(i). For some asymptotic results we also
assume that g is right-differentiable with g′(0) = 0. The zero derivative is justified
by Lemma 1(ii). We estimate g(0) using a subset-average of first order statistics.

There is a natural connection between density estimation and first order statistics:
If X(1),N is the first order statistic of X1, . . . , XN , then (under regularity conditions)
EX(1),N ∼ Q(1/(N + 1)) as N → ∞, where Q = G−1 is the quantile function, and
therefore (N + 1)EX(1),N → 1/g(0). This shows that one should be able to estimate
g(0) provided N is large and we have a consistent estimate of EX(1),N . In the next
section we provide conditions for the limit to be valid and derive a similar limit for
the second moment of X(1),N ; we then define the estimator and study its asymptotics.

2.1 Limits of first order statistics

We start by finding a representation of the first two moments of the first-order statistic
in terms of functions that allow us to determine the limits of the moments as N →∞.

Lemma 2. Let X1, . . . , XN be iid non-negative random variables with PDF g, invert-
ible CDF G and quantile function Q. Assume that g(0) > 0, and define the sequence
of functions δN(z) = (N + 1)(1− z)N on z ∈ [0, 1], N ∈ N. Then:
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(i)

(N + 1)EX(1),N =

∫ 1

0

δN(z)

g(Q(z))
dz =

∫ 1

0

Q′(z) δN(z) dz (1)

=
1

g(0)
+

1

(N + 2)

∫ 1

0

Q′′(z) δN+1(z) dz. (2)

Furthermore, if g is twice differentiable with g′(0) = 0, then

(N + 1)EX(1),N =
1

g(0)
+

1

(N + 2)(N + 3)

∫ 1

0

Q′′′(z) δN+2(z) dz. (3)

(ii) If g is differentiable a.e., then

(N + 1)2 E[X(1),N
2 ] =

(
N + 1

N + 2

)∫ 1

0

(Q2(z))′′ δN+1(z) dz. (4)

We use the following result to evaluate the limits of the moments as N →∞.

Proposition 2.1. Let H be a function defined on [0, 1] that is continuous at zero,
and assume there is an integer m > 0 and a constant C > 0 such that

|H(x)| ≤ C/(1− x)m (5)

a.e. on [0, 1]. Then, limN→∞
∫ 1

0
H(x) δN(x) dx = H(0).

This proposition allows us to compute the limits of (1)-(4) provided the quantile
functions satisfy appropriate regularity conditions. When a function H satisfies (5),
we shall say that H satisfies a tail condition for some C > 0 and integer m > 0. The
following corollary follows from Lemma 2 and Proposition 2.1:

Corollary 1. Let X1, . . . , XN be iid non-negative random variables with PDF g,
invertible CDF G and quantile function Q. Assume that g(0) > 0. Then:

(i) If g is continuous at zero and Q′ satisfies a tail condition, then

lim
N→∞

(N + 1)EX(1),N = Q′(0) = 1/g(0). (6)

If g is differentiable and Q′′ satisfies a tail condition, then

(N + 1)EX(1),N = 1/g(0) +O (1/N). (7)

(ii) If g is twice differentiable with g′(0) = 0, g′′ is continuous at zero and Q′′′ satisfies
a tail condition, then

(N + 1)EX(1),N = 1/g(0) +O
(
1/N2

)
. (8)
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(iii) If g is differentiable a.e., g′ and g are continuous at zero, and Q′′ satisfies a tail
condition, then

lim
N→∞

(N + 1)2 E[X(1),N
2] = 2Q′(0)2 = 2/g(0)2 (9)

lim
N→∞

Var
[

(N + 1)X(1),N

]
= 1/g(0)2. (10)

We now provide examples of distributions that satisfy the hypotheses of Corol-
lary 1. For these examples, we temporarily return to the notations Xi (iid random
variables) and Yi = |Xi − x∗| used before Lemma 1.

