
A comparative analysis of building energy 
estimation methods in the context of 
demand response 
Article 

Accepted Version 

Creative Commons: AttributionNoncommercialNo Derivative Works 4.0 

Curtis, M., Torriti, J. and Smith, S. T. (2018) A comparative 
analysis of building energy estimation methods in the context 
of demand response. Energy and Buildings, 174. pp. 1325. 
ISSN 03787788 doi: 
https://doi.org/10.1016/j.enbuild.2018.06.004 Available at 
http://centaur.reading.ac.uk/78070/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: https://www.sciencedirect.com/science/article/pii/S0378778817336393 

To link to this article DOI: http://dx.doi.org/10.1016/j.enbuild.2018.06.004 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/159548559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online



1 

 

Title: A Comparative Analysis of Building Energy Estimation Methods in the Context of Demand 1 

Response  2 

 3 

Target Journal: Energy and Buildings 4 

 5 

Authors: Mitchell Curtis 1, *, Jacopo Torriti 2, Stefan Thor Smith 2 6 
1 Technologies for Sustainable Built Environments Centre, University of Reading, Reading, UK 7 
2 School of the Built Environment, University of Reading, Reading, UK 8 

*
 Corresponding author at: Technologies for Sustainable Built Environments Centre, University of Reading, 9 

Reading, UK. E-mail m.r.curtis@pgr.reading.ac.uk 10 

 11 

 12 

Abstract:  13 

A critical element of assessing a building’s suitability for Demand Side Response (DSR) is understanding 14 

its turndown potential to ensure that DSR participation will be financially viable. While research has 15 

been undertaken on site level DSR estimation methods, there is currently no research that compares 16 

the outcomes of these methods. This paper compares four non-domestic energy estimation methods 17 

used for understanding the DSR potential of electrical appliances in a building to provide insights about 18 

uncertainty levels based on input requirements. Each method is deployed to estimate the DSR 19 

potential of HVAC chiller assets at two UK hotels over two years. The results show the methods have a 20 

range of error levels from the highest Mean Average Percentage Error (MAPE) of 159% to the lowest 21 

MAPE of 39%. The input requirements followed a general trend of more complex informational inputs 22 

resulting in lower error values. The outcomes of this research enable users to make informed decisions 23 

in selecting DSR estimation methods based on information availability and acceptable estimation error 24 

levels.  25 

 26 

 27 

Highlights 28 

 Four DSR estimation methods were evaluated using empirical data from two hotels 29 

 The DSR estimation methods were found to have a wide range of error levels  30 

 The comparisons of methods allows for informed selection of a DSR estimation method based 31 

on available input information 32 
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1 Introduction  41 

Demand Side Response (DSR) programmes generally require a detailed understanding of the turndown 42 

potential of participating buildings to accurately forecast DSR capacity for electricity system balancing. 43 

This detail is needed as DSR programmes will apply penalties if contracted levels of turndown are 44 

missed. As an example, the UK Short Term Operation Reserve (STOR) programme requires participants 45 

to provide a guaranteed turndown kW amount for set periods of time of up to 14 hours per day 46 

(National Grid, 2016). If STOR participants underdeliver by more than 5%, then financial penalties are 47 

applied and progressively increased with the potential for ultimately removing non-performing 48 

participants from the programme if they fail in meeting guaranteed turn down levels too many times. 49 

The severity of penalties will vary by country and DSR programme. For example, the American San 50 

Diego Gas & Electric programme has a low severity based on payments being reduced proportionally 51 

to the contracted amount delivered (SDG&E, 2016). Whereas the Spanish programme is very strict 52 

with exclusion if the site fails to meet their obligations twice (SEDC, 2017). This means that correctly 53 

determining the long-term DSR potential of a building is important for appraising its suitability for DSR.  54 

 55 

As DSR aggregators play a key role in provide 80% of DSR capacity (SEDC, 2017), this research has 56 

focused on the estimation methods aggregators apply when determining the turndown potential and 57 

suitability of buildings for DSR. DSR aggregators operate by combining small flexible loads from 58 

multiple buildings into a virtual single load and take responsibility for managing the DSR process. 59 

Research into how aggregators decide if a building is suitable shows that the key assessment tasks 60 

focus on determining the long-term DSR potential of a buildings’ assets (Curtis, 2017). Therefore, the 61 

ability to correctly analyse a building’s DSR potential is a critical element of an aggregator’s business 62 

process. This is expressly important when dealing with small to medium enterprises with smaller 63 

overall levels of DSR potential as the ability to lowering the contracted amount of DSR to avoid 64 

penalties due to estimation uncertainty is limited. While an aggregator can perform building surveys to 65 

gain a detailed understanding of a building’s DSR potential, surveys have a time and cost impact and 66 

therefore are normally only undertaken once an initial desktop assessment has been completed. 67 

However, performing a desktop assessment to determine a building’s potential is often difficult as 68 

detailed usage information (from sub-meters for example) about the individual electrical assets that 69 

are being assessed for DSR is normally unavailable (Merry, 2017). Instead, the only information 70 

normally available is the building’s overall electricity usage as recorded at half hourly (UK standard 71 

practice) or similar intervals by the building’s utility supplier. Half hourly information will provide a 72 

usage profile that can be used for estimating the building’s DSR potential and suitability if all electricity 73 

demand from the grid is reduced by either using backup generators or turning off all assets. For 74 

buildings that can only turndown a limited subset of assets for DSR, a building level profile is unable to 75 

provide the individual assets’ usage patterns needed to understand their suitability for DSR. To gain 76 

this necessary level of detail requires additional analysis to try and determine what proportion of the 77 

building’s usage is represented by individual assets. 78 

 79 

Research on understanding energy usage in buildings is extensive, with a review by Borgstein, 80 

Lamberts, & Hensen (2016) identified five categories (Engineering calculations, Simulation, Statistical, 81 

Machine Learning, and Other) that each contained multiple approaches. However, research on  82 

application of these approaches for DSR estimation is limited and is influenced by whether the 83 

estimation is for implicit or instead explicit DSR (SEDC, 2016). Implicit DSR covers price-based 84 

measures, whereby demand might be reduced based on users responding to electricity price signals 85 

(for example, temporarily high electricity prices that encourages reduction in usage to reduce costs). 86 
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Explicit DSR covers incentive-driven measures, whereby demand reduction is specifically requested 87 

based on an external signal (for example, demand is reduced temporarily based on a site or its 88 

appliance receiving a signal in return for financial compensation for participation). As implicit DSR 89 

relies upon optional participation, research into estimating reduction potential focuses on how groups 90 

with similar DSR assets behave in response to different pricing signals, for the purposes of gaining an 91 

understanding of their combined potential. This is illustrated in research by Shen et al. (2016) where a 92 

genetic algorithm is used to estimate the DSR potential for a group of buildings based on time of use 93 

and dynamic pricing signals. The authors showed that if each building responds independently to 94 

pricing signals, then this can cause higher peak demand usage and therefore recommended that 95 

responses are coordinated across similar groups of buildings to achieve the desired peak reduction. 96 

Similarly, Chassin & Rondeau (2016) utilised the Random Utility Model to understand the potential 97 

provided by groups of fast-acting demand response loads under real-time pricing. In contrast to 98 

implicit DSR’s reliance upon optional participation, explicit DSR participation is established by contract 99 

and the application of penalties where sites fail to respond to a specific reduction request or do not 100 

deliver pre-agreed levels of usage reduction. This means that estimation methods for explicit DSR 101 

focus on assessing the likely long-term potential of specific buildings to ensure that contractual 102 

commitments can be met. As 80% of DSR is currently provided by aggregators, who rely upon explicit 103 

DSR, this paper focuses on comparing only energy estimation methods used for explicit DSR (SEDC, 104 

