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Abstract

When Gauss discovered the arithmetic-geometric mean (AGM) around 1800, it was a seem-

ingly harmless iterative process which could compute some kind of elliptic integrals. Little

could he expect that a century later his work would become one of the fastest algorithm

to compute the digits of π. In more modern number theory, it has been used to compute

periods of elliptic curves over C, extended to p-adic fields and even generalised to curves of

genus 2.

This thesis expands on the generalisation of the AGM to genus 2 curves over C and p-adic

fields. After giving an introduction and some background knowledge on the work of Gauss,

it is split into three parts:

1. We present an algorithm to compute the periods of a hyperelliptic curve over C. This

closely resembles the method described by Bost and Mestre in [BM88], but adapted

with some subtle differences.

2. After a survey of the work by [HM89], in which they modify Gauss’ AGM to p-adic

fields and devise an algorithm to compute the preimage of a point in its Tate curve,

we then show how this can be used to compute some type of p-adic Coleman integrals.

3. We devise an AGM process for curves of genus 2 over p-adic fields, drawing ideas from

both of the above. The ultimate aim is to have a quadratically convergent algorithm

to compute the preimage of a point in its Mumford uniformisation. In particular,

this can be used to compute periods associated to the hyperelliptic curve. Details of

the final step of the algorithm are missing from this thesis, but will (hopefully!) be

published in a joint paper with Frazer Jarvis in due time.
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Introduction

The arithmetic-geometric mean (AGM) is a quadratically convergent iterative process that

is extremely simple to implement: given two positive real numbers, at each stage one simply

evaluates their arithmetic and geometric means, which is where the name originated from.

It was in fact first published by Lagrange (see [Cox84]), but it was Gauss who first analysed

and realised its importance in computing elliptic integrals efficiently – for which it is still

used today. Even so, it was largely forgotten for the most part of the next century.

It was not until the late twentieth century that it gained popularity, when the advances

in technology were met with a growing interest in computational mathematics. Brent

suggested in his paper [Bre76] that it can be used to compute elementary transcendental

functions such as ex and sinx; the two Borwein brothers even published an entire book

titled ‘Pi and the AGM ’. From there, Bost and Mestre generalised it to genus 2 in [BM88]

before Henniart and Mestre adapted it to p-adic fields in [HM89] – the list of applications

probably far exceeded what Gauss foresaw. It is perhaps the simplicity of the algorithm

combined with the elegant yet profound algebraic geometry interpretations behind it that

makes for such an intriguing area to study.

Chapter 1 serves as an introduction to the background of the subject, starting with Gauss’

discovery of the link between the genus 1 AGM and elliptic integrals. Theta functions,

which play a key role throughout this thesis, are also introduced. The main reference up

to this point is Cox’s paper [Cox84]. We also present a modern account of the theory from

the paper [CT13] by Cremona and his student Thongjunthug. It re-interprets the work of

Gauss using the theory of lattice chains and modular forms. The chapter ends on a slight

digression on the classical Landen transformation to motivate the work in parts of Chapters

3 and 4.
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INTRODUCTION

Chapter 2 begins with a survey of the theory of hyperelliptic curves and associated ob-

jects such as their Jacobians and period matrices. We also cover some classical tools such

as Thomae’s formula. Moving onto the generalised AGM, we discuss two such versions

found in the literature. A four variable version by Jarvis in [Jar08] has applications such

as the computation of determinants of period matrices; whereas a six variable alternative

by Bost and Mestre can compute period matrices. The situation over R is well understood

in [BM88], and we extend their algorithm to C. Although the algorithm was not explicitly

written down in their paper, one cannot help but feel that this was probably known to Bost

and Mestre already. With that in mind, perhaps the most important result here is Theorem

2.27, which gives a different perspective to the algorithm: period doubling. The algorithm

has also been implemented using Magma.

Chapter 3 returns to elliptic curves, but shifting to p-adic fields. The primary aim of this

chapter is to explain the Tate uniformisation of elliptic curves and the p-adic AGM found in

[HM89]. The AGM is used to compute preimages inside the Tate curve with an algorithm

which Henniart and Mestre call the non-archimedean analogue of the descending Landen

transformation. Their paper also gives a method to compute the period of an elliptic curve.

We end on a surprising application of this AGM in computing certain types of Coleman

integrations. This chapter should serve as motivation for Chapter 4.

Chapter 4 delves into the theory of p-adic hyperelliptic curves, combining the efforts of

the last two chapters. It begins with an overview of the uniformisation theory involving

Mumford curves and Schottky groups following [GvdP80] and [Kad07]. With these prelim-

inaries covered, we can describe how the Bost-Mestre AGM adapts into the p-adic world

for certain totally split curves. One of the main results is that, as in Chapter 2, the AGM

process in fact doubles the periods (or rather, squares the multiplicative periods). In the

last part of the work, we describe a strategy that can be used to mimic the p-adic Landen

transformation; it is largely built on the theory laid in Teitelbaum’s paper [Tei88]. Details

of the first half of this algorithm are given and we close with an example of how it works in

practice with the modular curve X0(23).

The appendices contain all the codes from Sage, Magma and Pari that were used throughout

this thesis.
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Chapter 1

The Arithmetic-Geometric Mean

1.1 Gauss and the AGM

Given two positive real numbers a and b with a ≥ b, we define two corresponding sequences

(an) and (bn) by first setting a0 = a and b0 = b, then using the iterative algorithms

an+1 =
an + bn

2
and bn+1 =

√
anbn .

That is to say, an+1 and bn+1 are the arithmetic and geometric mean of the pair (an, bn)

respectively. For example, by setting a =
√

2 and b = 1, the first few iterations of the

sequences are shown below:

a0 = 1.4142135623730950488016887 b0 = 1

a1 = 1.2071067811865475244008443 b1 = 1.1892071150027210667174999

a2 = 1.1981569480946342955591721 b2 = 1.1981235214931201226065855

a3 = 1.1981402347938772090828788 b3 = 1.1981402346773072057983837

a4 = 1.1981402347355922074406313 b4 = 1.1981402347355922074392136

a5 = 1.1981402347355922074399224 b5 = 1.1981402347355922074399224

It is easy to see that these two sequences converge to the same limit; whence we define the

arithmetic-geometric mean (AGM) of a and b to be this common limit, denoted M(a, b).

In fact, since

an+1 − bn+1 =

(√
an −

√
bn
)2

2
=

(an − bn)2

2
(√
an +

√
bn
)2 ≤ 1

8b1
(an − bn)2 ,

we see that this convergence is in fact quadratic (that is, the number of correct digits roughly

3



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

doubles every iteration). This concept was first recorded by Gauss; he discovered that this

AGM is closely related to elliptic integral of the first kind, namely that

Theorem 1.1. If a ≥ b > 0, then

I(a, b) :=

π
2∫

0

dφ√
a2 cos2 φ+ b2 sin2 φ

=
π

2M(a, b)
.

An elementary proof uses the ingenious change of variable

sinφ =
2a φ′

(a+ b) + (a− b) sin2 φ′
,

which then the AGM preserves the integral such that

I(a, b) = I(a1, b1) = I(a2, b2) = · · · .

Details can be found in Theorem 1.1 of [Cox84].

The situation is more interesting when one starts out with an initial pair of complex num-

bers. Of course at any stage there are two possible square roots for bn+1, which means that

for any pair of initial values one would obtain uncountably many corresponding sequences,

making the AGM a multi-valued function. Fortunately, Proposition 2.1 in [Cox84] shows

that all possible sequences converge regardless of the choices made at any step and only

countably many of these limits are non-zero.

While at first glance there seems not to be a natural or correct choice of square root in the

geometric mean, Gauss was able to completely determine all possible values of any given

initial pair of complex numbers. If a, b ∈ C× are complex numbers such that a 6= ±b, then

say that a square root B of ab is the right choice if |A−B| ≤ |A+B|, where A is the

arithmetic mean of a and b. If |A−B| = |A+B|, we also require that Im(B/A) > 0.

If a and b are both positive and real, it seems natural to always pick the positive square root.

And indeed, one quickly checks that the above definition does agree with our intuition. The

definition of a right choice also gives rise to a simplest value of the AGM, M(a, b), which is

the value taken by the AGM if the right choice of square root is made at every stage. The

importance of this lies in the following theorem, which determines all possible values the

AGM can take given an initial pair:

4



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

Theorem 1.2. Let a, b ∈ C× satisfying a 6= ±b and |a| ≥ |b|. Then µ is a value of the

AGM of a and b if and only if there exist coprime integers c ≡ 0 mod 4 and d ≡ 1 mod 4

such that
1

µ
=

d

M(a, b)
+

ic

M(a+ b, a− b)
.

These were all proved by Gauss, who essentially employed the theory of modular forms

without explicitly writing it down. For details of the proof see Theorem 2.2 in [Cox84].

1.2 Theta Functions

Let z and τ be complex numbers such that τ lies in the upper half plane H. Define the

theta function (in genus 1 – which refers to z and τ being numbers rather than vectors and

matrices) to be the summation

θ(z, τ) =
∑
n∈Z

eπin
2τ+2πinz .

This is sometimes called the Jacobi or Riemann theta function for historical reasons. Recall

that any elliptic curve (up to rescaling) can be considered as a lattice Λ generated by 1 and

τ , where τ lies in the upper half plane. For this reason we often refer to this as the theta

function of genus 1. The summation is entire in z and holomorphic in τ ; furthermore it

converges absolutely and uniformly on compact sets, since for any fixed τ and z we have

∑
n∈Z

∣∣∣eπin2τ+2πinz
∣∣∣ ≤∑

n∈Z
e−πn

2 Im τ+2πn|z| <
∑
n≥N

e−
1
2
πn2 Im τ

for some N such that e−πN
2 Im τ+4πN |z| < 1. The function was defined such that it would

have certain periodicity properties with respect to the complex lattice generated by 1 and

τ . Explicitly, replacing z by z + 1 we immediately see that the function is Z-periodic, that

is,

θ(z, τ) = θ(z + 1, τ) .

Secondly if we let z go to z + τ , we see that

θ(z + τ, τ) = e−πiτ−2πizθ(z, τ) ,

which together gives the transformation law

θ(z + sτ + t, τ) = e−πis
2τ−2πiszθ(z, τ)

5



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

for any integers s and t. Now let a, b ∈ 1
2Z/Z. Define the theta functions with characteristics

to be the functions

θ2a,2b(z, τ) =
∑
n∈Z

eπi(n+a)2τ+2πi(z+b)(n+a) .

It is straightforward to check that these are also quasi-periodic with respect to 1 and τ ,

that is

θ2a,2b(z +m, τ) = e2πiamθ2a,2b(z, τ),

θ2a,2b(z +mτ, τ) = e−2πibm−πim2τ−2πimzθ2a,2b(z, τ) .

In genus 1 there are four possible characteristics, but all of them are essentially translations

of the original theta functions along with some non-vanishing factor:

θ0,0(z, τ) = θ (z, τ) ,

θ0,1(z, τ) = θ

(
z +

1

2
, τ

)
,

θ1,0(z, τ) = e
1
4
πiτ+πizθ

(
z +

τ

2
, τ
)
,

θ1,1(z, τ) = e
1
4
πiτ+πi(z+ 1

2)θ

(
z +

τ

2
+

1

2
, τ

)
.

With a moment’s thought one immediately notices that θ0,0, θ0,1 and θ1,0 are even in z

whereas the function θ1,1, on the other hand, is odd in z. For example, we have

θ1,1(−z, τ) =
∑
n∈Z

eπi(n+ 1
2)

2
τ+2πi(n+ 1

2)(−z+ 1
2)

=
∑
n∈Z

eπi(−n−
1
2)

2
τ+2πi(−n− 1

2)(−z+ 1
2)

=
∑
n∈Z

eπi(n+ 1
2)

2
τ+2πi(n+ 1

2)(z+ 1
2)−2πi(n+ 1

2)

= −θ1,1(z, τ)

and the others are similar. By slight abuse of language we say that the characteristic

[a, b] ∈ (1
2Z/Z)2 is odd (even respectively) if its corresponding theta function is odd (even

respectively). Equivalently this means that [a, b] is odd if and only if 4ab is an even integer.

Since the different theta functions are all translations of each other, this allows us to easily

study the zeros of these functions.

6



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

Proposition 1.3. The zeros of θa,b(z, τ) are the points

z = Λ +

(
a+

1

2

)
τ +

(
b+

1

2

)
.

Furthermore the four different theta functions do not have common zeros.

Proof. This is Lemma 4.1 in Chapter I of [Mum83]. Firstly by an exercise in counting zeros

by contour integration we see that each θa,b has exactly four zeros inside 2Λ, where Λ is the

lattice Z + τZ. The idea is that it is sufficient to study θ1,1, which we know has a zero at

z = 0. By the translation

θ1,1(z, τ) = e
1
4
πiτ+πi(z+ 1

2)θ0,0

(
z +

τ

2
+

1

2
, τ

)
,

we know that θ0,0 vanishes at ( τ2 + 1
2) and so we can account for all four zeros inside 2Λ.

Finally translating these points we get the zeros of the other theta functions as desired.

In fact this holds true for the vector space generated by the four theta functions in that the

elements in any basis have no common zeros. One important geometric application of these

theta functions is that they can be used to embed complex tori. For a lattice Λτ = Z + Zτ
with τ ∈ H, we define the map φ : C/Λτ → P3 that maps

φ(z) = [θ0,0(z, τ) : θ0,1(z, τ) : θ1,0(z, τ) : θ1,1(z, τ)] .

Theorem 1.4. The map φ is a holomorphic embedding (that is, injective and non-vanishing

derivative at every point).

Proof. We provide a quick sketch of the proof here following of [Mum83]. The first thing

to note is that this is well defined. By the previous proposition, we know that the theta

functions do not vanish simultaneously, and by replacing z by z + λ for some λ ∈ Λ, this

simply multiplies every theta function by some non-zero factor (namely e−πiτ−2πiz) and

hence gives the same point inside the projective space. Since each of the theta functions is

holomorphic, the map φ itself is also holomorphic.

Suppose that there exists some z1 and z2 such that φ(z1) = φ(z2) (the case where derivative

vanishes at a point is identical). By the quasi-periodicity we can always translate these

points by some aτ + b with a and b half integers to get a distinct pair of points z′1 and z′2

7



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

inside 2Λ such that φ(z′1) = φ(z′2). But this allows us to construct a linear combination

f = λ1θ0,0 + λ2θ0,1 + λ3θ1,0 + λ4θ1,1

such that f vanishes at z1, z′1 and z3 for another distinct point z3, since we have three linear

equations in four unknowns. But now φ(z1) = φ(z2) means that f also vanishes at z2 and

z′2, giving a total of five zeros in 2Λ, which is a contradiction.

1.3 AGM and Elliptic Functions

The point of interest to us here is the link between AGM and periods of elliptic curves. Let

us, for now, consider an elliptic curve of the form y2 = P (x) = 4(x − e1)(x − e2)(x − e3),

where we assume e1 < e2 < e3 are real numbers. Then by periods we simply mean integrals

of the form

ω1 = 2

e2∫
e1

dx√
P (x)

and ω2 = 2i

e3∫
e2

dx√
P (x)

.

These are in fact nothing more than path integrals on closed loops of a complex torus; we

will discuss the basics of these in more generality when we study curves of higher genus

in the next chapter. By evaluating the theta functions from the last section at z = 0 one

obtains the three functions (since the fourth function is odd and vanishes at z = 0)

θ0,0(τ) = θ(0, τ) =
∑
n∈Z

qn
2
,

θ0,1(τ) = θ

(
1

2
, τ

)
=
∑
n∈Z

(−1)nqn
2
,

θ1,0(τ) = θ
(τ

2
, τ
)

=
∑
n∈Z

q(n+ 1
2)

2

,

where q = eπiτ . Of course θk0,0, for k odd, are famous examples of half-integral weight

modular forms (of level 4 and trivial character) which are interesting in their own right,

but our focus is much simpler. An elementary calculation shows that the squares of these

theta functions behave like the AGM when τ is doubled, in the sense that one has

θ0,0(2τ)2 =
θ0,0(τ)2 + θ0,1(τ)2

2
and θ0,1(2τ)2 =

√
θ0,0(τ)2θ0,1(τ)2 .

These are examples of duplication formulae for theta functions, which have been well un-

derstood over the years. For now we will simply quote these results; but a more detailed

8



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

discussion of these will follow in the next chapter. Therefore setting a0 = θ0,0(τ)2 and

b0 = θ0,1(τ)2 yields the AGM sequence where an = θ0,0(2nτ)2 and bn = θ0,1(2nτ)2. This,

combined with the observation that θ0,0 and θ0,1 both tend to 1 as Im τ tends to infinity,

implies that

M(θ0,0(τ)2, θ0,1(τ)2) = 1 .

Next recall the Weierstrass ℘-function associated with a complex lattice Γ = Zω1 +Zω2 ⊆ C
defined by

℘(z) =
1

z2
+

∑
γ∈Γ\{0}

[
1

(z − γ)2
− 1

γ2

]
,

which acts as a bijection between the elliptic curve with periods ω1 and ω2, and the torus

C/Γ. Similarly, by setting τ = ω1ω
−1
2 such that Im τ > 0, one gets the corresponding lattice

Γ̃ = Z+Zτ and Weierstrass function ℘̃ (so that ℘̃(z) = ω2
1℘(ω1z)). It was shown in [Mum83]

(combining pages 26 and 64) that one may construct all Γ̃-meromorphic functions (that is,

meromorphic functions f(z) such that f(z + τ) = f(z) for all τ ∈ Γ̃) using exponential and

quotients of theta functions. In particular, we have

℘̃(z) = c− π2e−2πizθ(1/2, τ)2θ(τ/2, τ)2 θ(z, τ)2

θ(z + (τ + 1)/2, τ)2

for some constant c. Letting z = 1/2, τ/2 and (τ + 1)/2, we get the identities

π2θ0,0(τ)4 = ℘̃(1/2)− ℘̃(τ/2) ,

π2θ0,1(τ)4 = ℘̃(1/2)− ℘̃((τ + 1)/2)

when taking into account θ0,1(τ)4 + θ1,0(τ)4 = θ0,0(τ)4 (also known as Jacobi’s identity,

which we will prove in the next chapter) and θ((τ + 1)/2, τ) = 0. Piecing everything

together gives

ω2
1e3 = ω2

1℘(ω1/2) = ℘̃(1/2) ,

ω2
1e2 = ω2

1℘((ω1 + ω2)/2) = ℘̃((τ + 1)/2) ,

ω2
1e1 = ω2

1℘(ω2/2) = ℘̃(τ/2) ,

and thus

ω1

√
e3 − e1 = πθ0,0(τ)2 and ω1

√
e2 − e1 = πθ0,1(τ)2 .

By taking the AGM of the two equations we have proven the first part of

9



CHAPTER 1. THE ARITHMETIC-GEOMETRIC MEAN

Theorem 1.5. If e1 < e2 < e3 are the three distinct real roots of an elliptic curve, then its

periods ωi are given by

ω1 =
π

M(
√
e3 − e1,

√
e3 − e2)

and ω2 =
iπ

M(
√
e3 − e1,

√
e2 − e1)

.

The second part is done analogously.

1.4 Elliptic Curves over C and Towers of Isogeny

With a little effort, similar formulae can be found for elliptic curves with complex coeffi-

cients. This can, for example, be found in [CT13], whose method resembles that of Gauss.

The idea is to reinterpret the change of variation in the proof of Gauss’ theorem as a mor-

phism between two related elliptic curves, and thus the AGM is essentially constructing a

tower of elliptic curves.

Starting with an elliptic curve E0 defined by y2 = 4(x− e(0)
1 )(x− e(0)

2 )(x− e(0)
3 ), where the

Weierstrass points are now complex numbers such that e
(0)
1 + e

(0)
2 + e

(0)
3 = 0, first we set

a0 =
√
e1 − e3 with arbitrary sign and b0 = ±

√
e1 − e2, where the sign of b0 is chosen such

that |a0 − b0| ≤ |a0 + b0|. Using the AGM sequence {(an, bn)} we define a corresponding

sequence of elliptic curves {En} with roots

e
(n)
1 =

a2
n + b2n

3
, e

(n)
2 =

a2
n − 2b2n

3
and e

(n)
3 =

b2n − 2a2
n

3
.

For n ≥ 1, one finds a 2-isogeny (a surjective morphism with finite kernel) ϕn between En

and En−1 defined by

xn−1 = xn +
(e

(n)
3 − e(n)

1 )(e
(n)
3 − e(n)

2 )

xn − e(n)
3

,

yn−1 = yn

(
1− (e

(n)
3 − e(n)

1 )(e
(n)
3 − e(n)

2 )

(xn − e(n)
3 )2

)
.

Let
dxn
yn

be the canonical differential associated to the elliptic curve En. Then by directly

taking derivatives of the equations above one see that

ϕ∗
(
dxn−1

yn−1

)
=
dxn
yn

.

10
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Since En(C) ∼= C/Λn, where Λn is the period lattice of the differential
dxn
yn

, we get a

commutative diagram as follows:

· · · −−−−→ C −−−−→ C −−−−→ · · ·y y
· · · −−−−→ C/Λn −−−−→ C/Λn−1 −−−−→ · · ·y℘n y℘n−1

· · · −−−−→ En
ϕn−−−−→ En−1 −−−−→ · · ·

Next, define a chain of lattices of index 2 to be a sequence of lattices (Λn) which satisfies

the conditions

1. Λn ⊇ Λn+1 for all n ≥ 0;

2. [Λn : Λn+1] = 2 for all n ≥ 0;

3. Λn+1 6= 2Λn−1 for all n ≥ 1.

So intuitively these are just sequences of lattices in the complex plane that eventually extend

infinitely in one direction. For any n ≥ 1, the sublattice Λn+1 ⊆ Λn is the right choice if

Λn+1 = 〈w〉+ 2Λn for some minimal element w ∈ Λn \ 2Λn−1 (with respect to the complex

norm). We say a lattice chain (and similarly an AGM sequence) is good if the right choice

is made at all but finitely many steps; the chain is optimal if every step is right. The key

lies in the following proposition, taken from Theorem 10 of [CT13]:

Proposition 1.6. For all n ≥ 0, we have

1. Λn+2 is the right choice of sublattice of Λn+1 (i.e. Λn+1 = 〈ω〉 + 2Λn) if and only if

(an, bn) is the right choice.

2. The lattice chain (Λn) is good (respectively, optimal) if and only if the sequence

{(an, bn)} is good (respectively, optimal).

The proof gives a link between the lattice chains, chains of elliptic curves and their corre-

sponding modular form structures. Finally, one can show by direct computation that

lim
n→∞

℘Λn(z) =

(
π

ω1

)2( 1

sin2(zπ/ω1)
− 1

3

)
.

Since ℘Λn

(ω1

2

)
= e

(n)
1 , one gets, as in Theorem 1.5,

11
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Theorem 1.7. Let E is an elliptic curve defined by y2 = 4(x− e(0)
1 )(x− e(0)

2 )(x− e(0)
3 ) such

that e
(0)
1 + e

(0)
2 + e

(0)
3 = 0 and set a0 =

√
e1 − e3 and b0 = ±

√
e1 − e2 as above. Then we

have

ω1 =
π

M(a0, b0)
.

Combining these ideas one obtains an algorithm to compute periods of elliptic curves:

Algorithm 1.8 (Computing a period lattice basis).

Input: An elliptic curve E over C with roots ei ∈ C for i = 1, 2, 3 such that e1 +e2 +e3 = 0.

Ouput: Three periods of E, any two of which form a Z-basis for the period lattice of E.

1. Label one of the roots as e1 and the other two arbitrarily as e2 and e3.

2. Set a0 =
√
e1 − e3 with arbitrary sign and b0 = ±

√
e1 − e2, where the sign of b0 is

chosen such that |a0 − b0| ≤ |a0 + b0|.

3. Compute ω =
π

M(a0, b0)
using the simplest value of the AGM.

4. Repeat by setting each of the other two roots as e1.

These are taken from Corollary 16 and Algorithm 20 in [CT13] respectively.

1.5 Descending Landen Transformation

We end on a slight digression on an application of the AGM (which we will consider a

slightly different p-adic version of it later). The Landen transformation is a mapping of

the parameters of an elliptic integral, widely used for computing elliptic functions numeri-

cally. It was originally due to Landen (which did not involve the AGM) and independently

rediscovered later by Gauss. It can also be interpreted as inverting the Abel-Jacobi map

and lifting points from the elliptic curve to its Jacobian, which we will introduce with more

details in the next chapter. We include the proof of it here for completeness’ sake. Let

I =

∞∫
u

dx√
(x− e1)(x− e2)(x− e3)

,

where the ei are real numbers such that e1 < e2 < e3, e1 + e2 + e3 = 0 and u > e3. Then

we have the following:

12
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Algorithm 1.9 (Landen Transformation).

Input: An elliptic curve E with roots ei ∈ R for i = 1, 2, 3 such that e1 < e2 < e3 and a

real number u > e3.

Ouput: Value of the integral

I =

∞∫
u

dx√
(x− e1)(x− e2)(x− e3)

.

1. Let a0 =
√
e3 − e1, b0 =

√
e3 − e2 and x0 = u.

2. Apply the AGM to (a0, b0). That is, for n ≥ 1, let

an =
an−1 + bn−1

2
,

bn =
√
an−1bn−1 ,

xn =
1

2

xn−1 −
a2
n−1 + b2n−1

6
+

√(
xn +

a2
n−1 + b2n−1

6

)2

−
(
a2
n−1 − b2n−1

2

)2
 .

3. Denote the limits of the sequences {an} and {xn} by M(a0, b0) and X respectively.

Then the original integral I is given by

I =
2

M(a0, b0)

π
2
− tan−1


√
X − 2

3M(a0, b0)2

M(a0, b0)

 .

Furthermore, by considering the change of variable

x =
e2x
′ − e2e3 + e1e3 − e1e2

x′ − e2
,

one can apply the algorithm to integrals of the form

I ′ =

e2∫
u

dx√
(x− e1)(x− e2)(x− e3)

with e1 ≤ u ≤ e2.

13
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Proof. Let a0 =
√
e3 − e1 and b0 =

√
e3 − e2. Denote by a1 and b1 the arithmetic and

geometric mean of a0 and b0 respectively. Setting

e′1 =
b21 − 2a2

1

3
, e′2 =

a2
1 − 2b21

3
and e′3 =

a2
1 + b21

3
,

we see that e′1 < e′2 < e′3 and e′1 + e′2 + e′3 = 0. Now consider the change of variable (this is,

of course, the same isogeny we saw in the last section)

x = x′ +
(e′1 − e′3)(e′1 − e′2)

x′ − e′1
,

which gives the identity

∞∫
x0

dx√
(x− e1)(x− e2)(x− e3)

=

∞∫
u

dx√
(x− e′1)(x− e′2)(x− e′3)

,

where we have

x0 = u+
(e′1 − e′3)(e′1 − e′2)

u− e′1
= u+

−3a2
1(b21 − a2

1)

3u− (b21 − 2a2
1)
.

Solving the quadratic for u one sees that

u =
1

2

x0 +
b21 − 2a2

1

3
+

√(
x0 +

b21 − 2a2
1

3

)2

+ 4

(
a2

1(b21 − a2
1)− x0

b21 − 2a2
1

3

)
=

1

2

x0 +
b21 − 2a2

1

3
+

√(
x0 −

b21 − 2a2
1

3

)2

+ 4(a2
1)(b21 − a2

1)


=

1

2

x0 −
a2

0 + b20
6

+

√(
x0 +

a2
0 + b20

6

)2

−
(
a2

0 − b20
2

)2


= x1

since
b21 − 2a2

1

3
=
a0b0 − 1

2(a0 + b0)2

3
= −a

2
0 + b20

6

and

4a2
1(b21 − a2

1) =

(
a0b0 −

(
a0 + b0

2

)2
)(

a0 + b0
2

)2

= −
(
a2

0 − b20
2

)2

.

By iterating the above process, one obtains a sequence of elliptic curves. As n tends to

14
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infinity, the curves tend to the cubic

y2 = 4

(
x− 2

3
M(a0, b0)2

)(
x+

1

3
M(a0, b0)2

)2

,

which can be parameterised by

x = t2 +
2

3
M(a0, b0)2 and y = 2t(t2 +M(a0, b0)2) .

Finally, letting t = M(a0, b0) tanφ, we have dφ = M(a0, b0)
dx

y
and hence

2

∞∫
x∞

dx(
x+ 1

3M(a0, b0)2
)√

x− 2
3M(a0, b0)2

= 2

π
2∫

y∞

dφ

M(a0, b0)
,

where

y∞ = tan−1

(
t

M(a0, b0)

)
= tan−1


√

(X − 2
3M(a0, b0)2)

M(a0, b0)


and we are done.
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Chapter 2

Generalisation to Genus 2

We now turn to the study of a genus 2 generalisation of the AGM, following the work of

[BM88] amongst several others. But before we can delve into the details, we first provide

some introduction to the theory of hyperelliptic curves in general (even though we are only

concerned about genus 2 here) and some relevant tools in the study.

2.1 Hyperelliptic Curves and Their Jacobians

A hyperelliptic curve is an algebraic curve given by an equation of the form

C : y2 = (x− a1)(x− a2) · · · (x− ad) = xd + bd−1x
d−1 + · · ·+ b1x+ b0 ,

where ai ∈ C (or any field of odd characteristic) are all distinct. If the curve has genus g

geometrically, then the degree is given by d = 2g + 1 or 2g + 2. Any hyperelliptic curve is

endowed with the involution that maps the point (x, y) to (x,−y). By making the branch

cuts (a2i, a2i+1) on two copies of P1(C) (i.e. taking a double covering of P1(C) ramified over

the ai’s) and gluing them together, one can also view this as a Riemann surface. If the

degree of the equation is odd then there is a branch point at infinity.

Similar to an elliptic curve, one can define a group law on the points of a hyperelliptic curve

akin to the chord and tangent method. This is done by simply replacing points by groups

of g points and replacing lines by interpolating polynomials (so that rigorously speaking

this is a group law on the Jacobian of the curve – an object we will define very shortly).

For simplicity we assume that g = 2. Given two pairs of points [P1, P2] and [Q1, Q2], there

exists generically a unique cubic (counted with multiplicity if any of the four points coin-
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Figure 2.1: Group law for a genus 2 hyperelliptic curve

cides) that passes through the four points. Now intersecting this cubic with the curve gives

two extra roots, say R1 and R2. Then define the sum P1 + P2 +Q1 +Q2 as the involution

of these two points (see Figure 2.1 above). Explicit formulae can be found in [Lei05].

The first homology group H1(C,Z), measuring the 1-dimensional holes on the surface, is

essentially the set of closed paths on the surface; a set of 2g non-homologous cycles {ai, bi},
i = 1, ..., g is a symplectic basis if their intersection indices satisfy

ai ◦ aj = 0, bi ◦ bj = 0 and ai ◦ bj = δij

for all i, j, where δij is the Kronecker delta. The following is an example of a symplectic

basis for a hyperelliptic curve of genus 3:

Figure 2.2: A symplectic basis for a genus 3 hyperelliptic curve

17
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Note that symplectic bases are by no means unique. The complementary object associated

to this homology group is the vector space of holomorphic 1-forms. For a hyperelliptic curve

in the above form, this is simply spanned by dui = xi dxy for i = 0, ..., g− 1 (see Chapter 3.7

in [FK80]). The periods (of the first kind) are obtained by integrating these 1-forms along

closed loops. It is known from the Riemann bilinear relations that these periods form a

lattice Λ ⊆ Cg. The Jacobian J(C) of the curve is defined by the quotient J(C) = Cg/Λ.

It is a principally polarised abelian variety and thus a complex torus of real dimension 2g.

A divisor is a finite linear combination of points on the curve with integer coefficients, and

the degree of such a divisor is the sum of its coefficients. Those divisors that are divisors

of meromorphic functions are called principal. The set of all degree 0 divisors, denoted

Div0(C), clearly forms an abelian group under addition, and the set of all principal divi-

sors, denoted DivP (C), forms a subgroup. We now describe the Jacobian variety J(C) in

terms of these divisor groups.

Fix a base point p0 on the curve C. For a generic point p ∈ C, define the Abel-Jacobi map

µ : C → J(C) which sends p to the point

µ(p) =

(∫ p

p0

du1,

∫ p

p0

du2, . . . ,

∫ p

p0

dug

)
mod Λ

and we extend this definition to divisors on C simply by linearity. The fundamental result of

Abel and Jacobi is that this map defines an isomorphism between divisors and the Jacobian

(historically injectivity was proved by Abel and surjectivity by Jacobi). A proof of the

theorem can be found in Chapter 3.6 of [FK80].

Theorem 2.1. The Abel-Jacobi map is an isomorphism between the Jacobian and the quo-

tient of degree 0 divisors by principal divisors. That is,

J(C) ∼= Div0(C)/DivP (C) .