Example 1. Let X1, . . . , XN be iid with exponential distribution E(λ) and fix x∗ > 0.
The PDF, CDF and quantile function of Yi are, respectively,

g(y) = 2λ e−λx∗ cosh(λy) Iy≤x∗ + λ e−λ(x∗+y) Iy>x∗
G(y) = 2e−λx∗ sinh(λy) Iy≤x∗ + (1− e−λ(x∗+y)) Iy>x∗
Q(z) = λ−1arcsinh(zeλx∗/2) Iz≤z∗ − [x∗ + λ−1 log(1− z) ] Iz>z∗

for y ≥ 0, z ∈ [0, 1) and z∗ = 1− e−2λx∗ . As expected, g′(0) = 0. In addition, Q and
its derivatives are continuous at zero. Furthermore, since | log(1− z)| ≤ z/(1− z) on
(0, 1), we see that Q and its derivatives satisfy tail conditions.

Example 2. Let X1, . . . , XN be iid with Cauchy distribution and fix x∗ ∈ R. The
PDF and CDF of Yi are:

g(y) =
1

π[1 + (y + x∗)2]
+

1

π[1 + (x∗ − y)2]

G(y) = arctan(y + x∗)/π − arctan(x∗ − y)/π.

Again, g′(0) = 0. To verify the conditions on the quantile function, Q, note that

Q(z) = − cot(πz) + cot(πz)
√

1 + (1 + x2∗) tan2(πz),

in a neighborhood of zero, while for z in a neighborhood of 1, Q is given by

Q(z) = − cot(πz)− cot(πz)
√

1 + (1 + x2∗) tan2(πz).

Since Q(z)→ 0 as z → 0+ and g is smooth, it follows that Q and its derivatives are
continuous at zero. It is easy to see that the tail conditions for Q′, Q′′′ and (Q2)′′ are
determined by the tail condition of csc(πz), which in turn follows from the inequality
| csc(πz)| ≤ 1/[ πz(1− z)] on (0, 1).

It is also easy to check that the Gaussian and beta distributions satisfy appropriate
tail conditions for Corollary 1.
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2.2 Estimators and their properties

Let X1, . . . , XN be iid non-negative random variables whose PDF g, CDF G and quan-
tile function Q satisfy appropriate regularity conditions for Corollary 1. We randomly
split the sample into mN independent subsets of size sN . Both sequences, (mN) and

(sN), tend to infinity as N → ∞ and satisfy mNsN = N . Let X
(1)
(1),sN

, . . . , X
(mN )
(1),sN

be

the first-order statistics for each of the mN subsets, and let XmN ,sN be their average,

XmN ,sN =
1

mN

mN∑
k=1

X
(k)
(1),sN

. (11)

The estimators of 1/g(0) and g(0) are defined, respectively, as:

f̂−1(0)N = (sN + 1)XmN ,sN , f̂(0)N = 1/f̂−1(0)N . (12)

Proposition 2.2. Let N , mN and sN be as defined above. Then:

(i) If g is differentiable a.e., g′ and g are continuous at zero, and Q′′ satisfies a tail
condition, then

lim
N→∞

MSE( f̂−1(0)N ) = 0, (13)

and therefore f̂(0)N
P−→ g(0) as N →∞.

(ii) Let g be twice differentiable with g′(0) = 0, g′′ be continuous at zero, and let Q′′′

satisfy a tail condition. If
√
mN/sN →∞ and

√
mN/s

2
N → 0 as N →∞, then

√
mN

(
f̂−1(0)N − 1/g(0)

)
L−→ N(0, 1/g(0)2), (14)

which leads to √
mN

(
f̂(0)N − g(0)

)
L−→ N(0, g(0)2). (15)

Furthermore, MSE(f̂−1(0)N) and MSE(f̂(0)N) are O (1/mN). In particular,
(14) and (15) are satisfied when sN = Nα and mN = N1−α for some α ∈
(1/5, 1/3). This leads to the MSE optimal rate O

(
N−4/5−ε

)
for any ε > 0.