2017). 105 

 106 

The majority of contributions to the research field of explicit DSR have originated from the Lawrence 107 

Berkeley National Laboratory - Demand Response Research Center (DRRC, 2017). Their research into 108 

DSR has covered several areas including methods for assessing the DSR potential of buildings. To help 109 

improve the assessment process the DRRC developed the Demand Response Quick Assessment Tool 110 

(DRQAT) (Yin & Black, 2015) which uses the EnergyPlus whole building energy simulation program (U.S. 111 

Department of Energy, 2017) to predict DSR potential using predefined building models and a limited 112 

set of user selectable variables. While the DRQAT program helps to make the assessment process 113 

easier, it introduces other limitations, notably that it will only work for predefined building models 114 

which are currently offices and retail buildings based in California. They also recognise that are still 115 

many input uncertainties like operational behaviour and space loads that are hard to capture in the 116 

DRQAT model. To overcome these uncertainties, they use metrics of peak demand (kW), absolute 117 

demand savings (kW), and relative demand savings (%) to compensate for differences in actual and 118 

forecasted load shapes. The DRRC have also looked into understanding the predictors that influence 119 

how well a building will perform when enabled for DSR (Mathieu et al., 2010; Piette et al., 2011). This 120 

research showed that the level of turndown potential could be linked to temperature if the DSR assets 121 

demonstrate varying levels of usage based on external weather conditions with prediction uncertainty 122 

being approximated using the standard error. The limitation of using this approach for assessing a 123 

building is the need for the building to have already been involved in DSR to have access to event 124 

outcomes for analysis. Another assessment approach proposed by Panapakidis et al. (2014) is to 125 

cluster electricity usage of a building into profiles that can then be used to ascertain DSR turndown 126 

opportunities based on variance between the profiles. They try to reduce uncertainty by testing a 127 

range of cluster lengths to find the optimal number to use that minimises the overall sum of squared 128 

errors. This method has the advantage of only needing the building’s overall electricity usage records, 129 
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yet is limited by the assumptions required when deciding what the differences between profiles mean 130 

in terms of individual asset usage. There are other proprietary commercially developed analysis 131 

methods that have not been published. One such method has been provided by an aggregator in 132 

association with this research. They have two approaches when performing building asset assessment 133 

for DSR. The first approach assumes that the asset will work at a set level all year. To help reduce the 134 

uncertainty of this estimation a second approach is used that analyses the building’s overall electricity 135 

records for a year to create a baseload usage amount for 95% of the time. The aggregator then takes a 136 

proportion of this 95% to represent the asset usage. Using the baseload value reduces uncertainty by 137 

knowing that at least this amount of electricity is being used 95% of the time and therefore taking a 138 

proportion of it prevents over estimating the assets potential usage. The major limitation of both 139 

approaches is the assumed consistent usage of the asset across the year, which they recognise, but 140 

still use the method to provide an initial understanding of anticipated potential before deciding on 141 

further investigations.  142 

 143 

The issue that faces aggregators and anyone trying to perform DSR estimations using these methods is 144 

knowing which one to use and how they compare in terms of uncertainty and cost to undertake. 145 

Therefore, the aim of this paper is to provide an understanding of uncertainty levels in current non-146 

domestic DSR potential estimation methods based on the input requirements. By understanding the 147 

uncertainty levels and costs of DSR estimation methods this research hopes to increase usage of DSR 148 

from businesses that are currently excluded due to risk aversion resulting from not knowing the level 149 

of estimation uncertainty. The research is undertaken by examining and applying four DSR estimation 150 

methods to two UK hotels as described in Section 2. Section 3 sets out the research results and 151 

discusses these findings. Section 4 concludes by summarising the implications of this research. 152 

 153 

2 Methods 154 

Four DSR potential estimation methods were applied to two medium-sized UK hotels (~200 rooms) to 155 

evaluate outcome uncertainty against the level of information required for estimation. The four 156 

methods are: asset assessment; baseline comparison; historical event analysis; and building energy 157 

modelling. Figure 1 provides an overview of the explicit DSR estimation methods reviewed in this 158 

paper, including the primary data and parameter inputs and the analytical approaches used. The 159 

methods are to be used as part of an initial desktop assessment to determine the potential DSR of a 160 

building or business. The assessment provides a decision on whether further assessment or inclusion 161 

of the business in a DSR aggregation programme is valid. All methods estimate the half-hourly kW 162 

usage profile of electrical assets over a one-year period to assess if sufficient DSR potential exists. To 163 

explain how the methods were used and compared this section is divided into seven subsections. The 164 

first section describes the comparison of estimation method outcomes, followed by four sections 165 

describing the input requirements and calculation steps for each estimation method. Section six 166 

describes the sensitivity analysis approach used to highlight the influence of input parameter 167 

uncertainties on method outcomes. Finally, section seven describes the approach used to calculate the 168 

cost of using each method. 169 

 170 
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 171 
Figure 1 – Overview of DSR Estimation Methods 172 

 173 

2.1 Comparison Approach 174 

This comparison of estimation methods was undertaken by using each method to determine the usage 175 

profiles of HVAC chillers located at two UK hotels. Chillers are large centralised assets that cool water 176 

for distribution around each hotel’s HVAC system to provide space cooling that were identified by 177 

Curtis et al. (2018) as being suitable for DSR due to the flexibility they offer through their ability to be 178 

temporally turned off without impacting end-users. The hotel chillers have a maximum rating of 333 179 

kW for Hotel 1 and 290 kW for Hotel 2. The two hotels have been chosen due to having access to 180 

detailed information about each building’s overall electricity usage as well as high-quality sub-metered 181 

electricity usage data for the chillers during the years 2013 and 2016 for Hotel 1 and 2015 and 2016 for 182 

Hotel 2. The sub-metered data enables a direct comparison of the estimation method outcomes 183 

against actual usage. While chillers are used as an example of an electrical appliance with DSR 184 

potential in this paper, its purpose is not to assess the suitability of chillers for DSR. Instead, the aim 185 

and focus of this research is to compare methods for estimating the potential levels of electricity usage 186 

by assets with potential for explicit DSR programmes, of which chillers are only one example. The 187 

resulting usage estimates for chillers, as a sample appliance, can then be used as an input for 188 

determining the specific DSR potential of a building based on the appliances characteristics and 189 

intended DSR programme requirements. The application of the estimate to a DSR programme is not 190 

covered in this paper as this is dependent on the ability of an appliance to meet specific programme 191 

requirements. Therefore, evaluation of the estimations is kept independent by using the Mean 192 

Absolute Percentage Error (MAPE) and Mean Bias Error (MBE) methods.  193 

 194 

The MAPE values provide an overall indication of the level of difference between the actual and 195 

predicted results while the MBE values indicate the direction of error with positive and negative 196 

results indicating over estimation and under estimation respectively. These methods were selected as 197 

De Gooijer & Hyndman (2006) define them as the most common measures to use for time series 198 

evaluation as they provide an easy to understand percentile value to indicate the level of forecasting 199 

Data Inputs Estimation Methods Method Parameter Inputs

Output

Estimation Usage of Asset Over One 

Year at Half Hourly Resolution

Method 4 - Building Energy Modelling 

(Using Simulation Analysis)

Asset percentage usage of baseload 

(e.g. 10%)

Hourly outdoor weather information 

for 1 year

Number of clusters to use 

(e.g. 4) 

Number of existing events to use 

(e.g. 12)

Method 3 - Utilise Historical DSR Events 

(Using Regression Analysis) 

Building plans and operational 

information

Building modelling values: 

Cooling set point (e.g. 12)

Building U-Values (e.g. walls 0.289)

Air infiltration levels (e.g. 0.7 ac/h)