Meromorphic differentials (or differentials of the second kind) of a hyperelliptic curve with

a degree 2g + 1 model has a basis given in page 195 of [Bak97]

drj =

2g+1−j∑
k=j

(k + 1− j)bk+1+j
xkdx

4y

for j from 1 to g. Integrals of these differentials along closed loops on the curve are called
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periods of the second kind. But for our purposes we will mostly focus on periods of the first

kind.

Given a hyperelliptic curve and any symplectic basis, we split the periods into two types,

purely for convenience: with reference to Figure 2.2 above, Type A-periods are those ob-

tained by integrating a closed loop around two branch points (i.e. the cycles Ai), and Type

B-periods are those which circle the entire Riemann surface (i.e. the cycles Bi). Further-

more, denote ωij and ω′ij to be the periods obtained by integrating dui along the paths

Aj and Bj respectively. In this case one obtains two g × g matrices Ω1 = (ωij)
g
i,j=1 and

Ω2 = (ω′ij)
g
i,j=1. Adjoining these together we obtain the g×2g (big) period matrix

(
Ω1 Ω2

)
.

Similarly we denote η and η′ to be the matrices obtained by integrating the periods of the

second kind along Aj and Bj respectively.

Note that the columns of the big period matrix are exactly the basis of the lattice Λ which

defines the Jacobian. This is of particular interest of study due to Torelli’s theorem, which

states that the period matrix completely determines the Riemann surface, up to isomor-

phism, in the case of a principally polarised abelian variety (Theorem 12.1 in [CS86]). It

is always possible to choose a specific basis of the cohomology such that Ω1 = Ig, and in

this case one can prove that the corresponding Ω2 is a Riemann matrix (that is, symmetric

with positive definite imaginary part, whence it lies in the Siegel upper half plane). We call

Ω2 the small period matrix. Given any big period matrix
(
Ω1 Ω2

)
, one can obtain a small

period matrix by computing Ω−1
1 Ω2. It is important to note that neither the big nor the

small period matrices are unique, since the path that is integrated along can be extended

by any linear combinations of the loops. But any two small period matrices are equivalent

under the action of some 2g × 2g symplectic matrix (more on the symplectic group will be

explained in the next section).

Finally, it is well known from the Riemann bilinear relations (see [Mum83]) that the matrices

Ω1, Ω2, H1 and H2 satisfy the generalised Legendre relation

(
Ω1 Ω2

H1 H2

)T(
0 In

−In 0

)(
Ω1 Ω2

H1 H2

)
= −πi

2

(
0 In

−In 0

)
,

where H1 and H2 are the matrices of the periods of the second kind, defined similarly to

Ωi.
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2.2 Symplectic Matrices

The study of elliptic curves, when viewed as lattices in C parameterised by some τ in the

upper half planne, leads naturally to the study of SL2(Z), the set of 2 × 2 integral ma-

trices with determinant 1. Similarly when one studies the theory of hyperelliptic curves,

the matrices naturally associated become the symplectic matrices, as briefly hinted in the

last section. Hence we make a quick detour to document the basic properties of these groups.

Let F be a field. The symplectic group of degree n, denoted Sp2n(F ), is the group of matrices

γ ∈ GL2n(F ) such that

γT

(
0 In

−In 0

)
γ =

(
0 In

−In 0

)
.

Clearly if γ is symplectic then

(γ−1)T

(
0 In

−In 0

)
γ−1 = −

[
γ

(
0 In

−In 0

)
γ−1

]T

=

(
0 In

−In 0

)

so these matrices do indeed form a group. Sp2n(F ) is in fact an algebraic group that appears

naturally as the group of automorphisms of lattices Z2n ⊆ Cn. If we write any symplectic

matrix γ in four n× n blocks

γ =

(
A B

C D

)
,

then direct computation shows that γ is symplectic if and only if ATC and BTD are sym-

metric and ATD − CTB = In. Just as an example, when n = 1 we immediately see that

Sp2(F ) = SL2(F ), which follows from the above characterisation. For our purposes F is

taken to be either R or C here (or Qp in the last chapter). In particular we are interested

in the matrices with integer coefficients, which will be denoted by Sp2n(Z). Note that

Sp2n(Z) = Sp2n(R) ∩Mat2n(Z).

While SL2(Z) acts on the upper half of the complex plane H, the symplectic matrices

act on the Siegel upper half plane, denoted Hn. This is the set of all n by n symmetric

complex matrices with positive definite imaginary part. The action on the Siegel upper half

plane is completely analogous to the action on the standard upper half complex plane. Let

γ =

(
A B

C D

)
be a symplectic matrix and τ be a point in the Siegel upper half plane. Then

20



CHAPTER 2. GENERALISATION TO GENUS 2

we define the action (sometimes called the generalised Möbius transformation) by

γτ = (Aτ +B)(Cτ +D)−1 .

It is not immediately obvious that this is a well-defined action; we give a proof following

[Sie64].

Lemma 2.2. The action of Sp2n(F ) on Hn is well-defined.

Proof. Take τ ∈ Hn. Then by definition we have τT − τ = 0 and
1

2i
(τ − τ) > 0, or

equivalently we have

(
τT I

)( 0 In

−In 0

)(
τ

I

)
= 0 and − 1

2i

(
τ I

)( 0 In

−In 0

)(
τ

I

)
> 0 .

Now if γ =

(
A B

C D

)
∈ Sp2n(F ) then one has γ

(
τ

I

)
=

(
Aτ +B

Cτ +D

)
=

(
E

F

)
, implying that

(
ET FT

)( 0 In

−In 0

)(
E

F

)
=
(
τT I

)
γT

(
0 In

−In 0

)
γ

(
τ

I

)
= 0

and similarly

− 1

2i

(
E F

)( 0 In

−In 0

)(
E

F

)
> 0 .

This is equivalent to saying

ETF = FTE and − 1

2i

(
EF − FE

)
> 0 .

To show that F = (Cτ + D) is invertible, suppose v satisfies Fv = 0. This implies that

vTF = 0 and
1

2i
vT(EF −FE)v = 0, whence v = 0. Finally from ETF = FTE we see that

EF−1 is symmetric and from the other inequality we see that

1

2i

(
EF−1 − EF−1

)
> 0 .

It follows that Im(EF−1) > 0 and so γτ ∈ Hn as required.
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Note that if γ is a symplectic matrix, then both γ and its negative −γ give rise to the same

action. Now let τ = X + iY be a point in Hn. Since the matrices(√
Y 0

0
√
Y
−1

)
and

(
I X

0 I

)

are both symplectic, we obtain two corresponding actions that send τ to
√
Y τ
√
Y and τ+X

respectively for all τ . In particular, letting τ = iI we obtain a map, via composition, that

sends iI to X + iY . Hence we have

Proposition 2.3. The action of the symplectic group is transitive on Hn.

We also have an analogue of the fundamental domain for the action of SL2(Z) on the upper

half plane:

Theorem 2.4. A fundamental domain for Hn/Spn(Z) is given by the set of Z = X + iY

such that

(i) |xij | ≤
1

2
for all i, j;

(ii) |det(CZ +D)| ≥ 1 for all

(
A B

C D

)
∈ Spn(Z);

(iii) Y is Minkowski reduced, that is, aTY a ≥ Yii for all a ∈ Zn with gcd(ai, . . . , an) = 1

and Yi,i+1 ≥ 0 for i = 1, . . . , n− 1.

The proof that this is indeed a fundamental domain can be found in [Got59], and again one

checks that when n = 1 this reduces to the usual fundamental domain on H.

2.3 Theta Functions in Higher Genera

We saw briefly in the previous chapter how theta functions can link the AGM and period

integrals. Here we give a proper introduction to these functions in higher genera. This

is an old and vast area of mathematics and interested readers should turn to [Igu72] and

[Mum83] for a much more comprehensive account of the theory.

In order to generalise the definition of theta functions to higher genera, one simply replaces

z by a g-tuple z = (z1, . . . , zg) ∈ Cg, and τ becomes a matrix Ω in the Siegel upper half
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space Hg. The exact definition is given by the summation

θ(z,Ω) =
∑
n∈Zg

eπin
TΩn+2πinT·z .

This defines a holomorphic function on Cg × Hg → C and it converges absolutely and

uniformly in z. The proof is identical to the genus 1 case, for example see Proposition 1.1

of Chapter II in [Mum83]. Many of the desired properties carry forward as expected. For

example, let ΛΩ be the lattice Zg + ΩZg sitting inside Cg, that is, it is generated over Z by

the unit vectors and the columns of Ω. Then for any a and b ∈ Zg, we see that

θ(z + a,Ω) = θ(z,Ω) and θ(z + Ωa + b,Ω) = e−πia
TΩa−2πiaTzθ(z,Ω) .

Again we define theta functions with characteristics to be translations of θ(z,Ω). More

precisely, if a and b are vectors in (1
2Z/Z)g, then we define the theta functions with char-

acteristics a and b to be the summation

θ

[
2a

2b

]
(z,Ω) =

∑
n∈Zg

eπi(n+a)TΩ(n+a)τ+2πi(z+b)T(n+a) .

As expected we find that these are merely translations of the original definition

θ

[
2a

2b

]
(z,Ω) = eπia

TΩa+2πiaT(z+b)θ(z + Ωa + b,Ω) .

As before, these functions are either odd or even in z. Since the even ones are the ones

where 4aTb is an even integer, we have 1
2(4g + 2g) even and 1

2(4g − 2g) odd theta functions

respectively. The situation to embed lattices into projective space is more complicated and

we content ourselves by quoting the theorem of Lefschetz (see [Mum74] for a proof):

Theorem 2.5. If a complex torus possesses a non-degenerate Riemann form, then there

exists an embedding, via the theta functions, into the projective space as an algebraic sub-

variety. Furthermore every complex torus that can be embedded in a projective space is

isomorphic to Cg/αΩ(L) for some Ω ∈ Hg and L a lattice in Cg, where αΩ : Rg ×Rg → Cg

is the map defined by αΩ(x, y) = Ωx+ y.

A Thetanullwert or theta constant is the restriction of θa,b(z,Ω) to z = 0. These are of

particular interest for various reasons. For example, the theta functions θ
[
0
b

]
(0,Ω) are

examples of half-weight Siegel modular forms (for more details see [DS00] or [Mum83]).
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Our focus here is slightly different; we are interested in some of the duplication formulae

related to these theta constants. For convenience, we agree on the notation that any theta

functions without the z-argument refer to theta constants.

Theta functions, and especially theta constants, have been very well studied. In particular,

they satisfy many duplication and transformation formulae which are the main interest to

us here. As such we will quote two main theorems which are employed later.

Theorem 2.6. Let Ω ∈ Hg and a,b ∈ (1
2Z/Z)g. Furthermore let γ ∈ Sp2g(Z) be a matrix

with block form

γ =

(
A B

C D

)
.

Then we have

θ

[
2a′

2b′

]((
A B

C D

)
Ω

)
= κ(a,b, γ)det(CΩ +D)

1
2 θ

[
2a

2b

]
(Ω) ,

where [
a′

b′

]
=

[
Da− Cb + 1

2diag(CDT)

−Ba +Ab + 1
2diag(ABT)

]
and

κ(a,b, γ) = ζγ exp
(
−πiaTBTDa + 2πiaTBTCb− πibTACb

)
is a constant that is independent of Ω. The ζγ in the last expression is an eighth root of

unity that depends only on γ.

A proof can be found in Chapter II of [Igu72]. Note that this transformation property allows

one to think of theta functions as modular forms. For example, it immediately follows that

the function θ
[ a1
b1

]
(Ω) · θ

[ a2
b2

]
(Ω) for any ai,bi ∈ ( 1

nZ/Z)g is a modular form of weight 1,

level (n2, 2n2).

The second theorem concerns the duplication of theta functions, taken from Theorem 2 in

Chapter IV of [Igu72]:

Theorem 2.7. For Ω ∈ Hg and ai,bi ∈ (1
2Z/Z)g, we have

θ

[
2a1

2b1

]
(2Ω)·θ

[
2a2

2b2

]
(2Ω) =

1

2g

∑
n∈( 1

2
Z/Z)g

(−1)4a1·nθ

[
2(a1 + a2)

2n + b1 + b2

]
(Ω)·θ

[
2(a1 − a2)

2n + b1 − b2

]
(Ω) .
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Note that although we restrict ourselves to half-integer characteristics, one can extend the

definition to characteristics of any real number and thus the above formula makes sense.

This gives duplication formulae for matrix doubling of even theta functions, which we saw

is related to the AGM in genus 1.

For example letting g = 1, a1 = a2 and b1 = b2 gives the following three relations:

θ

[
0

0

]
(2Ω)2 =

1

2

(
θ

[
0

0

]
(Ω)2 + θ

[
0

1

]
(Ω)2

)
,

θ

[
0

1

]
(2Ω)2 = θ

[
0

0

]
(Ω)θ

[
0

1

]
(Ω) ,

θ

[
1

0

]
(2Ω)2 =

1

2

(
θ

[
0

0

]
(Ω)2 − θ

[
0

1

]
(Ω)2

)
.

We can combine these identities and see that

θ

[
1

0

]
(2Ω)4 =

1

4

(
θ

[
0

0

]
(Ω)4 + θ

[
0

1

]
(Ω)4 − 2θ

[
0

0

]
(Ω)2θ

[
0

1

]
(Ω)2

)

= θ

[
0

0

]
(2Ω)4 − θ

[
0

1

]
(2Ω)4

which is known as Jacobi’s identity we used previously.

2.4 Thomae’s Formula

Thomae’s formula is one of the classical results that relate theta constants to branch points

of hyperelliptic curves. It was first proved in [Tho70], and a more modern account can be

found in section 8 of [Mum84].

Let C be a hyperelliptic curve with roots a1, . . . , a2g+1, where g is the genus of the curve. We

associate each branch point with a point in the Jacobian via the Abel-Jacobi map (where

infinity is chosen as the base point)

Ai =

∫ ai

∞
du = Ωa + b
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and we define an associated vector

[Ai] =

[
a

b

]
.

The components of these vectors are either 0 or
1

2
modulo 1. In fact these can be explicitly

computed, as shown in Chapter 7.1 of [FK80]:

[A2k+2] =
1

2

[
0 0 · · · 0

1 1 · · · 1︸ ︷︷ ︸
k

1 0 · · · 0

1 0 · · · 0

]
,

[A2k+1] =
1

2

[
0 0 · · · 0

1 1 · · · 1︸ ︷︷ ︸
k

1 0 · · · 0

0 0 · · · 0

]

for any k = 0, . . . , g except [A2g+2], which corresponds to the point at infinity and hence

is identically zero. This way we get characteristics of a theta function for each individual

branch point. For example, in the case of genus 2 we get the following six characteristics:

[A1] =
1

2

[
1 0

0 0

]
, [A2] =

1

2

[
1 0

1 0

]
, [A3] =

1

2

[
0 1

1 0

]
,

[A4] =
1

2

[
0 1

1 1

]
, [A5] =

1

2

[
0 0

1 1

]
, [A6] =

1

2

[
0 0

0 0

]
.

Those with even indices (apart from A2g+2), that is A2n for 1 ≤ n ≤ g, correspond to odd

theta functions, and the others correspond to even theta functions. Under this notation the

vector of Riemann constants is simply defined as the sum of all the even branch points

[K∞] =

g∑
k=1

[A2k] .

The upshot is that the [Ai]’s form a basis for the characteristics of theta functions in the

sense that all 4g characteristics can be formed by adding these Ai’s together and that

there is a one-to-one correspondence between these characteristics and partitions of the set

{1, 2, . . . , 2g + 1}.
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In particular, we are interested in those partitions which divide the set into two. Let S and

Sc be a partition of {1, 2, . . . , 2g + 1}. We define the characteristics corresponding to this

partition to be the vector [
a

b

]
=
∑
i∈S

[Ai] + [K∞] .

This is easily demonstrated with an example. Suppose g = 2 and consider the partition

{1, 2, . . . , 5} = S ∪ Sc = {1, 2, 3} ∪ {4, 5}. In this case the corresponding characteristics is

simply

[A1] + [A2] + [A3] + [K∞] = [A4] + [A5] + [K∞] =
1

2

[
1 0

0 1

]

and we write θ{S} = θ[ 10
01 ](Ω). With these notations, we have the following proposition

(credited to Frobenius in Chapter III of [Mum84]).

Proposition 2.8 (Frobenius’ Theta Formula). Let S = {1, 3, . . . , 2g + 1} be the set with

g + 1 elements. For all quadruplets z1, . . . , z4 ∈ Cg and a1, . . . ,a4 ∈ (1
2Z/Z)2g such that

4∑
i=1

zi = 0 and
4∑
i=1

ai = 0 mod 1 ,

we have
2g+2∑
j=1

eS(j)
4∏
i=1

θ[ai + Aj ](zi) = 0 ,

where

eS(j) =

{
1 if j ∈ S
−1 if j /∈ S .

Note that the set S in the proposition is fixed by our choice of basis [Ai]. A different

choice of basis would yield a corresponding set S. The main interest to us is that the for-

mula gives a vast collection of identities between theta functions, which we will require later.

Note that for a given partition S of the branch points, the corresponding theta function is

even if and only if #(S) = g + 1 −m for m even. For every partition S we will denote its

corresponding theta constant by θ{S}. The following is the main theorem due to Thomae:
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Theorem 2.9 (Thomae’s Theorem). Let C be a hyperelliptic curve of genus g with big

period matrix Ω1Z2 + Ω2Z2 and suppose S ∪ Sc is a partition of {1, . . . , 2g + 1} such that

#(S) = g + 1. Then we have

θ{S}(Ω)4 = ±(det Ω1)2

(iπ)2g

∏
i<j∈S

(ai − aj)
∏

i<j∈Sc
(ai − aj) .

We briefly demonstrate one of its many applications here. In genus 1, the determinant

det Ω1 is just the period ω1 itself. Hence Thomae’s theorem gives the formulae

ω1

√
e3 − e1 = πθ0,0(τ)2 and ω2

√
e2 − e1 = iπθ0,1(τ)2

as in Chapter 1. We end with a simple corollary of the theorem.

Corollary 2.10. Let S and T be two disjoint subsets of B = {1, 2, . . . , 2g+ 1} of total size

g − 1. Then for any two k 6= l from the set B \ (S ∪ T ) we have

al − am
ak − am

= ε
θ{k ∪ S}2θ{k ∪ T}2

θ{l ∪ S}2θ{l ∪ T}2
,

where m is the remaining number in B and ε4 = 1.

Proof. By Thomae’s Theorem we see that

θ{k ∪ S}4

θ{l ∪ T}4
= ±

∏
i<j∈(k∪S)

(ai − aj)
∏

i<j∈(k∪S)c
(ai − aj)∏

i<j∈(l∪T )

(ai − aj)
∏

i<j∈(l∪T )c
(ai − aj)

= ±

∏
i<j∈(k∪S)

(ai − aj)
∏

i<j∈(m∪l∪T )

(ai − aj)∏
i<j∈(l∪T )

(ai − aj)
∏

i<j∈(m∪k∪S)

(ai − aj)

= ±
(al − am)

∏
i<j∈(m∪T )

(ai − aj)

(ak − am)
∏

i<j∈(m∪S)

(ai − aj)

and similarly

θ{k ∪ T}4

θ{l ∪ S}4
= ±

(al − am)
∏

i<j∈(m∪S)

(ai − aj)

(ak − am)
∏

i<j∈(m∪T )

(ai − aj)

from which the result follows.
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2.5 Two Generalisations of the AGM

We now turn our attention to the generalisation of the AGM. Two such generalisations have

been studied: one, by Jarvis in [Jar08], uses four starting variables whereas the other, by

Bost and Mestre in [BM88], uses six. For notational convenience, we fix, once and for all,

the following labelling of the ten even theta functions in genus 2:

θ0(Ω) = θ

[
0 0

0 0

]
(Ω) , θ1(Ω) = θ

[
0 0

0 1

]
(Ω) ,

θ2(Ω) = θ

[
0 0

1 0

]
(Ω) , θ3(Ω) = θ

[
0 0

1 1

]
(Ω) ,

θ4(Ω) = θ

[
1 1

1 1

]
(Ω) , θ5(Ω) = θ

[
1 1

0 0

]
(Ω) ,

θ6(Ω) = θ

[
1 0

0 1

]
(Ω) , θ7(Ω) = θ

[
1 0

0 0

]
(Ω) ,

θ8(Ω) = θ

[
0 1

1 0

]
(Ω) , θ9(Ω) = θ

[
0 1

0 0

]
(Ω) .

We also note in passing that we will often switch between working with a quintic model

and a sextic model of a hyperelliptic curve, whichever is more convenient in the situation.

This is mainly due to historical reasons, where some classical results were proved and more

easily applied in one model than the other. But since two such models of the same curve

can be obtained via a linear change of variable, this should cause no confusion.

2.5.1 The Four Variable AGM

Jarvis suggested a notion of a genus 2 AGM using four numbers, rediscovering the definition

by Borchardt. It can be seen as a generalisation to abelian surfaces (as opposed to hyper-

elliptic curves as in the other generalisation). The method presented in the paper has the

advantages that it is closely connected to genus 2 theta functions. This allows one to prove

similar results to those of Gauss in [Cox84], for example determining the set of possible

AGM values (in most cases). Another advantage of this notion is the ease of generalisation

to even higher genera.
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Let a0 = a, b0 = b, c0 = c and d0 = d be real, positive numbers such that a0 ≥ b0 ≥ c0 ≥ d0,

and for n ≥ 1 define

an+1 =
1

4
(an + bn + cn + dn) ,

bn+1 =
1

2
(
√
anbn +

√
cndn) ,

cn+1 =
1

2
(
√
ancn +

√
bndn) ,

dn+1 =
1

2
(
√
andn +

√
bncn) .

The four sequences {an}, {bn}, {cn} and {dn} converge to a common limit M4(A,B,C,D).

Note that ordering an ≥ bn ≥ cn ≥ dn is preserved for all n and so A ≥ B ≥ C ≥ D. This

convergence is once again quadratic since

an+1 − dn+1 =
1

4

[
(
√
an −

√
dn)2 + (

√
bn −

√
cn)2

]
≤ 1

2

(√
an −

√
dn

)2

=
1

2

(
an − dn√
an +

√
dn

)2

≤ 1

2

(
an − dn
2
√
d0

)2

=
1

8d0
(an − dn)2 .

Taking complex initial values, the same process produces uncountably many sequences due

to choices in square roots. It turns out that the various choices can be studied using genus

2 theta functions. As in the genus 1 situation, the link comes from the doubling formulae

of these functions (which can now be proved easily using Theorem 2.7):

Theorem 2.11. Let Ω ∈ H2. Then we have the following duplication formulae:

θ0(2Ω)2 =
1

4

(
θ0(Ω)2 + θ1(Ω)2 + θ2(Ω)2 + θ3(Ω)2

)
,

θ1(2Ω)2 =
1

2
(θ0(Ω)θ1(Ω) + θ2(Ω)θ3(Ω)) ,

θ2(2Ω)2 =
1

2
(θ0(Ω)θ2(Ω) + θ1(Ω)θ3(Ω)) ,

θ3(2Ω)2 =
1

2
(θ0(Ω)θ3(Ω) + θ1(Ω)θ2(Ω)) .
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This means that if one starts with the four numbers {θ0(Ω), θ1(Ω), θ2(Ω), θ3(Ω)} for some

Ω ∈ H2, then it is possible to attain the numbers {θ0(2Ω), θ1(2Ω), θ2(2Ω), θ3(2Ω)} via the

four variable AGM. That is to say, this AGM is, as in genus 1, doubling the argument of

theta functions. Define the following function Θ(n) : H2 → P3(C) by

Θ(n)(Ω) = [θ0(Ω)n : θ1(Ω)n : θ2(Ω)n : θ3(Ω)n] .

At each stage there are eight possible choices (there are four choices of square roots to make,

but taking an opposite set of signs gives the same result), and it turns out that they can

be classified by the following (Proposition 3.10 in [Jar08])

Proposition 2.12. Suppose [a : b : c : d] ∈ Θ(2)(Ω) for some Ω ∈ H2. Then all possible

results of the AGM map also lie in the image of Ω(2). In particular, they all are of the form

Θ(2)

((
I 0

C I

)
(2Ω)

)
,

where I is the 2× 2 identity matrix and C runs over the set(
0 0

0 0

)
,

(
2 0

0 0

)
,

(
0 0

0 2

)
,

(
2 0

0 2

)
,

(
0 1

1 0

)
,

(
2 1

1 0

)
,

(
0 1

1 2

)
,

(
2 1

1 2

)
.

Given a quadruple (a, b, c, d) such that there exists Ω ∈ F (2), the fundamental domain of

H2, with Θ(2)(Ω) = [a : b : c : d], we say that (
√
a,
√
b,
√
c,
√
d) is a right choice of square

roots if Θ(1)(Ω) = [
√
a,
√
b,
√
c,
√
d]. Similarly a simplest value is the value corresponding

to a sequence where a right choice is taken at each step. Finally, denote by Γ(2) the group

Γ(2) = {γ ∈ Sp4(Z) | Θ2(γΩ) = Θ(2)(Ω) for all Ω ∈ H2} ,

which is essentially the analogue of the principal subgroup for the standard upper half plane.

Under these notations, we have the following (near) generalisation of the theorem of Gauss

(Theorem 3.14 in [Jar08]):

Theorem 2.13. For almost all quadruples (a, b, c, d), there exists Ω ∈ H2 such that the

good values of the AGM are precisely the values of the set{
a

θ2
0(M(Ω))

∣∣∣ M ∈ Γ(2)

}
.

Furthermore, the simplest values of the AGM are those of maximum modulus.
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We demonstrate one example of how this four variable AGM can be useful in the computa-

tion of the determinant of the period matrix over R. This is the work of [SvS12]. Consider

the four partitions of branch points S = {1, 3, 5}, {1, 4, 5}, {2, 3, 5} and {2, 4, 5}. Under the

correspondence between partitions and theta functions described earlier this chapter, these

correspond to the four genus 2 theta functions θ0, θ1, θ2 and θ3 respectively. Therefore

Thomae’s theorem gives four corresponding equations:

θ2
0(Ω) =

4 det Ω1

π2

√
(a3 − a1)(a5 − a1)(a5 − a3)(a4 − a2),

θ2
1(Ω) =

4 det Ω1

π2

√
(a4 − a1)(a5 − a1)(a5 − a4)(a4 − a3),

θ2
2(Ω) =

4 det Ω1

π2

√
(a3 − a2)(a5 − a2)(a5 − a3)(a4 − a1),

θ2
3(Ω) =

4 det Ω1

π2

√
(a4 − a2)(a5 − a2)(a5 − a4)(a3 − a1),

where the fourth roots of unity are eliminated by the ordering of the roots. But recall that

the (four variable) AGM of the four theta functions on the left hand side is 1, since the

AGM is equivalent to period doubling. Hence we have the following:

Proposition 2.14. Let C be a genus 2 hyperelliptic curve over R with real roots a1, . . . , a5

in increasing order and denote the period matrix by Ω1Z2 + Ω2Z2. Then the determinants

of the Ωi’s are given by

det Ω1 =
π2

4M4(A1, A2, A3, A4)
,

det Ω2 = − π2

4M4(B1, B2, B3, B4)
,

where

A1 =
√

(a3 − a1)(a5 − a1)(a5 − a3)(a4 − a2) , A2 =
√

(a4 − a1)(a5 − a1)(a5 − a4)(a4 − a3) ,

A3 =
√

(a3 − a2)(a5 − a2)(a5 − a3)(a4 − a1) , A4 =
√

(a4 − a2)(a5 − a2)(a5 − a4)(a3 − a1) ,

B1 =
√

(a3 − a1)(a5 − a1)(a5 − a3)(a4 − a2) , B2 =
√

(a3 − a1)(a4 − a1)(a4 − a3)(a5 − a2) ,

B3 =
√

(a2 − a1)(a5 − a1)(a5 − a2)(a4 − a3) , B4 =
√

(a2 − a1)(a4 − a1)(a4 − a2)(a5 − a3) .

An analogous version of this proposition can be done for higher genera hyperelliptic curves.
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2.5.2 The Six Variable AGM

The second generalisation, which takes six numbers instead of four, is found in Bost and

Mestre’s paper [BM88]. Historically the algorithm was first written down by Richelot,

using some ingenious change of variables whose origin seemed mysterious. It was then re-

interpreted by Konigsberger using, in modern language, isogenies between abelian surfaces.

Finally, the algorithm described here is due to Humbert as part of his work on Kummer

surfaces.

Let a < b < c < d < e < f be six real numbers. We define, by induction, six sequences

using the following algorithm:

• Set a0 = a, b0 = b, c0 = c, d0 = d, e0 = e and f0 = f .

• Set Pn = (x− an)(x− bn), Qn = (x− cn)(x− dn) and Rn = (x− en)(x− fn).

• Set Un = Q′nRn −R′nQn, Vn = R′nPn − P ′nRn and Wn = P ′nQn −Q′nPn.

• Set an+1, bn+1, cn+1, dn+1, en+1 and fn+1 to be the roots of UnVnWn in increasing

order, that is, we have an+1 < bn+1 < cn+1 < dn+1 < en+1 < fn+1.

If {un, u′n}, {vn, v′n} and {wn, w′n} are the roots of Un, Vn and Wn respectively, solving the

equations gives the chain of inequalities

an < vn < wn < bn < cn < w′n < un < dn < en < u′n < v′n < fn .

So after relabelling the roots of UnVnWn appropriately, one obtains

an < an+1 < bn+1 < bn ,

cn < cn+1 < dn+1 < dn ,

en < en+1 < fn+1 < fn ,

which suggests that the sequences (an) and (bn), (cn) and (dn), (en) and (fn) converge to

three common limits. In fact, one can further show that not only do they converge to three

common limits, but this convergence is quadratic. This follows from the observation that

V ′nWn −W ′nVn = −2∆kP ,
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where ∆k is the determinant of the matrix of coefficients of Pn, Qn and Rn with respect to

the basis 1, x, x2. Then taking discriminant of both sides implies that

4(vn − wn)(vn − w′n)(v′n − wn)(v′n − w′n) = (vn + v′n − wn − w′n)2(an − bn)2 ,

and when combined with the inequalities above gives (the first line of)

bn+1 − an+1 <
(b+ f − a− c)2

4(c− b)(e− b)(e− d)
(bn − an)2 ,

dn+1 − cn+1 <
(d+ f − a− c)2

4(c− b)(f − b)(e− d)
(dn − cn)2 ,

fn+1 − en+1 <
(d+ f − a− e)2

4(c− b)(e− b)(e− d)
(fn − en)2 .

We call the three limits the AGM of these six real numbers.

Starting with a hyperelliptic curve C0 : y2 = (x− a0)(x− b0) · · · (x− f0) with real roots, by

applying the AGM to the six roots of C0, the AGM then produces a family of hyperelliptic

curves defined by

Cn : T 2
ny

2 = (x− an)(x− bn) · · · (x− fn) = Pn(x)Qn(x)Rn(x) ,

where

Tn =

n∏
k=0

2
√
−∆k√

(ck + dk − ak − bk)(ek + fk − ck − dk)(ek + fk − ak − bk)
.

The reason of introducing such a constant is simply to normalise the leading coefficients of

the curves. The relationship between this AGM and period integrals of hyperelliptic curves

is summarised by the observation, due to Richelot, that

bn∫
an

S(x)dx√
|Pn(x)Qn(x)Rn(x)|

= 2 tn

bn+1∫
an+1

S(x)dx√
|Pn+1(x)Qn+1(x)Rn+1(x)|

,

where S(x) is any degree 1 polynomial and the constant tn is the individual component of

Tn, that is

tn =

√
−∆n√

(cn + dn − an − bn)(en + fn − cn − dn)(en + fn − an − bn)
.
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An ‘elementary’ proof of the result can be found in the appendix of [BM88]. Replacing the

limits of integration one gets similar identities for the other period integrals, for example

cn∫
bn

S(x)dx√
|Pn(x)Qn(x)Rn(x)|

= tn

cn+1∫
bn+1

S(x)dx√
|Pn+1(x)Qn+1(x)Rn+1(x)|

,

Essentially this gives information on how the period integrals behave. More explicitly, by

setting

Ia =

b∫
a

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

,

the identity implies that

Ia = lim
n→∞

(n−1∏
k=0

tk

) bn∫
an

S(x)dx√
−PnQnRn

 =
πTS(α)

(β − α)(γ − α)
,

where T is the product of the tn’s and α, β, γ are the AGM of a, b, c, d, e and f with

α < β < γ. The second equality follows from the observation that in the limit the sextic

polynomial in the integrand becomes (x− α)2(x− β)2(x− γ)2 and thus the integral is the

residue of the function at the simple pole α. This gives the following theorem

Theorem 2.15. Let C be a hyperelliptic curve given by

y2 = (x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

with a < b < · · · < f . Apply the Bost-Mestre algorithm to (a, b, c, d, e, f). Then for any

polynomial S(x) of degree 1 or less, we have

b∫
a

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

=
πTS(α)

(β − α)(γ − α)
,

d∫
c

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

=
πTS(β)

(β − α)(γ − β)
,

f∫
e

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

=
πTS(γ)

(γ − α)(γ − β)
,

where α, β and γ are the AGM of a, b, . . . , f and T is the products of the tk’s.
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By applying some linear transformations, one can obtain expressions for the remaining

integrals. For example, by letting

y(x) =
1

2x− a− b
,

then one sees that

(x− a) =
1

2

(
1

y
− 1

y(a)

)
= − 1

2yy(a)
(y − y(a)) .