By (ii), we need a balance between the sample size, sN , and the number of samples,
mN : mN should grow faster than sN but not much faster. For comparison, the
optimal rate of the MSE is O

(
N−2/3

)
for the smoothed histogram, and O

(
N−4/5

)
for the kernel density estimator [DasGupta, 2008].
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Distance function

We return to the original sample X1, . . . , XN from a density f before the transforma-
tion to Y1 = |X1 − x|, . . . , YN = |XN − x|. The sample is split into mN subsets. Let
D1(x;m) be the distance from x to its nearest-neighbor in the mth subset. The mean
XmN ,sN in (11) is the average of D1(x;m) over all the subsets; we call this average
the distance function, DMLD, of the MLD density estimator. That is,

DMLD(x) = XmN ,sN =
1

mN

mN∑
m=1

D1(x;m).

The estimators in (12) can then be written in terms of DMLD(x). This distance
function tends to be smoother than the usual distance function used by k-nearest-
neighbor density estimators. For example, Figure 1 shows the different distance
functions DMLD(x), D1(x) and Dk(x) (the latter as defined in the introduction) for
a sample of N = 125 variables from a Cauchy(0, 1). Note that DMLD is an average
of first-order statistics for samples of size sN , while D1 is a first-order statistic for a
samples of size N , so DMLD > D1. On the other hand, D√N is a N1/2th-order statistic
based on a sample of size N ; hence the order DMLD > D√N > D1.

Figure 1: Distance function Dk(x) for k-nearest-neighbor (for k = 1 and k = 11 ≈√
N) and the distance function DMLD(x) (with mN = N

2
3 = 25 subsets) for 125

samples taken from a Cauchy(0,1) distribution.

3 Minimum local distance density estimator

We now describe the local distance density estimator (MLD-DE). The inputs are: a
sample, a set of points where the density is to be estimated and the parameter α
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whose default is set to α = 1/3. The basic steps to obtain the density estimate at a
point x are: (1) Start with a sample of N iid variables from the unknown density, f ;
(2) Randomly split the sample into mN = N1−α disjoint subsets of size sN = Nα each;
(3) Find the nearest sample distance to x in each subset; (4) Compute the density
estimate by inverting the average nearest distance across the subsets and scaling it
(see Eq.(12)). This is summarized in Algorithm 1. Note that for each of the M

Algorithm 1 Returns density estimates at the points of evaluation {xl}Ml=1 given the
sample X1, . . . , XN from the unknown density f .

1: mN ← round(N1−a)
2: sN ← round(N/mN)
3: Create an sN ×mN matrix Mij with the mN subsets with sN variables each

4: Create a vector f̂ = (f̂`) to hold the density estimates at the points {xl}Ml=1

5: for l = 1→M do
6: for k = 1→ sN do
7: Find the nearest distance dlk to the current point x` within the kth subset
8: end for

9: Compute the subset average of distances to x`: d` = (1/mN)
mN∑
k=1

d`k

10: Compute the density estimate at xl: f̂` = 1/2d`
11: end for
12: return f̂

points where the density is to be estimated, the algorithm loops over N1−α subsets,
and within each it does a nearest-neighbor search over Nα points. The computational
complexity is therefore O (MN1−αNα) = O (MN), which is of the same order as the
O (N2) complexity of kernel density estimators [Raykar et al., 2010] when M ∼ N .
However, MLD-DE displays multiple levels of parallelism. The first level is the highly
parallelizable evaluation of the density at the M specified points. The second level
arises from the the nearest-neighbor distances that can be computed independently in
each subset. Thus, for parallel systems the effective computational complexity of the
algorithm is O (MNα), which is the same as that of histogram methods if α = 1/3.

4 Numerical examples

An extensive suite of numerical experiments was used to test the MLD-DE method.
We now summarize the results to show that they are consistent with the theory
derived in Section 2, and illustrate some salient features of the estimator. We also
compare MLD-DE to the adaptive kernel density estimator (KDE) introduced by
Botev et al. [Botev et al., 2010] and to the histogram method based on Scott’s normal
reference rule [Scott, 1979].
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We first discuss experiments for density estimation at a fixed point and show the
effects of changing the number of subsets for a fixed sample size. We then estimate the
integrated mean square error for various densities, and compare the convergence of
MLD-DE to that of other density estimators. Next, we present numerical experiments
that show the spatial variation of the bias and variance of MLD-DE, and relate them
to the theory derived in Section 2. Finally, we check the impact of changing the
tuning parameter α (see Proposition 2.2).