Maximum kW rating of building’s 

potential DSR assets

Method 1 (v1) - Asset Assessment 

(Using Set Usage Analysis)

Estimated asset percentage usage level 

(e.g. 50%)

Building’s electricity usage records 

for 1 year (Half hourly in the UK)

Method 1 (v2) - Asset Assessment 

(Using Baseload Analysis)

Baseload percentile 

(e.g. 95%)

 kW Reduction Amounts Achieved 

during Previous DSR Events 

Method 2 - Baseline Comparison 

(Using Clustering Analysis)
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error that can be used to compare uncertainty across the four estimation methods. They are also 200 

deemed suitable based on their general usage across the literature on DSR estimation methods (Aman 201 

et al., 2016; Larsen et al, 2015).  202 

 203 

2.2 DSR Estimation Method 1 - Asset Assessment  204 

The asset assessment method is based on a review of current estimation approaches undertaken at a 205 

UK DSR aggregator. This is the simplest of the four methods as it is based on using very limited 206 

information with two variations to the approach as follows (see Appendix A for detailed calculation 207 

steps):  208 

 Variation 1 – Minimum Information: This approach uses only the maximum kW rating of the 209 

asset being assessed. The expected kW usage level of the asset across the year is calculated as 210 

a set percentage of the maximum rating. The set percentage can vary based on the assessor’s 211 

prior knowledge of the asset type and building.  212 

 Variation 2 – Utilise Baseload Calculation: This approach uses the building’s overall electricity 213 

usage records over one year (in the UK this is provided in half-hourly intervals) to calculate its 214 

baseload usage. The baseload amount is calculated for each half-hourly period by taking all 215 

usage records for each period (i.e. 365 usage records for the 00:00 to 00:30 half-hour period), 216 

ordering the records by value, then finding the 5th percentile value. This provides half hour 217 

electricity usage values that the building will use at least 95% of the time over the year and is 218 

therefore classified as the baseload. The expected kW usage level of the asset across the year 219 

is then calculated by taking a percentage share of the baseload that is attributed to the asset 220 

to be used in DSR. Again, the percentage will be set according to prior knowledge of this type 221 

of asset and building.  222 

 223 

2.3 DSR Estimation Method 2 - Baseline Comparison 224 

The second estimation method utilises clustering techniques to identify DSR opportunities through 225 

comparison of each building’s different usage profiles over a year. This method works on the basis that 226 

a building has different usage profiles throughout the year, and once profile clusters are identified, 227 

representative profiles of each cluster can be used to ascertain DSR turndown opportunities based on 228 

variance between the profiles. Panapakidis et al. (2014) reviewed a selection of clustering methods for 229 

electricity load curve analysis of buildings and identified that the k-means method offers a balanced 230 

approach for finding appropriate clusters that would be suitable for understanding building energy 231 

efficiency opportunities, including for DSR. However, they did not actually provide specific DSR 232 

estimation outcomes for the test building. Research by Van Wijk et al. (1999) also looked into how to 233 

use clustering techniques to identify patterns and trends on multiple timescales (days, weeks, 234 

seasons). They found that using k-means and then associating the resulting clusters to the different 235 

timescales allowed for identification and exploration of usage profiles. Their technique succeeds in 236 

identifying weekend vs weekday profiles and other significant periods, such as holidays. These 237 

clustering techniques show that building energy usage normally follows a small set of similar profiles. 238 

By identifying these profiles, it is then possible to understand different usage levels, which can then 239 

potentially be used to derive DSR estimations based on the business type.  240 

 241 
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The k-means cluster method is used for the baseline comparison (Sayad, 2017). The clustering method 242 

works by first selecting how many groups the usage dataset will be clustered into. For each group, a 243 

random point within the dataset is selected and deemed the centroid value. Each value in the dataset 244 

is assigned to the closest centroid. The mean of the values for each centroid is then calculated. The 245 

centroids are then moved to the mean position and the values are reassigned to the now closest 246 

centroids. This process is repeated until a pre-defined number of interactions is achieved or the level 247 

of centroid position change reaches a set tolerance. The number of clusters for the baseline 248 

comparison will vary for each building. One approach for determining the optimum number of k-249 

means clusters to use is called ‘elbow’ method. This method works by repeating the k-means method 250 

using a range of clusters to determine each clusters percentage of variance. The percentage of 251 

variance (dependent variable) is plotted against number of clusters (independent variable) in order to 252 

find the ‘elbow’ of the curve that signifies the optimum number of clusters, as adding more will have 253 

limited benefit in reducing variance (Ketchen & Shook, 1996). The k-means elbow identification 254 

process is undertaken for each hotel’s electricity usage data. The data within each cluster is then 255 

averaged by half-hourly period. The half-hourly averages in each cluster are then used to generate 256 

daily profiles at half-hourly resolution for each cluster of each hotel. Figure 2 provides an example of 257 

the daily profiles developed for the four identified clusters of a hotel. 258 

 259 

Using the profiles to estimate DSR requires informed assumptions about what the profiles represent 260 

based on available information about the business. For the case of hotels, as in this study, information 261 

on energy sources related to heating and cooling (gas for heating, electricity for cooling), industry 262 

studies/reports on proportional breakdown of electricity use identifies that HVAC demand typically 263 

accounts for 34% of electricity demand in UK hotels (CIBSE, 2012). The consistent daily profiles of 264 

demand across all days of a week, consistent annual occupancy profiles found in hotels, and a high 265 

proportion of HVAC related demand provide the basis for assuming that variation in cluster profiles is a 266 

result of differing HVAC loads. It follows that the profile with the highest demand represents a high 267 

level of chiller usage, whilst the profile of lowest demand represents a baseline level of chiller usage. 268 

 269 

For a different case, such as an office, where weekday and weekend profiles are likely to be 270 

represented in different clusters, a larger optimum set of clusters is likely. Identifying baseline level 271 

chiller usage would potentially be more difficult in such circumstances where greater variability in 272 

demand related activity is found. Determining what the profiles represent highlights the primary 273 

drawback of this method as it requires assumptions to be made on limited data. Incorrectly assuming 274 

what the profiles represent will result in incorrect DSR estimations and therefore this method needs to 275 

be used with caution.  276 

 277 

Based on the assumption that profiles represent differences in chiller usage levels, the first step is to 278 

identify days associated with baseline use. In the context of the UK, chillers are not typically in use 279 

during the winter months. The baseline is, therefore, considered as days when the chiller is switched 280 

off during the heating season. The remaining clusters represent days when the chiller is in use. For this 281 

case, the kW usage levels of the chiller on these days is estimated by the difference between the 282 

cluster’s usage value and the baseline value. Even in the case where the baseline cluster does not 283 
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represent chiller switch-off the differences in usage could still be considered as representative of 284 

maximum available turndown. See Appendix B for detailed calculation steps used in this method. 285 

 286 

 287 
Figure 2 - Example Chart of Clustered Averages 288 

 289 

2.4 DSR Estimation Method 3 - Utilise Historical DSR Event Outcomes  290 

If a building has previously participated in DSR, then information gained on the kW amount reduction 291 

during each event can be utilised to estimate future performance. Research on this method has 292 

traditionally focused on confirming the DSR performance of a building by calculating the ‘residual 293 

demand’ (referred to as ‘turndown’ in this research), which is deemed as the difference between 294 

normal non-DSR building usage and the actual usage during a DSR event (Mathieu et al., 2010). Further 295 

research into understanding the expected level of residual demand using weather-based regression 296 

analysis was undertaken by Piette et al. (2011). They showed that the level of turndown potential 297 

could be linked to temperature if the DSR assets demonstrate varying levels of usage based on 298 

external weather conditions. This DSR estimation method utilises these concepts to identify a 299 

predictor that determines the expected turndown amount of historical DSR events. The predictor can 300 

then be utilised to determine the expected turndown amount at any time over a one-year period.  301 