Notice that if a < b < c < d < e < f , then after the transformation we have the inequality

y(a) < y(f) < y(e) < y(d) < y(c) < y(b). Hence combining everything we get

c∫
b

S(x)dx√
(x− a) · · · (x− f)

= 4
√
y(a) · · · y(f)

y(b)∫
y(c)

S
(

1
2

(
1
y + a+ b

))
ydy√

−(y − y(a)) · · · (y − y(f))
,

and a similar result holds for the other integral.

To explicitly relate it to the AGM as above, denote by (α′, β′, γ′) the AGM of y(a), y(f),

y(e), y(d), y(c) and y(b). Consider the first case when S(x) ≡ 1; in this case we get

c∫
b

dx√
(x− a) · · · (x− f)

=
4
√
y(a) · · · y(f)πT ′γ′

(γ′ − β′)(γ′ − α′)

and
e∫
d

dx√
(x− a) · · · (x− f)

=
4
√
y(a) · · · y(f)πT ′β′

(γ′ − β′)(β′ − α′)
,

where T ′ is the corresponding value of T for this AGM. Finally if S(x) = x, then after the

change of variables it becomes

S(y) =

(
a+ b

2

)
y +

1

2

and thus
c∫
b

xdx√
(x− a) · · · (x− f)

=
2
√
y(a) · · · y(f)πT ′ ((a+ b)γ′ + 1)

(γ′ − β′)(γ′ − α′)
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and ∫ e

d

xdx√
(x− a) · · · (x− f)

=
2
√
y(a) · · · y(f)πT ′((a+ b)β′ + 1)

(γ′ − β′)(β′ − α′)
.

The actual periods are then simply the sum of these period integrals formed by studying

the symplectic basis of the homology group. In this way one may obtain the period matrix

of the hyperelliptic curve using the AGM.

The genus 1 AGM is equivalent to the construction of a tower of elliptic curves through a

2-isogeny; Bost and Mestre offer a geometric interpretation of this in their paper as well.

For all n ≥ 1, there is a (2,2)-correspondence, also known as Richelot’s isogeny, between the

curves Cn(x, y) and Cn+1(x′, y′). A (2, 2)-correspondence is a multivalued map that takes

a point on Cn and returns two points on Cn+1 (or equivalently, a degree 2 divisor on Cn+1)

with kernel isomorphic to V4.

More explicitly, this correspondence Z over Cn × Cn+1 is defined by the pair of equations0 = Pn(x)Un(x′) +Qn(x)Vn(x′)

yy′ = Pn(x)Un(x′)(x− x′)

Let π1 and π2 be the restrictions of Z of the projections of Cn × Cn+1 onto Cn and Cn+1

respectively. From the maps

H0(Cn+1,Ω
1)

π∗2−→ H0(Z,Ω1)
π1∗−−→ H0(Cn,Ω

1) ,

where π1∗ is the trace map and π∗2 is the inverse image map, we get an action on the space

of differentials δ : Ω1(Cn+1) → Ω1(Cn) via the composition π1∗ ◦ π∗2. Note that π1∗ is dual

to π∗1 by Serre duality (see [Ser59]). Since this action is linear, for any polynomial of degree

0 or 1, this gives the equality of differentials

δ

(
S(x′)

dx′

y′

)
= S(x)

dx

y

which is a key ingredient of the proof of Theorem 2.15. The maps π1 and π2 can be used to

construct a map f between the corresponding Jacobians by f ([
∑
niPi]) =

[∑
niπ1π

−1
2 Pi

]
.

The AGM is then constructing a tower of abelian surfaces

· · · → Jn+1
fn−→ Jn → · · · → J1

f0−→ J0 ,

37
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where Jn is the Jacobian of the curve Cn. As n tends to infinity, the curve Cn becomes

C∞ – a singular curve with equation T 2y2 = (x − α)2(x − β)2(x − γ)2 with two rational

components (by taking the positive and negative square roots of C∞), where α, β and γ are

the AGM of a0, b0, . . . , f0. The integral of the differential S(x)
dx

y
along the contour (an, bn)

becomes the residue at (α, 0).

We end on a brief remark. The defining equations of the Richelot isogeny seem to suggest

that it depends on the ordering of P , Q and R. Indeed, a pair of points on Cn may map to

four different points on Cn+1 depending on how P , Q and R are ordered. However, it turns

out that these always define equivalent divisors inside Jn+1, so that the homomorphism

Jn+1 −→ Jn is well-defined and independent of the ordering. More details can be found in

Chapter 8 of [Smi05].

2.6 Hyperelliptic Curves over C

The main difficulty in extending the algorithm to curves with complex coefficients is the

fact that the algorithm relies on a natural way in ordering the roots at every stage of the

AGM. While there is such a canonical way when the roots are real (namely in increasing

order), this is not the case with the complex numbers. Nonetheless, by carefully mimicking

the method in [BM88], it is possible to derive a similar algorithm to compute the periods.

We first present the full algorithm before giving a proof afterwards, and we end the section

with some related theoretical results on the properties of the AGM itself.

2.6.1 The Algorithm

We first define the complex AGM. Let a, b, . . . , f be six distinct complex numbers. We

define, by induction, six sequences using the following algorithm:

Algorithm 2.16 (Complex AGM).

Input: Six distinct complex numbers a, b, c, d, e and f .

Ouput: Three distinct complex numbers α, β and γ.

1. Set B0 to be one of the initial numbers that has the smallest imaginary part and r0

the minimal distance between the other five numbers and B0. That is,

B0 ∈ {a, b, c, d, e, f}
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such that

ImB0 = min{Im a, Im b, . . . , Im f} ,

and

r0 = min{|x−B0| : x ∈ {a, b, c, d, e, f} \ {B0}} .

If two of the starting numbers have the same minimal imaginary parts, then let B0 be

the point with the smaller real part.

2. Set the base point B = B0 −
2

5
r0.

3. Set a0, b0, c0, d0, e0 and f0 to be a permutation of the initial numbers, ordered by

argument with respect to the base point B. That is, compute arg(B− x) ∈ (−π, π] for

x ∈ {a, b, c, d, e, f} and sort the numbers in increasing order.

4. Set, for n ≥ 0,

Pn = (x− an)(x− bn) , Qn = (x− cn)(x− dn) and Rn = (x− en)(x− fn) .

5. Set

Un = Q′nRn −R′nQn = ε1(x− un)(x− u′n) ,

Vn = R′nPn − P ′nRn = ε2(x− vn)(x− v′n) ,

Wn = P ′nQn −Q′nPn = ε3(x− wn)(x− w′n) .

6. Using the roots of Un, Vn and Wn, form

• Pn+1 = (x− an+1)(x− bn+1) with an+1 = vn and bn+1 = wn;

• Qn+1 = (x− cn+1)(x− dn+1) with cn+1 = w′n and dn+1 = un;

• Rn+1 = (x− en+1)(x− fn+1) with en+1 = u′n and fn+1 = v′n.

The roots are picked so that the value of

|an+1 − bn+1|+ |cn+1 − dn+1|+ |en+1 − fn+1|

is minimal amongst the eight possible choices. If there exist two permutations with

the same minimal distance, choose the one with the minimal angles between the roots.

7. Repeat Steps 4 to 6 until the roots coincide to desired precision.
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The only difference between this and the algorithm for real numbers is how the sextuples

{an, bn, . . . , fn} are ordered at each stage, and we provide some justification behind our

choices. The first step proves to be the most troublesome, as there are 15 possible ways to

order the roots. The method presented here (Steps 1 to 3) is identical to how Maple treats

the Weierstrass points in computing the monodromy group of the algebraic covering (see

[DvH99]). The base point B is essentially picked so that it is directly left of the left-most

initial number, since it is advantageous for numerical accuracy to keep some distance from

the Weierstrass points. The 2
5 used to compute r0 is somewhat arbitrary; any numbers

between 0 and 1
2 can be used.

After the first step, at each iteration we only get eight different ways to arrange the roots,

coming from the two choices of roots for each of Un, Vn and Wn in Step 5. Our right

choice (i.e. picking the minimal distance between the roots) was motivated by two reasons.

The first being that it is clearly compatible with Bost and Mestre’s algorithm if the initial

numbers are real, and the second is that this ensures that the algorithm converges to three

(distinct) complex numbers quadratically. More explicitly, as in the real case, for each right

choice made we have

|an+1 − bn+1| <
∣∣∣∣ (b+ f − a− c)2

4(c− b)(e− b)(e− d)

∣∣∣∣ |an − bn|2 ,
|cn+1 − dn+1| <

∣∣∣∣ (d+ f − a− c)2

4(c− b)(f − b)(e− d)

∣∣∣∣ |cn − dn|2 ,
|en+1 − fn+1| <

∣∣∣∣ (d+ f − a− e)2

4(c− b)(e− b)(e− d)

∣∣∣∣ |en − fn|2 .
Once we have a good notion of the complex AGM, the rest follows as in the real case: as

one applies the AGM, we get the same identity (now as complex integrals, taken as the

straight line between the end points)

bn∫
an

S(x)dx√
Pn(x)Qn(x)Rn(x)

= 2 tn

bn+1∫
an+1

S(x)dx√
Pn+1(x)Qn+1(x)Rn+1(x)

,

where tn is defined as before (the branch of the square root is arbitrarily chosen in practice

as explained later). One might remark that making the right choice at each stage guarantees

that the three paths (the other two being from cn to dn and from en to fn) do not cross.

As n tends to infinity, we get
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Proposition 2.17. Let C : y2 = (x− a)(x− b) · · · (x− f) be a hyperelliptic curve and α, β

and γ be the AGM of a, b, . . . , f . Then we have

Ia(S(x)) =

b∫
a

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

= ± πTS(α)

(β − α)(γ − α)
,

Ic(S(x)) =

d∫
c

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

= ± πTS(β)

(β − α)(γ − β)
,

Ie(S(x)) =

f∫
e

S(x)dx√
−(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

= ± πTS(γ)

(γ − α)(γ − β)
,

where S(x) is any polynomial of degree 0 or 1 and T is defined as before.

There are some hidden subtleties here. Firstly, the natural ordering of real numbers led to

a natural ordering of the three resulting numbers of the AGM (namely that α < β < γ).

But here we lack such ordering, so by saying that α, β and γ are the AGM of a, b, . . . , f ,

we mean that in the limit we have

P (x) = (x− α)2 , Q(x) = (x− β)2 and R(x) = (x− γ)2 .

The ambiguity of the sign on the right hand sides comes from the freedom to interchange

a and b (and similarly the other two pairs of roots). But consider the loop that circles all

three branch cuts on P1(C), which can be contracted to a single point on the other side of

the Riemann surface. This gives the identity Ia(S(x)) − Ic(S(x)) + Ie(S(x)) = 0 and one

can easily deduce the correct signs by running through all four possibilities. Technically

there are eight permutations but half of them are simply the negatives of the other half

so the signs are only determined relative to one another; choosing the wrong set of signs

ultimately gives a equivalent period matrix so it does not affect the outcome. This ambi-

guity also means that there is no need to distinguish the branch of square root used in the

computation of tn.

To compute the periods we also require the integrals between the remaining roots, that is,

the integral of S(x)dxy from b to c and from d to e. But in this situation it turns out the lack

of ordering becomes an advantage. A change of variable was required to satisfy a particular

ordering of the roots in the real case, but here one can simply shift the order of the initial

roots a, b, . . . , f and then reapply the same AGM process as above. More precisely, let
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a0 = a, b0 = f , c0 = e, d0 = d, e0 = c, f0 = b. In this case the integral between b and c

become the integral between e0 and f0, which we already know by the above proposition

and hence:

Ib(S(x)) =

c∫
b

S(x)dx√
(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

= ± πT ′S(α′)

(γ′ − β′)(γ′ − α′)
,

Id(S(x)) =

e∫
d

S(x)dx√
(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

= ± πT ′S(β′)

(β′ − α′)(γ′ − β′)
,

where α′, β′, γ′ and T ′ are from the associated AGM. Finally, from the standard symplectic

basis we see that the period matrices are given by

Ω1 =

(
Ia(1) Ic(1)

Ia(x) Ic(x)

)
and Ω2 =

(
Ib(1) + Id(1) Id(1)

Ib(x) + Id(x) Id(x)

)
.

The same subtlety occurs here in the computations of Ib(S(x)) and Id(S(x)). In practice

the easiest solution to determining all the correct signs is simply to insist that the matrix

Ω−1
1 Ω2 is symmetric with a positive definite imaginary part by running through all possible

permutations (in practice this is not too bad; the Magma codes in Appendix A compute

the period matrix to 500 decimal places in under 5 seconds).

Here we have not studied in great detail the situation when one makes the wrong choice,

though through numerical evidence and our understanding of the Richelot isogeny it would

appear that in practice some of these choices do not matter. Since the algorithm boils down

to the equality of some complex integrals (see Proposition 2.19 in the next subsection), this

holds true even if the wrong choice is made and a different hyperelliptic curve is obtained.

The Richelot isogeny is a well-defined map between the Jacobians regardless of how the

roots are labelled. All information regarding how the period integrals behave under the

correspondence is, therefore, simply stored inside the tn’s and in the limit these give the

same answers.

Combining everything we obtain:

42



CHAPTER 2. GENERALISATION TO GENUS 2

Algorithm 2.18 (Computing the period matrix of a hyperelliptic curve).

Input: A genus 2 hyperelliptic curve C over C defined by the equation

y2 = (x− a)(x− b)(x− c)(x− d)(x− e)(x− f) .

Ouput: Big period matrix Ω =
(

Ω1 Ω2

)
of C.

1. Set a0 = a, b0 = b, c0 = c, d0 = d, e0 = e and f0 = f (ordered as in Algorithm 2.16)

and apply the AGM to a0, . . . , f0 to obtain three limits α, β and γ.

2. Compute the three period integrals

Ia =
πTS(α)

(β − α)(γ − α)
, Ic = ± πTS(β)

(β − α)(γ − β)
, and Ie = ± πTS(γ)

(γ − α)(γ − β)

for both S(x) ≡ 1 and S(x) = x, where the signs are picked such that Ia− Ic + Ie = 0.

3. Apply the AGM by setting a0 = a, b0 = f , c0 = e, d0 = d, e0 = c, f0 = b and obtain,

as in Step 2, three complex numbers, two of which must be Ib and Id.

4. Form the matrices ω1 and ω2

Ω1 =

(
Ia(1) Ic(1)

Ia(x) Ic(x)

)
and Ω2 =

(
Ib(1) + Id(1) Id(1)

Ib(x) + Id(x) Id(x)

)
,

where Ib and Id are two of the three outputs in Step 3, chosen by insisting that the

matrix Ω−1
1 Ω2 is a Riemann matrix.

5. The period matrix is given by Ω =
(

Ω1 Ω2

)
.

For example, suppose we take the curve

y2 = (x− 1)(x− i)(x− 1− i)(x− 1 + i)(x+ i)(x+ 1 + i) .

Then using the Magma code in Appendix A, one obtains the following small period matrix

[0.304454053139655373075781862812 + 1.17042114161322302328979034220*i

0.155249630388051604740840328807 + 0.472466097050930338503709354719*i]

[0.155249630388051604740840328810 + 0.472466097050930338503709354718*i

0.304454053139655373075781862813 + 1.17042114161322302328979034220*i]

which agrees with the answer from the inbuilt Magma function (details on Magma’s method

can be found in [Wam06]).
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2.6.2 Proof of the Algorithm

We now provide an elementary proof of Algorithm 2.18 over the complex numbers, follow-

ing mostly the series of questions in the appendix of [BM88] (with slight modifications to

account for complex numbers).

Let a0, b0, . . . , f0 be six distinct complex numbers, denote the sequences obtained from

the right choice of the AGM by {an}, {bn}, . . . , {fn}. Write the roots of Un (Vn and Wn

respectively) as un and u′n (vn and v′n, wn and w′n respectively). Assume that the right

choice pair together the roots (v, w), (w′, u) and (u′, v′). The link between the AGM and

the computation of periods is the following observation, which we will now prove.

Proposition 2.19. For all n, we have

bn∫
an

dx√
Pn(x)Qn(x)Rn(x)

= 2
√
−∆n

wn∫
vn

dx√
Un(x)Vn(x)Wn(x)

,

where ∆n is the determinant of the 3 × 3 matrix defined by the coefficients of Pn, Qn and

Rn.

Note that by interchanging the limits, one obtains various similar results with the same

method. We drop the subscripts in the following for notational convenience. Define the

following polynomial in two variables

F (x, z) = P (x)U(z) +Q(x)V (z) .

Note that we also have F (x, z) = −R(x)W (z)− (x− z)2∆, following from the identity

P (x)U(z) +Q(x)V (z) +R(x)W (z) + (x− z)2∆ = 0

which one can check by direct computation. Rewriting F (x, z) = φ0(x)z2 + φ1(x)z + φ2(x)

as a degree 2 polynomial in z, define z1 and z2 to be the roots of this polynomial. That is,

z1(x) =
−φ1(x) +

√
φ1(x)2 − 4φ0(x)φ2(x)

2φ0(x)
,

z2(x) =
−φ1(x)−

√
φ1(x)2 − 4φ0(x)φ2(x)

2φ0(x)
.

Let us now study the functions zi more carefully.
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Lemma 2.20. The functions zi(x) satisfy the following:

(i) They map the roots of P (x) to the same point; that is

z1(a) = z1(b) = v′ and z2(a) = z2(b) = v .

(ii) There are fixed points at the roots of W ; that is,

z1(w′) = w′ and z2(w) = w .

Proof. Since F (a, z) = Q(a)V (z), we see that

φ0(a) = Q(a)(e+ f − a− b) ,

φ1(a) = 2Q(a)(ab− ef) ,

(φ2
1 − 4φ0φ2)(a) = disc(Q(a)V (z)) = Q(a)2disc(V (z)) .

From 0 = F (a, zi(a)) = Q(a)V (zi(a)) and Q(a) 6= 0, it follows that z1(a) and z2(a) are both

roots of V . The above calculation shows that zi(x) maps a to the different roots of V ; for

if z1(x) = z2(x), then x must be a root of φ2
1 − 4φ0φ2. Doing the same calculations to b we

see that

z1(a) =
−2ab+ 2ef +

√
disc(V )

2(e+ f − a− b)
= z1(b) .

We conclude from this that zi(x) maps the two roots of P (x) to the same point. Similarly

we also have

z1(c) = z1(d) = u′ and z2(c) = z2(d) = u .

Finally, assume that z1(x) = x (which implies x 6= c or d from the above). From the

identity R(x)W (zi(x)) = 0, we see that there are fixed points at w and w′. Since zi(x)

are holomorphic functions around some neighbourhood of a and the right choice is made so

that v and w are close together, we must have z2(w) = w.

Now define the following functions

y1(x) =
P (x)U(z1(x))(x− z1(x))√

P (x)Q(x)R(x)
and y2(x) =

P (x)U(z2(x))(x− z2(x))√
P (x)Q(x)R(x)

.

We now have a series of purely computational results.
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Proposition 2.21. The functions y1(x) and y2(x) satisfy

y2
1(x) =

U(z1(x))V (z1(x))W (z1(x))

∆
and y2

2(x) =
U(z2(x))V (z2(x))W (z2(x))

∆
.

Proof. Since F (x, z1(x)) = 0 for all x, direct computation shows that

y2
1(x) =

P (x)2U(z1(x))2(x− z1(x))2

P (x)Q(x)R(x)

= −P (x)U(z1(x))Q(x)V (z1(x))(x− z1(x))2∆

P (x)Q(x)R(x)∆

=
P (x)U(z1(x))Q(x)V (z1(x))R(x)W (z1(x))

P (x)Q(x)R(x)∆

=
U(z1(x))V (z1(x))W (z1(x))

∆

and similarly for y2(x).

This shows that the two maps (x, y) 7→ (zi(x), yi(x)) are maps of hyperelliptic curves from

C to C ′, where C and C ′ are defined through the equations y2 = P (x)Q(x)R(x) and

∆y2 = U(x)V (x)W (x) respectively. Therefore together they define a (2, 2)-correspondence

by sending the point (x, y) to the divisor [(z1(x), y1(x)) + (z2(x), y2(x))].

Lemma 2.22. We have

U ′(z1(x))
z′1(x)

y1(x)
+ U ′(z2(x))

z′2(x)

y2(x)
= − U ′(x)√

P (x)Q(x)R(x)

and

V ′(z1(x))
z′1(x)

y1(x)
+ V ′(z2(x))

z′2(x)

y2(x)
= − V ′(x)√

P (x)Q(x)R(x)
.

Proof. Again we directly compute that

U ′(z1(x))
z′1(x)

y1(x)
+ U ′(z2(x))

z′2(x)

y2(x)

=

√
P (x)Q(x)R(x)

P (x)

(
U ′(z1(x))z′1(x)

U(z1(x))(x− z1(x))
+

U ′(z2(x))z′2(x)

U(z2(x))(x− z2(x))

)
= −

√
P (x)Q(x)R(x)

P (x)

(
U ′(x)

Q(x)R(x)

)
= − U ′(x)√

P (x)Q(x)R(x)

(the second equality was simplified with the help of Maple).
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Proposition 2.23. We have

z′1(x)

y1(x)
+
z′2(x)

y2(x)
= − 1√

P (x)Q(x)R(x)
.

Proof. One can view the equations in the last lemma as a linear system of equations in the

variables
z′i(x)

yi(x)
. Solving these equations give

z′1(x)

y1(x)
=

1√
P (x)Q(x)R(x)

(
V ′(z2(x))U ′(x)− U ′(z2(x))V ′(x)

U ′(z1(x))V ′(z2(x))− U ′(z2(x))V ′(z1(x))

)
,

z′2(x)

y2(x)
=

1√
P (x)Q(x)R(x)

(
U ′(z1(x))V ′(x)− V ′(z1(x))U ′(x)

U ′(z1(x))V ′(z2(x))− U ′(z2(x))V ′(z1(x))

)
.

We proceed by computing each term. Let

U(x) = u2x
2 + u1x+ u0 and V (x) = v2x

2 + v1x+ v0 .

Then we have

V ′(x)U ′(y)− U ′(x)V ′(y) = 2(u1v2 − u2v1)(x− y) .

Plugging in the corresponding values give

V ′(z2(x))U ′(x)− U ′(z2(x))V ′(x) = 2(u1v2 − u2v1)(z2(x)− x) ,

U ′(z1(x))V ′(x)− V ′(z1(x))U ′(x) = 2(u2v1 − u1v2)(z1(x)− x) ,

U ′(z1(x))V ′(z2(x))− V ′(z1(x))U ′(z2(x)) = 2(u2v1 − u1v2)(z1(x)− z2(x)) .

Since
2(u1v2 − u2v1)(z2(x)− x) + 2(u2v1 − u1v2)(z1(x)− x)

2(u2v1 − u1v2)(z1(x)− z2(x))
= 1 ,

we conclude that
z′1(x)

y1(x)
+
z′2(x)

y2(x)
= − 1√

P (x)Q(x)R(x)

as required.

Equivalently the proposition gives

dz1(x)

y1(x)
+
dz2(x)

y2(x)
= − dx√

P (x)Q(x)R(x)
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and hence
b∫
a

dx√
P (x)Q(x)R(x)

= −
b∫
a

dz1(x)

y1(x)
−

b∫
a

dz2(x)

y2(x)
.

It remains to show that the limits are mapped to the corresponding points under the change

of variables. The first integral vanishes since the integrand is holomorphic on some simply

connected open subset of C near the point v′, whence

b∫
a

dz1(x)

y1(x)
=
√
−∆

∮
γ

dx√
U(x)V (x)W (x)

= 0 ,

where γ is a closed loop starting at the point v′ which contains no singular points.

For the second integral notice that y2(x) has a zero at w, which is near v. Hence the path

from a to b is mapped onto a closed path γ′ starting at v, goes through w before looping

back to v. This means γ′ passes to the other covering of C ∪ {∞} and thus adds a minus

sign when integrating back from w to v. This implies that

b∫
a

dz2(x)

y2(x)
= −
√
−∆

∮
γ′

dx√
U(x)V (x)W (x)

= −2
√
−∆

w∫
v

dx√
U(x)V (x)W (x)

which proves Proposition 2.19:

bn∫
an

dx√
Pn(x)Qn(x)Rn(x)

= 2
√
−∆n

wn∫
vn

dx√
Un(x)Vn(x)Wn(x)

.

It follows that

Theorem 2.24. We have

Ia(S(x)) =

b∫
a

S(x)dx√
(x− a)(x− b)(x− c)(x− d)(x− e)(x− f)

=
πTS(α)

(β − α)(γ − α)
,

where S(x) is any degree 1 polynomial and T =
∏
n≥1

2 tn with

tn =

√
−∆n√

(cn + dn − an − bn)(en + fn − cn − dn)(en + fn − an − bn)
.
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Proof. The required integral is given by

Ia(S(x)) = lim
n→∞

(n−1∏
k=0

2 tk

) bn∫
an

S(x)dx√
PnQnRn

 .

Note that for simplicity we assumed S(x) ≡ 1 in the previous calculations. Firstly, since the

tn’s are the ratio between successive integrals, their convergence is automatic if the limit

of the integrals exists. Now because the right choices are made in the AGM, the six initial

numbers converge to three pairs and the curve Cn : T 2
ny

2 = PnQnRn tends to the singular

curve

T 2y2 = (x− α)2(x− β)2(x− γ)2 .

Thus the integrand has a simple pole at α and in the limits the integral becomes the contour

along the cycle surrounding an and bn and is equal to the residue at the simple pole α, which

gives the result.

2.6.3 An Algebraic Interpretation

The Bost-Mestre algorithm can be viewed as a (2, 2)-correspondence from a geometric stand-

point as discussed before. But in the closing of this chapter we show directly, from a more

algebraic approach using theta functions, that the algorithm is equivalent to doubling the

period matrix of the hyperelliptic curve (which we saw in the genus 1 case).

Any sextic model of a genus 2 curve C can be reduced to a quintic by sending one of the

roots to infinity. Furthermore, taking the cross ratio of (x, a1; a0, a∞), with a0, a1 and a∞

roots of the sextic, gives a transformation

x′ =
x− a0

x− a∞
· a1 − a∞
a1 − a0

which turns in the original sextic into a quintic of the form

y′2 = x′(x′ − 1)(x′ − λ)(x′ − µ)(x′ − ν) .
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That is, a0 is sent to 0, a1 is sent to 1 and a∞ is sent to infinity. We say that a curve of this

form is in Rosenhain (normal) form. Then given such a curve, Corollary 2.10 immediately

gives that

λ =

(
θ0(Ω)θ9(Ω)

θ5(Ω)θ7(Ω)

)2

, µ =

(
θ1(Ω)θ9(Ω)

θ5(Ω)θ6(Ω)

)2

and ν =

(
θ0(Ω)θ1(Ω)

θ6(Ω)θ7(Ω)

)2

.

We note that these are different from the standard equations one might find in literature,

though they define isomorphic curves. The discrepancy arose from a different ordering

of roots – here we numbered the ai with {0, 1, λ, µ, ν} whereas most literature uses the

numbering {λ, µ, ν, 0, 1}. One of the reasons for this ordering is due to the fact that this

coincides with the choice Magma makes, which made some numerical computations more

convenient. We briefly state the relevant duplication formulae which we employ later:

Corollary 2.25. We have

θ0(2Ω)2 =
1

4

(
θ0(Ω)2 + θ1(Ω)2 + θ2(Ω)2 + θ3(Ω)2

)
,

θ5(2Ω)2 =
1

4

(
θ0(Ω)2 − θ1(Ω)2 − θ2(Ω)2 + θ3(Ω)2

)
,

θ7(2Ω)2 =
1

4

(
θ0(Ω)2 + θ1(Ω)2 − θ2(Ω)2 − θ3(Ω)2

)
,

θ9(2Ω)2 =
1

4

(
θ0(Ω)2 − θ1(Ω)2 + θ2(Ω)2 − θ3(Ω)2

)
.

This is another direct application of Theorem 2.7. The next set of identities comes from

the Frobenius’ theta formula. These are by no means the only theta identities (see the

appendix of [Gau07] for a slightly more comprehensive list), but merely the ones which we

employ in the later proofs.

Corollary 2.26. We have the following identities.

θ2(Ω)2θ3(Ω)2 = θ0(Ω)2θ1(Ω)2 − θ6(Ω)2θ7(Ω)2 ,

θ3(Ω)2θ8(Ω)2 = θ1(Ω)2θ9(Ω)2 − θ5(Ω)2θ6(Ω)2 ,

θ2(Ω)2θ8(Ω)2 = θ0(Ω)2θ9(Ω)2 − θ5(Ω)2θ7(Ω)2 ,

θ3(Ω)2θ4(Ω)2 = θ0(Ω)2θ5(Ω)2 − θ7(Ω)2θ9(Ω)2 ,

θ0(Ω)2θ8(Ω)2 = θ2(Ω)2θ9(Ω)2 − θ4(Ω)2θ6(Ω)2 ,

θ8(Ω)2θ9(Ω)2 = θ0(Ω)2θ2(Ω)2 − θ1(Ω)2θ3(Ω)2 ,

θ8(Ω)4 + θ9(Ω)4 = θ0(Ω)4 + θ1(Ω)4 − θ2(Ω)4 − θ3(Ω)4 .
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Proof. The proofs of these identities are obtained by plugging in the correct values into

Proposition 2.8; we only prove the last one here. Let zi = 0 for 1 ≤ i ≤ 4. Then setting

ai =
1

2

[
0 0

0 0

]
and

1

2

[
0 0

1 0

]

for 1 ≤ i ≤ 4 gives the two identities

−θ0(Ω)4 + θ3(Ω)4 + θ7(Ω)4 + θ8(Ω)4 = 0

θ1(Ω)4 − θ2(Ω)4 − θ7(Ω)4 + θ9(Ω)4 = 0

respectively (since odd theta functions vanish at z = 0). Combining these give the desired

result.

We are now ready to prove the theorem:

Theorem 2.27. Let C be a hyperelliptic curve in Rosenhain form, given by the equation

C : y2 = x(x− 1)(x− λ)(x− µ)(x− ν)

with λ, µ and ν distinct complex numbers and denote the period matrix of C by Ω ∈ H2.

Apply the Bost-Mestre arithmetic-geometric mean to C and denote the resulting curve by C ′.

Then the period matrix of C ′ is given by 2Ω. More precisely, C ′ can reduced to Rosenhain

form

C ′ : y2 = x(x− 1)(x− λ′)(x− µ′)(x− ν ′)

such that

λ′ =

(
θ0(2Ω)θ9(2Ω)

θ5(2Ω)θ7(2Ω)

)2

, µ′ =

(
θ1(2Ω)θ9(2Ω)

θ5(2Ω)θ6(2Ω)

)2

and ν ′ =

(
θ0(2Ω)θ1(2Ω)

θ6(2Ω)θ7(2Ω)

)2

.

Proof. Apply the Bost-Mestre algorithm to five roots of C by letting

P = x(x− 1) , Q = (x− λ)(x− µ) , and R = x− ν .

Therefore the equation of C ′ is given by

C ′ : y2 = (x− a)(x− b)(x− c)(x− d)(x− e)(x− f) ,
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where

a = ν −
√
ν2 − ν ,

b =
λµ−

√
λµ(λ− 1)(µ− 1)

λ+ µ− 1
,

c =
λµ+

√
λµ(λ− 1)(µ− 1)

λ+ µ− 1
,

d = ν −
√

(µ− ν)(λ− ν) ,

e = ν +
√

(µ− ν)(λ− ν) ,

f = ν +
√
ν2 − ν .

To transform C ′ into Rosenhain form, we take the transformation

x′ =
x− a
x− f

· b− f
b− a

or

x =
(b− a)fx′ − (b− f)a

(b− a)x′ − (b− f)
,

which gives

C ′ : y′2 = x′(x′ − 1)

(
x′ − (b− f)(a− c)

(c− f)(a− b)

)(
x′ − (b− f)(a− d)

(d− f)(a− b)

)(
x′ − (b− f)(a− e)

(e− f)(a− b)

)
.