4.1 Pointwise estimation of a density

We use MLD-DE to estimate values of the beta(1, 4) and N(0, 1) densities at a single
point and analyze its convergence performance. Starting with a sample size N = 100,
N was progressively increased to three million. For eachN , 1000 trials were performed
to estimate the MSE of the density estimate. The parameter α was also changed; it
was set to 1/3 for one set of experiments anticipating a bias of O (1/N), and to 1/5 for
another set, anticipating a bias of O (1/N2). The results are shown in Figure 2. We

Figure 2: Convergence plots of the density estimates at x = 1/2 for the distribution
beta(1, 4) (left), and at x = 1 for N(0, 1) (right).

see the contrasting convergence behavior for the beta(1, 4) and N(0, 1) distributions.
For the former, the convergence is faster when α = 1/3, while for the Gaussian it
is faster with α = 1/5. We recall from Section 2 that the asymptotic bias of the
density estimate at a point is O (1/N2). However, reaching the asymptotic regime

depends on the convergence of
∫ 1

0
Q′′(z) δN(z) dz to zero, which can be quite slow,

depending on the behavior of the density at the chosen point. Hence, the effective
bias in simulations can be O (1/N). The numerical experiments thus indicate that
the quantile function derivative of the Gaussian decays to zero much faster than that
of the beta distribution, and hence the optimal value of α for N(0, 1) is 1/5, while
that for beta(1, 4) is 1/3. However, in either case the order of the decay in the figure
is close to N−3/4.
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4.2 L2-convergence

We now summarize simulation results regarding the L2-error (i.e., integrated MSE)
of estimates of a beta(1, 4), a Gaussian mixture and the Cauchy(0, 1) density. The
Gaussian mixture used is (see [Wasserman, 2006]): 0.5N(0, 1) + 0.1

∑4
i=0N( i/2 −

1, 1/1002 ). For comparison, these densities were estimated using MLD-DE, the Scott’s
rule-based histogram, and the adaptive KDE proposed by [Botev et al., 2010]. Both,
the Scott’s rule-based histograms and KDE method fail to recover the Cauchy(0, 1)
density. For the histogram method, this limitation was overcome using an interquar-
tile range (IQR) based approach for the Cauchy density that uses a bandwidth, hN ,
based on the Freedman-Diaconis rule [Freedman and Diaconis, 1981]:

hN = 2N−1/3 IQRN , (16)

where IQRN is the sample interquartile range for a sample of size N . For the KDE,
there is no clear method that enables us to estimate a Cauchy density, thus KDE was
only used for the Gaussian mixture and beta densities.
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Figure 3: Density estimates using MLD-DE, KDE and histogram approaches for the
beta(1, 4), Gaussian mixture and Cauchy(0, 1) distributions.

For the MLD-DE and histogram-based estimators, estimates were obtained for 256
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points in specified intervals. The interval used for each distribution is shown in the
figures as the range over which the densities are plotted. Once the pointwise density
estimates were calculated, interpolated density estimates were obtained using nearest-
neighbor interpolation. For example, Figure 3 shows density estimates from a single
sample using α = 1/3 for the beta (Figure 3(a)), Gaussian Mixture (Figure 3(b)) and
Cauchy (Figure 3(d)), and with an optimal α for the Gaussian mixture (Figure 3(c))
obtained by simulation.