 302 

This method relies on access to historical DSR event outcomes for the building. To provide consistency 303 

for testing this method with both hotels, a set of 24 DSR events were randomly created. The DSR 304 

events were then matched to each hotel’s actual chiller sub-metered data to provide real kW events 305 

outcome for each year of analysis (on the basis that during the event the chillers would have been 306 

temporarily turned off). Secondary data sources include any values that can be used for regression 307 

analysis to find a suitable predictor of the DSR event outcomes. For this research, the predictors 308 

selected for analysis were Outside Air Temperature, Building’s Electricity Usage Level, Half Hour Period 309 

of Day, and Day of Week. The first step in this method is to calculate the R-squared value of each 310 

predictor against the historical DSR event outcomes to decide which predictor to use. The regression 311 

calculation results of Table 1 show that the Outside Air Temperature predictor achieved the highest r-312 

squared score and therefore this predictor is selected for the next step. The second step then uses the 313 

Outside Air Temperature values for each half-hourly period of the year in conjunction with the 314 

predictors slope and y-intercept to calculated the DSR estimation potential for the buildings. See 315 

Appendix C for detailed calculation steps used in this method. 316 
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Table 1 - Method 3’s R-squared Regression Results 317 

Hotel / Year 
Time of 

Day 
Day of 
Week 

Buildings Electricity 
Usage Level 

Outside Air 
Temperature 

Hotel 1 - 2013 0.003 0.036 0.273 0.722 

Hotel 1 - 2016 0.003 0.040 0.087 0.636 

Hotel 2 - 2015 0.007 0.017 0.046 0.434 

Hotel 2 - 2016 0.019 0.028 0.066 0.447 

 318 

2.5 DSR Estimation Method 4 - Building Energy Modelling 319 

Building energy modelling provides insight into DSR potential by modelling the energy usage of 320 

building assets under different operational and environmental scenarios. Modelling gives insight into 321 

flexibility of asset usage that can then be used for DSR estimation. However, this is very time 322 

consuming in comparison to the previous estimation methods, and requires a very high level of 323 

information and specialised skills to complete. Utilising a database of archetypal building models for a 324 

building stock can help reduce the modelling burden for DSR, as demonstrated by Yin & Black (2015). 325 

The predefined model archetypes can be modified as necessary, but its success is dependent on the 326 

maturity of the database of archetypes and level of modification needed to provide results deemed of 327 

value to DSR estimation. Another issue with energy building models is the ‘performance gaps’ between 328 

model designs and actual performance of completed buildings, which can result in high levels of 329 

output uncertainty (Menezes, Cripps, Bouchlaghem, & Buswell, 2012). For this research, the building 330 

energy model DSR estimation method utilises the Yin & Black (2015) methodology by creating a 331 

building energy model of the test hotels using EnergyPlus. The outcome of the simulation includes the 332 

expected level of cooling in kW per half hour that will be used for DSR estimation.  333 

 334 

To undertake this energy modelling approach, the building plans for each hotel were used to provide 335 

both accurate building dimensions as well as the fabric structure of the building (outlined in Table 2). 336 

The building plans are used to create a representative model of the building using the software 337 

package ‘DesignBuilder’ v5.0.2 (DesignBuilder, 2017b). The DesignBuilder program then utilises the 338 

EnergyPlus simulation program (U.S. Department of Energy, 2017) to estimate the buildings energy 339 

usage over one year at half hourly intervals. The simulated energy usage results of the modelled chiller 340 

units were then exported from DesignBuilder to provide the DSR estimation potential for each 341 

building. See Appendix D for detailed calculation steps used in this method. 342 

 343 

Table 2 - Build Energy Model Components 344 

Component Hotel 1 Description Hotel 2 Description 

External Walls 400mm thick wall (formed of stone 

masonry, brick, glass wool insulation, 

and plasterboard) total U-Value of 0.289 

300mm thick wall (formed of brick, 

polystyrene insulation, concrete, and 

plasterboard) total U-Value of 0.351  

External Windows Double glazed (formed of two 3mm 

panes with a 6mm air gap) total U-Value 

of 3.365 

Double glazed (formed of two 3mm panes 

with a 6mm air gap) total U-Value of 3.365 

Roof 400mm flat roof (formed of asphalt, 

glass wool insulation, air gap, 

plasterboard) total U-Value of 0.322 

320mm Flat roof (formed of asphalt, glass 

wool insulation, air gap, plasterboard) 

total U-Value of 0.346 
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HVAC System Fan Coil Unit (4-Pipe), 333kW air-cooled 

chiller with a cooling set point of 23°C 

Fan Coil Unit (4-Pipe), 290kW air-cooled 

chiller with a cooling set point of 23°C 

Property Details 7 stories, ~21,000 m2 isolated building 

located in Bristol, UK. 

6 stories, ~15,000 m2 isolated building 

located in London, UK. 

Weather File Custom DesignBuilder weather data file created for each year of analysis 

(DesignBuilder, 2017a).  

 345 

 346 

2.6 Sensitivity Analysis 347 

The accuracy of estimation method is an important factor in creating credible/robust DSR portfolios 348 

that can meet grid-operator needs. Appropriate interpretation of uncertainty in inputs to the proposed 349 

methods is, therefore, critical to DSR estimation. To understand the impact of each estimation 350 

method’s input uncertainty on the DSR estimation, and so give insight as to where more accurate 351 

information should be sought, a one-at-a-time local sensitivity analysis test was carried out, as in 352 

Saltelli, Chan, & Scott (2008). The sensitivity results are compared using the HVAC chillers yearly MWh 353 

usage estimation output as generated by of the four methods, as this provides scale context to the test 354 

outcomes. In performing the sensitivity tests, each method was first run using base values for each 355 

input parameter, as described in Figure 1 and sections 2.2 to 2.5. Completing this step provides 356 

baseline outcomes for comparison against. Each input parameter was then adjusted from the base 357 

values, as outlined in Table 3, and the sensitivity test for each method re-run using the adjusted input 358 

parameter, generating the sensitivity comparison results. As estimation methods 1-3 only have one or 359 

two input variables, all inputs for each method are tested during the analysis. The detailed modelling 360 

approach of Method 4, however, has a wide range of input variables ranging from building form and 361 

structure, to operational schedules of appliances and occupancy profiles. In this instance, it is assumed 362 

that the availability of building plans and detailed information of HVAC and lighting infrastructure 363 

reduces uncertainty in many of the structural aspects of the model. Menberg, Heo, & Choudhary 364 

(2016) identified temperature set points, thermal conductivity, and air infiltration as having a 365 

significant impact on building energy model results. These three variables are the focus of our analysis 366 

for Method 4. 367 

  368 

Table 3 - Summary of Estimation Method Sensitivity Analysis Input Parameters 369 

Method Base Values Input Adjustment 

1 (1) 50% Adjust asset usage percentage by +/- 5 and 10 points 

1 (2) 