It suffices to show that

(b− f)(a− c)
(c− f)(a− b)

=

(
θ0(2Ω)θ9(2Ω)

θ5(2Ω)θ7(2Ω)

)2

, (2.1)

(b− f)(a− d)

(d− f)(a− b)
=

(
θ1(2Ω)θ9(2Ω)

θ5(2Ω)θ6(2Ω)

)2

, (2.2)

(b− f)(a− e)
(e− f)(a− b)

=

(
θ0(2Ω)θ1(2Ω)

θ6(2Ω)θ7(2Ω)

)2

. (2.3)

This amounts to some elementary but tedious manipulation of theta functions. We start

with the first case.
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On the right hand side, following from the formulae in Corollary 2.25 and Corollary 2.26

one has (
θ0(2Ω)θ9(2Ω)

θ5(2Ω)θ7(2Ω)

)2

=
(θ2

0 − θ2
1 + θ2

2 − θ2
3)(θ2

0 + θ2
1 + θ2

2 + θ2
3)

(θ2
0 − θ2

1 − θ2
2 + θ2

3)(θ2
0 + θ2

1 − θ2
2 − θ2

3)

= 1 +
4(θ2

0θ
2
2 − θ2

1θ
2
3)

[θ4
0 − θ4

1 + θ4
2 − θ4

3]− 2[θ2
0θ

2
2 − θ2

1θ
2
3]

= 1 +
4θ2

8θ
2
9

θ4
8 + θ4

9 − 2θ2
8θ

2
9

=

(
θ2

9 + θ2
8

θ2
9 − θ2

8

)2

Note that here θi = θi(Ω) for convenience. We try to indicate which formulae were used by

the square brackets. And on the left hand side we have

(b− f)(a− c)
(c− f)(a− b)

=
2λµν − λµ− λν − µν + ν + 2

√
λµν(λ− 1)(µ− 1)(ν − 1)

2λµν − λµ− λν − µν + ν − 2
√
λµν(λ− 1)(µ− 1)(ν − 1)

=

(
2λµν − λµ− λν − µν + ν + 2

√
λµν(λ− 1)(µ− 1)(ν − 1)

λµ− λν − µν + ν

)2

=

(
1 +

2λµ(ν − 1) + 2
√
λµν(λ− 1)(µ− 1)(ν − 1)

λµ− λν − µν + ν

)2

.

After substituting

λ =

(
θ0(Ω)θ9(Ω)

θ5(Ω)θ7(Ω)

)2

, µ =

(
θ1(Ω)θ9(Ω)

θ5(Ω)θ6(Ω)

)2

and ν =

(
θ0(Ω)θ1(Ω)

θ6(Ω)θ7(Ω)

)2

into the above we get

λµ− λν − µν + ν =
θ2

0θ
2
1([θ2

7θ
2
9 − θ2

0θ
2
5]θ2

6θ
2
9 − [θ2

1θ
2
9 − θ2

5θ
2
6]θ2

5θ
2
7)

θ4
5θ

4
6θ

4
7

= −θ
2
0θ

2
1θ

2
3(θ2

4θ
2
6θ

2
9 + θ2

5θ
2
7θ

2
8)

θ4
5θ

4
6θ

4
7

,

λµ(ν − 1) =
θ2

0θ
2
1θ

4
9[θ2

0θ
2
1 − θ2

6θ
2
7]

θ2
5θ

2
6θ

4
7

=
θ2

0θ
2
1θ

2
2θ

2
3θ

4
9

θ2
5θ

2
6θ

4
7

,

λµν(λ− 1)(µ− 1)(ν − 1) =
θ4

0θ
4
1θ

4
9[θ2

0θ
2
1 − θ2

6θ
2
7][θ2

1θ
2
9 − θ2

5θ
2
6][θ2

0θ
2
9 − θ2

5θ
2
7]

θ8
5θ

8
6θ

8
7

=
θ4

0θ
4
1θ

4
2θ

4
3θ

4
8θ

4
9

θ8
5θ

8
6θ

8
7

.
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Therefore after much cancellation we have

(b− f)(a− c)
(c− f)(a− b)

=

(
1− 2θ2

2θ
4
9 + 2θ2

2θ
2
8θ

2
9

θ2
4θ

2
6θ

2
9 + θ2

5θ
2
7θ

2
8

)2

=

(
1− 2θ2

2θ
4
9 + 2θ2

2θ
2
8θ

2
9

[θ2
4θ

2
6θ

2
9 + θ2

0θ
2
8θ

2
9] + [θ2

5θ
2
7θ

2
8 − θ2

0θ
2
8θ

2
9]

)2

=

(
1− 2θ4

9 + 2θ2
8θ

2
9

θ4
9 − θ4

8

)2

=

(
θ2

9 + θ2
8

θ2
9 − θ2

8

)2

which shows that
(b− f)(a− c)
(c− f)(a− b)

=

(
θ0(2Ω)θ9(2Ω)

θ5(2Ω)θ7(2Ω)

)2

which proves (2.1). Unfortunately this was the neatest part in the sense that the expressions

actually factorise nicely. For the second part we wish to show that

(b− f)(a− d)

(d− f)(a− b)
=

(
θ1(2Ω)θ9(2Ω)

θ5(2Ω)θ6(2Ω)

)2

.

On the right hand side we have(
θ1(2Ω)θ9(2Ω)

θ5(2Ω)θ6(2Ω)

)2

= 1 + 2
(θ0θ3 + θ1θ2)(θ0θ2 + θ1θ3)

(θ2
0 − θ2

1 − θ2
2 + θ2

3)(θ0θ1 − θ2θ3)

= 1 + 2
Θ1

Θ2
.

And we split the left hand side into

d− a
d− f

=

(√
ν(ν − 1)−

√
(µ− ν)(λ− ν)

)2

λµ− λν − µν + ν
=
θ2

4 − θ2
5

θ2
4 + θ2

5

and

f − b
a− b

=
(ν +

√
ν2 − ν)(λ+ µ− 1)− λν +

√
λµ(λ− 1)(µ− 1)

(ν −
√
ν2 − ν)(λ+ µ− 1)− λν +

√
λµ(λ− 1)(µ− 1)

= 1 + 2
(λ+ µ− 1)

√
ν(ν − 1)

(ν −
√
ν2 − ν)(λ+ µ− 1)− λν +

√
λν(λ− 1)(ν − 1)

= 1 + 2
θ2θ3θ

2
5(θ2

1θ
2
7θ

2
9 + θ2

2θ
2
6θ

2
8)

θ2
5(θ0θ1 − θ2θ3)(θ2

1θ
2
7θ

2
9 + θ2

2θ
2
6θ

2
8)− θ2

6θ
2
7θ

2
9(θ0θ1θ

2
9 − θ2θ3θ

2
8)
,
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which when combined together gives

(b− f)(a− d)

(d− f)(a− b)
=

(
1 + 2

θ2θ3θ
2
5(θ2

1θ
2
7θ

2
9 + θ2

2θ
2
6θ

2
8)

θ2
5(θ0θ1 − θ2θ3)(θ2

1θ
2
7θ

2
9 + θ2

2θ
2
6θ

2
8)− θ2

6θ
2
7θ

2
9(θ0θ1θ

2
9 − θ2θ3θ

2
8)

)(
θ2

4 − θ2
5

θ2
4 + θ2

5

)
= 1 + 2

−θ2
5

(
θ0θ1θ

2
2θ

2
3(−θ4

4 + θ4
5)− θ2θ3(θ2

1θ
2
4θ

2
7θ

2
9 + θ2

2θ
2
4θ

2
6θ

2
8 − θ2

6θ
2
7θ

2
8θ

2
9)
)

(θ2
5(θ0θ1 − θ2θ3)(θ2

1θ
2
7θ

2
9 + θ2

2θ
2
6θ

2
8)− θ2

6θ
2
7θ

2
9(θ0θ1θ

2
9 − θ2θ3θ

2
8))(θ2

4 + θ2
5)

= 1 + 2
Θ3

Θ4
.

Note that we have omitted many of the simplifications using theta relations in an attempt

to be more succinct. Therefore to complete the argument it amounts to showing that

Θ1Θ4 −Θ2Θ3 = 0 .

This was done using symbolic manipulation with Maple. The aim is to rewrite the expression

with as few θi’s as possible and hope that the terms cancel out. The first step was to use

relations such as

θ2
6θ

2
7 = θ2

0θ
2
1 − θ2

2θ
2
3

to eliminate all θ2
6, θ2

7, θ2
8 and θ2

9. Note that this is always possible; that is, any two products

of these four functions can be written as the combination of the remaining theta functions.

This results in a homogenous polynomial of degree 16 in the six remaining theta functions

with roughly 60 terms. Next using the two relations

θ2
4θ

2
5 = θ2

0θ
2
3 − θ2

1θ
2
2 and

(
θ4

4 + θ4
5

)
= θ4

0 − θ4
1 − θ4

2 + θ4
3

one can reduce the powers of θ4 and θ5. At this stage Maple returned a factorisation of the

form

θ2θ3F (θ0, θ1, θ2, θ3, θ4, θ5)(θ2
0θ

2
3 − θ2

1θ
2
2 − θ2

4θ
2
5) ,

where F is a degree 12 polynomial with eight terms. But we know from the theta identities

that the second bracket vanishes and thus this proves (2.2).

Finally for (2.3) we have, on the right,

(
θ0(2Ω)θ1(2Ω)

θ6(2Ω)θ7(2Ω)

)2

= 1 + 2
(θ0θ3 + θ1θ2)(θ0θ2 + θ1θ3)

(θ2
0 + θ2

1 − θ2
2 − θ2

3)(θ0θ1 − θ2θ3)

= 1 + 2
Θ1

Θ2
.
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And on the left we have

e− a
e− f

=

(√
ν(ν − 1) +

√
(µ− ν)(λ− ν)

)2

λµ− λν − µν + ν
=
θ2

4 + θ2
5

θ2
4 − θ2

5

which gives (we have already computed the other term previously)

(b− f)(a− e)
(e− f)(a− b)

= 1 + 2
θ2

5

(
θ0θ1θ

2
2θ

2
3(−θ4

4 + θ4
5) + θ2θ3(θ2

1θ
2
4θ

2
7θ

2
9 + θ2

2θ
2
4θ

2
6θ

2
8 + θ2

6θ
2
7θ

2
8θ

2
9)
)

(θ2
5(θ0θ1 − θ2θ3)(θ2

1θ
2
7θ

2
9 + θ2

2θ
2
6θ

2
8)− θ2

6θ
2
7θ

2
9(θ0θ1θ

2
9 − θ2θ3θ

2
8))(θ2

4 − θ2
5)

= 1 + 2
Θ3

Θ4
.

Then using the same procedure as above we see that

Θ1Θ4 −Θ2Θ3 = θ2θ3F
′(θ0, θ1, θ2, θ3, θ4, θ5)(θ2

0θ
2
3 − θ2

1θ
2
2 − θ2

4θ
2
5) ,

which completes the proof since the last bracket vanishes as before.

Note that there are many alternative choices to reduce a hyperelliptic curve to Rosenhain

form. The choice made here

x′ =
x− a
x− f

· b− f
b− a

corresponds to the choice of ordering the roots {0, 1, λ, µ, ν}. Taking a different order of the

roots changes the transformation required. Using the same method, we can also compute

the other obtainable results via a wrong choice. One can view this as an analogue of

Proposition 3.10 in [Jar08].

Proposition 2.28. Let C be a hyperelliptic curve in Rosenhain form, given by the equation

C : y2 = x(x− 1)(x− λ)(x− µ)(x− ν)

with λ, µ and ν distinct complex numbers and denote the period matrix of C by Ω ∈ H2.

Then all possible results Ω′ of the AGM map are given by

Ω′ = 2

((
I2 0

C I2

)
Ω

)
= 2Ω(CΩ + I2)−1 ,

where I2 denotes the 2× 2 identity matrix and C runs over the set(
0 0

0 0

)
,

(
1 0

0 0

)
,

(
0 1

1 0

)
,

(
0 0

0 1

)
,

(
1 1

1 0

)
,

(
1 0

0 1

)
,

(
0 1

1 1

)
,

(
1 1

1 1

)
.
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Proof. The right choice corresponds to taking C = 0 as shown in the previous theorem.

We will compute one case explicitly; the rest follows similarly. Consider the choice where µ

and ν are swapped, that is,

P = x(x− 1) , Q = (x− λ)(x− ν) , and R = x− µ .

Here we will only show that

(b′ − f ′)(a′ − c′)
(c′ − f ′)(a′ − b′)

=

(
θ0(Ω′)θ9(Ω′)

θ5(Ω′)θ7(Ω′)

)2

,

where Ω′ = 2Ω(CΩ + I2)−1 with C inside the list. The corresponding values of a′, b′, . . . , f ′

changes as follows (essentially swapping all µ’s and ν’s):

a′ = µ−
√
µ2 − µ ,

b′ =
λν −

√
λν(λ− 1)(ν − 1)

λ+ ν − 1
,

c′ =
λν +

√
λν(λ− 1)(ν − 1)

λ+ ν − 1
,

d′ = µ−
√

(ν − µ)(λ− µ) ,

e′ = µ+
√

(ν − µ)(λ− µ) ,

f ′ = µ+
√
µ2 − µ .

Considering the left hand side we have

(b′ − f ′)(a′ − c′)
(c′ − f ′)(a′ − b′)

=

(
1 +

2λν(µ− 1) + 2
√
λµν(λ− 1)(µ− 1)(ν − 1)

λν − λµ− µν + µ

)2

=

(
1 +

2[θ2
1θ

2
9 − θ2

5θ
2
6]θ4

0 + 2
√
θ4

0[θ2
0θ

2
1 − θ2

7θ
2
8][θ2

1θ
2
9 − θ2

5θ
2
6][θ2

0θ
2
9 − θ2

5θ
2
7]

[θ2
0θ

2
5 − θ2

7θ
2
9]θ2

0θ
2
6 + [θ2

6θ
2
7 − θ2

0θ
2
1]θ2

5θ
2
7

)2

=

(
1 +

2θ4
0θ

2
8 + 2θ2

0θ
2
2θ

2
8

θ2
0θ

2
4θ

2
6 − θ2

2θ
2
5θ

2
7

)2

=

(
1 +

2θ4
0θ

2
8 + 2θ2

0θ
2
2θ

2
8

[θ2
0θ

2
6θ

2
4 − θ2

0θ
2
2θ

2
9] + [θ2

0θ
2
2θ

2
9 − θ2

2θ
2
7θ

2
5]

)2

=

(
1 +

2θ4
0 + 2θ2

0θ
2
2

θ4
2 − θ4

0

)2

=

(
θ2

2 + θ2
0

θ2
2 − θ2

0

)2
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where all these theta functions are evaluated at the original period matrix Ω. Now let

C =

(
0 0

0 1

)
and the right hand side becomes

(
θ0(2Ω(CΩ + I2)−1)θ9(2Ω(CΩ + I2)−1)

θ5(2Ω(CΩ + I2)−1)θ7(2Ω(CΩ + I2)−1)

)2

=

(
θ8(Ω(CΩ + I2)−1)2 + θ9(Ω(CΩ + I2)−1)2

θ8(Ω(CΩ + I2)−1)2 − θ9(Ω(CΩ + I2)−1)2

)2

=

(
θ0(Ω)2 + θ2(Ω)2

θ0(Ω)2 − θ2(Ω)2

)2

.

where the first equality is identical to the previous theorem and the second equality fol-

lows from the transformation property in Theorem 2.6. Since the constant κ(a,b, γ) is

independent of Ω, one directly computes that this constant is 1 for both θ8 and θ9.

Admittedly we have not computed all 24 equations explicitly except via numerical examples,

but with the bank of theta relations available we are confident this should be easy. This

gives an alternative notion of a right choice in that it is the choice which doubles the period

of the hyperelliptic curve. We conjecture, through numerical examples, that this is in fact

the same as the right choice we have previously defined. Nonetheless, in practice finding

the minimum total value of the pair is definitely the easier method to do.
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Chapter 3

Elliptic Curves over the p-adics

3.1 Uniformisation Theory

Over the complexes, one is able to associate elliptic curves with quotients of the form C/Λ
for some lattice Λ ⊆ C. An explicit isomorphism can be written down using the Weierstrass

℘-function:

C/Λ −→ E(z)

z 7−→
(
℘(z,Λ),

1

2
℘′(z,Λ)

)
which is referred as complex uniformisation. Furthermore, the discriminant and j-invariant

of the corresponding elliptic curve can be computed explicitly (for example, see Chapter 3.1

in [Sil86]). However, this approach immediately fails if one considers curves over Qp. Let

Λ ⊆ Qp be a lattice, that is, a discrete additive subgroup, and let t be a non-zero element

in Λ. Since pnt lies inside Λ for all n, it forms a sequence that converges to 0. So there

cannot exist any non-trivial discrete subgroups in Qp.

The solution, first introduced by Tate, is to exponentiate first. Note that although we work

with Qp here, everything carries forward to any p-adic field. In this case there are plenty

of discrete subgroups inside Q∗p; one important example is the set of powers of q, denoted

qZ ⊆ Q∗p for any q ∈ Q∗p with |q| < 1. This gives the quotient Q∗p/qZ, which turns out

to play the role of C/Λ. The first observation is that as a complex function ℘(z,Λ), with

Λ = Z+ τZ, is Z-periodic in both variables, so we can find an explicit Fourier expansion of
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℘(z,Λ) in terms of u = e2πiz and q = e2πiτ :

1

(2πi)2
℘(u, q) =

∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

qn

(1− qn)2
+

1

12
,

which gives an analytic isomorphism between C∗/qZ and E(C) (see Chapter 5.1 in [Sil94]

for details). This motivates the following power series

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2

∑
n≥1

qn

(1− qn)2
,

Y (u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+
∑
n≥1

qn

(1− qn)2
,

which converge for all u ∈ Q∗p \ qZ. Furthermore, define

a4(q) = −5
∑
n≥1

n3qn

1− qn
,

a6(q) = − 5

12

∑
n≥1

n3qn

1− qn
− 7

12

∑
n≥1

n5qn

1− qn
,

both of which have integral coefficients and hence lie in ZJqK. Define the Tate curve Eq by

the equation

Eq : y2 + xy = x3 + a4(q)x+ a6(q) .

This gives the following uniformisation theorem (Theorem 3.1, p. 423, in [Sil94]):

Theorem 3.1. For u, q ∈ Qp with |q| < 1 and u /∈ qZ, the Tate curve Eq is an elliptic

curve, and the series X(u, q) and Y (u, q) define an isomorphism

φ : Q∗p/qZ −→ Eq(Qp)

u 7−→

{
(X(u, q), Y (u, q)) if u /∈ qZ ,
O if u ∈ qZ .

Furthermore, the map φ is compatible with the action of the Galois group Gal(Qp/Qp), that

is,

φ(uσ) = φ(u)σ

for all u ∈ Q∗p and σ ∈ Gal(Qp/Qp).

Note that the above p-adic uniformisation also holds true for any finite extension K/Qp.
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The theorem says that every such quotient Q∗p/qZ corresponds to a Tate curve over Qp. But

it is immediately obvious that not every elliptic curve over Qp is isomorphic over Qp to such

a Tate curve (whereas one can show this is true over C), since the j-invariant of the Tate

curve is given by

|j(Eq)| =
∣∣∣∣1q + 744 + 196884q + · · ·

∣∣∣∣ > 1 ,

which is preserved by isomorphism. This gives a necessary condition for a p-adic curve to

be uniformised in this way, and the last part of Tate’s uniformisation theorem shows that

this condition is in fact sufficient as well.

Theorem 3.2. Let E/Qp be an elliptic curve with |j(E)| > 1 and define the quantity

γ(E/Qp) := −c4/c6 ∈ Q∗p/Q∗2p . Then there exists a unique q ∈ Q∗p with |q| < 1 such that

E ∼= Eq over Qp. Furthermore, the following are equivalent:

(i) E is isomorphic to Eq over Qp.

(ii) γ(E/Qp) = 1.

(iii) E has split multiplicative reduction.

Proof. We sketch the proof following Theorem 5.3 in [Sil94] (p. 441). The fact that there

exists a Tate curve Eq isomorphic to E over Qp is an exercise in formal power series. Set

j(q) to be the j-invariant of Eq and let f(q) be the reciprocal of j(q). One computes directly

that

f(q) =
q

1 + 744q + 196884q2 + · · ·
= q − 744q + 356652q3 − · · · ∈ ZJqK .

In particular, this means that there exists a inverse series g(q) ∈ ZJqK such that g(f(q)) = q

which converges for any elements of Qp of absolute value less than 1. Now since |j(E)| > 1

we see that by setting

q = g

(
1

j(E)

)
∈ Q∗p ,

we have |q| < 1,
1

j(Eq)
= f(q) = f

(
g

(
1

j(E)

))
=

1

j(E)

and thus Eq ∼= E over Qp. Uniqueness follows from the fact that j(q) = j(q′) implies

f(q) = f(q′).

The quantity γ(E/Qp) is independent of the choice of Weierstrass equation for E/Qp and

we omit the proof that two curves E/Qp and E′/Qp are isomorphic over Qp if and only
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if j(E) = j(E′) and γ(E/Qp) = γ(E′/Qp). So to show that (i) and (ii) are equivalent it

suffices to show that γ(Eq/Qp) = 1 modulo squares.

It follows from definition that the quantities c4 and c6 of Eq are given by

c4(q) = 1− 48a4(q) = 1 + 240
∑
n≥1

n3qn

1− qn
,

c6(q) = −1 + 72a4(q)− 864a6(q) = −1 + 504
∑
n≥1

n5qn

1− qn
,

where one notes that ∣∣∣∣∣∣
∑
n≥1

n3qn

1− qn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
n≥1

n5qn

1− qn

∣∣∣∣∣∣ = |q| < 1 .

Now a direct computation shows that

(1 + 4α)−
1
2 =

∞∑
n=0

(
−1

2

n

)
(4α)n =

∞∑
n=0

(−1)n
(

2n

n

)
αn ∈ ZJαK ,

so that (1 + 4α) is a square in Qp for all |α| < 1. This implies that

γ(Eq/Qp) ≡ 1 mod Q∗2p .

Given that E and Eq are isomorphic over Qp, the reduced curve Ẽq is given by the equation

y2 + xy = x3, which has a node at the point (0, 0) with tangent lines y = 0 and y = −x.

This shows that we have split multiplicative reduction and thus (i) implies (iii).

It remains to show that (iii) implies (ii). Consider a curve E/Qp with split multiplicative

reduction and Weierstrass model given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

Without loss of generality, assume that the singular point of the mod p reduction is at the

origin. Then the fact that (0, 0) lies on E and that it is singular implies that

a3 ≡ a4 ≡ a6 ≡ 0 mod pZp .
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This in turns means that

b4 = a1a3 + 2a4 ≡ 0 mod pZp ,

b6 = a2
3 + 4a6 ≡ 0 mod pZp ,

c4 = b42 − 24b4 ≡ b22 mod pZp .

Furthermore, multiplicative reduction means that c4 is non-zero modulo p and hence b2 is

a unit. Hence putting everything together we have

γ(E/Qp) =
1

b2

 1− 24 b4
b22

1− 36 b4
b22

+ 216 b6
b32

 ≡ 1

b2
≡ b2 mod Q∗2p ,

where we argue as before that the numerator and denominators are both of the form 1 + 4α

and thus squares. The reduction of E modulo p has the form

Ẽ : y2 + ã1xy = x3 + ã2x
2 .

Factoring over Fp gives

(y − α̃x)(y − β̃x) = y2 + ã1xy − ã2x
2 ,

where α̃ 6= β̃ since the reduction is split. Now Hensel’s lemma gives two α, β ∈ Qp with

(y − αx)(y − βx) = y2 + a1xy − a2x
2 .

This gives

b2 = a2
1 + 4a2 = (α+ β)2 − 4αβ = (α− β)2 ∈ Q∗2p

and we are done.

For an elliptic curve E/Qp with Tate uniformisation Q∗p/qZ, we call this q the period of the

elliptic curve. We end with the following corollary:

Corollary 3.3. Let E/Qp be an elliptic curve with |j(E)| > 1 and q ∈ Q∗p such that E ∼= Eq

over Qp. Then E is isomorphic to Eq over the field L = Qp(
√
γ(E/Qp)).
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3.2 p-adic AGM

We now turn to a notion of AGM for p-adic numbers introduced by Henniart and Mestre

in [HM89], as well as its application to compute p-adic periods of elliptic curves.

We start with some basic notations. Let K be a p-adic field and denote the maximal ideal

of the ring of integers of K by mK . If x ≡ 1 mod 4mK , then by
√
x we mean the unique

element y of K such that y2 = x and y ≡ 1 mod 2mK . Now let α and β be elements of

K× such that α ≡ β mod 8mK . We define two corresponding sequences {αn} and {βn} by

first setting α0 = α and b0 = β, then using the iterative algorithms

αn+1 =
αn + βn

2
and βn+1 = βn

√
αn
βn

.

For odd p, this simply means that if we have αn ≡ βn mod mK , then take the square root
√
αnβn such that αn+1 ≡ βn+1 mod mK . As with real numbers we immediately see that

since

|αn+1 − βn+1| =
∣∣√αn −√βn∣∣2

2
=

|αn − βn|2

2
∣∣√αn +

√
βn
∣∣2 ≤ |αn − βn|2|8β|

,

the sequences {αn} and {βn} converge quadratically to the same element in K∗; we write

M(α, β) for this arithmetic-geometric mean of α and β.

Consider an elliptic curve E/K given by the equation

E : y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4
.

Suppose it has a non-integral j-invariant, and hence by the discussion in the previous section

it admits a Tate uniformisation Eq = K
∗
/qZ for some q ∈ mK . Then we saw that E and

Eq are isomorphic over K ′ = K(
√
γ(E/K)). It is well known (for example, see p. 44 in

[Sil86]) that any isomorphisms between E and Eq are given by simple change of variables

of the form

x = u2x′ + r and y = u3y′ + su2x′ + v
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for some r, s, u, v ∈ Kp and u 6= 0. Pick one of the two isomorphisms φ from Eq to E (the

other being −φ), then it induces a map between the canonical differentials of E and Eq via

multiplication by u. That is, explicitly we have

φ∗
(
dx

2y

)
= u

dt

t
,

where t is the parameter of the Tate curve. Since u is given by the square root of some

power seires here, we see that u2, which is independent of the choice of φ, lives inside K. We

now describe an algorithm to compute u2 based on the p-adic arithmetic-geometric mean

following [HM89], where we fill in some of the omitted details in the paper.

Let

P1 = φ(−1) = (e1, 0) ,

P2 = φ(−√q) = (e2, 0) ,

P3 = φ(
√
q) = (e3, 0)

be the three non-trivial points of order 2 on E. In particular, P1 is characterised by the fact

that
∣∣12e2

1 + 2b2e1 + 2b4
∣∣
π

=
∣∣∣ c4

16

∣∣∣
π
; furthermore,

√
12e2

1 + 2b2e1 + 2b4 ∈ K since we have

seen in the proof of Theorem 3.2 that c4 ≡ b22 mod mK . By split multiplicative reduction

we also have e2 ≡ e3 mod mK , and e1 reduces to a simple root modulo mK .

Let L denote the field extension K ′(
√
q) and mL the maximal ideal of the ring of integers

OL. We then have (e2 − e1) ≡ (e3 − e1) mod 16mL and therefore one can choose square

roots of
√
e3 − e1 and

√
e2 − e1 satisfying the congruence relation

√
e3 − e1 ≡

√
e2 − e1

mod 8mL. Denote their arithmetic-geometric mean M(
√
e2 − e1,

√
e3 − e1) ∈ L.

Theorem 3.4. Let E : y2 = (x − e1)(x − e2)(x − e3) by an elliptic curve over Qp with

non-integral j-invariant. Denote Eq the Tate curve associated with E and let φ be an

isomorphism between E and Eq such that

φ∗
(
dx

2y

)
= u

dt

t
.

Then we have

u =
1

2M(
√
e2 − e1,

√
e3 − e1)

.
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Proof. First denote the formal power series by

θ(z) =
∑
n∈Z

zn
2

(of course, as a formal series this is just the standard theta function). Define an elliptic

curve over Qp by the equation

E′ : y2 = x
(
x− θ4 (

√
q)
) (
x− θ4 (−√q)

)
.

By directly computing the j-invariant from its coefficients, one sees that this indeed has the

same j-invariant as Eq (i.e. given by the series q−1 + 744 + 196884q + · · · ). Hence there

exists a unique isomorphism ψ : Eq −→ E′ such that the induced map satisfies

ψ∗
(
dx

2y

)
=
dt

t
.

Furthermore, since the points of order two on Eq are given by the points (−1, 0), (−√q, 0)

and (
√
q, 0), by denoting the x-coordinate of ψ(−1), ψ(−√q) and ψ(

√
q) by ε1, ε2 and ε3

respectively we immediately see that

ε1 = 0, ε2 = θ4 (−√q) and ε3 = θ4 (
√
q) .

By composing the maps φ ◦ ψ−1 : E′ −→ E, we see that

2u
√
e2 − e1 =

√
ε2 − ε1 = θ2 (−√q) ,

2u
√
e3 − e1 =

√
ε3 − ε1 = θ2 (

√
q) .

Note that as formal power series, θ2
(√
q
)

and θ2
(
−√q

)
are simply θ0,0

(
1

πi
ln(
√
q)

)
and

θ0,1

(
1

πi
ln(
√
q)

)
respectively and thus we know that

M
(
θ2 (
√
q) , θ2 (−√q)

)
= 1

Combining with the basic properties of the arithmetic-geometric mean gives

2uM(
√
e2 − e1,

√
e3 − e1) = 1

and we are done.
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Note that since M(α, β) lies in L, the above theorem requires calculations inside L whereas

in fact u2 is an element of K. With a slight modification all calculations can be shifted

down into K. We first define a modified arithmetic-geometric mean for α and β in K∗ with

α ≡ β mod 16mK by setting α0 = α and b0 = β. But for n ≥ 1 we use the formulae

βn+1 =
√
αnβn and αn+1 =

αn + βn + 2βn+1

4

instead. Let M ′(α, β) denote the common limit of the sequences {αn} and {βn}. We note

this is merely the square of the arithmetic-geometric mean of
√
α and

√
β:

Lemma 3.5. Let α, β ∈ K∗ such that α ≡ β mod 16mK .Then we have

M ′(α, β) = M
(√

α,
√
β
)2

.

Proof. It suffices to show that the i-th term of the left hand side is the square of the i-th

term of the right hand side for all i. But this is clear since

αn+1 =
αn + βn + 2βn+1

4
=

(√
αn +

√
βn

2

)2

.

Hence in the limit M ′(α, β) = M
(√
α,
√
β
)2

as required.

It follows immediately that the calculations required to compute M ′(α, β) are all done over

K instead of L. The following proposition allows one to compute u2 from this modified

AGM process.

Proposition 3.6. Let

α =
4
√

12e2
1 + 2b2e1 + 2b4 − 12e1 − b2

16
and β =

√
12e2

1 + 2b2e1 + 2b4
2

,

where the square root is taken such that 4
√

12e2
1 + 2b2e1 + 2b4 ≡ −12e1 − b2 mod 2mK .

Then we have

u2 =
1

4M ′(α, β)
.

In particular, all calculations are done over K.
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Proof. In view of the previous lemma, the proposition amounts to showing that

M(
√
α,
√
β) = M(

√
e2 − e1,

√
e3 − e1) ,

where recall that we have

y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

= (x− e1)(x− e2)(x− e3) .

We show that
√
α and

√
β are in fact the arithmetic and geometric mean of

√
e2 − e1 and

√
e3 − e1 respectively. That is to say, (

√
α,
√
β) is simply the first iteration of the arithmetic-

geometric mean, from which the proposition follows.

This follows from direct computations. Factorising the right hand side of the curve gives

x3 +
b2
4
x2 +

b4
2
x+

b6
4

= (x− e1)

[
x2 +

(
e1 +

b2
4

)
x+

(
e2

1 +
e1b2

4
+
b4
2

)]
and therefore we must have

e2, e3 =
1

2

−e1 −
b2
4
±

√(
e1 +

b2
4

)2

− 4

(
e2

1 +
e1b2

4
+
b4
2

) ,

whence

√
e2 − e1,

√
e3 − e1 =

1

2

−3e1 −
b2
4
±

√(
e1 +

b2
4

)2

− 4

(
e2

1 +
e1b2

4
+
b4
2

) 1
2

.