The sample size was again increased progressively starting with N = 125 up
to a maximum sample size N = 8000. The MSE was calculated at every point of
estimation, and then numerically integrated to obtain an estimate of the L2-error. A
total of 1000 trials were performed at each sample size to obtain the expected L2-
error for such sample size. Figure 4 shows the convergence plots obtained for the three
densities using the various density estimation methods (the error bars are the size of
the plotting symbols). We see that the performance of MLD-DE is comparable to
that of the histogram method for the beta and Gaussian mixture densities, and KDE
performs better with both these densities. For the Cauchy density, both the histogram
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Figure 4: L2-convergence plots for various densities.

based on Scott’s rule and the KDE approach fail to converge. This is because Scott’s
rule requires a finite second moment, whereas the kernel used in the KDE estimator
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is a Gaussian kernel, which has finite moments. But MLD-DE produces convergent
estimates of the Cauchy density without any need to change the parameters from
those used with the other densities. Furthermore, it also performs better than the
IQR-based histogram, which is designed to be less sensitive to outliers in the data.
Thus, MLD-DE provides a robust alternative to the histogram and kernel density
estimation methods, while offering competitive convergence performance.

4.3 Spatial variation of the pointwise error

We now consider the pointwise bias and variance of MLD-DE. Given a fixed sample
size, N , the bias and variance are estimated by simulations over 1000 trials. Figure 5
shows the results; it shows pointwise estimates of the mean and the standard error of
the density estimates plotted alongside the true densities. We see that the pointwise
variance increases with the value of the true density, while the bias is larger towards
the corners of the estimation region. For comparison, Figure 6 shows analogous
plots for the KDE and IQR histogram methods. In particular, for the beta density
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(c) Gaussian mixture: optimal α
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(d) Cauchy(0,1) distribution

Figure 5: Pointwise mean and variance of the MLD-DE estimates for various densities.

(Figure 5(a)), the bias is smaller in the middle regions of the support of the density.
However, the bias is large near the boundary point x = 0, where the density has a
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discontinuity. Figure 5(b) shows the corresponding results for the Gaussian mixture.
Again, we see a smaller variance in the tails of the density, but a larger bias in the
tails. As the variance increases with the density, we see larger variances near the peaks
than at the troughs. The results improve considerably with the optimal choice of α
(Figure 5(c)), with a significant decrease in the bias. Figure 5(d) shows the results
for the Cauchy density; these show a small bias in the tails but very low variance.
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Figure 6: Pointwise mean and variance of the adaptive KDE and IQR based histogram
methods.

4.4 Effect of varying the tuning parameter α

The MLD-DE method depends on the parameter, α, that controls the ratio of number
of subsets, mN , to size, sN , of each subset. This is similar to the dependence of
histogram and KDE methods on a bandwidth parameter. However, MLD-DE allows
the use of different α at each point of estimation without affecting the estimates at
other points. This opens the possibility of flexible adaptive density estimation.

To evaluate the effect of α on the L2-error, simulations were performed using
values of α that increased from zero to one, with the total number of samples fixed
to N = 1000. The simulations were done for the beta(1, 4), Gaussian mixture and
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Cauchy(0, 1) distributions. Figure 7 shows plots of the estimated L2-error as a func-
tion of α for the different densities. All the curves have a similar profile, with the
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(c) Cauchy(0,1) distribution

Figure 7: L2-error versus the parameter α for various densities. The sample size was
fixed to N = 1000. A large α implies a small number of subsets mN , but a large
number of samples sN in each subset, while a smaller α implies the converse.

error increasing sharply for α ≥ 0.7; so the plots only show the errors for α ≤ 0.8.
This indicates that, as we saw in Section 2, the number of subsets must be larger than
their size. As we decrease α (i.e., increase the number of subsets), we see that the
error is less sensitive to changes in the parameter. Decreasing α increases the bias,
but keeps the variance low. In general, the ‘optimal’ value of α lies in between 0.2 and
0.6 for these simulations, which further restricts the search range of any optimization
problem for α.