10% Adjust asset percentage usage of baseload value by 

+/- 2.5 and 5 points 

5% Adjust baseload percentile by +/- 1 and 2 points 

2 4 Adjust number of clusters used by +/- 1 cluster 

3 12 Adjust number of available existing events by -50%, 

+50%, +100% 

4 23 °C Adjust cooling set point by +/- 1 and 2 °C 

0.289 

to 3.365 

Adjust U-Values of External Walls, Windows, and 

Roof by +/- 10% and 20%  

0.7 Adjust air infiltration levels by +/- 0.1 and 0.2 ac/h 

 370 

 371 
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 372 

2.7 Determining the Cost of each Estimation Method  373 

The final output of the review of DSR estimation methods is a comparison of each method’s estimation 374 

errors in relation to its cost to run. This comparison is performed to provide context on the usage of 375 

each method in a business setting. It enables consideration of the cost/benefit selection of a higher 376 

error method that is cheaper or vice-versa. To calculate each method’s cost to run in a business setting 377 

required estimating the time it would take an experienced user to perform the tasks needed to run the 378 

estimation method and the cost of any external data input requirements. Table 4 provides a summary 379 

of the expected time required and external cost (if any) for each informational input. The time 380 

estimations used in this table are necessarily subjective, as the actual time and cost required will 381 

depend on and vary by individuals and organisations. Given the potential for variability, creating a cost 382 

factor provides a means of understanding the representative scale of effort required to undertake 383 

each method. The figures used in this table provide a point of reference, comprising estimations based 384 

on experience gained through application of these methods within a UK aggregator for this research 385 

and observations of users. The time value includes both the time taken to obtain information about 386 

the building (this covers talking to the building representative to obtain the sites half hourly electricity 387 

usage data and information about the DSR assets) and the time required to format, analyse and 388 

interpret the data. Most external information has no direct cost, as it is obtained for free from the 389 

building users or other sources. The only externally sourced information incurring cost is historical 390 

weather observations (ECMWF, 2017), which has a fixed yearly fee of £5,000 and has been split into 391 

individual usage costs on the assumption of performing 500 assessments per year (£10 per usage).  392 

 393 

Table 4 - Summary of Estimation Methods Information Input Costs 394 

Information Input Time to obtain  
/ use (minutes) 

Usage Cost  
(@ £20 per hour) 

Maximum kW rating of building’s DSR assets 30 £10 

Building’s electricity usage records for 1 year 60 £20 

Previous DSR Event Outcomes  120 £40 

Hourly outdoor weather information for 1 year  60 £20 + £10 (data)  

Building plans and operational information 420 £140 

 395 

To calculate the total cost of performing each method, the individual costs of gaining data for each 396 

input from Table 4 are associated with each method as per Table 5. This table shows the cumulative 397 

total running cost of each method, based on the information required. This information combined with 398 

the MAPE results from section Error! Reference source not found. enables a comparison of estimation 399 

error against method cost to be performed, as shown in section 3.3. 400 

 401 

Table 5 – Summary of Costs to Perform Each Estimation Method 402 

Information Input & Cost Information Usage and Cost per Method  

1 (1) 1 (2) 2 3 4 

Maximum kW rating of building’s DSR assets £10 £10 £10 £10 £10 £10 

Building’s electricity usage records for 1 year £20  £20 £20   

Previous DSR Event Outcomes  £40    £40  

Hourly outdoor weather information for 1 year £30    £30 £30 

Building plans and operational information £140     £140 

Total Cost per Method £10 £30 £30 £80 £180 

 403 
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 404 

3 Results and Discussion  405 

The results of applying the four DSR estimation methods to two hotels is reviewed and discussed over 406 

three sections. The first section reviews the initial outputs of each method by applying ‘base case’ 407 

values to the input variables, and comparing the estimation error between methods. The second 408 

section then reviews the sensitivity analysis results to understand the impact of input variables on the 409 

estimation error levels. Finally, the error levels are compared against the estimated cost of 410 

undertaking each method, to gain an understanding of how cost and error levels correspond.  411 

  412 

3.1 Estimation Method MAPE and MBE Outcomes 413 

The estimation errors of MAPE and MBE for each estimation method, when using default (base) values 414 

for input variables, are given in Table 6. The methods were applied to each hotel over two years to 415 

generate a predicted half hourly kW usage value for their HVAC chillers. The predicted kW values were 416 

then compared to the actual kW usage values (as recorded by sub-meters), and MAPE and MBE were 417 

calculated for annual estimation errors. The average, minimum, and maximum MAPE and MBE values 418 

were then calculated, as shown in Figure 3. The MAPE values provide an overall indication of the level 419 

of difference between the actual and predicted results. Figure 3 and Table 6 show a range of MAPE 420 

estimation errors across the methods, with M1-V1 ‘Asset Assessment’ having the worst average level 421 

of error at 159%. In contrast, M3 ‘Utilise Historical DSR Event Outcomes’ had the lowest average level 422 

of error at 39%.  423 

 424 

The MBE values indicate the direction of error between the actual and prediction values, with positive 425 

and negative results indicating over estimation and under estimation respectively. Figure 3 shows that 426 

all methods, except M1-V1, under predict usage levels. As seen with the MAPE result, the M1-V1 427 

outcome also has the highest average MBE value at 150%, which indicates that this method 428 

dramatically over predicted the expected usage of the HVAC chiller. In contrast, with an average MBE 429 

of -10%, M4 provides the closest prediction to actual usage.  430 

 431 

Table 6 – Individual hotel summary of Estimation Method error levels 432 

Method Hotel 1 - 2013 Hotel 1 - 2016 Hotel 2 - 2015 Hotel 2 - 2016 

MAPE MBE MAPE MBE MAPE MBE MAPE MBE 

M1-V1 193% 122% 250% 136% 98% 236% 96% 104% 

M1-V2 35% -46% 59% -50% 71% 1% 75% -38% 

M2 57% -41% 59% -29% 40% 16% 70% -12% 

M3 33% -15% 40% -7% 36% -6% 46% -18% 

M4 58% -1% 63% 5% 39% 2% 45% -31% 

Abbreviation Key: 433 
M1-V1 = Method 1- Variation 1 - Minimum information using set percentage of asset usage 434 

M1-V2 = Method 1- Variation 2 - Utilise baseload calculation with set usage percentage 435 
M2 = Method 2 - Baseline comparison using cluster analysis 436 
M3 = Method 3 - Regression analysis utilising historical DSR event outcomes 437 
M4 = Method 4 - Building energy modelling 438 

 439 
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 440 
Figure 3 – Summary of Each Estimation Methods Error Levels 441 

 442 

Considering the outcomes of each method: the two sub-variations of M1 had contrasting results with 443 

M1-V1 having the highest overall average error level at 159%, while M1-V2 had a considerably lower 444 

error level of 60%. The high uncertainty level of the M1-V1 method could be a result of it assuming a 445 

fixed usage level of a chiller when the actual sub-meter data shows a highly variable pattern based on 446 

a usage percentage mean of 20.8% with a variance of 252.5%. In contrast, M1-V2 uses the more 447 

variable input of the building’s overall electricity usage levels for a year to first calculate the buildings 448 

baseload usage. A percentage (in this case 10%) of the baseload is then deemed to be used by the DSR 449 

asset, producing a much lower average MAPE value of 60%. This result is unexpectedly low considering 450 

the method still uses a fixed proportion of buildings usage, which only considers time of day variation 451 

and results in the same half hour prediction values being used for the entire year. The error level is still 452 

high due to this method only taking time of day variation into account and does not consider day of 453 

year variation which will impact the estimation results of a chiller that is highly influenced by 454 

seasonality 455 

 456 

An average MAPE value of 56% placed M2 as the method with the second highest level of absolute 457 

error. Comparatively, however, the average MAPE is similar to the M1-V2 and M4 results. This 458 

outcome, which is based on the method outlined by Panapakidis et al. (2014), helps support usage of 459 

their profile clustering technique based on the DSR estimation results being comparable to the other 460 

methods. Caution however needs to be taken on assuming this method is comparable to M1-V2 and 461 

M4 due to its assumptions around the differences between profiles indicating usage of a particular 462 

electrical asset, which may be difficult to determine in different businesses. 463 