Finally we see that

√
(e2 − e1)(e3 − e1) =

1

2

[(
−3e1 −

b2
4

)2

−
(
e1 +

b2
4

)2

− 4

(
e1 +

e1b2
4

+
b4
2

)] 1
2

=
1

2

(
4e2

1 + 2b2e1 + 2b4
) 1

2

= β
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and (√
e2 − e1 +

√
e3 − e1

2

)2

=
1

4

(
e2 + e3 − 2e1 + 2

√
(e2 − e1)(e3 − e1)

)
=

1

4

(
−e1 −

b2
4
− 2e1 +

√
4e1 + 2b2e1 + 2b4

)
=

1

4

(
−3e1 −

b2
4

+
√

4e2
1 + 2b2e1 + 2b4

)
= α ,

which proves the proposition. Note that
√

12e2
1 + 2b2e1 + 2b4 lies in K and hence the last

claim follows immediately.

To compute the period q of the elliptic curve, we also need a p-adic analogue of the classi-

cal Landen transformation which was introduced in the first chapter. The p-adic analogue

of the algorithm is a quadratically convergent algorithm which computes the preimage

φ−1(P ) ∈ K∗/qZ given any P ∈ E(K).

The key idea is to construct a tower of 2-isogenies using the AGM process. Begin by

considering an elliptic curve E = E0 over K with non-integral j-invariant given by the

equation

E0 : y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

= (x− e1)(x− e2)(x− e3) .

As above, define quantities

α = α0 =
4
√

12e2
1 + 2b2e1 + 2b4 − 12e1 − b2

16
,

β = β0 =

√
12e2

1 + 2b2e1 + 2b4
2

with 4
√

12e2
1 + 2b2e1 + 2b4 ≡ −12e1 − b2 mod 2mK . Using the associated AGM sequences

{αn} and {βn}, construct a sequence of elliptic curves {En} for n ≥ 1 by the equation

En : y2 = x(x+ αn)(x+ αn − βn) .

The j-invariant of these curves are all non-integral and thus each of these En admits a Tate

uniformisation, which will be denoted Eq2n . There are also isomorphisms φn : Eq2n −→ En

associated to each Tate curve, and φ0 = φ is the isomorphism we wish to understand. In

fact, these φn are computed explicitly in Chapter 5.1 of [Sil94] (note that the maps given
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there are from K
∗
/qZ → Eq so we composed it with multiplication by u):

φn(t) =

 1

u2

∑
n∈Z

qnt

1− qnt
− 2

∑
n≥1

qn

(1− qn)2
,

1

2u3

∑
n∈Z

qnt(1 + qnt)

(1− qnt)3

 .

There exist 2-isogenies from gi : Ei+1 −→ Ei for i ≥ 0 given by the formulae

gi(x
′, y′) =


(
x+

α0(α0 − β0)

x
− 4e1 + b2

8
, y

(
1− α0(α0 − β0)

x2

))
for i = 0 ,(

x+
αi(αi − βi)

x
− αi−1 − βi−1

2
, y

(
1− αi(αi − βi)

x2

))
for i ≥ 1 .

We check that this is (assuming i ≥ 1 for simplicity) indeed a well-defined isogeny by direct

computation. Since the modified AGM gives

αi + βi
2

= 2αi+1 − βi+1 and

(
αi−1 − βi−1

4

)2

= αi(αi − βi) ,

we have

x′(x′ + αi)(x
′ + αi − βi)

=
1

x3

([
x2 + αi(αi − βi)

]2 − [αi−1 − βi−1

2

]2

x2

)(
x2 + αi(αi − βi) + (2αi − βi)x

)
=

1

x3

([
x2 + αi(αi − βi)

]2 − 4αi(αi − βi)x2
)

(x+ αi) (x+ αi − βi)

=
1

x4

(
x2 − αi(αi − βi)

)2
[x (x+ αi) (x+ αi − βi)]

= y2

(
1− αi(αi − βi)

x2

)2

which proves the claim.

The kernel of the isogeny is generated by the point of order 2 (0, 0) ∈ Ei+1(K). By directly

differentiating we see that

d

dx

(
x+

αi(αi − βi)
x

− αi−1 − βi−1

2

)
= 1− αi(αi − βi)

x2
=
y′

y

and hence

g∗i

(
dx

2y

)
=
dx′

2y′

for all i. This means that when one considers the sequence of isomorphisms φn, the maps
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on differentials are given by

φ∗i

(
dx

2y

)
= u

dt

t

for all i. That is, u is in fact independent of i. Now as n tends to infinity, the equation of

En tends to

E∞ : y2 = x2(x+M ′(α, β)) .

Furthermore, since |q| < 1, qn tends to 0 and the only term left in φ∞ : K
∗ −→ E∞ is the

term with n = 0. This gives

φ∞(t) =

(
t

u2(1− u)
,

t(1 + t)

2u3(1− t)3

)
.

The situation can be summarised in the following commutative diagram

K
∗ · · · −−−−→ K

∗
/q2n+1Z fn−−−−→ K

∗
/q2nZ −−−−→ · · · −−−−→ K

∗
/q2Z f0−−−−→ K

∗
/qZyφ∞ yφn+1

yφn yφ1 yφ0=φ

E∞ · · · −−−−→ En+1
gn−−−−→ En −−−−→ · · · −−−−→ E1

g0−−−−→ E0 = E

Note that the maps fi are simply the identity maps since φ∗i is multiplication by u (for all

i) and g∗i is the identity map on differentials. Let P0(x0, y0) ∈ E(K) and let t∞ ∈ K
∗

be

the unique preimage φ−1(P0) such that 0 ≤ |t∞| < |q|. Then for all n ≥ 0, by working

modulo q2n one puts tn = t∞ mod q2n and obtains Pn(xn, yn) = φn(tn) ∈ En(K). The key

idea is that by using the explicit formulae for gi, one can work backwards on the bottom

row of the diagram and compute the point P∞(x∞, y∞) ∈ E∞(K), which is the limit of the

Pi(xi, yi). Now computing φ−1
∞ (P∞) is easy due to the simple form which φ∞ takes.

Now actually inverting the isogenies gi is a relatively simple matter of algebraic manipula-

tions. For i = 0, solving the quadratic for x and y gives

x =
1

16

(
8x′ + 4e1 + b2 +

√
(8x′ + 4e1 + b2)2 − 256α0(α0 − β0)

)
=

1

2

(
x0 +

4e1 + b2
8

)(
1 +

√
1− 256α0(α0 − β0)

(8x0 + 4e1 + b2)2

)
,

y = y′
(

1− α0(α0 − β0)

x2

)−1

= y′
(

x2

x2 − α0(α0 − β0)

)
.
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And for i ≥ 1

x =
1

4

(
2x′ + αi−1 − βi−1 +

√
(2x′ + αi−1 − βi−1)2 − 16αi(αi − βi)

)
=
x′

4

2 +
αi−1 − βi−1

x′
+

√(
2 +

αi−1 − βi−1

x′

)2

− (αi−1 − βi−1)2

x′2


=
x′

4

(
2 +

αi−1 − βi−1

x′
+ 2

√
1 +

αi−1 − βi−1

x′

)

=
x′

4

(
1 +

√
1 +

αi−1 − βi−1

x′

)2

,

y = y′
(

x2

x2 − αi(αi − βi)

)
= y′

(
16x2

16x2 − (αi−1 − βi−1)2

)
.

At the limit we have

(x∞, y∞) =

(
t∞

u2(1− u)
,
t∞(1 + t∞)

2u3(1− t∞)3

)
and solving for the first coordinate gives

t∞ +
1

t∞
= 2 +

1

u2x∞
.

Furthermore we have

2uy∞ =
t∞(1 + t∞)

u2(1− t∞)2(1− t∞)
= x∞

(
1 + t∞
1− t∞

)
which gives t∞ as a function of u, x∞ and y∞ by

t∞ =
2uy∞ − x∞
2uy∞ + x∞

.

The following algorithm summarises the above.
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Algorithm 3.7 (p-adic Landen’s transformation).

Input: An elliptic curve E/K with split multiplicative reduction given by

E : y2 = x3 +
b2
4
x2 +

b4
2
x+

b6
4

with roots e1, e2 and e3 such that e2 ≡ e3 mod mK ; P0 = (x0, y0) a point on E(K).

Ouput: The preimage φ−1(P ) ∈ K∗/qZ in the Tate uniformisation.

1. Let α0 = α and β0 = β. Compute P1(x1, y1) from the equations

x1 =
1

2

(
x0 +

4e1 + b2
8

)(
1 +

√
1− 256α0(α0 − β0)

(8x0 + 4e1 + b2)2

)
,

y1 = y0

(
x2

1

x2
1 − α1(α1 − β1)

)
.

2. For n ≥ 1, compute Pn+1(xn+1, yn+1), αn+1 and βn+1 from the formulae

xn+1 =
xn
4

(
1 +

√
1 +

αn−1 − βn−1

xn

)2

,

yn+1 = yn

(
16x2

n+1

16x2
n+1 − (αn−1 − βn−1)2

)
,

βn+1 =
√
αnβn ,

αn+1 =
αn + βn + 2βn+1

4
.

3. Let P∞(x∞, y∞) be the limit of Pn. We then have

u2 =
1

4M ′(α, β)
,

t∞ =
2uy∞ − x∞
2uy∞ + x∞

,

t∞ +
1

t∞
= 2 +

1

u2x∞
,

where t∞ = φ−1(P0) is the preimage of the isomorphism φ : Eq −→ E.

Note that if P0 and u are rational over K, then all calculations are done over K. This

allows one to compute the period q by applying the above algorithm to the point at infinity

O = (0 : 1 : 0). The first step of the algorithm simply gives the two 2-torsion points on E1.

At this point we take the non-trivial point (0, 0) and proceed as in Algorithm 3.7. By the
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choice of O we know that φ−1(O) = q whence

q +
1

q
= 2 +

1

u2x∞
,

which gives

q = 1 +
1

2u2x∞
−

√
4u2x∞ + 1

4u4x2
∞

.

This gives a quadratically convergent algorithm to compute q compared to linear procedures

such as inverting the power series of the j-invariant. See [HM89] for a worked example.

3.3 Coleman Integration

We end this chapter on a slight digression on a perhaps surprising link between the AGM

and p-adic integration. Since p-adic spaces are totally disconnected by nature, finding a

p-adic analogue of antidifferentiation turned out to be a challenge. Coleman introduced a

notion of integration based on the principle of Frobenius equivariance, and we will outline

the basics of the theory here. This requires some rigid analytic geometry which will be

omitted; see [BGR84] for example for an introduction to the topic.

Let Cp be a completed algebraic closure of Qp and denote O its valuation subring. Also let

Log denote a branch of the p-adic logarithm, that is, a homomorphism from C×p → Cp such

that its restriction to the disc {x ∈ Cp : |x− 1| < 1} is given by the usual logarithm series∑∞
i=1(1−x)i/i. For an open interval I ⊆ [0,+∞), write A(I) for the disc {t ∈ A1

Cp : |t| ∈ I}.
We first define integrals on these discs by the formula

Q∫
P

∑
i∈Z

cit
idt := c−1Log

(
Q

P

)
+
∑
i 6=−1

ci
i+ 1

(Qi+1 − P i+1) .

where P and Q are points in A(I) and
∑

i cit
idt is a differential in Ω1

A(I)/Cp . Note that this

does not allow one to integrate on closed discs because of the i+ 1 in the denominator.

A curve over the valuation ring O is a smooth proper connected scheme X over O of relative

dimension 1. Consider the function field K(X) equipped with the p-adic absolute value,

then the elements of K(X) of norm at most 1 give the local ring in X of the generic point

of the special fibre X of X. Let XQ denote the generic fibre of X as a rigid analytic space,

then there is a natural specialisation map from XQ to X.
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A residue disc of X is an open unit disc which is isomorphic to the inverse image of a point

of X. Given a curve X, a wide open subspace of XQ is a rigid analytic subspace of XQ of

the form {x ∈ XQ : |f(x)| < λ} for some f ∈ K(X) of absolute value 1 and some λ > 1.

Under these settings, Coleman found a notion of p-adic integration that exhibits no path

dependence, which we quote from [Bal15].

Theorem 3.8. For each curve X over O and each wide open subspace W of XQ, there

exists a map

µW : Div0(W )× Ω1
W/Cp −→ Cp

with the following properties:

(i) Linearity: The map µW is linear on Div0(W ) and Cp-linear on Ω1
W/Cp.

(ii) Compatibility: For any residue disc D of X and any isomorphism ϕ : W ∩D → A(I)

for some interval I, the restriction of µW to Div0(W ∩ D) × Ω1
W/Cp agrees with the

notion of integration on A(I) via ϕ.

(iii) Change of variables: Let X ′ be another curve over O and W ′ be a wide open subspace

of X ′. Let ϕ : W →W ′ be any morphism of rigid spaces relative to an automorphism

of Cp. Then

µW ′(ϕ(·), ·) = µW (·, ϕ∗(·)) .

(iv) Fundamental theorem of calculus: For any Q =
∑

i ci(Pi) ∈ Div0(W ) and f ∈ O(W ),

µW (Q, df) =
∑
i

cif(Pi) .

We will not delve into the theory as much since our focus here is more on the computational

side of the spectrum – Coleman’s theory is principally very suitable for numerical compu-

tation, and Balakrishnan developed this idea in the case of hyperelliptic curves. We cover

some of the ideas following [BBK10] and [Bal15]. Let X be a hyperelliptic curve of genus g

with model of the form y2 = f(x), where f(x) has degree 2g + 1.

For P and Q in the same residue disc (Weierstrass or not), the corresponding integral from

P to Q is called a tiny integral. Integrals of this form are performed by first computing a

parameterisation of the path between P and Q, then integrating the resulting power series

formally. The parameterisation used depends on the disc which the points P and Q lie in:
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Algorithm 3.9 (Parameterisation of path between two points).

Input: Two points P,Q ∈ X(Cp) in the same residue disc.

Ouput: Parameterisation (x(t), y(t)) of the path between P and Q.

• If P and Q lie in a non-Weierstrass residue disc, then a parameterisation is given by

1. Let x(t) = t+ a, where P = (a, b) and t is a local coordinate.

2. Obtain y(t) =
√
f(x(t)) by Newton’s method; that is, let y0(t) = b and

yi(t) =
1

2

(
yi−1 +

f(x(t))

yi−1(t)

)
for i ≥ 1.

• If P and Q lie in a finite Weierstrass residue disc, then a parameterisation is given

by

1. Let y(t) = t+ b, where P = (a, b) and t is a local coordinate.

2. Obtain x(t) by Newton’s method; that is, let x0(t) = a and

xi(t) = xi−1(t)− f(xi−1(t))− y(t)2

f ′(xi−1(t))

for i ≥ 1.

• If P and Q are both points at infinity, then a parameterisation is given by

1. Take x0 = t−2 and let h(x, t) =

(
xg

t

)2

−f(x) and use Newton’s method to obtain

xi(t) = xi−1(t)− h(xi−1(t), t)

h′(xi−1(t), t)
,

where h′(xi−1(t), t) is the partial derivative with respect to x.

2. Then y(t) is given by

y(t) =
(x(t))g

t
.

The following algorithm computes integrals of the basis differentials ωi =
xidx

2y
using the

parameterisation just described.
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Algorithm 3.10 (Computing tiny integrals).

Input: Two points P,Q ∈ X(Cp) in the same residue disc and a basis differential ωi.

Ouput: Tiny Coleman integral between P and Q.

1. Construct a parameterisation of the path from P to Q using Algorithm 3.9.

2. Substitute it into the integral and formally integrate the power series in t:

Q∫
P

ωi =

Q∫
P

xi
dx

2y
=

t(Q)∫
0

x(t)i

2y(t)

dx(t)

dt
dt .

For computing Coleman integrals from P to Q on different residue discs one uses the Frobe-

nius to move between residue discs, or formally perform an analytic continuation along

Frobenius. The rough idea is to first find Teichmüller points P ′ and Q′ which lie in the

same residue discs as P and Q respectively. These are points which are fixed by the Frobe-

nius Φ, that is, Φ(P ′) = P ′ and Φ(Q′) = Q′. The Frobenius can then be used to compute

the integral from P ′ to Q′, and by additivity we obtain

Q∫
P

ωi =

P ′∫
P

ωi +

Q′∫
P ′

ωi +

Q∫
Q′

ωi .

But our aim here is to compute tiny integrals using a p-adic AGM and thus we will not go

into the details of general Coleman integrations. Interested readers should consult one of

the aforementioned papers.

Now let E/Qp be an elliptic curve given by y2 = (x−e1)(x−e2)(x−e3) such that the roots

satisfy (e2 − e1) ≡ (e3 − e1) mod pZp. Suppose now that P and Q are points on E(Qp)

inside the same residue disc. Then recall from Theorem 3.1 that φ is an isomorphism from

Eq −→ E such that the induced map satisfies

φ∗
(
dx

2y

)
= u

dt

t
.

Therefore combining it with fundamental properties of the Coleman integral in Theorem

3.8 one sees that

Q∫
P

dx

2y
=

φ−1(Q)∫
φ−1(P )

φ∗
(
dx

2y

)
=

φ−1(Q)∫
φ−1(P )

u
dt

t
= u Log

(
φ−1(Q)

φ−1(P )

)
.
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This gives the following:

Algorithm 3.11 (Computing tiny integrals for split multiplicative curves).

Input: An elliptic curve with split multiplicative reduction E/Qp with Weierstrass points

(ei, 0) and P,Q ∈ E(Qp) in the same residue disc.

Ouput: Tiny Coleman integral between P and Q.

1. Let α = e2 − e1 and β = e3 − e1, where e2 ≡ e3 mod p.

2. Compute the quantity u2 ∈ Qp using Proposition 3.6.

3. Applying the Landen’s transformation to both P and Q, compute the preimage φ−1(P )

and φ−1(Q) .

4. We then have
Q∫
P

dx

2y
= u Log

(
φ−1(Q)

φ−1(P )

)
.

For example, consider the elliptic curve E over Q7 given by

E : y2 = (x− 1)(x− 2)(x− 9) .

Now consider the two points P and Q given by

P = (5, 1 + 3× 72 + 3× 73 + 2× 74 + 4× 75 + · · · ) ,

Q = (5 + 7, 1 + 6× 7 + 2× 72 + 3× 73 + 2× 74 + 3× 75 + · · · ) .

Then the above procedure gives

u = 3 + 4× 7 + 72 + 6× 73 + 2× 74 + 6× 75 ,

φ−1(P ) = 5 + 5× 72 + 4× 73 + 2× 74 + 3× 75 ,

φ−1(Q) = 5 + 2× 7 + 72 + 2× 73 + 6× 74 + 75

and hence
Q∫
P

dx

2y
= 4× 7 + 5× 72 + 5× 73 + 2× 74 + 5× 75 + · · · .

This agrees with the inbuilt function of Sage (which uses Algorithm 3.10 and integrates

term by term); one can turn to Appendix B to find Sage codes of the above algorithm.

78



Chapter 4

Genus 2 Curves over the p-adics

4.1 Introduction

We begin with a quick review of the situation in genus 1 over p-adic fields, where every

elliptic curve E = E0 with split multiplicative reduction over a p-adic field K can be

uniformised with a Tate curve Eq = K
∗
/qZ. The AGM process creates an isogenous elliptic

curve E1 with period q2; hence by iterating the AGM one obtains a chain of elliptic curves

and their respective Tate curves:

K
∗ · · · −−−−→ K

∗
/q2n+1Z fn−−−−→ K

∗
/q2nZ −−−−→ · · · −−−−→ K

∗
/q2Z f0−−−−→ K

∗
/qZyφ∞ yφn+1

yφn yφ1 yφ0=φ

E∞ · · · −−−−→ En+1
gn−−−−→ En −−−−→ · · · −−−−→ E1

g0−−−−→ E0 = E

We have also seen how to compute the period using the AGM: the key in the algorithm

relies on inverting the vertical maps φi’s. Although each φi is given by some complicated

power series which makes it hard to work with, in the limit these maps degenerate into a

simple expression which can be inverted.

Moving on to genus 2, the other ingredient comes from the Bost-Mestre AGM for genus

2 which is a realisation of the Richelot isogeny between hyperelliptic curves. As shown in

[Smi05], it is a (2, 2)-correspondence, and therefore composing it with its dual gives the

doubling map on the Jacobian of the original curve. The equations defining this corre-

spondence are also easy to write down, as we have seen in Chapter 2, which makes it easy

to manipulate in theory. The vital observation is that this map doubles the periods of a

hyperelliptic curve, suggesting that it is the right map to consider.
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The situation over p-adic fields is less well understood. The Tate curves are replaced by

what we now call Mumford curves, after Mumford showed in 1972 that if a genus g curve has

‘bad enough’ (but not too bad) reduction over a p-adic field, then there exists an analytic

parameterisation which generalises Tate’s work (in fact his work was far beyond that, ex-

tending to abelian varieties over local rings, though we will not touch upon that here). The

maps gi’s in the above diagram are replaced by the Richelot isogenies. Since the equations

are simple algebraic expressions, it is clear that they are well-defined over any p-adic fields

as well.

The vertical maps φi’s, however, remain somewhat mysterious. In [Kad07], Kadziela gives

a description via the theory of automorphic forms; but these are infinite products which are

hard to work with practically. On the other hand Teitelbaum, in [Tei88], describes these

maps using p-adic theta functions and even inverts them to compute the periods; however

his method is linear, akin to computing the period of a Tate curve by inverting the power

series of its j-invariant.

Our aim is therefore to combine the aforementioned theories to develop a quadratically

convergent algorithm to compute periods of p-adic hyperelliptic curves using the Richelot

isogeny. We begin by covering the necessary background to understand the basics of Mum-

ford curves, including the theory of Schottky groups, automorphic forms and Jacobians of

hyperelliptic curves. A discussion of the p-adic AGM and Richelot isogeny follows, as we

show that they have the same doubling property as in C. This allows one to have a full

understanding on the algebraic side of the picture, especially to devise a method to lift the

Richelot isogeny along the chain of isogenous hyperelliptic curves. We will demonstrate this

in practice, using the modular curve X0(23) as an example.

At the time of writing, we do not yet have a concrete description of the vertical maps,

which we will need in order to complete the algorithm. However, in the final section we will

give reasons and insights as to why this should be feasible with a bit more time. This will

hopefully be completely and published in a joint paper with Frazer Jarvis.
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4.2 p-adic Analysis

Let K be a p-adic field with ring of integers OK . Then OK has a unique maximal ideal

with uniformiser π. Let X be a curve over K; then one may study its reduction mod π. We

say that X is semi-stable if its reduction only has singularities which are ordinary double

points, and every non-singular rational component meet the other components in at least

2 points. If, in addition, all the components in its reduction are of genus zero and both

tangent lines at every double point are rational, then X is called totally split.

Now consider a totally split hyperelliptic curve X of genus 2 over K. In this case being

totally split simply means that the equation of X modulo π reduces to

X : y2 ≡ (x− α)2(x− β)2(x− γ)(x− δ) mod π ,

where α, β and γ are distinct. In [Tei88], these curves are classified into three types:

1. Type A refers to the case where δ is different from α, β and γ;

2. Type B refers to the case where δ ≡ γ mod π;

3. Type C refers to the case where δ ≡ α mod π.

Teitelbaum mainly works with Type B curves in his work, partially because his interest were

modular curves, which are of this type. Similarly we will only be concerned with curves

with Type B reduction here, since it gives us a canonical way to split the sextic (although

most of the general p-adic theory we describe here applies to any hyperelliptic curves, and

even to higher genera).

4.2.1 Uniformisation Theory

Mumford proved in [Mum72] that every totally split curve admits a p-adic uniformisation,

now called a Mumford curve. We give a survey of this theory mainly following [GvdP80],

[Tei88] and [Kad07].

Consider the group PGL2(K) for any field K which is complete with respect to some non-

archimedean valuation; it is the automorphism group of P1
K . Then for any

γ =

(
a b

c d

)
∈ PGL2(K) ,
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define the action on the projective line P1
K via γ(z) =

az + b

cz + d
for all z ∈ P1

K , with the usual

convention for ∞ such that

az + b

cz + d
=



az + b

cz + d
if cz + d 6= 0 and z 6=∞ ,

∞ if cz + d = 0 and z 6=∞ ,
a

c
if z =∞ and c 6= 0 ,

0 if z =∞ and c = 0 .

Now suppose Γ ⊆ PGL2(K) is a subgroup. Then a point z ∈ P1
K is called a limit point of

Γ if there exists an infinite sequence {γi} of distinct matrices γi ∈ Γ and a point z′ ∈ P1
K

such that

lim
n→∞

γn(z′) = z .

For any given Γ, denote L(Γ) the set of all limit points of Γ. If Γ satisfies the conditions

(i) L(Γ) 6= P1
K ,

(ii) the orbit Γ(z) for any point z ∈ P1
K has a compact closure,

then we say that Γ is discontinuous. If K is a locally compact field, which in particular all

p-adic fields are, then the second condition is automatically satisfied.

We are interested in subgroups generated by a certain type of matrix in PGL2(K). We say

that γ ∈ PGL2(K) is hyperbolic if its two eigenvalues λ and µ have different valuations,

that is, |λ| 6= |µ|. The following is taken from Section 1.1 of [GvdP80].

Lemma 4.1. A matrix γ ∈ PGL2(K) is hyperbolic if and only if it is conjugate to an

element of the form

(
q 0

0 1

)
for some 0 < |q| < 1.

A subgroup Γ ⊆ PGL2(K) is called a Schottky group if

(i) Γ is finitely generated;

(ii) Γ is discontinuous;

(iii) every non-trivial γ ∈ Γ is hyperbolic.

These groups, as we will see, play the role of the subgroups qZ in the Tate curve. We state,

without proof, the structure theorem for discontinuous groups by Ihara.
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Theorem 4.2.

(i) Let Γ be a finitely generated discontinuous group. Then there exists a normal subgroup

Γ0 ⊆ Γ of finite index such that Γ0 is a Schottky group.

(i) Any Schottky group Γ0 is a free group, and non-abelian if it has more than one gen-

erator.

This is Theorem 1.3.1 from [GvdP80], where it is proved by studying the Bruhat-Tits tree

of PGL2(K). We also need a way to construct a space Ω along with a Schottky group on

which it acts discontinuously (playing the previous role of K
∗
). If Γ is a Schottky group, it

turns out that it is sufficient to remove the limit points of Γ from P1
K , so that Ω = P1

Cp\L(Γ).

This also forms a fundamental domain for Γ.

Theorem 4.3. Let Γ be a Schottky group and Ω = P1
Cp \L(Γ). Then Γ acts discontinuously

on Ω.

In fact Ω can also be realised geometrically by cutting out open discs from the projective

line. We will not go into any further details here but one thing to note is that this construc-

tion shows that Ω can be written as a union of connected domains Ωn such that Ωn ⊆ Ωn+1

for all n and Ω =
∞⋃
n=1

Ωn, where each Ωn are obtained by cutting out finitely many open

discs from the projective line.

The quotients Ω/Γ are called Mumford curves, due to this final theorem (Theorem 4.20

from [Mum72]) which completes the generalisation of Tate’s work on elliptic curves.

Theorem 4.4. Let Γ be a Schottky group with g generators and Ω = P1
Cp \ L(Γ). Then

Ω/Γ is a smooth irreducible algebraic curve of genus g. Moreover, given an algebraic curve

X over K of genus g with totally split reduction, then there exists a Schottky group with g

generators such that X ∼= Ω/Γ.

One can quickly check that this is indeed a generalisation: If g = 1, then Lemma 4.1 says

that any hyperbolic γ is simply conjugate to some

(
q 0

0 1

)
∈ PGL2(K) such that |q| < 1.

The Schottky group Γ is then the powers of q, or equivalently qZ, with 0 and ∞ being its

only limit points. Hence Ω = P1
K
\ {0,∞} = K

∗
and one obtains the Tate curve K

∗
/qZ.
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4.2.2 Automorphic Forms

Before turning our attention to automorphic forms on the space Ω, we briefly introduce

some related concepts. An affinoid disc is a closed disc in Cp of the form Cp \ B for some

open disc B ⊆ Cp, and an affinoid domain is one that is a finite intersection of affinoid

discs. For example, the fundamental domain Ω for a Schottky group can be written as a

union of Ωn, where each Ωn is an affinoid domain by construction. The nested property of

the Ωn’s makes Ω a Stein domain of P1
K .

A K-valued function on an affinoid domain is holomorphic (or analytic) if it is the uniform

limit of rational functions with no poles in the domain. Then a function on Ω is holomorphic

if its restriction on each Ωn is holomorphic; the function is meromorphic if the restriction

is the quotient of two holomorphic functions on Ωn for all n.

Let Γ be a Schottky group. An automorphic form with respect to Γ is a meromorphic

function f on Ω = P1
Cp \ L(Γ) satisfying the transformation property

f(z) = φ(γ)f(γ(z))

for all γ ∈ Γ, and φ(γ) ∈ C×p is called the automorphy factor.

The results from this section come from Section 2 of [GvdP80].

Theorem 4.5. Let a, b ∈ Ω. Then the function

θ(a, b; z) :=
∏
γ∈Γ

z − γ(a)

z − γ(b)

is an automorphic form on Ω with constant factors of automorphy.

These are called p-adic theta functions (not to be confused with the Riemann theta func-

tions) and are, as we will see, the building blocks of all automorphic forms on Ω. But before

doing so we briefly write down some of the basic properties that θ(a, b; z) satisfies.

Proposition 4.6. We have the following:

(i) If Γa 6= Γb, then θ(a, b; z) has simple zeroes at Γa, simple poles at Γb and no zeros or

poles elsewhere.

(ii) For all γ ∈ Γ, θ(a, b; z) satisfies θ(a, b; z) = θ(γ(a), γ(b); z).
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We also wish to understand the automorphy factor of θ(a, b; z), which as it turns out is

closely related to a special case of the theta function.

Proposition 4.7. We have the following:

(i) The function θ(z0, γ(z0); z) is an analytic function with no zeroes on Ω. Furthermore,

it is independent of the point z0. That is, for all z0, z
′
0 ∈ Ω and γ ∈ Γ, we have

θ(z0, γ(z0); z) = θ(z′0, γ(z′0); z) .

(ii) For all γ1, γ2 ∈ Γ we have

θ(z0, γ1(z0); z)θ(z0, γ2(z0); z) = θ(z0, γ1γ2(z0); z) .

(iii) The automorphy factor c(a, b; γ) of θ(a, b; z) depends on both a and b. In particular,

c(a, b; γ) =
θ(z0, γ(z0); a)

θ(z0, γ(z0); b)

and is a group homomorphism from Γ→ K∗ satisfying c(a, b; γ1γ2) = c(a, b; γ1)c(a, b; γ2).

The final result on the theory of automorphic forms is the structure theorem that every

automorphic form on Ω is a finite product of some theta functions.

Theorem 4.8. Let Γ be a Schottky group and f be an automorphic form with respect to Γ

on Ω. Then

f(z) = cf

k∏
i=1

θ(ai, bi; z)

for some ai, bi ∈ Ω and cf ∈ C×p a constant. Furthermore, the automorphy factor is given

by the product of the individual factors

cf =

k∏
i=1

c(ai, bi; γ) .
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4.2.3 The Jacobian and Periods of p-adic Schottky Groups

For every totally split p-adic curve X, we now have an algebraic curve Ω/Γ. To link these

Mumford curves to the Jacobian (and thus periods) of X, we describe the work of [MD73].

Let XΓ = Hom(Γ,K×) be the set of homomorphisms from Γ to K×. Then XΓ is an algebraic

torus. Now define a pairing 〈·, ·〉 : Γ× Γ −→ K× by

〈α, β〉 =
θ(z0, α(z0); z)

θ(z0, α(z0);β(z))
,

where z0 is any point in Ω (recall that the function θ(z0, γ(z0); z) is independent of z0).

Lemma 4.9. The pairing 〈·, ·〉 is bilinear, symmetric and its ord is positive definite.

For a proof see Theorem 1 of [MD73]. The above pairing gives us a way to embed the group

Γ into the torus XΓ by sending an element γ ∈ Γ to the function

χγ(α) = 〈γ, α〉 =
θ(z0, γ(z0); z)

θ(z0, γ(z0);α(z))
.

One might notice that the definition of χγ resembles that of the automorphy factor of a

p-adic theta function. In fact, for each homomorphism χ ∈ Hom(Γ,K×), there exists a

unique automorphic form fχ on Ω whose automorphy factor is precisely χ (cf. Proposition

6.3.4 in [GvdP80]). This defines a map from XΓ/Γ −→ J(X) by mapping χ to [Div(fχ)],

the class of the divisor of fχ. This is the corresponding uniformisation of the Jacobian.

We now specialise to g = 2. Let γ1 and γ2 be the generators of our Schottky group Γ.

Consider the abelianisation Γ = Γ/[Γ,Γ], then as above we obtain a pairing Γ× Γ −→ K×.

Take α, β ∈ Γ, where one may write α ≡ γm1
1 γm2

2 and β ≡ γn1
1 γn2

2 . Since the pairing is

bilinear and symmetric, we have

〈α, β〉 = 〈γ1, γ1〉m1n1〈γ1, γ2〉m1n2+m2n1〈γ2, γ2〉m2n2 .