An example of adaptive implementation

An adaptive approach was used to improve MLD-DE estimates of the Cauchy distri-
bution. The numerical results in Figure 5(d) indicate that there is a larger bias in the
tails of the distribution, while the theory indicates that the bias can be reduced by
decreasing the number of subsets (correspondingly increasing the number of samples
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in each subset). The adaptive procedure used is as follows: (1) A pilot density was
first computed using MLD-DE with α = 1/3; (2) The points of estimation where
the pilot density was within a fifth of the gap between the maximum and minimum
density values from the minimum value (i.e., where the density was relatively small)
were identified; (3) The MLD-DE procedure was repeated with the value α = 1/2
for those points of estimation. Figure 8 shows the results of this adaptive approach.
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Figure 8: Cauchy density estimation with the adaptive MLD-DE

We see that the bias has decreased significantly compared to that shown in the ear-
lier plots for the non-adaptive approach. More sophisticated adaptive strategies can
be employed with MLD-DE on account of its naturally adaptive nature, however a
discussion of them is beyond the scope of this paper.

5 Discussion and generalizations

We have presented a simple, robust and easily parallelizable method for one-dimensional
density estimation. Like nearest-neighbor density estimators, the method is based
on nearest-neighbors but it offers the advantage of providing smoother density esti-
mates, and has parallel complexity O

(
N1/3

)
. Its tuning parameter is the number
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of subsets in which the original sample is divided. Theoretical results concerning the
asymptotic distribution of the estimator were developed and its MSE was analyzed
to determine a globally optimal split of the original sample into subsets. Numerical
experiments illustrate that the method can recover different types of densities, includ-
ing the Cauchy density, without the need for special kernels or bandwidth selections.
Based on a heuristic analysis of high bias in low-density regions, an adaptive imple-
mentation that reduces the bias was also presented. Further work will be focused
on more sophisticated adaptive schemes for one-dimensional density estimation and
extensions to higher dimensions. We present here a brief overview of a higher dimen-
sional extension of MLD-DE. Its generalization is straightforward but its convergence
is usually not better than that of histogram methods. To see why, we consider the
bivariate case. Let (X, Y ) be a random vector with PDF f(x, y), and let h(x, y) and
H(x, y) be the PDF and CDF of (|X|, |Y |). It is easy to see that h(0, 0) = 4f(0, 0).
In addition, let q(t) = H(t, t), then q′(t) =

∫ t
0
h(t, y) dy +

∫ t
0
h(x, t) dx. It follows

that (assuming continuity at (0, 0)), q′′(0) = limt→0 q
′(t)/t = 2h(0, 0). Let X1 =

(X1, Y1), . . . ,XN = (XN , YN) be iid vectors and define Ui to be the product norm of
Xi: Ui = ‖Xi‖⊗ = max{ |Xi|, |Yi| }, and Z = U(1). Then

P(Z > t ) = P( ‖X1‖⊗ > t, . . . , ‖XN‖⊗ > t ) = P( ‖X1‖⊗ > t )N

= [ 1− P( ‖X1‖⊗ ≤ t ) ]N = [ 1− P( |X1| ≤ t, |Y1| ≤ t ) ]N

= [ 1− q( t ) ]N .

Let Q be the inverse of the function q. It is easy to check that Q′(z) = 1/q′(Q(z)).
Proceeding as in the 1D case, we have

E(Z2 ) = 2

∫ ∞
0

tP(Z > t ) dt = 2

∫ ∞
0

t [ 1− q( t ) ]N dt =

∫ 1

0

(Q2(z))′ (1− z)N dz.

Therefore E[ (N + 1)Z2 ] =
∫ 1

0
(Q2(z))′ δN(z) dz, and by the results in Section 2,

lim
n

E[ (N + 1)Z2 ] = (Q2(z))′|z=0 = 1/h(0, 0) = 1/(4 f(0, 0)).

Furthermore,

E[ (N + 1)Z2 ] =
1

h(0, 0)
+

1

N + 2

∫ 1

0

(Q2(z))′′ δN+1(z) dz.

But, unlike in the 1D case, this time we have limz→0 (Q2(z))′′ = q(4)(0)/(3q′′(0)) 6= 0,
and this makes the convergence rates closer to those of histogram methods.
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A Proofs

Proof of Lemma 1: (i) Since f has right and left limits, f(x+∗ ) and f(x−∗ ), at x∗,
we may re-define f(x∗) = (f(x+∗ ) + f(x−∗ ))/2. It then follows that

lim
y→0+

g(y) = f(x+∗ ) + f(x−∗ ) = 2f(x∗) = g(0),

and therefore g is right-continuous at zero. (ii) If f has right and left derivatives,
f ′(x+∗ ) and f ′(x−∗ ), at x∗, then limy→0+(g(y)− g(0))/y = f ′(x+∗ )−f ′(x−∗ ) and therefore
g′(0) exits, and g′(0) = 0 if f is differentiable at x∗.