 464 

The lowest MAPE of all the methods was M3 at 39%. The ranking of method suitability by MAPE 465 

supports research by Piette et al. (2011) where the inclusion of temperature dependency of DSR assets 466 

in predictors improves prediction. For non-weather impacted assets other potential regression 467 

parameters could be used including time of day, occupancy levels, or operational schedules. The 468 

drawback to this method is access to historical DSR events and obtaining suitable predictor data, which 469 

could be hard to come by. 470 
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An average MAPE value of 51% placed M4 as the method with the second lowest level of absolute 471 

error. It is possible to achieve lower levels of error as demonstrated by the researchers at the 472 

Lawrence Berkeley National Laboratory (Dudley, 2010) who used calibrated Energy Building Models for 473 

accurate DSR forecasting. However, the calibration methods require obtaining sub-metered data of 474 

key electrical assets which, if available, could be used directly for predicting the building’s DSR usage, 475 

limiting the need for using an Energy Building Model. While this method achieves comparatively good 476 

error estimation levels even without calibration, it does have the drawbacks of requiring access to 477 

detailed plans of a building and the skill and time needed to construct the model.  478 

 479 

 480 

3.2 Sensitivity Analysis of Estimation Methods  481 

The previous review of the error in the estimation methods provides a comparative analysis of 482 

methods without accounting for the uncertainty in their input values. The error range in DSR 483 

estimation depends not only on the estimation methodology, however, but also on these input 484 

uncertainties and the sensitivity of method outcome to these uncertainties. Figure 4 summarises the 485 

sensitivity profiles for each method’s inputs, as determined by re-running each method with adjusted 486 

inputs. To facilitate comparison of sensitivity between methods, the charts shown in Figure 4 have 487 

been normalised. Plotting change in input variable as a percentage of the base case value against the 488 

percentage difference in estimated energy use (MWh), Figure 4 shows varying sensitivity to inputs 489 

within and across the four methods. This section examines each method’s sensitivity profiles to gain 490 

further insights into how they are influenced by input variation.  491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 
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Figure 4 - Estimation Method Sensitivity Analysis Results 505 

 506 

The asset usage percentage input gradients of M1-V1 (1:1) and M1-V2 (1:1) shows they are both 507 

sensitive to changes, whilst adjustments in the percentile value used for baseload estimation in M1-V2 508 

has little effect (0.04:1). Altering the asset usage percentage input values for M1-V1 and M1-V2 509 

however had different impacts on the resulting MAPE outcomes across both hotels and years. The M1-510 

V1 MAPE outcomes varied from -28.2% to 29.5% with a consistent pattern of the MAPE value 511 

decreasing as the percentage of asset usage value lowered. This indicates that the base usage value of 512 

50% is too high and a lower value should be used to better represent actual usage of the chillers. The 513 

M1-V2 MAPE outcomes had a greater variance level of -11.5% to 82.8% and in contrast to M1-V1, 514 

when the asset usage percentage of the baseload value is lowered the MAPE values increased. 515 
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However, when the usage percentage is increased MAPE values for Hotel 1 initially lower before 516 

increasing - indicating that the base value is close to optimal. MAPE values for Hotel 2 continue to 517 

decrease as the usage percentage increases indicating that a higher base value would be more 518 

appropriate. The other input for M1-V2, percentile baseload value, has negligible effect on the MAPE 519 

outcomes with a variance range of -1.0% to 1.6% across both hotels and years and therefore the base 520 

value of 10% is deemed appropriate.  521 

 522 

M2 has a non-linear sensitivity profile, with each hotel and data year being impacted differently with 523 

no clear pattern. The percentage change in MAPE values resulting from the input changes has a 524 

variance range of -6% to 7% across both hotels and years. This level of MAPE variance implies that 525 

changing the number of clusters has only a small impact, and that the base value is appropriate for this 526 

application of the estimation method. The limited output variance could be the result of this method 527 

calculating the chiller usage values based on differences between cluster profiles that means adding or 528 

removing a single cluster will only cause the redistribution of input values into other similar clusters 529 

without causing major changes in the generated profiles.  530 

 531 

M3 also has a non-linear sensitivity profile that varies differently between the two hotels. The general 532 

pattern of the profile shows that when the number of historical events is lowered by 50% from 12 to 6, 533 

this has the greatest impact on estimation outputs, with MAPE values increasing by 4% and 23% for 534 

Hotel 1, and 28% and 75% for Hotel 2. When the number of events is increased to 18 and 24, the 535 

profile shows a more consistent change, except for Hotel 2 -2015. When excluding Hotel 2 -2015, the 536 

MAPE values had a minimal change range of -2% to 5%. However, Hotel 2 - 2015 showed far greater 537 

changes, with the MAPE value increasing by 45% and 28%. A potential cause of this difference could be 538 

due to the facilities manager of Hotel-2 deciding when to turn the chiller system on and off during the 539 

year. In 2015 it was turned on in April and off in October, whereas in 2016 it was turned on in May but 540 

not turned off again. In contrast the Hotel-1 system is left running all year with output adjusted 541 

automatically as required to meet the set point conditions. Based on the overall results of this method 542 

it isit’s clear that reducing the number of historical events has a negative impact on the outcomes. 543 

Whereas the impact on increasing the number of events used is unclear due to the outcomes of Hotel 544 

2 – 2015.  545 

  546 

M4 has three different input variables of Cooling Setpoint, U-Value, and Air Infiltration. The Set Point 547 

Temperature and U-Value inputs have linear sensitivity profiles with gradients of (1:0.32) and (1:0.6) 548 

respectively. The Air Infiltration input range of 0.6 to 0.9 ac/h had a linear profile of (1:0.7), however 549 

the lowest input value of 0.5 ac/h was not linear with a smaller change in output compared to the 550 

linear values. Air Infiltration changes displayed the biggest impact on output and resulting MAPE 551 

values. This is shown with the MAPE values for Air Infiltration having a variance range of -18% to 54%. 552 

In contrast, the MAPE values range for the U-Value input was -8% to 8% and the Cooling Setpoint input 553 

range was -18% to 27%. The results show how changing the Set Point temperature and Air Infiltration 554 

rates have significant impacts on the chiller usage compared to only a minor impact from changing U-555 

Values. This could reflect the usage of mechanical space cooling, which actively responses to 556 

temperature requirements and causes pressurised losses through Air Infiltration. The Air Infiltration 557 

input having the biggest impact does raise concern for this type of estimation method, as this is one of 558 
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the hardest parameters to determine when constructing the energy building model. The other inputs 559 

can be obtained with relatively high accuracy by obtaining the Set Point directly from the building’s 560 

current setup and the U-Values from visual inspections of the existing construction and building plans. 561 

In contrast, the Air Infiltration rate can only be accurately obtained through a building pressure test 562 

which would be infeasible for a building of this size. Therefore, the default building model Air 563 

Infiltration rates will need to be used, and caution taken on the final outputs.  564 

 565 

3.3 Cost versus Method Estimation Errors 566 

The final set of results compares the cost of running each method against the expected level of 567 

estimation error. This comparison helps provide context to usage of the methods when balancing cost 568 

against acceptable error levels. Figure 5 maps out the links between each method’s average MAPE 569 

results as per Table 6 and the estimated cost to run as per Table 5. The figure shows a rough trending 570 

direction of a higher method cost resulting in lower estimation errors. This is reflected in the lowest 571 

cost method M1-V1 having the highest error level while the lowest error level M3 has the second 572 

highest cost. Each method will be further examined to understand the implications of method costs 573 

and input requirements on error outcomes. 574 

 575 

 576 
Figure 5 - Comparison of Estimation Method Error versus Cost 577 

 578 
M1-V1 has the distinction of being the cheapest estimation method with the worst error level. This can 579 

be directly related to the input requirement of only needing to know the asset’s maximum kW rating, 580 

and then using a percentage of this for the estimation. This requires minimal time for a person to 581 

undertake, both in collecting the required information and using it to calculate the estimation. 582 