In particular, the pairing is completely determined by the effects on the two generators. In

[Tei88], a third element γ3 is defined such that γ1γ2γ3 = 1, and the (fundamental) p-adic

periods are defined by

q1 = 〈γ2, γ3〉−1, q2 = 〈γ1, γ3〉−1 and q3 = 〈γ1, γ2〉−1 .
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It is clear that these three periods determine the pairing.

For a genus 2 Mumford curve of Type B, the Weierstrass points are canonically partitioned

according to their reductions into three pairs, S1, S2 and S3. We label these the points

within each pair arbitrarily as Si = {(P+
i , 0), (P−i , 0)}. Now define half-periods via

p1 = χP+
1 ,P

+
2

(γ2), p2 = χP+
2 ,P

+
3

(γ3) and p3 = χP+
3 ,P

+
1

(γ1) ,

where

χa,b(α) =
θ(z0, α(z0); a)

θ(z0, α(z0); b)

is the automorphy factor of θ(a, b; z) (that is, a homomorphism Γ −→ K×, not to be

confused with the homomorphism χγ : Γ −→ XΓ). The name is justified by the fact that

p2
i = q−1

i (see Lemma 18 of [Tei88]).

Once generators are fixed for Γ, there is a natural isomorphism Hom(Γ,K×)
∼−−→ (K×)2

given by mapping χ to the point (χ(γ1), χ(γ2)) ∈ (K×)2. The image of Γ under this

isomorphism is generated by the two points

(χγ1(γ1), χγ1(γ2)) = (〈γ1, γ1〉, 〈γ1, γ2〉) = (q2q3, q
−1
3 )

and

(χγ2(γ1), χγ2(γ2)) = (〈γ2, γ1〉, 〈γ2, γ2〉) = (q−1
3 , q1q3) .

Thus the image of Γ is the subgroup

HΓ =
{(

qa2q
a−b
3 , qb1q

b−a
3

) ∣∣∣ a, b ∈ Z
}

which gives an isomorphism

XΓ/Γ
∼−−→ (K×)2/HΓ .

4.3 The Genus 2 p-adic AGM

Let X be a totally split hyperelliptic curve of genus 2 over a p-adic field K. To define a

p-adic analogue of the Bost-Mestre’s arithmetic-geometric mean, we require the curve to

have Type B reduction. By Hensel’s Lemma the curve factors into three quadratics over Qp,

although the roots themselves may lie in a quadratic extension. Therefore, we will assume
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that X is given by an equation of the form

X : y2 = (x− α)2(x− β)2(x− γ)2 mod π .

This is a quadratic splitting of X and is canonical for this type of curves (up to reordering

α, β and γ); it plays the role of the natural ordering of roots over R. Now define three

quadratics P , Q and R using this quadratic splitting of X such that

P ≡ (x− α)2 mod π, Q ≡ (x− β)2 mod π and R ≡ (x− γ)2 mod π

and compute U , V and W as before. In this case one sees that

U = Q′R−R′Q ≡ c1(x− β)(x− γ) mod π ,

V = R′P − P ′R ≡ c2(x− α)(x− γ) mod π ,

W = P ′Q−Q′P ≡ c3(x− α)(x− β) mod π .

This process, similar to the situation over the real or complex numbers, takes X to a

Richelot-isogenous curve X̃.

By reordering the roots appropriately and defining P ′, Q′ and R′ such that P ′ ≡ P mod π,

Q′ ≡ Q mod π and R′ ≡ R mod π, one can iterate this process to obtain a chain of

hyperelliptic curves. We claim that the six p-adic numbers converge quadratically in pairs

to three numbers.

Lemma 4.10. The AGM process over K is quadratically convergent.

Proof. We assume that p > 2 here (if p = 2 then we require the roots to lie in a disc of

smaller radius). Say the equation of X is given by the quadratic splitting y2 = PQR, where

the two roots of P , Q and R are congruent to α, β and γ respectively modulo π.

If a1 and a2 denote the roots of P , write a =
a1 + a2

2
. Then we can write a1 = a− εa and

a2 = a+ εa, and similarly for Q and R:

P = (x− a1)(x− a2) = x2 − 2ax+ (a2 − ε2
a) ,

Q = (x− b1)(x− b2) = x2 − 2bx+ (b2 − ε2
b) ,

R = (x− c1)(x− c2) = x2 − 2cx+ (c2 − ε2
c)
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Let v = min{v(εa), v(εb), v(εc)} ≥ 1, where v denotes the valuation on K. It suffices to show

that the roots of U , V and W agree up to valuation 2v. We simply compute U = Q′R−R′Q
as

U = (b− c)x2 + (c2 − b2 + ε2
b − ε2

c)x+ (bc(b− c) + bε2
c − cε2

b) ,

where a factor of 2 has been taken out (since it is a unit). Solving it gives

u1, u2 =
b2 − c2 + ε2

c − ε2
b ±

√
(b4 + c4 − 2b2c2 +O(2v))− 4(b− c)(bc(b− c) +O(2v))

2(b− c)

=
b2 − c2 +O(2v)±

√
(b− c)4 +O(2v)

2(b− c)

=
b2 − c2 +O(2v)± (b− c)2 +O(2v)

2(b− c)
,

where O(2v) denotes terms with valuation of at least 2v such as ε2
b and ε2

c . Since 2(b − c)
is a unit, this further simplifies to

u1 =
b2 − c2 + (b− c)2 +O(2v)

2(b− c)
=

2b2 − 2bc+O(2v)

2(b− c)
= b+O(2v)

and

u2 =
b2 − c2 − (b− c)2 +O(2v)

2(b− c)
=

2bc− 2c2 +O(2v)

2(b− c)
= c+O(2v) .

This proves that the roots of UVW agree pairwise to precision double that of PQR.

This gives the following important corollary:

Corollary 4.11. If X is a totally split curve with Type B reduction, then so is the Richelot

isogenous curve X̃. In particular, both of them admit p-adic uniformisations.

If we write the equation of X as

y2 = (x− a)(x− a′)(x− b)(x− b′)(x− c)(x− c′) ,

where the quadratic splitting is made obvious by the notation, by taking the appropriate

linear transformation of the form

x′ =
x− a
x− c

· b− c
b− a

,

one can transform the equation of X into Rosenhain form

y2 = x(x− 1)(x− λ)(x− µ)(x− ν)
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such that a, b and c are mapped to 0, 1 and ∞ respectively. As before, there are many

alternative choices to reduce the same curve. From the equation of X, we see that in the

reduction modulo π, the transformation moves a′, b′ and c′ to 0, 1 and ∞ respectively as

well. That is, we have |λ|π > 1, |µ|π < 1 and |ν − 1|π < 1; by abuse of notation we say

λ ≡ ∞ mod π from now on.

4.3.1 Riemann Theta Functions

We now show this analogue of the arithmetic-geometric mean is equivalent to doubling the

half periods. To do this we consider the theta function in [Tei88], a homomorphism in XΓ

defined by

θ(χ) =
∑
γ∈Γ

(γ, γ)χ(γ) ,

where recall that Γ = Γ/[Γ,Γ]. Here the pairing (·, ·) is defined on the three generators γ1,

γ2 and γ3 of Γ such that

p1 = (γ2, γ3)−1, p2 = (γ1, γ3)−1 and p3 = (γ1, γ2)−1 .

This is related to the bilinear and symmetric pairing 〈·, ·〉 by the fact that (·, ·)2 = 〈·, ·〉.

Now take an element γ = γi1γ
j
2 ∈ Γ and compute that

θ(χ) =
∑
i,j∈Z

(γi1γ
j
2, γ

i
1γ
j
2)χ(γi1γ

j
2)

=
∑
i,j∈Z

(γ1, γ1)i
2
(γ1, γ2)2ij(γ2γ2)j

2
χ(γ1)iχ(γ2)j

=
∑
i,j∈Z

(p2p3)i
2
p−2ij

3 (p1p3)j
2
χ(γ1)iχ(γ2)j

=
∑
i,j∈Z

pj
2

1 p
i2

2 p
(i−j)2
3 χ(γ1)iχ(γ2)j .

Recall that given any two points a, b ∈ K, one can define a homomorphism χa,b(α) as the

automorphy factor of some automorphic form. This means that for the six Weierstrass

points P+
1 , P−1 , P+

2 , P−2 , P+
3 , P−3 , choosing any two of them gives a homomorphism and

hence a theta function. Hence this gives 16 theta functions in genus 2: there are 15 ways

to pick two points, along with the trivial character. Their action on the generators γi are

recorded in Table 1 of [Tei88] whence one can work out their series expansions easily.
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For example consider the homomorphism χP+
1 ,P

−
2

, where the table gives

χP+
1 ,P

−
2

(γ1) = p−1
2 and χP+

1 ,P
−
2

(γ2) = p−1
1 .

Then we can compute

θ(χP+
1 ,P

−
2

) =
∑
i,j∈Z

pj
2

1 p
i2

2 p
(i−j)2
3 χP+

1 ,P
−
2

(γ1)iχP+
1 ,P

−
2

(γ2)j

=
∑
i,j∈Z

pj
2

1 p
i2

2 p
(i−j)2
3 (p2)−i(p1)−j

=
∑
i,j∈Z

pj
2−j

1 pi
2−i

2 p
(i−j)2
3 .

As expected there are six odd theta functions, which occurs when the two points have the

same signs, for example P+
1 and P+

2 . The following are the series expansions for all ten

even theta functions (the above calculation gives θ5):

θ0 = θ(χid) =
∑
i,j∈Z

pj
2

1 p
i2

2 p
(i−j)2
3 ,

θ1 = θ(χP+
1 ,P

−
1

) =
∑
i,j∈Z

(−1)jpj
2

1 p
i2

2 p
(i−j)2
3 ,

θ2 = θ(χP+
2 ,P

−
2

) =
∑
i,j∈Z

(−1)ipj
2

1 p
i2

2 p
(i−j)2
3 ,

θ3 = θ(χP+
3 ,P

−
3

) =
∑
i,j∈Z

(−1)i+jpj
2

1 p
i2

2 p
(i−j)2
3 ,

θ4 = θ(χP−1 ,P
+
2

) =
∑
i,j∈Z

(−1)i+jpj
2−j

1 pi
2−i

2 p
(i−j)2
3 ,

θ5 = θ(χP+
1 ,P

−
2

) =
∑
i,j∈Z

pj
2−j

1 pi
2−i

2 p
(i−j)2
3 ,

θ6 = θ(χP−2 ,P
+
3

) =
∑
i,j∈Z

(−1)jpj
2

1 p
i2+i
2 p

(i−j)2+(i−j)
3 ,

θ7 = θ(χP+
2 ,P

−
3

) =
∑
i,j∈Z

pj
2

1 p
i2+i
2 p

(i−j)2+(i−j)
3 ,

θ8 = θ(χP−3 ,P
+
1

) =
∑
i,j∈Z

(−1)ipj
2+j

1 pi
2

2 p
(i−j)2−(i−j)
3 ,

θ9 = θ(χP+
3 ,P

−
1

) =
∑
i,j∈Z

pj
2+j

1 pi
2

2 p
(i−j)2−(i−j)
3 .

91



CHAPTER 4. GENUS 2 CURVES OVER THE P -ADICS

Note that our labelling simply follows the order they are printed in [GM17], but we have

also included θ0, which corresponds to the trivial character. It is easy to see that these

functions converge nicely:

Lemma 4.12. The θi’s converge uniformly on domains of the form

Ua,b = {(p1, p2, p3) ∈ C3
p : |p1| < |πK |a, |p2| < |πK |b, |p3| ≤ 1} ,

where a and b are positive rational numbers.

Proof. On the domains Ua,b we have

ordK

(
pi

2

1 p
j2

2 p
(i−j)2
3

)
≥ i2a+ j2b

which tends to infinity as i and j tend to infinity.

The following is the important link between these theta functions and the complex theta

functions:

Proposition 4.13. Let Ω =
1

πi

(
log(p2p3) − log(p3)

− log(p3) log(p1p3)

)
. Then as formal power series in

p1, p2 and p3, we have the following identities:

θ0 =
∑

(n1,n2)∈Z2

eπi(n1 n2)Ω(n1 n2)T ,

θ1 =
∑

(n1,n2)∈Z2

eπi(n1 n2)Ω(n1 n2)T+πin2 ,

θ2 =
∑

(n1,n2)∈Z2

eπi(n1 n2)Ω(n1 n2)T+πin1 ,

θ3 =
∑

(n1,n2)∈Z2

eπi(n1 n2)Ω(n1 n2)T+πi(n1+n2) ,

θ4 = (p1p2)−
1
4

∑
(n1,n2)∈Z2

eπi(n1+ 1
2
n2+ 1

2
)Ω(n1+ 1

2
n2+ 1

2
)T+πi(n1+n2+1) ,

θ5 = (p1p2)−
1
4

∑
(n1,n2)∈Z2

eπi(n1+ 1
2
n2+ 1

2
)Ω(n1+ 1

2
n2+ 1

2
)T ,

θ6 = (p2p3)−
1
4

∑
(n1,n2)∈Z2

eπi(n1+ 1
2
n2)Ω(n1+ 1

2
n2)T+πin2 ,

θ7 = (p2p3)−
1
4

∑
(n1,n2)∈Z2

eπi(n1+ 1
2
n2)Ω(n1+ 1

2
n2)T ,
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θ8 = (p1p3)−
1
4

∑
(n1,n2)∈Z2

eπi(n1 n2+ 1
2

)Ω(n1 n2+ 1
2

)T+πin1 ,

θ9 = (p1p3)−
1
4

∑
(n1,n2)∈Z2

eπi(n1 n2+ 1
2

)Ω(n1 n2+ 1
2

)T .

Proof. This is done by direct computation; we only do θ4 as an example. Expanding the

term inside the exponent gives

log(p2p3)(n1+ 1
2)

2

− 2 log(p3)(n1+ 1
2)(n2+ 1

2) + log(p1p3)(n2+ 1
2)

2

.

Thus the power of p1 (after exponentiating) is

(
n2 +

1

2

)2

= (n2
2 + n2) +

1

4
.

Similarly for p2 and p3 we have(
n1 +

1

2

)2

= (n2
1 + n1) +

1

4

and (
n1 +

1

2

)2

− 2

(
n1 +

1

2

)(
n2 +

1

2

)
+

(
n2 +

1

2

)2

= (n1 − n2)2

respectively. Therefore, after relabelling the summation wtih n1 = i− 1 and n2 = j− 1 one

finds that ∑
(n1,n2)∈Z2

eπi(n1+ 1
2
n2+ 1

2
)Ω(n1+ 1

2
n2+ 1

2
)T+πi(n1+n2+1) = (p1p2)

1
4 θ4

and the proposition follows.

This means that these functions are, at least as power series, basically the same as the ones

over C. The upshot of this is that all the duplication formulae from Chapter 2 hold here

as well (with minor adjustments to account for the terms outside the summation). We also

note in passing that the numbering of theta functions in Section 2.5 was chosen so that they

would align with the p-adic theta functions.
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4.4 Period Doubling

Now consider the model of X of the form

X : y2 = x(x− 1)(x− λ)(x− µ)(x− ν)

such that

λ ≡ ∞ mod π , µ ≡ 0 mod π and ν ≡ 1 mod π .

Given a general sextic model, this is always possible by translating one root to 0, one to 1

and a third to infinity (recall that X is totally split of Type B). Our work is based on the

following Theorem 28 in [Tei88]:

Theorem 4.14. The roots of X in the above form can be expressed by the theta functions

such that

λ =

(
1−

(
θ3θ6

θ2θ7

)2
)−1

, µ = 1−
(
θ3θ9

θ1θ8

)2

and ν =

(
θ2θ4

θ1θ5

)2

,

where all the theta functions are evaluated at (p1, p2, p3).

This should be viewed as an analogue of the classical Thomae’s formula for hyperelliptic

curves over the complex numbers. We are now able to state the theorem concerning the

period doubling of the Richelot isogeny.

Theorem 4.15. Let X be a Mumford curve, given by the equation over K

X : y2 = x(x− 1)(x− λ)(x− µ)(x− ν)

with λ, µ and ν distinct p-adic numbers such that

λ ≡ ∞ mod π , µ ≡ 0 mod π and ν ≡ 1 mod π .

Denote the half periods of X by p1, p2, p3 ∈ Cp. Apply the Bost-Mestre arithmetic-geometric

mean to X using the canonical quadratic splitting and denote the resulting curve by X̃. Then

the half periods p̃1, p̃2 and p̃3 of X̃ are given by p2
1, p2

2 and p2
3 respectively. More precisely,

X̃ can be reduced to the form

X̃ : y2 = x(x− 1)(x− λ̃)(x− µ̃)(x− ν̃)
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such that

λ̃ =

(
1−

(
θ3(p2

1, p
2
2, p

2
3)θ6(p2

1, p
2
2, p

2
3)

θ2(p2
1, p

2
2, p

2
3)θ7(p2

1, p
2
2, p

2
3)

)2
)−1

,

µ̃ = 1−
(
θ3(p2

1, p
2
2, p

2
3)θ9(p2

1, p
2
2, p

2
3)

θ1(p2
1, p

2
2, p

2
3)θ8(p2

1, p
2
2, p

2
3)

)2

,

ν̃ =

(
θ2(p2

1, p
2
2, p

2
3)θ4(p2

1, p
2
2, p

2
3)

θ1(p2
1, p

2
2, p

2
3)θ5(p2

1, p
2
2, p

2
3)

)2

.

Proof. The method used here is identical to that of Theorem 2.27. However, over C there

was no canonical way to partition the roots and so we chose an ordering which was the

most convenient. Here we need to take the pairs of roots in the same p-adic discs, which

explains some minor changes in the algebra involved (that is also to say, had we chosen a

different ordering of roots over C, this would be a corollary of Theorem 2.27!).

Apply the Bost-Mestre algorithm to five roots of X by letting

P = x(x− µ) , Q = (x− 1)(x− ν) , and R = x− λ .

Therefore the equation of X ′ is given by

X̃ : y2 = (x− a)(x− b)(x− c)(x− d)(x− e)(x− f) ,

where

a = λ+
√

(λ− 1)(λ− ν) ,

b = λ+
√
λ(λ− µ) ,

c = λ−
√
λ(λ− µ) ,

d =
−ν +

√
ν(µ− 1)(µ− ν)

µ− ν − 1
,

e =
−ν −

√
ν(µ− 1)(µ− ν)

µ− ν − 1
,

f = λ−
√

(λ− 1)(λ− ν) .
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Note that we have

a ≡ b ≡ ∞ mod π ,

c ≡ d ≡ 0 mod π ,

e ≡ f ≡ 1 mod π ,

since for example

|a|π =
∣∣∣λ+

√
(λ− 1)(λ− ν)

∣∣∣
π
> 1 .

To transform X̃ into our desired form, we take the transformation

x′ =
x− d
x− b

· f − b
f − d

or x =
(f − d)bx′ − (f − b)d
(f − d)x′ − (f − b)

,

which gives

X̃ : y′2 = x′(x′ − 1)

(
x′ − (a− d)(f − b)

(a− b)(f − d)

)(
x′ − (c− d)(f − b)

(c− b)(f − d)

)(
x′ − (e− d)(f − b)

(e− b)(f − d)

)
.

It suffices to show that

(a− d)(f − b)
(a− b)(f − d)

=

(
1−

(
θ3(p2

1, p
2
2, p

2
3)θ6(p2

1, p
2
2, p

2
3)

θ2(p2
1, p

2
2, p

2
3)θ7(p2

1, p
2
2, p

2
3)

)2
)−1

, (4.1)

(c− d)(f − b)
(c− b)(f − d)

= 1−
(
θ3(p2

1, p
2
2, p

2
3)θ9(p2

1, p
2
2, p

2
3)

θ1(p2
1, p

2
2, p

2
3)θ8(p2

1, p
2
2, p

2
3)

)2

, (4.2)

(e− d)(f − b)
(e− b)(f − d)

=

(
θ2(p2

1, p
2
2, p

2
3)θ4(p2

1, p
2
2, p

2
3)

θ1(p2
1, p

2
2, p

2
3)θ5(p2

1, p
2
2, p

2
3)

)2

. (4.3)

As in the complex case, this amounts to some (even more!) tedious manipulation of theta

functions. We first do some simple calculations by substituting

λ =

(
1−

(
θ3θ6

θ2θ7

)2
)−1

, µ = 1−
(
θ3θ9

θ1θ8

)2

and ν =

(
θ2θ4

θ1θ5

)2
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and using the theta relations to obtain

1 + ν − µ =
θ2

2θ
2
4θ

2
8 + θ2

3θ
2
5θ

2
9

θ2
1θ

2
5θ

2
8

,

λ(λ− µ) =
θ2

2θ
2
3θ

2
7[θ2

1θ
2
6θ

2
8 + θ2

2θ
2
7θ

2
9 − θ2

3θ
2
6θ

2
9]

θ2
1θ

2
8[θ2

2θ
2
7 − θ2

3θ
2
6]2

=
θ2

0θ
2
2θ

2
3θ

4
7

p2
1θ

2
1θ

4
5θ

4
8

,

λ− ν − λµ+ λν =
θ2

2θ
2
3(θ2

4θ
2
6θ

2
8 + θ2

5θ
2
7θ

2
9)

θ2
1θ

2
5θ

2
8[θ2

2θ
2
7 − θ2

3θ
2
6]

=
θ2

2θ
2
3(θ2

4θ
2
6θ

2
8 + θ2

5θ
2
7θ

2
9)

p1θ2
1θ

4
5θ

4
8

(
=
θ2

0θ
2
2θ

2
3(θ4

7 − θ4
6)

p2
1 θ

2
1θ

4
5θ

4
8

)
,

√
(λ− 1)(λ− ν) =

√
θ2

2θ
2
3θ

2
6[θ2

1θ
2
5θ

2
7 + θ2

3θ
2
4θ

2
6 − θ2

2θ
2
4θ

2
7]

θ2
1θ

2
5[θ2

2θ
2
7 − θ2

3θ
2
6]2

=
θ0θ2θ3θ

2
6

p1θ1θ
2
5θ

2
8

,

√
ν(µ− 1)(µ− ν) =

√
θ2

2θ
2
3θ

2
4θ

2
9[θ2

2θ
2
4θ

2
8 + θ2

3θ
2
5θ

2
9 − θ2

1θ
2
5θ

2
8]

θ6
1θ

4
5θ

4
8

=
θ0θ2θ3θ

2
4θ

2
9

θ3
1θ

2
5θ

2
8

,

√
λ(λ− µ)(λ− ν)(λ− 1) =

√
θ4

2θ
4
3θ

2
6θ

2
7

θ4
1θ

2
5θ

2
8

(
[θ2

1θ
2
6θ

2
8 + θ2

2θ
2
7θ

2
9 − θ2

3θ
2
6θ

2
9][θ2

1θ
2
5θ

2
7 + θ2

3θ
2
4θ

2
6 − θ2

2θ
2
4θ

2
7]

[θ2
2θ

2
7 − θ2

3θ
2
6]4

)
=
θ2

0θ
2
2θ

2
3θ

2
6θ

2
7

p2
1θ

2
1θ

4
5θ

4
8

.

Splitting up the left hand side of (4.1) we have

f − b
a− b

=

√
(λ− µ)(λ− ν) +

√
λ(λ− µ)√

(λ− µ)(λ− ν)−
√
λ(λ− µ)

= 1 +
2λ(λ− µ) + 2

√
λ(λ− µ)(λ− ν)(λ− 1)

λµ− λν − λ+ ν

and hence by the above we have

f − b
a− b

= 1− 2θ2
0θ

4
7 + 2θ2

0θ
2
6θ

2
7

p1(θ2
4θ

2
6θ

2
8 + θ2

5θ
2
7θ

2
9)

=
[p1θ

2
5θ

2
9 − θ2

0θ
2
7]θ2

7 + p1θ
2
4θ

2
6θ

2
8 − θ2

0θ
4
7 − 2θ2

0θ
2
6θ

2
7

[p1θ2
5θ

2
7θ

2
9 + θ2

1θ
2
6θ

2
7] + [p1θ2

4θ
2
6θ

2
8 − θ2

1θ
2
6θ

2
7]

=
[p1θ

2
4θ

2
8 − θ2

1θ
2
7]θ2

6 − θ2
0θ

4
7 − 2θ2

0θ
2
6θ

2
7

θ2
0θ

4
7 − θ2

0θ
4
6

=
−θ4

6 − θ4
7 − 2θ2

6θ
2
7

θ4
7 − θ4

6

=
θ2

7 + θ2
6

θ2
7 − θ2

6

.
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For the other term we have

a− d
f − d

=
(1 + ν − µ)

√
(λ− 1)(λ− ν) +

√
ν(µ− 1)(µ− ν) + λ− ν − λµ+ λν

(µ− ν − 1)
√

(λ− 1)(λ− ν) +
√
ν(µ− 1)(µ− ν) + λ− ν − λµ+ λν

= 1 + 2
(1 + ν − µ)

√
(λ− 1)(λ− ν)

(µ− ν − 1)
√

(λ− 1)(λ− ν) +
√
ν(µ− 1)(µ− ν) + λ− ν − λµ+ λν

= 1 + 2
p1θ

2
6(θ2

2θ
2
4θ

2
8 + θ2

3θ
2
5θ

2
9)

p2
1θ

2
4θ

2
5θ

2
8θ

2
9 − p1(θ2

2θ
2
4θ

2
6θ

2
8 + θ2

3θ
2
5θ

2
6θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6)
.

Therefore combining everything together we get

(a− d)(f − b)
(a− b)(f − d)

=

(
1 + 2

p1θ
2
6(θ2

2θ
2
4θ

2
8 + θ2

3θ
2
5θ

2
9)

p2
1θ

2
4θ

2
5θ

2
8θ

2
9 − p1(θ2

2θ
2
4θ

2
6θ

2
8 + θ2

3θ
2
5θ

2
6θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6)

)(
θ2

7 + θ2
6

θ2
7 − θ2

6

)
= 1 + 2

θ2
6(p2

1θ
2
4θ

2
5θ

2
8θ

2
9 + p1(θ2

2θ
2
4θ

2
7θ

2
8 + θ2

3θ
2
5θ

2
7θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6))(

p2
1θ

2
4θ

2
5θ

2
8θ

2
9 − p1(θ2

2θ
2
4θ

2
6θ

2
8 + θ2

3θ
2
5θ

2
6θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6)
)

(θ2
7 − θ2

6)

= 1 + 2
Θ1

Θ2
,

where Θ1 and Θ2 denote the numerator and denominator in the expression respectively.

Now on the right hand side we have (where θi without the arguments is assumed to be

evaluated at (p1, p2, p3) for notational simplicity)

(
1−

(
θ3(p2

1, p
2
2, p

2
3)θ6(p2

1, p
2
2, p

2
3)

θ2(p2
1, p

2
2, p

2
3)θ7(p2

1, p
2
2, p

2
3)

)2
)−1

=
θ2(p2

1, p
2
2, p

2
3)2θ7(p2

1, p
2
2, p

2
3)2

p2
1θ5(p2

1, p
2
2, p

2
3)2θ8(p2

1, p
2
2, p

2
3)2

=
(θ0θ2 + θ1θ3)(θ2

0 + θ2
1 − θ2

2 − θ2
3)

(θ2
0 − θ2

1 − θ2
2 + θ2

3)(θ0θ2 − θ1θ3)

= 1 + 2
(θ0θ3 + θ1θ2)(θ0θ1 − θ2θ3)

(θ2
0 − θ2

1 − θ2
2 + θ2

3)(θ0θ2 − θ1θ3)

= 1 + 2
Θ3

Θ4
.

Therefore to complete the argument it amounts to showing that

Θ1Θ4 −Θ2Θ3 = 0

and we proceed as in Theorem 2.27 using Maple. However, here we aim to eliminate all θ2
4,

θ2
5, θ2

8 and θ2
9 using the formula

θ2
4θ

2
5 =

1

p2

(
θ2

0θ
2
3 − θ2

1θ
2
2

)
,
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which leaves us with a homogenous polynomial of degree 14 in the six remaining theta

functions with roughly 80 terms. Lowering the powers of θ6 and θ7 via

p2p3 θ
2
6θ

2
7 = θ2

0θ
2
1 − θ2

2θ
2
3 and p2p3

(
θ4

6 + θ4
7

)
= θ4

0 + θ4
1 − θ4

2 − θ4
3

gives a factorisation of the form

1

p2p3
F1(θ0, θ1, θ2, θ3, θ6, θ7)(p2p3 θ

2
6θ

2
7 − θ2

0θ
2
1 + θ2

2θ
2
3) ,

where F1 is a degree 10 polynomial with eight terms. But we know from the theta identities

that the second bracket vanishes and thus this proves (4.1).

For the left hand side of (4.2) we have

f − b
c− b

=
1

2

√
λ(λ− µ)(λ− ν)(λ− 1) + λ(λ− µ)

λ(λ− µ)
=

1

2

θ2
6 + θ2

7

θ2
7

and

c− d
f − d

=
(µ− ν − 1)

√
λ(λ− µ) +

√
ν(µ− 1)(µ− ν) + λ− ν − λµ+ λν

(µ− ν − 1)
√

(λ− 1)(λ− ν) +
√
ν(µ− 1)(µ− ν) + λ− ν − λµ+ λν

=
p2

1θ
2
4θ

2
5θ

2
8θ

2
9 − p1θ

2
7(θ2

2θ
2
4θ

2
8 + θ2

3θ
2
5θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6)

p2
1θ

2
4θ

2
5θ

2
8θ

2
9 − p1θ2

6(θ2
2θ

2
4θ

2
8 + θ2

3θ
2
5θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6)
.

The right hand side simplifies to

1−
(
θ3(p2

1, p
2
2, p

2
3)θ9(p2

1, p
2
2, p

2
3)

θ1(p2
1, p

2
2, p

2
3)θ8(p2

1, p
2
2, p

2
3)

)2

= −p
2
2θ4(p2

1, p
2
2, p

2
3)2θ7(p2

1, p
2
2, p

2
3)2

θ1(p2
1, p

2
2, p

2
3)2θ8(p2

1, p
2
2, p

2
3)2

= −(θ0θ3 − θ1θ2)(θ2
0 + θ2

1 − θ2
2 − θ2

3)

2(θ0θ1 + θ2θ3)(θ0θ2 − θ1θ3)
.

Doing the same computation on the difference after cross multiplying gives, once again, a

factorisation of the form

1

p2p3
F2(θ0, θ1, θ2, θ3, θ6, θ7)(p2p3θ

2
6θ

2
7 − θ2

0θ
2
1 + θ2

2θ
2
3)

which proves (4.2).
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Finally for (4.3) we have, on the left,

f − b
e− b

=
(µ− ν − 1)(

√
(λ− 1)(λ− ν) +

√
λ(λ− µ))

(µ− ν − 1)
√
λ(λ− µ) +

√
ν(µ− 1)(µ− ν)− λ+ ν + λµ− λν

= − p1(θ2
6 + θ2

7)(θ2
2θ

2
4θ

2
8 + θ2

3θ
2
5θ

2
9)

p2
1θ

2
4θ

2
5θ

2
8θ

2
9 − p1θ2

7(θ2
2θ

2
4θ

2
8 + θ2

3θ
2
5θ

2
9)− θ0θ1θ2θ3(θ4

7 − θ4
6)

and

e− d
f − d

=
2
√
ν(λ− 1)(λ− ν)

(µ− ν − 1)
√

(λ− 1)(λ− ν) +
√
ν(µ− 1)(µ− ν) + λ− ν − λµ+ λν

=
2p2

1θ
2
4θ

2
5θ

2
8θ

2
9

p2
1θ

2
4θ

2
5θ

2
8θ

2
9 − p1θ2

6(θ2
2θ

2
4θ

2
8 + θ2

3θ
2
5θ

2
9) + θ0θ1θ2θ3(θ4

7 − θ4
6)
.

And on the other hand we have(
θ2(p2

1, p
2
2, p

2
3)θ4(p2

1, p
2
2, p

2
3)

θ1(p2
1, p

2
2, p

2
3)θ5(p2

1, p
2
2, p

2
3)

)2

=
2(θ0θ2 + θ1θ3)(θ0θ3 − θ1θ2)

(θ0θ1 + θ2θ3)(θ2
0 − θ2

1 − θ2
2 + θ2

3)
.

Applying once again the same procedure yields a slightly different result:

2

p2
2p

2
3

(θ0θ2 + θ1θ3)(θ0θ3 − θ1θ2)F3(θ0, θ1, θ2, θ3)(p2p3(θ4
6 + θ2

7)− θ4
0 − θ4

1 + θ4
2 + θ4

3) ,

where F3 (only in four variables!) is a degree 12 polynomial with 12 terms. But once again

the last term vanishes and thus this concludes the proof.