The proof of Proposition 2.1 makes use of the elementary fact that the functions
δN(z) = (N + 1)(1− z)N , z ∈ [0, 1], define a sequence of Dirac functions. That is, for

every N ∈ N: (i) δN ≥ 0; (ii)
∫ 1

0
δN(z) dz = 1; and (iii) for any ε > 0 and δ ∈ (0, 1),

there is an integer N0 such that
∫ 1

δ
δN(z) dz < ε for any N ≥ N0.

Proof of Lemma 2: The results follow from straightforward applications of the tail
formula for the moments of a non-negative random variable. For (i) we have

EX(1),N =

∫ ∞
0

P(X(1),N > t) dt =

∫ ∞
0

(1−G(t))N dt.

Using the change of variable z = G(t) leads to EX(1),N =
∫ 1

0
Q′(z) (1 − z)N dz, and

(1) follows. Version (2) follows from (1) using integration by parts, while version (2)
follows using two integration by parts and the fact that g′(0) = 0. For (ii) we have
something similar,

E[X(1),N
2] =

∫ ∞
0

2tP(X(1),N > t) dt =

∫ ∞
0

2t (1−G(t))N dt

=

∫ 1

0

2Q(z)Q′(z) (1− z)N dz,

and therefore

(N + 1)2 E[X(1),N
2] = (N + 1)

∫ 1

0

(Q2(z))′ δN(z) dz

=

(
N + 1

N + 2

)∫ 1

0

(Q2(z))′′ δN+1(z) dz.
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The last equation follows from integration by parts. �

Proof of Proposition 2.1: Assume first that H(0) 6= 0. Let ε > 0. By continuity
at 0, there is η ∈ (0, 1) such that |H(z) − H(0)| < ε/3 if 0 ≤ z < η. Also, by the
properties of δN and, because (N + 1)/(N − m + 1) → 1 as N → ∞, there is an
integer N0 such that for N > N0,∫ 1

η

δN(z) dz < min{ε/(3|H(0)|), ε/(6C)} and (N + 1)/(N −m+ 1) ≤ 2.

Then,∣∣∣∣∫ 1

0

H(z) δN(z) dz −H(0)

∣∣∣∣ ≤ ∫ η

0

|H(z)−H(0)| δN(z) dz +

∫ 1

η

|H(z)| δN(z) dz

+ |H(0)|
∫ 1

η

δN(z) dz

≤ ε/3 + ε/3 +

∫
|z|≥η
|H(z)| δN(z) dz

≤ ε/3 + ε/3 + C

(
N + 1

N −m+ 1

)∫ 1

η

δN−m(z) dz ≤ ε

for N > N0 +m. The proof for H(0) = 0 is analogous. �

Proof of Proposition 2.2: (i) Since for a fixed sN , X
(1)
(1),sN

, . . . , X
(mN )
(1),sN

is an iid

sequence, it follows from Corollary 1(i) that

E f̂−1(0)N = (1/mN)

mN∑
k=1

E[ (sN + 1)X
(k)
(1),sN

] = E[ (sN + 1)X
(1)
(1),sN

]→ 1/g(0)

as N →∞. For the second moment we have (for simplicity we define aN = sN + 1),

E[ f̂−1(0)
2

N ] =
1

m2
N

mN∑
k=1

E[ (aNX
(k)
(1),sN

)2 ] +
1

m2
N

∑
j 6=k

E( aNX
(j)
(1),sN

)E( aNX
(k)
(1),sN

)

=
1

mN

E[ (aNX
(1)
(1),sN

)2 ] +

(
mN − 1

mN

)
[E( aNX

(1)
(1),sN

) ]2.