Unfortunately, the high error level means that this method can only be used for a very rough and quick 583 

estimation before proceeding with a lower error method. In comparison, M1-V2 reduces the error 584 
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level by two thirds compared to M1-V1 while costing 3 times more to run. While M1-V2 is more 585 

expensive than M1-V1, it is still comparatively cheap compared to all the methods tested. This method 586 

also uses relatively accessible data of the building’s electricity usage records, which in the UK is 587 

available in half hourly format for any business with peak electricity usage of 100 kW or greater.  588 

 589 

M2 is the third equally cheapest method to run due to the primary input requirement being the 590 

building’s half hourly electricity usage records. It also has the fourth lowest error level and therefore, 591 

of the methods analysed, provides a representatively balanced error to cost ratio, which makes it a 592 

potentially suitable approach. However, as discussed previously, this method’s usage of clustering 593 

means that care needs to be taken on its application to suitable buildings and assets.  594 

 595 

M3 achieved the lowest error level of all methods tested at 39%. However, it also has the second 596 

highest cost at £80, which is a result of requiring two expensive input requirements. Firstly, it uses 597 

detailed historical air temperature readings over a year for the building’s location, which requires 598 

paying for access to the necessary weather archive. Secondly, it uses previous DSR event outcomes 599 

which require time to obtain from the building users, and then formatting and verifying before using. It 600 

is also anticipated that obtaining previous DSR event outcomes could be difficult, due to the limited 601 

current uptake of DSR and even if the client has participated, then it could be difficult for them to 602 

provide the necessary information based on how it has been provided from their current aggregator.  603 

 604 

M4 had the highest cost at £180 with the second lowest error level of 51%. The high cost is primarily 605 

due to the time required to model the building in the building energy modelling tool. As the resulting 606 

error level is similar to M1-V1, M2 and M3 methods, which are significantly cheaper to run, this 607 

method is not recommended. Although a potential justification for using this method would be if 608 

multiple assets within one building were being estimated, thereby reducing the individual assessment 609 

costs while providing a combined view of the building’s potential.  610 

 611 

4 Conclusion  612 

This paper has undertaken an examination and comparison of four non-domestic DSR estimation 613 

methods to provide insights into uncertainty levels based on the input requirements. The examination 614 

was performed by using each method to estimate the DSR potential of HVAC chiller assets at two 615 

hotels over two years. The estimation outcomes were then compared against the chiller’s actual sub-616 

metered usage records by calculating MAPE and MBE values to understand each method’s level of 617 

estimation error. The results showed a wide range of estimation errors. Method 1 - Sub-variation 1 618 

yields the highest error level MAPE of 159%, while the lowest error level MAPE of 39% was achieved 619 

with method 3. While method 3 could be a recommended approach based on its low error level alone, 620 

its usage is restricted by information input considerations. The primary limitations of this research 621 

were a reliance on usage of one electrical appliance (HVAC chillers) and business (hotels) type, 622 

uncertainty of the method usage time and cost input variables due to the subjectively of how each 623 

organisation could apply them, and being restricted to using only known estimation methods that 624 

excludes unpublished proprietary approaches. Based on this paper’s findings, each method requires 625 

review to understand the implications of input requirements on outcome uncertainty. These findings 626 

can be summarised as follows: 627 

 628 
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 Method 1 sub-variation 1 has the lowest informational requirement and cost of £10 to use 629 

based on only needing to know the maximum kW rating of the asset being assessed to apply 630 

this method. However, the penalty of this low informational requirement is the highest error 631 

level of all methods at 159%. Sub-variation 2 achieved a much lower error level of 60% by 632 

using the building’s half-hourly electricity records that increases the usage costs to £30. The 633 

sensitivity results for this method showed a high impact on the outcomes based on variations 634 

of the inputs. This means that the error results might differ substantially when used in other 635 

scenarios. Therefore, the error levels reported in this research for method 1 need to be used 636 

with care when deciding on suitable assessment approaches. 637 

 638 

 Method 2 had the second worst error level of 56% while being the third cheapest to run at £30 639 

through clustering of the building’s half hourly electricity usage data. The sensitivity analysis of 640 

this method showed a medium to low impact on error levels arising from changes in the 641 

primary input of how many clusters are used. These results indicate that baseline comparison 642 

is a suitable method for assessment though it has two limitations that need to be fully 643 

understood by users to ensure valid results. Firstly, it requires the user to select the 644 

appropriate number of clusters, which is open to individual interpretation. Secondly, this 645 

method will only work on electrical assets that have enough variation within the building’s 646 

overall usage to be identified by the clustering.  647 

 648 

 Method 3 had the lowest overall error level of 39% with the second highest cost of £80. The 649 

low error level makes its utilisation of historical DSR event outcomes an attractive method. 650 

However, its practical usage is limited as it requires the building to have previously undertaken 651 

DSR and have access to historical DSR events outcomes. The sensitivity analysis also showed a 652 

significant increase in error if less than 12 historical event records over a year are available for 653 

analysis. In new DSR markets these limitations may restrict usage of this method. Even in 654 

established markets it could be difficult or time consuming to obtain any adequate historical 655 

information from the existing DSR aggregator.  656 

 657 

 Method 4 had the second lowest error level at 51% but had the highest cost of £180, which is 658 

over twice that of method 3, the next most expensive, as a consequence of the amount of 659 

time required to develop a building energy model. While this method had the second lowest 660 

error level, it is only slightly lower than many other cheaper options and method 2, for 661 

example, costs 6 times less with only a slightly higher error level of 56%. The usage 662 

requirements of this method also restrict its practical application given its reliance on detailed 663 

building plans and the skills to develop building models. The importance of having the right 664 

information and skills is highlighted by the sensitivity analysis, which showed major impacts 665 

from variations in temperature set-points and air infiltration model values.  666 

 667 

These findings have three key implications on the selection of DSR estimation methods. Firstly, the 668 

wide range of error levels means the outputs of these methods will need to be carefully considered 669 

when being used to make decisions about the suitability of buildings for DSR. Secondly, care needs to 670 

be taken in ensuring accurate input selection as sensitivity analysis demonstrates that adjusting the 671 
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inputs on most methods will result in large variations to the outputs. Thirdly, this research tested four 672 

methods using HVAC chillers in hotels only. Therefore, other assets and businesses may result in 673 

different error outcomes and caution needs to be taken before this research is used to select 674 

estimation methods outside of this scope. This final implication highlights a potential future area for 675 

research which would entail re-running the method comparisons on different DSR assets and 676 

businesses to understand the different impacts on estimation outcomes.  677 

 678 
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6 Appendix A 684 

The following steps outline the calculations performed for Method 1 - Asset Assessment: 685 

 686 

1. Variation 1 – Minimum Information 687 

1.1. An anticipated set percentage usage amount of the asset is selected based on either a 688 

default 50%, or another amount if the assessor has prior knowledge of the type of asset 689 

and site.  690 

1.2. The expected kW usage level of the asset is calculated for each half-hour of a year by 691 

multiplying the anticipated percentage usage amount by the maximum rating of the asset, 692 

with the resulting values being saved into a DSR asset usage estimation dataset. 693 

 694 

2. Variation 2 – Utilise Baseload Calculation 695 

2.1. Using the site’s Metered Electricity Usage Records, a baseload value is calculated by 696 

obtaining the 5th percentile kW value for each half-hour period of the day based on one 697 

year’s worth of data as per formula (1) (e.g. for each half-hour period of a day, the 365 698 

daily values for the year are obtained and then ranked before determining the 5th 699 

Percentile value).  700 

 𝑛𝐻𝐻 =  ⌈
𝑃

100
× 𝑁𝐻𝐻⌉ (1) 

 Where: 