4.5 Arithmetic in the Jacobian

The last part of our work requires explicit computations inside the Jacobian, therefore we

digress slightly here and describe the basic principles of arithmetic in the Jacobian following

[Lei05] and [MWZ96].

Adding points in the Jacobian is most simply done by considering the points as divisors.

Let X be a genus g hyperelliptic curve with a 2g+ 1 degree model y2 = f(x) with a unique

point at ∞. We say that a divisor D ∈ Div0(X) is semi-reduced if it is of the form

D =

∑
Pi∈C

miPi −

(∑
i

mi

)
∞


where we have mi ≥ 0 and Pi 6= ∞ for all i. Furthermore, if Pi is in the support of D,
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then the hyperelliptic involution Pi of the point does not lie in the support unless Pi is a

Weierstrass point, in which case mi = 1.

Proposition 4.16. For all D ∈ Div0(X), there exists a semi-reduced degree 0 divisor D′

such that D and D′ are linearly equivalent.

A proof can be found in Section 5 of [MWZ96]. If X has an even degree model of degree

2g+ 2, then there are two points at infinity, say∞1 and∞2. In this case there are multiple

treatments in the literature. One method is to allow ∞1 to be in the support of a semi-

reduced divisor (and∞2 remains as the distinguished point). Here instead we use a balanced

point at infinity given by

∞ =
1

2
(∞1 +∞2) .

The reason is to match the treatment used by Magma in the computational side of things

later. Mumford further simplified this problem by introducing a way to represent semi-

reduced divisors as a pair of polynomials. The following is Theorem 42 from [MWZ96]:

Theorem 4.17. Let

D =

 ∑
(xi,yi)∈C

mi(xi, yi)−

(∑
i

mi

)
∞


be a semi-reduced divisor over a hyperelliptic curve X. Let

A(x) =
∏
i

(x− xi)mi

and B(x) be the (unique) polynomial such that

(i) degB < degA,

(ii) B(xi) = yi for all i where mi 6= 0,

(iii) A(x) divides (B(x)2 − f(x))

Then D = gcd(Div(A(x),Div(B(x)− y)) and we write D = [A(x), B(x)].

The problem with working with semi-reduced divisors is that they are, in general, not unique

in their divisor classes. The solution is to define a subset of these divisors, called reduced

divisors, where

D =

∑
Pi∈C

miPi −

(∑
i

mi

)
∞


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with the sum of the mi’s at most the genus g of X.

Theorem 4.18. For all D ∈ Div0(C), there exists a unique reduced divisor D′ such that

D and D′ are linearly equivalent.

This is Theorem 47 from [MWZ96]. Therefore for each divisor class in the Jacobian

J(X) = Div0(X)/DivP (X), there exists a unique reduced divisor representative, which

is what we will work with from now on.

We quickly sketch in passing how these divisors look in genus 2. Since the order of the

points sum to at most 2, non-zero divisors are either of the form D = [(x1, y1) −∞] (i.e.

weight 1) or D′ = [(x1, y1) + (x2, y2) − 2∞] (i.e. weight 2). In the first case the Mumford

representation of D is simply [x− x1, y− y1] and in the latter case the representation of D′

is given by [(x − x1)(x − x2), f(x)], where f(x) is the equation of the straight line passing

through the two points.

The second advantage of employing these reduced divisors is for doing arithmetic inside

the Jacobian. We first describe the group law of the Jacobian, which should be seen as a

generalisation of the tangent and chord construction for elliptic curves.

Consider two generic divisors D = [P1 + P2 − 2∞] and D′ = [Q1 + Q2 − 2∞] for a curve

X defined by y2 = f(x). Then there exists a unique cubic (counted with multiplicity if any

of the four points coincides) that passes through the four points P1, P2, Q1 and Q2. Now

intersecting this cubic with f(x) gives two extra roots, say R1 and R2. Then define the sum

of D and D′ as the involution of these two points, that is,

D +D′ =
[
R1 +R2 − 2∞

]
.

Explicit formulae can be found in [Lei05]. If one works instead with Mumford represen-

tations, the following two algorithms, by Cantor and later generalised by Koblitz, give a

simple way to add divisors.
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Algorithm 4.19.

Input: Two reduced divisors D1 = [A1, B1] and D2 = [A2, B2].

Ouput: A semi-reduced divisor D = [A,B].

1. Compute polynomials d1, e1 and e2 using the Euclidean algorithm such that

d1 = gcd(A1, A2) = e1A1 + e2A2 .

2. Compute polynomials d, c1 and c2 such that

d = gcd(d1, B1 +B2) = c1d1 + c2(B1 +B2) .

3. Let s1 = c1e1, s2 = c1e2 and s3 = c2 such that

d = s1A1 + s2A2 + s3(B1 +B2) .

4. Then D1 +D2 = [A,B], where

A =
A1A2

d2
and B =

s1A1B2 + s2A2B1 + s3(B1B2 + f)

d
mod A .

The above algorithm outputs the sum of two divisors which need not be reduced (although

it is always semi-reduced). The second algorithm turns this into a reduced divisor.

Algorithm 4.20.

Input: A semi-reduced divisors D = [A,B].

Ouput: A reduced divisor D′ = [A′, B′].

1. Set

A′ =
f −B2

A
and B′ = −B mod A′ .

2. If degA′ > g then let A = A′, B = B′ and repeat step 1.

3. Normalise A′ such that its leading coefficient is 1.

4. Then D ∼ [A′, B′] .

In genus 2, the degree of the output A in Algorithm 4.19 is at most 4 whence it only takes

at most one iteration of Step 1 to reduce it to a reduced divisor. Proofs of these algorithms

can be found in [Kob89].
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4.6 An Overview of the Strategy

We now have all the necessary tools at our disposal to describe our strategy from the intro-

duction in more detail. Given a totally split curve X0 of genus 2 with Type B reduction, we

consider the Jacobian J0, and its uniformisation by a Schottky group Γ0. Using the Bost-

Mestre algorithm we obtain X1 which is isogenous to X0 and thus inducing a map on the

Jacobians J1 −→ J0 whose kernel is a (2, 2)-group. Theorem 4.15 shows that this Richelot

isogeny doubles the half periods of X0, suggesting that this is the right generalisation from

genus 1 that we should consider.

We pick an element in the kernel of g0, the map from J1 −→ J0, and lift it by the Richelot

isogeny to J2. After reordering the roots of X2, repeat the process to desired precision.

Then map this up to the uniformisation XΓn/Γn and then to (K×)2/HΓn , where we treat

the map φn as the degenerate map φ∞ for some sufficiently large n. From there we hope

to recover the periods qi’s (or equivalently the half-periods pi’s). The following diagram

summarises our strategy:

· · · −−−−→ (K×)2/Hn −−−−→ · · ·
f1−−−−→ (K×)2/H1

f0−−−−→ (K×)2/H0

φn

yo φ1

yo φ0

yo
· · · −−−−→ Jn −−−−→ · · · g1−−−−→ J1

g0−−−−→ J0x x x
Xn X1 X0

Given the equation of X0, the algorithm described in Section 4.3 gives us the equations of

all the successive curves Xi’s. Section 4.4 provides the framework to lift the divisors along

the chain of Jacobians Ji’s. Here we will devote the remaining of our efforts to lifting the

divisors only, but we will provide some insights at the end on how the maps φi’s should

look like and how one would go about inverting them.

4.7 Kummer Surfaces

One main requirement of the strategy is to verify that the maps fi’s are the identity maps.

We will get evidence for this by returning to the complex situation and studying the theory

of Kummer surfaces. We will also explain why the situation over C should also apply for

p-adic fields. Our investigation also led us to an alternative method to lift the Richelot

isogeny – by descending onto the Kummer surface and try to work with isogenous Kummer
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instead, and thus avoid directly pulling back along the gi’s which seems to be computa-

tionally difficult. This was not the method we employed ultimately, for reasons which will

become apparent, but nonetheless we include it for the reader’s interest.

We begin with a quick introduction to Kummer surfaces following [Gau07]. Note that theta

functions in this section are now the ones previously defined in Section 2.5, not the p-adic

ones in Section 4.3.1. Also, we work not only with theta constants here, and our notations

should hopefully be clear enough not to cause confusion. Fix Ω ∈ H2. Then the Kummer

surface associated to Ω, denoted K(Ω) or just K, is the image of the map ϕ : C2 −→ P3(C)

where

ϕ(z) = [θ0(2z) : θ3(2z) : θ2(2z) : θ1(2z)]

(note [Gau07] uses a different labelling of the theta functions). This map is well defined

since the four theta functions never vanish simultaneously. It is a quartic, irreducible nodal

surface of dimension 2 with a maximal possible number of 16 double points. It can also be

realised as the quotient of the Jacobian of a genus 2 hyperelliptic curve by the involution

(x 7→ −x), for example see Chapter 3 of [CF96].

It is also interesting to note that the map defining the Kummer surface only utilises θ0,

θ1, θ2 and θ3. Upon looking at the correspondence of p-adic theta functions in Proposition

4.13, one realises that their p-adic analogues do not involve any extra terms unlike the rest

of the theta functions. This gives us extra confidence that if the maps fi’s are indeed the

identity maps over C, the same reasoning should carry over to the p-adic world.

Our interest here begins with the observation that a Kummer surface can be parametrised

by the theta constants

a = θ0(0,Ω) , b = θ3(0,Ω) , c = θ2(0,Ω) , d = θ1(0,Ω)

and

A = θ0(0, 2Ω) , B = θ5(0, 2Ω) , C = θ9(0, 2Ω) , D = θ7(0, 2Ω) .

Now let [x : y : z : t] ∈ K, that is,

x = λθ0(z,Ω) , y = λθ3(z,Ω) , z = λθ2(z,Ω) , t = λθ1(z,Ω)
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for some z ∈ C2 and λ ∈ C×. Then a projective equation of K is given by

(x4 + y4 + z4 + t4) + 2Exyzt− F (x2t2 + y2z2)−G(x2z2 + y2t2)−H(x2y2 + z2t2) = 0 ,

where

E = 256
abcdA2B2C2D2

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
,

F =
a4 − b4 − c4 + d4

(a2d2 − b2c2)
,

G =
a4 − b4 + c4 − d4

(a2c2 − b2d2)
,

H =
a4 + b4 − c4 − d4

(a2b2 − c2d2)
.

Now since it is possible to express A,B,C and D linearly in terms of a2, b2, c2 and d2 (for ex-

ample see Theorem 2.7), the equation of K(Ω) is essentially determined entirely by a, b, c and

d. We will gloss over the theory of doing arithmetic inside the Kummer surface; see [Gau07]

for algorithms for doubling and addition in the Kummer surface. Our focus is mainly in

passing from the Jacobian to the Kummer surface and maps between isogenous Kummer

surfaces. We first describe a method to lift points from the Kummer surface to the Jacobian.

Fix a period matrix Ω ∈ H2 associated to the hyperelliptic curve given by

y2 = x(x− 1)(x− λ)(x− µ)(x− ν) ,

where

λ =
θ0(0)2θ2(0)2

θ3(0)2θ1(0)2
, µ =

θ0(0)2θ5(0)2

θ3(0)2θ4(0)2
and ν =

θ0(0)2θ5(0)2

θ3(0)2θ4(0)2

(note that the notation varies slightly from that in Chapter 2 – all theta functions without

the second argument are evaluated at Ω). Compute all the theta constants θi(0). The 16

two-torsion points on C2/(Z2 + ΩZ2) are mapped to 16 nodes on K(Ω). Since the Kummer

surface is the quotient of the Jacobian by the involution (x 7→ −x), these are the only points

with unique preimages in the Jacobian.
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Using the above model for the Kummer surface, these 16 nodes are precisely

(a, b, c, d) , (a, b,−c,−d) , (a,−b, c,−d) , (a,−b,−c, d) ,

(b, a, d, c) , (b, a,−d,−c) , (b,−a, d,−c) , (b,−a,−d, c) ,

(c, d, a, b) , (c, d,−a,−b) , (c,−d, a,−b) , (c,−d, a,−b) ,

(d, c, b, a) , (d, c,−b,−a) , (d,−c, b,−a) , (d,−c, b,−a) .

For the next part we require the six odd theta functions in genus 2 which we omitted in

Section 2.5; we briefly define them here without giving their series expansions:

θ10(z,Ω) = θ

[
0 1

0 1

]
(Ω) , θ11(z,Ω) = θ

[
0 1

1 1

]
(Ω) ,

θ12(z,Ω) = θ

[
1 0

1 0

]
(Ω) , θ13(z,Ω) = θ

[
1 1

1 0

]
(Ω) ,

θ14(z,Ω) = θ

[
1 0

1 1

]
(Ω) , θ15(z,Ω) = θ

[
1 1

0 1

]
(Ω) .

Now let P = (x, y, z, t) ∈ K be a point that is not one of the above nodes. We will compute

a pair of polynomials [U, V ] which represents the point P inside the Jacobian of the curve.

Define

u0 = λ
θ5(0)2θ13(z)2

θ4(0)2θ15(z)2
and u1 = (λ− 1)

θ7(0)2θ12(z)2

θ4(0)2θ15(z)2
− u0 − 1 ,

then U(x) = x2 + u1x + u0 is the first component of the Mumford representation. Since

V (x) is essentially the line going through the two points represented by the divisor, the

roots of U(x) give at most four V (x) (more precisely two pairs of opposite divisors) such

that the pair [U, V ] lies on the Jacobian. Now explicitly v2
0 is given by

v2
0 = −V0

θ13(z)2

θ15(z)6

(
V1θ9(z)2θ11(z)2 + V2θ8(z)2θ10(z)2+

V3

(
θ0(z)2θ2(z)2 + θ1(z)2θ3(z)2

)
− V4θ0(z)θ1(z)θ2(z)θ3(z)

)
,

107



CHAPTER 4. GENUS 2 CURVES OVER THE P -ADICS

where

V0 =
θ0(0)4θ2(0)4θ5(0)2

θ1(0)6θ3(0)6θ4(0)6
,

V1 = θ2(0)2θ3(0)2θ8(0)4 ,

V2 = θ0(0)2θ1(0)2θ9(0)4 ,

V3 = 2θ0(0)2θ1(0)2θ2(0)2θ3(0)2 ,

V4 = 2θ0(0)θ1(0)θ2(0)θ3(0)
(
θ0(0)2θ2(0)2 + θ1(0)2θ3(0)2

)
.

Finally, it is easier to compute v1 from the fact that U(x) divides V (x)2−f(x). This means

that given a point P ∈ K(Ω), one is only able to compute a divisor [U, V ] up to a sign

choice (from the square root of v2
0). This is to be expected, since the Jacobian is a degree 2

cover of the Kummer surface. Note that it is possible, in very few exceptional cases, for the

map to be undefined (if the theta constants or θ15(z) vanish) but this almost never happens.

Recall the Richelot isogeny between the Jacobian of two isogenous hyperelliptic curves of

genus 2. We now study how this map translates onto the Kummer surfaces.

We first consider two hyperelliptic curves, X1 and X2, which are isogenous curves related

via the arithmetic-geometric mean; then as seen in Theorem 2.27, their period matrices are

Ω and 2Ω respectively for some Ω ∈ H2. By starting with some z ∈ C2, one can map it to a

point in the Kummer surface K(Ω) via the theta functions, then further onto the Jacobian

by the map described in the previous section (technically one may bypass the Kummer

surface since the map from K(Ω) to J(X1) is defined by theta functions and simply takes

z as the argument). Denote this divisor D1 ∈ J(X1). By the dual Richelot isogeny φ̂, one

may push this point onto the Jacobian of X2.

Now define f1 : C2 −→ C2 simply by f1(z) = 2z and denote the corresponding divisor in

J(X2) by D2. We conjecture (with a lot of numerical evidence) that inside J(X2) one has

D2 ≡ φ̂(D1) ;

presumably one might prove this using theta identities as in Chapter 2.
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That is to say, we have the following diagram:

J(X1)
φ̂−−−−→ J(X2)x x

K(Ω) −−−−→ K(2Ω)xϕ xϕ
C2 f1−−−−→ C2

Next, consider the composite of φ with φ̂. We have also seen in Chapter 2 that

φ ◦ φ̂(D) = 2D

for all D ∈ J(X1). Therefore it follows immediately that the map f2 in the following

diagram must be the identity map on C2:

J(X1)
φ̂−−−−→ J(X2)

φ−−−−→ J(X1)x x x
K(Ω) −−−−→ K(2Ω)

g−−−−→ K(Ω)xϕ xϕ xϕ
C2 −−−−→

f1
C2 −−−−→

f2
C2

We should pause here and stress the importance of this observation – assuming our con-

jecture that the diagram above commutes. It is in line with the diagram in genus 1 (see

Section 3.2 or the beginning of this chapter) in the sense that the maps between K
∗
/q2nZ

and K
∗
/q2n−1Z were induced by the identity maps. This gives more confidence that our

strategy is the right method in genus 2.

The final map we are interested in is the map g between the two isogenous Kummer surfaces.

By definition we have

g([θ0(z, 2Ω) : θ3(z, 2Ω) : θ2(z, 2Ω) : θ1(z, 2Ω)]) = [θ0(z,Ω) : θ3(z,Ω) : θ2(z,Ω) : θ1(z,Ω)]

and therefore an algebraic equation for g can be computed using the various well-known

theta identities. More explicitly, by using the Frobenius theta formula one may obtain four

linear equations involving only θi(z,Ω) on the left and θi(z, 2Ω)2 on the right (and where

109



CHAPTER 4. GENUS 2 CURVES OVER THE P -ADICS

all the coefficients are theta constants). This gives the following matrix equation

M


θ0(z,Ω)

θ3(z,Ω)

θ2(z,Ω)

θ1(z,Ω)

 = M


θ0(z, 2Ω)2

θ3(z, 2Ω)2

θ2(z, 2Ω)2

θ1(z, 2Ω)2

 ,

where the matrices are given by

M =
1

4


θ0(Ω) θ3(Ω) θ2(Ω) θ1(Ω)

θ0(Ω) θ3(Ω) −θ2(Ω) −θ1(Ω)

θ0(Ω) −θ3(Ω) θ2(Ω) −θ1(Ω)

θ0(Ω) −θ3(Ω) −θ2(Ω) θ1(Ω)


and

M =



1 0 0 0

− θ7(2Ω)2θ9(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4
− θ6(2Ω)2θ8(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

θ7(2Ω)2θ8(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

θ6(2Ω)2θ9(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

− θ5(2Ω)2θ7(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

θ4(2Ω)2θ7(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4
− θ4(2Ω)2θ6(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

θ5(2Ω)2θ6(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

− θ5(2Ω)2θ9(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

θ4(2Ω)2θ9(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4

θ5(2Ω)2θ8(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4
− θ4(2Ω)2θ8(2Ω)2

θ5(2Ω)4 − θ6(2Ω)4


.

These are all theta constants evaluated at z = 0. Therefore to go between K(2Ω) and K(Ω)

(or vice versa) one may compute the inverses of the matrices M or M as needed. The 4-to-1

nature of the Richelot isogeny is reflected in the choices of square roots.

The computations involved are relatively simple and can be iterated easily. However, the

obvious downfall of this is that it relies on the theta constants (which themselves depend on

Ω). It might be possible, for example as in [CF96], to use a different model of the Kummer

surface that avoids these theta constants. Using the language of tropes, [CF96] is able to

write the Kummer surface as

K = Q2 − ρL1L2L3L4 ,

where K is a quartic form, Q is a quadratic form, Li’s are linear terms and ρ is a rational

number. The isogenous Kummer surface has a similar form and the two surfaces are con-

nected by a system of equations with coefficients from the defining equations of the Richelot
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isogeny. However, there are still details missing and some calculations, as the authors noted,

are fairly involved. As such we will not pursue this thought any further.

4.8 Lifting the Richelot Isogeny

If φ denotes the Richelot isogeny and φ̂ its dual, then we know that φ ◦ φ̂ = [2] on J(X).

So if we want to solve the equation

φ([(u1, v1) + (u2, v2)]) = [(x1, y1) + (x2, y2)]

one could first ‘half’ the divisor on the right hand side before applying φ̂. The problem of

halving a divisor D (i.e. finding D2 such that D = 2D2) has been previously studied in

[MPT15], where they called it bisection of D. Note that although they work in finite fields

it is clear that the equations translate to any field such as C or Qp.

It is of course also possible to first apply the dual isogeny before halving it. Computation-

ally both methods are similar in terms of complexity and feasibility, but as we will see,

halving a divisor yeilds 16 answers in general and one then has to deduce which four are

the preimages we want. In halving the divisor first, these 16 bisections are then mapped

onto only four preimages by the 4-to-1 nature of the Richelot isogeny.

The idea is to ‘dereduce’ a divisor by reversing Cantor’s addition algorithm (Algorithm

4.19 and 4.20), that is, first find a divisor that reduces to the original divisor. Suppose

D = (U(x), V (x)) is the divisor we wish to half, given in Mumford representation. If

D′ = (U ′(x), V ′(x)) is a divisor that reduces to D, then we have

U(x) =
f(x)− V ′(x)2

U ′(x)
and V (x) = −V ′(x) mod U(x) .

Now if D1 = (U1(x), V1(x)) satisfies 2D1 = D, then one must have

U1(x)2 = U ′(x) ,

which combined with the fact that V ′(x) = (k1x+ k0)U(x)− V (x) gives

U(x)U ′(x) = f(x)− ((k1x+ k0)U(x)− V (x))2 .
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By comparing the coefficients, one obtains six equations in four unknowns. Attempting to

solve the system algebraically gives a degree 16 polynomial in k1, whose coefficients can be

found in [MPT15]. Using these values of k1, one can work out the corresponding values of

k0 and thus U1(x).

We now give a more detailed description on how to execute the algorithm in practice.

Assume for now that the bisection D1 has weight 2. This implies that we seek a dereduced

divisor U ′(x) of degree 4, say

U ′(x) = g4x
4 + g3x

3 + g2x
2 + g1x+ g0 .

By comparing f(x)− ((k1x+k0)U(x)−V (x))2 and U(x)U ′(x) one may choose the gi’s such

that their difference is a constant as follows (note that U(x) = x2−sx+p and V (x) = αx+β

for convenience):

g4 = f6 − k2
1 ,

g3 = f5 + sf6 + sk2
1 − 2k0k1 ,

g2 = f4 + sf5 + (s2 − p)f6 + 2sk0k1 − pk2
1 + 2αk1 − k2

0 ,

g1 = f3 + sf4 + (s2 − p)f5 + (s3 − 2ps)f6 + sk2
0 − 2pk0k1 + 2(βk1 + αk0) ,

g0 = f2 + sf3 + (s2 − p)f4 + (s3 − 2ps)f5 + (s4 − 3ps2 + p2)f6 − pk2
0 + 2βk0 − α2 .

Next, by equating U ′(x) = U1(x)2 (after normalising U ′(x)) one immediately gets

x4 +
g3

g4
x3 +

g2

g4
x2 +

g1

g4
x+

g0

g4
= x4 + 2u1x

3 + (2u0 + u2
1)x2 + 2u1u0x+ u2

0

and hence one rescales U ′(x) to obtain

u1 =
g3

2g4
and u0 =

g2 − g4u
2
1

2g4
.

Substituting these into the linear and constant terms gives two bivariate polynomials

s1(k0, k1) and s2(k0, k1) with

s1 = 8

(
g1

g4
− 2u1u0

)
(k2

1 − f6)3 and s2 = 64

(
g0

g4
− u2

0

)
(k2

1 − f6)4 ,

where the denominators are cleared. By construction these two polynomials share a non-

constant factor. Hence taking the resultant (i.e. the determinant of the 16 × 16 Sylvester
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matrix) of s1 and s2 with respect to k0 gives a degree 32 polynomial in k1. In fact this poly-

nomial has a factor of (k2
1 − f6)8, so in reality we are working with a degree 16 polynomial.

Using these value of k1 one then computes gcd(s1, s0), whose roots are the value of k0 we

seek. Finally this gives the values of the gi’s and hence the ui’s.

Over an algebraically closed field this degree 16 resultant yields 16 roots. If these roots

are distinct then each value corresponds to a distinct divisor. If the resultant has repeated

roots, then the degree of the gcd (and hence the number of solutions of k0) is equal to the

multiplicity of that particular k1. Since the Richelot isogeny is 4-to-1, these 16 divisors map

to only four distinct divisors on the dual, which differ by the kernel of the isogeny.

Over non-algebraically closed field such as Fp or Qp, such bisection is not always possi-

ble, and it becomes an interesting question to ask how many bisections should one expect

without extending the field. This has previously been studied and we quote Theorem 1 in

[MPT15], which states that for curves we are interested in (that is, with Type B reduction),

then one should only expect 4 bisections over Fp.

In practice computing the resultant is easy up to certain precision such as modulo π20. To

compute its roots one can first solve the equation modulo π before Hensel lifting them to

the desired precision. Note that we assumed two things in the above: that the bisectee D

and bisection D1 are both of weight 2. If D is of weight 1 (that is, U(x) = x − u is linear

and V (x) = v + ax3 − au3 with (u, v) ∈ X and a2 = f6), the same method works but the

coefficients of the gi’s change as follows:

g4 = f5 + 2ak1 ,

g3 = f4 + uf5 − k2
1 + 2ak0 ,

g2 = f3 + uf4 + u2f5 + 2u3f6 + uk2
1 − 2k0k1 − 2av ,

g1 = f2 + uf3 + u2f4 + u3f5 + 2u4f6 + 2uk0k1 + 2vk1 − k2
0 − 2ak1u

3 − 2auv ,

g0 = f1 + uf2 + u2f3 + u3f4 + u4f5 + 2u5f6 + uk2
0 + 2vk0 − 2ak0u

3 − 2au2v .

The ui’s remain the same, but the corresponding si’s become

s1 = 8

(
g1

g4
− 2u1u0

)
(f5 + 2ak1)3 and s2 = 64

(
g0

g4
− u2

0

)
(f5 + 2ak1)4 .

Finally, if the bisection D1 is in fact of weight 1 or 0, then D1 can be computed by simply
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extracting a square root. One simply has to check whether the polynomial U(x) is a square;

if it is then D1 is simply given by the square root of U(x).

We end this section with a slight digression. Since we are only expecting four lifts from the

isogeny, one might hope to obtain a quartic by explicitly lifting the map, which would (at

least one might hope theoretically) be much simpler than the degree 16 polynomial in the

bisection method. We try to mimic the bisection method but work directly on J(X).

Write y2 = f(x) for the equation of X and work directly with the divisor [(x1, y1)+(x2, y2)]

on X. Recall the explicit description of the Richelot isogeny given by

Fz(x) = P (x)U(z) +Q(x)V (z) = −R(x)W (z)− (x− z)2∆ .

Then the same method as the bisection means that we require a cubic M(x) such that

f −M2 = c(x− x1)(x− x2)Fz1(x)Fz2(x) ,

where M is again restricted to be of the form

M = (k1x+ k0)(x− x1)(x− x2)− (αx+ β)

with y = αx+β denoting the line joining the two points. Comparing coefficients once again

give several equations and can be solved. However, from a practical point of view pulling

back via bisection seems to give better results in shorter time since the equations involved

are much simpler. This is due to the complexity of the coefficients involved in the Richelot

isogeny, which makes the solving of the system of equations seemingly impossible in general.

4.9 An Explicit Example: X0(23)

Recall the following diagram:

· · · −−−−→ (K×)2/Hn −−−−→ · · ·
f1−−−−→ (K×)2/H1

f0−−−−→ (K×)2/H0

φn

yo φ1

yo φ0

yo
· · · −−−−→ Jn −−−−→ · · · g1−−−−→ J1

g0−−−−→ J0x x x
Xn X1 X0
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Our aim is to take a divisor in the kernel of g0, pull it back sufficiently far to Jn and then

push it to (K×)2/Hn by treating φn as the degenerate map at infinity. On the lowest row

we have Richelot-isogenous curves given by the Bost-Mestre AGM. We believe the maps

fi’s to be the identity maps on (K×)2 whereas the gi’s are the Richelot isogenies.

We first fix some notations before it turns into a notational nightmare. Denote the totally

split curves by Xi’s and let Ji’s be their corresponding Jacobians for i ≥ 0. For each i,

write the equation of Xi as

Xi : Tiy
2 = PiQiRi

with

Pi = (x− ai)(x− a′i), Qi = (x− bi)(x− b′i) and Ri = (x− ci)(x− c′i) .

Note that by Type B-ness we also have

ai ≡ a′i ≡ α mod π , bi ≡ b′i ≡ β mod π and ci ≡ c′i ≡ γ mod π ,

for three distinct α, β and γ in K. The constants Ti are given by, as in the real case,

Ti =
i∏

k=0

aibi(ei + fi − ci − di)− cidi(ei + fi − ai − bi) + eifi(ci + di − ai − bi)
(ci + di − ai − bi)(ei + fi − ai − bi)(ei + fi − ci − di)

for i ≥ 1 and T0 = 1 (note the numerator is the determinant ∆i of the matrix formed by

the coefficients of Pi, Qi and Ri). Define

Ui = Q′iRi −R′iQi = ε1(x− ui)(x− u′i)

Vi = R′iPi − P ′iRi = ε2(x− vi)(x− v′i)

Wi = P ′iQi −Q′iPi = ε3(x− wi)(x− w′i)

so that the roots of UiViWi form the next curve Xi+1.

We will demonstrate the algorithm with the modular curve X0(23) = X0 over Q23. Its

equation can be found in [Tei88] (due to Fricke):

y2 = x6 − 14x5 + 57x4 − 106x3 + 90x2 − 16x− 19 .
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Over F23 this splits as three pairs of roots

y2 ≡ (x− 18)2(x− 21)2(x− 14)2 mod 23

so that it is indeed totally split of Type B. The roots lie in the extension Q23(π), where π

is a root of x2 + 23, and Hensel’s lemma (or Magma) gives their values up to modulo π20:

a0 = 26196575459988 + 649618143166π ,

a′0 = 26196575459988− 649618143166π ,

b0 = 241232708350 ,

b′0 = 41266787476103 ,

c0 = 779959976562 + 33733491857π ,

c′0 = 779959976562− 33733491857π .

We now compute the chain of isogenous curves Xi’s obtained via the Bost-Mestre AGM

(note all computations are done to π20):

X1 : y2 = 14509968966141x6 + 13535473244274x5 − 4366138213591x4 − 383149059076x3

+ 4532268917237x2 + 10611945668949x+ 11501225120914

with roots
a1 = 29969023457189 , a′1 = 36816510168425 ,

b1 = 2703407962350 , b′1 = 41130794360331 ,

c1 = 37949541236172 , c′1 = 6221753140751 .

By our choice of the quadratic splitting it is immediately clear that these roots should lie

over Q23 itself. For example, the discriminant of W0 is given by

4Q0(a0)Q(b0) = 4(a0 − c0)(a0 − d0)(b0 − c0)(b0 − d0) ,

from which all terms containing π vanishes and the remaining part is a square in Q23 because

X0(23) is totally split. We already know that all the curves Xi’s are totally split of Type

B and their roots lie in the same p-adic discs as X0; indeed one checks that

a1 ≡ a′1 mod π2 , b1 ≡ b′1 mod π2 and c1 ≡ c′1 mod π2 .
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Here is the equation for X2 and its roots:

X2 : y2 = 15963560922167x6 + 8915045081136x5 + 5655951820305x4 + 7187214907216x3

+ 9290858991658x2 + 18116669010963x− 9470171526445 ,

a2 = 15634233532478 , a′2 = 38514512500429 ,

b2 = 41230679116716 , b′2 = 37806965241739 ,

c2 = 18164834403771 , c′2 = 30030908259387 ,

with

a1 ≡ a′1 mod π4 , b1 ≡ b′1 mod π4 and c1 ≡ c′1 mod π4 .

And finally the equation for X3 and its roots:

X3 : y2 = 13413380228472x6 + 9889873468227x5 + 11869333871359x4 + 19069176773695x3

− 9637185255233x2 + 2318445679270x− 6104023778492 ,

a3 = 6361117409629 , a′3 = 6361117409629 ,

b3 = 1577149810583 , b′3 = 36895404172314 ,

c3 = 23050359306739 , c′3 = 15552288918781 .

with

a1 ≡ a′1 mod π8 , b1 ≡ b′1 mod π8 and c1 ≡ c′1 mod π8 .