The variance and MSE are thus given by

Var[ f̂−1(0)
2

N ] = (1/mN)E[ (aNX
(1)
(1),sN

)2 ]− (1/mN)[E( aNX
(1)
(1),sN

) ]2

MSE( f̂−1(0)N ) =
1

mN

E[ (aNX
(1)
(1),sN

)2 ] +

(
mN − 1

mN

)
[E( aNX

(1)
(1),sN

) ]2

− 2

g(0)
E( aNX

(1)
(1),sN

) +
1

g(0)2
.
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By (6) and (9), the MSE converges to zero as N →∞, Hence, (13) follows.
(ii) Since limit (14) implies (15) by Cramer’s δ-method, it is sufficient to prove (14).

Define µN = EX(k)
(1),sN

, Zk,sN = X
(k)
(1),sN

−µN , and Yk,N = aN Zk,sN/
√
mN for k ≤ mN ,

with Yk,N = 0, otherwise. The variables Y1,N , . . . , YN,N are independent, zero-mean
and, by Corollary 1(iii),

N∑
k=1

E(Y 2
k,N ) = Var( aNX

(1)
(1),sN

)→ 1/g(0)2, (17)

as N →∞. Fix ε > 0. We show that the following Lindeberg condition is satisfied:

N∑
k=1

E(Y 2
k,N IY 2

k,N>ε
2 ) = E( a2NZ

2
1,N Ia2NZ2

1,N>ε
2mN

)→ 0. (18)

To see this, note that since Xi ≥ 0, we have a2NZ
2
1,sN
≤ a2NX

2
(1),sN

+ a2Nµ
2
N . Since

aNµN has a finite limit, the difference εmN −a2Nµ2
N is positive for N larger than some

integer N1. For simplicity, define c2N = ε2mN − a2Nµ2
N . We then have

E( a2NZ
2
1,N Ia2NZ2

1,N>ε
2mN

) ≤ E( a2NX
2
(1),sN

Ia2NX2
(1),sN

>c2N
) + a2Nµ

2
NP(a2NX

2
(1),sN

> c2N).

Since mN/sN →∞, it follows that cN/aN →∞ and therefore P(X > cN/aN ) < 1/2
for N larger than an integer N2. Hence, for N > max{N1, N2},

a2Nµ
2
NP(a2NX

2
(1),sN

> c2N) = a2Nµ
2
NP(X > cN/aN )sN ≤ a2Nµ

2
N/2

sN

E( a2NX
2
(1),sN

Ia2NX2
(1),sN

>c2N
) = 2

∫ ∞
0

tP(a2NX
2
(1),sN

Ia2NX2
(1),sN

>c2N
> t) dt

≤ 2

∫ ∞
0

tP( aNX(1),sN > t, aNX(1),sN > cN ) dt

= 2P(X(1),sN > cN/aN )

∫ cN

0

t dt+ 2

∫ ∞
cN

tP(X(1),sN > t/aN ) dt.

The tail condition (with C > 0 and integer k > 0) on the last integral yields

E( a2NX
2
(1),sN

Ia2NX2
(1),sN

>c2N
) ≤ c2NP(X(1),sN > cN/aN ) + Ca2N

∫ 1

G(cN/aN )

(1− z)sN−k dz

= c2NP(X > cN/aN )sN +
Ca2N
aN + k

P(X > cN/aN )aN−k

≤ c2N
2sN

+
C a2N

(aN + k) 2aN−k
.

Since the right hand-side converges to zero, (18) follows. By Lindeberg-Feller’s theo-
rem, (17) and (18) imply that

√
mN [ f̂−1(0)N − Ef̂−1(0)N ]

L−→ N(0, 1/g(0)2). (19)
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On the other hand, by (8),

√
mN [ aNµN − 1/g(0) ]→ 0 (20)

because
√
mN/s

2
N → 0. Combining (8) and (20) yields (14). Note that since s2N >

√
mN , it follows that the ME of f̂−1(0)N is O (1/mN), and using a simple Taylor

expansion one also finds that the MSE of f̂(0)N is also O (1/mN). �
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