𝑛 = kW value of percentile for selected half-hour  

𝑃 = Percentile 

𝑁 = Ordered list of kW values for selected half-hour (sorted from least to 

greatest) 

𝐻𝐻 = Selected half-hour 

 

2.2. A percentage value is then selected that represents how much of the baseload is expected 701 

to be used by the asset. This can either be a default 10%, or another amount if the 702 

assessor has prior knowledge of the asset type and site.  703 

2.3. The expected kW usage level of the asset is calculated for every half-hour period in a year 704 

by multiplying the anticipated percentage usage amount against the baseload kW value, 705 

with the resulting values being saved into a DSR asset usage estimation dataset. 706 
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2.4. If the usage outcome is higher than the maximum usage rating of the assets, then the 707 

previous step is re-run with a lower percentage.  708 

 709 

7 Appendix B 710 

The following steps outline the calculations performed for Method 2 - Baseline Comparison: 711 

1. The k-means cluster method is used for the baseline comparison (Sayad, 2017). This clustering 712 

method works by first selecting how many groups the usage dataset will be clustered into. For 713 

each group, a random point within the dataset is selected and deemed the centroid value. 714 

Each value in the dataset is assigned to the closest centroid. The mean of the values for each 715 

centroid is then calculated. The centroids are then moved to the mean position and the values 716 

are reassigned to the now closest centroids. This process is repeated until a pre-defined 717 

number of interactions is achieved or the level of centroid position change reaches a set 718 

tolerance. 719 

2. The number of clusters for the baseline comparison will vary for each site. For this analysis the 720 

‘elbow’ method for determining the optimum number of k-means clusters is used. This 721 

method works by repeating the k-means method using a range of clusters to determine each 722 

cluster’s percentage of variance. The percentage of variance (dependent variable) is plotted 723 

against the number of clusters (independent variable) in order to find the ‘elbow’ of the curve, 724 

which signifies the optimum number of clusters as adding more will have limited benefit in 725 

reducing variance (Ketchen & Shook, 1996). Figure  provides an example of identified `elbow’ 726 

for clustering of one hotel’s daily electricity usage profiles over one year. The main recognised 727 

limitations of the elbow method is its reliance on a manual decision-making process to 728 

determine where the elbow sits, and that the chart might not have a recognisable elbow if the 729 

line is consistent across the clusters (Ketchen & Shook, 1996). The elbow method calculation is 730 

performed by: 731 

 732 

i. Calculating the percentage of variance explained for a range of clusters (normally 1-15) 733 

using the equation (Imran, 2015).  734 

ii. Create a line chart with markers that shows each cluster’s percentage of variance as 735 

shown in Figure  for Hotel 1 in 2016 736 

iii. Determine the elbow based on the chart and record the cluster number. 737 
 738 

 739 
Figure 6 - Example of Cluster Identification using the Elbow Method  740 

(with the Elbow being indicated by the red circle) 741 

 742 
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3. Once the number of clusters to be used has been decided, then the k-means method as shown 743 

in equation (2) (Sayad, 2017) can be used to group the Site’s Half Hourly Electricity dataset into 744 

similar days. The dataset is then updated with a new column 49 containing a value that 745 

represents which cluster each day belongs to. 746 

 𝐽𝑛 =  ∑ ∑(𝑥𝑖 − 𝑐𝑗)
2

 

𝑛

𝑖=1

𝐾

𝑗=1

 (2) 

  

Where: 

𝑛 = Objects being clustered 

𝐽𝑛 = Cluster outcome for 𝑛 value  

𝐾 =  Clusters 

𝑐𝑗 = Centroid for cluster j 

𝑥𝑖 = Object i 

 

4. The half-hourly averages in each cluster are then used to generate daily profiles at half-hourly 747 

resolution for each cluster of each hotel. Error! Reference source not found. provides an 748 

example of the daily profiles developed for the four identified clusters of a hotel. 749 

5. The baseline profile is then identified based on the assumption that the profiles represent 750 

differences in chiller usage levels. In the context of the UK, chillers are not typically in use 751 

during the winter months. Therefore, the baseline is considered as days when the chiller is 752 

switched off during the heating season and, as a result, profile cluster 2 in Error! Reference 753 

source not found. comprises the baseline profile as it has the lowest usage values. The 754 

remaining cluster profiles then represent days when the chiller is in use.  755 

6. A new dataset is created that covers all half-hourly periods for one year, and has an additional 756 

column identifying which cluster profile is associated with each day of the year. For each day in 757 

the dataset, the kW usage levels of the chiller is estimated by the calculating the difference 758 

between that day’s cluster profile usage value and the baseline value. If a day in the new 759 

dataset is associated with the baseline cluster, then the chiller is deemed to be off during this 760 

day, so the expected usage is set to 0.  761 

7. The dataset now represents the DSR asset usage estimation dataset of the chiller. The results 762 

are then checked to verify that no values are greater than the maximum usage rating of the 763 

chiller asset. If there are, then the values are adjusted down to the maximum rating or, if the 764 

values are consistently too high, then this method is rejected if the assessor believes the 765 

method is providing unrealistic results based on the assessor’s (or their colleagues’) prior 766 

knowledge of customary usage for this type of asset.  767 

 768 

8 Appendix C 769 

The following steps outline the calculations performed for Method 3 - Utilise Historical DSR Event 770 

Outcomes: 771 

1. The first step is to determine what variables are available for predicting the event turndown 772 

amount. For this example, the variables of Outside Air Temperature, Site Electricity Usage, Half 773 

Hour Period of Day, and Day of Week are used. 774 

2. For each variable, a two-column dataset is created for each year of data with the first column 775 

containing the event turndown results, and the second column containing the predicting 776 

variable value.  777 

3. Using equation (3) the R-squared / coefficient of determination for each dataset is calculated. 778 
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 𝑅2 = 1 −  
∑ (𝑦𝑖 −  𝑓𝑖)2

𝑖

∑ (𝑦𝑖 −  𝑦)2
𝑖

 (3) 

 Where: 

𝑅2 = R-squared / coefficient of determination 

𝑦𝑖 = Current value from event data set 

𝑦 = Mean of event data set values  

𝑓𝑖 = Predicted value for 𝑦𝑖  

 

4. The R-squared values of each variable used as shown in Table 1 are compared, and the highest 779 

value selected as the predictor variable to be used for estimating DSR asset usage. In this case 780 

the Outside Air Temperature has the highest values.  781 

5. The Outside Air Temperature values for each half-hourly period of the year in conjunction with 782 

the predictor’s slope and y-intercept are used to calculate the DSR estimation potential for the 783 

hotels. 784 

 785 

9 Appendix D 786 

The following steps outline the calculations performed for Method 4 - Building Energy Modelling: 787 

1. The building plans for each hotel were used to provide both accurate building dimensions as 788 

well as the fabric structure of the building (outlined in Table 2). The building plans are used to 789 

create a representative model of the building using the software package ‘DesignBuilder’ 790 

v5.0.2 (DesignBuilder, 2017b). The DesignBuilder program then utilises the EnergyPlus 791 

simulation program (U.S. Department of Energy, 2017) to estimate the building’s energy usage 792 

over one year at half-hourly intervals. 793 

2. Customised weather files were generated for each hotel for the years 2013 and 2016 and 794 

loaded into DesignBuilder. These were created using MIDAS weather data (UK Met Office, 795 

2017) that was then converted into an EnergyPlus formatted hourly weather data.epw file 796 

using the process outlined on the DesignBuilder online help (DesignBuilder, 2017a) 797 

3. Each model’s energy usage was then simulated at half-hour intervals for one year using 798 

DesignBuilder/EnergyPlus, with the results of the chiller assets electricity usage being 799 

extracted to provide the DSR estimation potential for each hotel.  800 

 801 

 802 
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