On the chain of Jacobians we wish to compute the kernel of g0 and lift it. Note that we

will switch between Mumford representations and actual divisors whenever suitable. First

consider the diagram:

· · · −−−−→ Jn −−−−→ · · ·
g2−−−−→ J2

g1−−−−→ J1
g0−−−−→ J0

· · · −−−−→
Dun
Dvn
Dwn

−−−−→ · · · −−−−→
Du2
Dv2
Dw2

−−−−→
Du1
Dv1
Dw1

−−−−→ O

Since the Richelot isogeny is a 4-to-1 map, it is clear that Du1, Dv1 and Dw1 (along with

the zero divisor) form the kernel of g0. But from the analysis on the isogeny we know that

ker(g0) =
{
O,
[
(u0, 0)− (u′0, 0)

]
,
[
(v0, 0)− (v′0, 0)

]
,
[
(w0, 0)− (w′0, 0)

]}
⊆ J1 ,

which is isomorphic to V4. In the Mumford representation, these are given by
[
x2 − sx+ p, 0

]
,

where s is the sum of the two roots and p their product; since both are Weierstrass points,
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the second component is simply 0. Hence we have

Du1 =
[
(u0, 0)− (u′0, 0)

]
=
[
x2 + 3772686830795x+ 4779300317558, 0

]
,

Dv1 =
[
(v0, 0)− (v′0, 0)

]
=
[
x2 + 5235734615709x− 20478600731137, 0

]
,

Dw1 =
[
(w0, 0)− (w′0, 0)

]
=
[
x2 + 1906593082874x+ 1490035220585, 0

]
.

To lift these further onto J2, we use the bisection method as previously described. That is,

we wish to compute

Du1 −→
1

2
Du1

ĝ1−−−→ Du2 .

We will not print the degree 16 polynomial here (i.e. the resultant of S1(k0, k1) and

S0(k0, k1)), which interested readers may find in last Appendix. These are its 16 roots

for k1 as computed by Magma:

k1 = ±19617456095355± 35192479892568π or

k1 = ±34557226984708± 39185555306827π or

k1 = ±36851057497971± 33137217351539π or

k1 = ±19478615780351± 14888363433824π .

This suggests some interesting structure for the polynomial itself, but we will not pursue

it here. Note that the signs for k1 do not matter – it simply causes k0 to change signs

which in turn causes a change of sign in the support of the bisection. This is neglected

as it is mapped onto the next Jacobian. That is to say, all four k1’s map onto the same

divisor on J2. This agrees with our knowledge on the Richelot isogeny that it is a 4-to-1 map.

Taking, for example,

k1 = 19617456095355 + 35192479892568π

yields

k0 = 34676842943569 + 1907454218760π .

This gives the corresponding bisection as

1

2
Du1 = [P1 + P2] = [U(x), V (x)] ,
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where

U(x) = x2 + (3755966400993 + 4235709965178π)x+ (2143338580354 + 5838461260230π) ,

V (x) = (964972109231 + 20754974766165π)x+ (5538877812120 + 34312681664209π) ,

P1 = (20843997281321 + 37869416972530π, 20700417432520 + 17537234561531π) ,

P2 = (24338480333321 + 40747895489590π, 13552216979968 + 12473332310983π) .

Before mapping P1 and P2 to J2, one first has to scale it by the square root of the x6

coefficient of X1 so that it lies on the curve y2 = P1Q1R1 (instead of T1y
2 = U0V0W0 as

it currently does). Now mapping the scaled points via the dual Richelot isogeny, and then

rescaling it back gives

ĝ1(P1) =
[
Q1 +Q′1

]
,

where

Q1 = (15588142880255 + 13614777038871π, 2026443975492 + 31565145522315π) ,

Q′1 = (3503913201810 + 37211337310263π, 1634554359251 + 10681002910033π) .

Similarly

ĝ1(P2) =
[
Q2 +Q′2

]
,

where

Q2 = (12952102174602 + 17872156829551π, 39129102600005 + 23905673565742π) ,

Q′2 = (34057150363331 + 36281579638141π, 36203107768550 + 25761328056179π) .

Combining everything we have lifted Du1 to the divisor

ĝ1(Du1) =
[
Q1 +Q′1 +Q2 +Q′2

]
=
[
x2 + 36833651358680x+ 5787826917764, 3303842326834x+ 16005171221467

]
.

Note that there are four preimages of Du1. Recall that while the Richelot isogeny doubles

the periods of X1, the map f1 between the uniformisations (K×)2/H2 −→ (K×)2/H1 is

given by the identity map. Therefore correspondingly we seek the preimage which is ‘con-

gruent’ to Du1 in the sense that the support of the two divisors are in the same p-adic discs.

Because of the roundabout way we constructed g−1
i , unfortunately we do not know for sure

that such a divisor always exists. However, it certainly does in genus 1 and in view of our
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numerical evidence, we are confident that this is always possible.

Theoretically the easiest way to obtain the other three preimages is to add the kernel of

g1 (which are again pairs of Weierstrass points) to the above divisor. But unfortunately

this causes severe loss of precision inside Magma, so instead we will take four values of

k1, one from each quadruplets, and repeat the above process. Omitting the intermediate

computations, here are the four preimages of Du1:

[
x2 + 36833651358680x+ 5787826917764, 3303842326834x+ 16005171221467

]
,[

x2 + 36833651358680x+ 5787826917764,−3303842326834x− 16005171221467
]
,[

x2 + 570508136719x+ 38814447073528, 39947032033123x+ 23933496908852
]
,[

x2 + 570508136719x+ 38814447073528,−39947032033123x− 23933496908852
]
.

One immediately observes that these four preimages are in fact two pairs of opposite divisors.

This is to be expected since the second component of Du1 is the zero polynomial; hence

the whole picture will be symmetric under reflection. Furthermore, it is worth noting that

although we have passed through to Q23(π) for the most part, the roots of the quadratics

in these preimages are all Q23-rational, though this is not necessarily true in general. In

this case the divisor we seek is either the third or the fourth one (which does not matter in

the end), since the roots of the quadratic x2 + 570508136719x+ 38814447073528 are given

by

x = 16547544929867 = 14 + 23 + 18× 232 + 5× 233 + 11× 234 + 14× 235 + · · · ,

x = 24308458147063 = 21 + 2× 23 + 3× 232 + 22× 234 + 11× 235 + 9× 236 · · · .

So we conclude that

Du2 =
[
x2 + 570508136719x+ 38814447073528, 39947032033123x+ 23933496908852

]
.

And similarly, the lifts of Dv1 and Dw1 are given by

Dv2 =
[
x2 + 28747176982521x+ 15742432005809, 23856327829181x+ 21330178054941

]
,

Dw2 =
[
x2 + 14257352574105x+ 16172605252402, 41179889101919x+ 9512547229701

]
.

Codes for all of the above can be found in Appendix C. We can, in principle, go further and

lift them to J3, but technology (or our lack of proficiency with it) seems to be a limiting
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factor, as we will discuss in the closing remarks. Nonetheless, lifting to J2 should yield the

periods accurate to π8, which is already further than it is done in [Tei88].

4.10 Conclusion and Future Work

Once again recall the following

· · · −−−−→ (K×)2/Hn −−−−→ · · ·
f1−−−−→ (K×)2/H1

f0−−−−→ (K×)2/H0

φn

yo φ1

yo φ0

yo
· · · −−−−→ Jn −−−−→ · · · g1−−−−→ J1

g0−−−−→ J0x x x
Xn X1 X0

The bottom two rows are now well understood and we have seen, through an explicit ex-

ample, how everything fits together in practice. The last remaining piece of the puzzle is

the vertical maps φi’s, which we will not cover in this thesis. Nonetheless, we can provide

some degree of speculation on how this map could be obtained (hopefully most of these

speculations will be proven in due time!).

We first return to genus 1, where the map between an elliptic curve and its Tate curve is

given explicitly in [Sil94] (or see Section 3.3). It is essentially derived from the Weierstrass

℘-function and one can attempt to interpret this in terms of theta functions. Consider the

odd theta function

θ1,1(z, τ) =
∑
n∈Z

eπi(n+ 1
2

)2τ+2πi(n+ 1
2

)(z+ 1
2

) .

Letting p = eπiτ (or τ =
1

πi
log p) and w = e2πiz, this becomes

θ1,1(z, τ) =
∑
n∈Z

eπi(n+ 1
2

)2( 1
πi

log p)+2πi(n+ 1
2

)(z+ 1
2

)

= ip
1
4w

1
2

∑
n∈Z

(−1)npn
2+nwn

= −ip
1
4w−

1
2

∑
j∈Z

(−1)jpj
2−jwj

= −ip
1
4w−

1
2 θT (p, w) ,

where we have relabelled j = n + 1. Note that the summation θT (p, w) is precisely the
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theta function given by Tate in [Tat97]. One useful property is the existence of a product

formula for the sum. More precisely, the Jacobi triple product gives, for q = p2,

∑
j∈Z

(−1)jq
j2−j

2 wj = (1− w)

∞∏
n=1

[
(1− qn)(1− qnw)(1− qnw−1)

]
.

The Weierstrass σ-function associated to a lattice Λ ⊆ C2 is defined by

σ(z,Λ) = e
1
2

( z
w

)2+ z
w z

∏
w∈Λ\0

(
1− z

w

)
,

which is related to ℘(z) by

℘(z) = − d2

dz2
log σ(z) .

If Λ is generated by 1 and τ , then one can show that the σ-function has the product

expansion

σ(z, τ) = − 1

2πi
e

1
2
ηz2−πiz(1− w)

∏
n≥1

(1− qnw)(1− qnw−1)

(1− qn)2
,

where η is the quasi-period associated to the period 1 ∈ Λ. Note that the product is simply

a normalised form of the product expansion of θT (p, w). Combining these, one can prove

the classical relations which the Weierstrass ℘-function and its derivative satisfy and the

map from K
∗
/qZ to the Tate curve. Furthermore, considering φn as n tends to infinity,

the periods q2n tend to 0. In the limit we have θT (0, w) = 1 − w, since the only terms of

θT (p, w) which do not vanish is when i = 0 and i = 1 (of course this can also be directly

derived from the product expansion of σ(z, τ)). This implies that

℘(z) = c− d2

dz2

(
log(1− e2πiz)

)
= c− 4π2

(
e−2πiz

(e−2πiz − 1)2

)
= c− 4π2 w

(1− w)2
.

This last expression resembles that of the one used in Chapter 1.6 of [Sil94] (after some

translation and rescaling). So this should provide insights into the overall strategy in genus

2. In genus 2, a fundamental theorem by Riemann states that there exists an odd theta

function which has a zero of order one along the pull-back of the image of X in J of the

Abel-Jacobi map to C. This is explicitly computed in [Mum84] (using the standard choice
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of sympletic basis), and for genus 2 this ‘special’ odd theta function 2 is given by

θ

[
1 1

0 1

]
(z1, z2)(Ω) .

Let wi = e2πizi and we wish to evaluate the theta function at the matrix

Ω =
1

πi

(
log p2p3 − log p3

− log p3 log p1p3

)
,

which came from the linkage between complex and p-adic theta functions. This gives

θ

[
1 1

0 1

]
(z1, z2)(Ω) =

∑
(n1,n2)∈Z2

(p2p3)(n1+ 1
2

)2(p3)−(n1+ 1
2

)(n2+ 1
2

)(p1p3)(n2+ 1
2

)2w
n1+ 1

2
1 w

n2+ 1
2

2 (−1)n2(−i)

= (−i)(w1w2)
1
2 (p1p2)

1
4

∑
(n1,n2)∈Z2

(−1)n2p
n2
2+n2

1 p
n1
2+n1

2 p
(n1−n2)2

3 wn1
1 wn2

2

= (−i)(w1w2)−
1
2 (p1p2)

1
4

∑
(i,j)∈Z2

(−1)jpj
2−j

1 pi
2−i

2 p
(i−j)2
3 wi1w

j
2 ,

= (−i)(w1w2)−
1
2 (p1p2)

1
4 θT (p1, p2, p3, w1, w2),

where i = n1 + 1 and j = n2 + 1. Note the similarly between this summation and Tate’s

theta function in genus 1. Now we can define the sigma function as before

σ(z1, z2) = e−
1
2

(z1 z2)A(z1 z2)Tθ

[
1 1

0 1

]
(z1, z2)(Ω) ,

where A is a matrix of quasi-periods (see [Gra88]). The Weierstrass ℘-functions are now

second partial derivatives of the sigma function

℘ij = − ∂2

∂zi∂zj
log σ(z1, z2) .

Suppose we have (z1, z2) = φ ((x1, y1), (x2, y2)), where φ is the Abel-Jacobi map from J(X)

to (K×)2/HΓ. Then Grant’s paper [Gra88] gives formulae (due to Baker) that link ℘ij(z1, z2)

to x1, x2, y1 and y2, for example the simplest of them being

℘1,2 = −1

4
x1x2 ,

℘2,2 =
1

4
(x1 + x2) .
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We should also note that all these formulae require the model of the curve to be quintic, so

work has to be done to apply them in our situation. In particular, we should pull back the

divisor along the Richelot isogeny as far as we need, and then make a change of coordinates

to a Rosenhain model.

Let us examine what happens as we apply the AGM to the curve. By lifting the divisor

in J(X), we will hopefully have 2 points, whose x-coordinates are the x1 and x2 we need.

Furthermore, the theta function tends to 1−w1w2 as n tends to infinity, so that the periods

pi tend to 0. Therefore if one is able to discern formulae for the vertical maps, even if only

in the degenerate case, it seems plausible that one can compute the values of the required

℘ij and hence allowing us to pull-back the vertical map.

There is also work to be done on the computational aspect of things. Due to Magma’s

weakness in symbolic manipulations, parts of the computation on X0(23) had to be done

with another software such as Pari, Maple or Sage. On the other hand, none of these

softwares are as capable in solving equations over Q23(π) as Magma. As a result we were

forced to compromise in using both – which means that we do not have a complete function,

as in the AGM over C, that takes a curve and outputs the lifts of the zero divisor. Finally,

precision seems to be an issue if one were to further lift the divisors to J3. Although we have

printed all results to π20, we had to set the precision of Q23(π) to π40 for Magma to work,

and the roots of X3 are too close together; we would have had to increase the precision a

lot further for Magma to recognise it as a hyperelliptic curve. So after all the theoretical

grounds are laid, there is certainly work to be done on improving this algorithm in practice.
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Computing Periods for Genus 2

Curves over C (Magma)

The following code computes the period matrices (both the full and the Riemann form)

of a complex genus 2 hyperelliptic curve in Magma (a similar programme was also written

for Maple). We note that both Magma and Maple take different approaches in computing

period integrals and experiementation shows that this runs faster than both programs (es-

pecially to high precision).

CC<i> := ComplexField(30);

RR := RealField(30);

II := Integers();

P<x> := PolynomialRing(CC);

Pi := Pi(RealField(30));

acc := II!20;

rightchoice := function(u1,u2,v1,v2,w1,w2)

/*

Compute the right choice for AGM (Step 2 onwards).

Takes all 8 possible choices and computes the minimum distance.

*/

M := Matrix(P,8,3,[]);

d := Matrix(RR,8,1,[]);

c := 1;

M[1,1]:=(x-v1)*(x-w1); M[1,2]:=(x-w2)*(x-u1); M[1,3]:=(x-u2)*(x-v2);

M[2,1]:=(x-v1)*(x-w1); M[2,2]:=(x-w2)*(x-u2); M[2,3]:=(x-u1)*(x-v2);

M[3,1]:=(x-v1)*(x-w2); M[3,2]:=(x-w1)*(x-u1); M[3,3]:=(x-u2)*(x-v2);

M[4,1]:=(x-v1)*(x-w2); M[4,2]:=(x-w1)*(x-u2); M[4,3]:=(x-u1)*(x-v2);
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M[5,1]:=(x-v2)*(x-w1); M[5,2]:=(x-w2)*(x-u1); M[5,3]:=(x-u2)*(x-v1);

M[6,1]:=(x-v2)*(x-w1); M[6,2]:=(x-w2)*(x-u2); M[6,3]:=(x-u1)*(x-v1);

M[7,1]:=(x-v2)*(x-w2); M[7,2]:=(x-w1)*(x-u1); M[7,3]:=(x-u2)*(x-v1);

M[8,1]:=(x-v2)*(x-w2); M[8,2]:=(x-w1)*(x-u2); M[8,3]:=(x-u1)*(x-v1);

for i in [1..8] do

d[i,1]:=&+[Abs(Roots(M[i][j])[1][1]-Roots(M[i][j])[2][1]):j in{1..3}];

if d[i,1] lt d[c,1] then

c := i;

end if;

end for;

return M[c,1],M[c,2],M[c,3];

end function;

AGM := function(a,b,c,d,e,f);

/*

Takes 6 complex numbers and computes their arithmetic-geometric mean

according to Bost-Mestre’s algorithm. Requires the ’rightchoice’ function.

It iterates until the desired precision and then iterates once more for

safety measure. This implements Algorithm 2.16.

*/

coeff := [a,b,c,d,e,f];

T := CC!1;

P := (x-coeff[1])*(x-coeff[2]);

Q := (x-coeff[3])*(x-coeff[4]);

R := (x-coeff[5])*(x-coeff[6]);

err := 1;

ex := 0;

while Abs(err) ge 10^(-acc/2) or ex le 2 do

U := Derivative(Q)*R-Q*Derivative(R);

V := Derivative(R)*P-R*Derivative(P);

W := Derivative(P)*Q-P*Derivative(Q);

M := Matrix(CC,3,3,

[1,Coefficients(P)[2],Coefficients(P)[1],

1,Coefficients(Q)[2],Coefficients(Q)[1],

1,Coefficients(R)[2],Coefficients(R)[1]]);

Delta := Determinant(M);

t := 2*Sqrt(-Delta/Coefficients(U*V*W)[7]);

T := T*t;

u := [Roots(U)[1][1], Roots(U)[2][1]];

v := [Roots(V)[1][1], Roots(V)[2][1]];

w := [Roots(W)[1][1], Roots(W)[2][1]];

P, Q, R, err := rightchoice(u[1],u[2],v[1],v[2],w[1],w[2]);

if Abs(err) le 10^(-acc/2) then ex := ex+1; end if;

end while;
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z:=Sort([[Re(u[1]),Im(u[1])],[Re(u[2]),Im(u[2])],[Re(v[1]),Im(v[1])],

[Re(v[2]),Im(v[2])],[Re(w[1]),Im(w[1])],[Re(w[2]),Im(w[2])]]);

return z[1,1]+z[1,2]*i,z[3,1]+z[3,2]*i,z[5,1]+z[5,2]*i,T;

end function;
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PeriodMatrix := function(a,b,c,d,e,f)

/*

Take 6 distinct complex numbers (a,b,c,d,e,f) and returns the period matrix

of the hyperelliptic curve defined by $y^2=(x-a)(x-b)(x-c)(x-d)(x-e)(x-f)$.

This implements Algorithm 2.18.

*/

coeff := [a,b,c,d,e,f];

M := Matrix(CC,2,6,[]);

bpoint := Sort([[Re(coeff[i]),i]:i in {1..6}])[1];

mindis := 0.4*Min([Abs(coeff[i]-coeff[II!bpoint[2]]):

i in {1..6} diff {II!bpoint[2]}]);

for i in [1..6] do

M[1][i] := Arg(coeff[i]-coeff[II!bpoint[2]]+mindis);

M[2][i] := Abs(coeff[i]-coeff[II!bpoint[2]]+mindis);

end for;

sorted:=Sort([[RR!M[1][i],RR!M[2][i],i]:i in {1..6}]);

/*

This arranges the six initial roots by choosing the left-most point as

its basepoint. The roots are then arranged first by argument with

respect to the basepoint, then by distance. This method is taken

from Maple.

*/

coeff := [coeff[II!sorted[i,3]]:i in {1..6}];

AGM1,AGM2,AGM3,T := AGM(coeff[1],coeff[2],coeff[3],coeff[4],coeff[5],coeff[6]);

A := Matrix(CC,3,2,[

Pi*T*i/((AGM2-AGM1)*(AGM3-AGM1)),

Pi*T*AGM1*i/((AGM2-AGM1)*(AGM3-AGM1)),

Pi*T*i/((AGM2-AGM1)*(AGM3-AGM2)),

Pi*T*AGM2*i/((AGM2-AGM1)*(AGM3-AGM2)),

Pi*T*i/((AGM3-AGM2)*(AGM3-AGM1)),

Pi*T*AGM3*i/((AGM3-AGM1)*(AGM3-AGM2))]);

S := [[1,1,1],[1,-1,1],[1,1,-1],[1,-1,-1]];

n:=II!Sort([[Abs(&+[S[i,j]*A[j,1] : j in [1..3]]),i] : i in[1..4]])[1][2];

A := Matrix(CC,3,2,[

S[n,1]*A[1,1],S[n,1]*A[1,2],

S[n,2]*A[2,1],S[n,2]*A[2,2],

S[n,3]*A[3,1],S[n,3]*A[3,2]]);

/* Fixes the sign of the periods such that $A[1,i]-A[2,i]+A[3,i]=0$ */

AGM1,AGM2,AGM3,T := AGM(coeff[1],coeff[6],coeff[2],coeff[3],coeff[4],coeff[5]);

B := Matrix(CC,3,2,[

Pi*T*i/((AGM2-AGM1)*(AGM3-AGM1)),

Pi*T*AGM1*i/((AGM2-AGM1)*(AGM3-AGM1)),

Pi*T*i/((AGM2-AGM1)*(AGM3-AGM2)),

Pi*T*AGM2*i/((AGM2-AGM1)*(AGM3-AGM2)),
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Pi*T*i/((AGM3-AGM2)*(AGM3-AGM1)),

Pi*T*AGM3*i/((AGM3-AGM1)*(AGM3-AGM2))]);

/* Computes the Type B-periods */

S := [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]];

match := 0;

for i in S do

for j,k in [1..3] do

for n in [[-1,-1],[-1,1],[1,-1],[1,1]] do

C1 := Matrix(CC,2,2,[A[i[1],1],A[i[2],1],

A[i[1],2],A[i[2],2]]);

C2 := Matrix(CC,2,2,[

n[1]*B[j,1]+n[2]*B[k,1], n[2]*B[k,1],

n[1]*B[j,2]+n[2]*B[k,2], n[2]*B[k,2]]);

C := C1^-1*C2;

CIm := Matrix(CC,2,2,[Im(C[1,1]),Im(C[1,2]),

Im(C[2,1]),Im(C[2,2])]);

evalues := [i[1]: i in Eigenvalues(CIm)];

if Abs(C[1,2]-C[2,1]) lt 10^-acc

and RR!evalues[1] gt 10^-acc

and RR!evalues[2] gt 10^-acc then

bigperiodmatrix := Matrix(CC,2,4,[

C1[1][1],C1[1][2],C2[1][1],C2[1][2],

C1[2][1],C1[2][2],C2[2][1],C2[2][2]]);

smallperiodmatrix := C;

match := 1;

break;

end if;

end for;

if match eq 1 then break; end if;

end for;

if match eq 1 then break; end if;

end for;

/* By trial and error find the values in $B$ such that the resulting matrix is

Riemann */

return bigperiodmatrix, smallperiodmatrix;

end function;
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Computing Tiny Coleman

Integrals for Genus 1 Curves over

Qp (SAGE)

This takes an elliptic curve with split multiplicative reduction E, two points P,Q ∈ E

which lie in the same residue disc, and computes the tiny Coleman integration between the

two points. It is quadratically convergent, whereas the existing one in Sage is linear. This

implements Algorithm 3.11.

def p_adic_landen(self,P,Q):

# Takes a elliptic cuve E and two points $P,Q$ on $E$ in the same disc

# and returns the constant $u$ (which depends only on $E$) and the preimages

# of $P$ & $Q$ on the Tate curve $E_q$, $phi_p$ & $phi_q$. The (tiny) Coleman

# integral from $P$ to $Q$ is then given by $u*(log(phi_q/phi_p))$.

# This implements Algorithm 3.11.

prec = self.base().precision_cap()

a2 = self.hyperelliptic_polynomials()[0].list()[2]

E1 = K(self.weierstrass_points()[1][0].residue(prec-1).lift())

E2 = K(self.weierstrass_points()[2][0].residue(prec-1).lift())

E3 = K(self.weierstrass_points()[3][0].residue(prec-1).lift())

if ((E2-E1)/(E3-E1)).residue(1)==1:

e1,e2,e3 = E1,E2,E3

elif ((E1-E2)/(E3-E2)).residue(1)==1:

e1,e2,e3 = E2,E1,E3

elif ((E1-E3)/(E2-E3)).residue(1)==1:

e1,e2,e3 = E3,E1,E2

else:
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raise ValueError, "E does not have split multiplicative reduction."

# Checks that $E$ has split multiplicative reduction.

x_p0, y_p0 = P[0], P[1]

x_q0, y_q0 = Q[0], Q[1]

A0 = e2-e1

B0 = e3-e1

B1 = B0*((A0/B0).sqrt())

A1 = (A0+B0+2*B1)/4

x_p1 = (x_p0+(e1+a2)/2)*(1+(1-4*A1*(A1-B1)/(x_p0+(e1+a2)/2)^2).sqrt())/2

y_p1 = y_p0*(1-(A1*(A1-B1))/x_p1^2)^-1

x_q1 = (x_q0+(e1+a2)/2)*(1+(1-4*A1*(A1-B1)/(x_q0+(e1+a2)/2)^2).sqrt())/2

y_q1 = y_q0*(1-(A1*(A1-B1))/x_q1^2)^-1

while (A1-B1).valuation() < prec:

B2 = B1*(A1/B1).sqrt()

A2 = (A1+B1+2*B2)/4

x_p2 = x_p1*((1+K(1+(A1-B1)/x_p1).sqrt())/2)^2

y_p2 = y_p1*(1-(A1-B1)^2/(16*x_p2^2))^-1

x_q2 = x_q1*((1+K(1+(A1-B1)/x_q1).sqrt())/2)^2

y_q2 = y_q1*(1-(A1-B1)^2/(16*x_q2^2))^-1

A1, B1 = A2, B2

x_p1, y_p1 = x_p2, y_p2

x_q1, y_q1 = x_q2, y_q2

u = (1/(4*B1)).sqrt()

phi_p = (2*u*y_p2-x_p2)/(2*u*y_p2+x_p2)

phi_q = (2*u*y_q2-x_q2)/(2*u*y_q2+x_q2)

return u,phi_p,phi_q
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Lifting the Richelot Isogeny for

Genus 2 Curves over Qp [1]

(Magma)

The following codes takes a divisor on a genus 2 curve X0 over Qp and lifts it along a chain

of Richelot isogenies using Magma. Note that it is, as it stands now, not a program in

that one has to manually change parts of the code for it to function (it is currently taking

X0 = X0(23) and lifting the divisor [u1 + u2], the kernel of g0 in X1). Furthermore, as

Magma is not specialised in symbolic manipulations, a portion of this code has to be run

on Pari (or Maple); details of the Pari code used is in the last Appendix.

K := pAdicRing(23, 20);

L<x> := PolynomialRing(K); L<pi> := TotallyRamifiedExtension(K,x^2+23);

LL<x> := PolynomialRing(L);

//First Iteration (F=X_0=X_0(23) here)

F := x^6-14*x^5+57*x^4-106*x^3+90*x^2-16*x-19;

a := -11525234105850519623491923+1496917035269246740299029*pi;

b := -11525234105850519623491923-1496917035269246740299029*pi;

c := 23050468211701039246983857;

d := 8639268500624383842178795;

e := 592604133170413492574178500+1654994929966949220667834*pi;

f := 592604133170413492574178500-1654994929966949220667834*pi;

T := (a*b*(e+f-c-d)-c*d*(e+f-a-b)+e*f*(c+d-a-b))/((c+d-a-b)*(e+f-a-b)*(e+f-c-d));

P := (x-a)*(x-b);Q := (x-c)*(x-d);R := (x-e)*(x-f);

U := Derivative(Q)*R-Q*Derivative(R);

V := Derivative(R)*P-R*Derivative(P);
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W := Derivative(P)*Q-P*Derivative(Q);

u1 := Roots(U)[1][1]; u2 := Roots(U)[2][1];

v1 := Roots(V)[1][1]; v2 := Roots(V)[2][1];

w1 := Roots(W)[1][1]; w2 := Roots(W)[2][1];

FF := (x-u1)*(x-u2)*(x-v1)*(x-v2)*(x-w1)*(x-w2)/T;

//Second Iteration (FF=X_1, FFF=X_2)

a:=v2; b:=w1; c:=u2; d:=w2; e:=u1; f:=v1;

T := T*(a*b*(e+f-c-d)-c*d*(e+f-a-b)+e*f*(c+d-a-b))/((c+d-a-b)*(e+f-a-b)*(e+f-c-d));

P := (x-a)*(x-b);Q := (x-c)*(x-d);R := (x-e)*(x-f);

U := Derivative(Q)*R-Q*Derivative(R);

V := Derivative(R)*P-R*Derivative(P);

W := Derivative(P)*Q-P*Derivative(Q);

u1 := Roots(U)[1][1]; u2 := Roots(U)[2][1];

v1 := Roots(V)[1][1]; v2 := Roots(V)[2][1];

w1 := Roots(W)[1][1]; w2 := Roots(W)[2][1];

FFF := (x-u1)*(x-u2)*(x-v1)*(x-v2)*(x-w1)*(x-w2)/T;

Richelot := function(P)

/*

Richelot isogeny, takes a point $P$ on $FF$ and returns two points on $FFF$.

Note that technically both the input and output are points of the monic

version of $FF$ and $FFF$ respectively, so one would have to scale the

points before and after.

*/

if P[2] eq 0 then

P[2] := 1;

end if;

/*

If $P[2]=0$ then it is a Weierstrass point and maps to another Weierstrass

point. Hence it is safe to set $P[2]=0$ to avoid compute 0/0.

*/

phi_0 := (P[1]-a)*(P[1]-b)*(c+d-e-f)+(P[1]-c)*(P[1]-d)*(e+f-a-b);

phi_1 := -(P[1]-a)*(P[1]-b)*(c+d-e-f)*(u1+u2)-(P[1]-c)*(P[1]-d)*(e+f-a-b)*(v1+v2);

phi_2 := (P[1]-a)*(P[1]-b)*(c+d-e-f)*u1*u2+(P[1]-c)*(P[1]-d)*(e+f-a-b)*v1*v2;

z1_x := (-phi_1-Sqrt(L!(phi_1^2-4*phi_0*phi_2)))/(2*phi_0);

z1_y := (P[1]-a)*(P[1]-b)*(c+d-e-f)*(z1_x-u1)*(z1_x-u2)*(P[1]-z1_x)/P[2];

z2_x := (-phi_1+Sqrt(L!(phi_1^2-4*phi_0*phi_2)))/(2*phi_0);

z2_y := (P[1]-a)*(P[1]-b)*(c+d-e-f)*(z2_x-u1)*(z2_x-u2)*(P[1]-z2_x)/P[2];

return [z1_x,z1_y],[z2_x,z2_y];

end function;

DualRichelot := function(Q)

/*
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The dual isogeny, takes a point $Q$ in $FFF$ and returns two points on

$FF$. Once again the points have to be rescaled before and after. This

is not actually used below, but is included for completeness.

*/

if Q[2] eq 0 then

Q[2] := 1;

end if;

phi_0 := ((Q[1]-u1)*(Q[1]-u2)*(c+d-e-f)+(Q[1]-v1)*(Q[1]-v2)*(e+f-a-b));

phi_1 := (-(Q[1]-u1)*(Q[1]-u2)*(c+d-e-f)*(a+b)-(Q[1]-v1)*(Q[1]-v2)*(e+f-a-b)*(c+d));

phi_2 := ((Q[1]-u1)*(Q[1]-u2)*(c+d-e-f)*a*b+(Q[1]-v1)*(Q[1]-v2)*(e+f-a-b)*c*d);

z1_x := (-phi_1-Sqrt(L!(phi_1^2-4*phi_0*phi_2)))/(2*phi_0);

z1_y := (z1_x-a)*(z1_x-b)*(c+d-e-f)*(Q[1]-u1)*(Q[1]-u2)*(z1_x-Q[1])/(Q[2]);

z2_x := (-phi_1+Sqrt(L!(phi_1^2-4*phi_0*phi_2)))/(2*phi_0);

z2_y := (z2_x-a)*(z2_x-b)*(c+d-e-f)*(Q[1]-u1)*(Q[1]-u2)*(z2_x-Q[1])/(Q[2]);

return [z1_x,z1_y],[z2_x,z2_y];

end function;

//Bisecting Divisor

/*

This takes the divisor ([u1+u2] on $FF$ in this case) and computes the

preimage of the Richelot isogeny on $FFF$. Note that this part requires

some help from Pari or Maple. The degree 16 polynomial first has to be

computed in Pari/Maple before Magma can solve it over $Q_{23}(\pi)$.

The roots (i.e. values of $k1$) are then put back into Pari/Maple to

obtain the polynomials S1 and S0. Then Magma is able to compute the rest.

*/

for i := 1 to 16 do

Roots(1621845194928309890709834273*x^16+731601849150059361223515573*x^14+

100831930995692865446079048*x^12+1058613991007942209192572433*x^10+

659053148069036297721136278*x^8+692678393089642218813023342*x^6+

1227254938697977444679939316*x^4+416291789894674059233033700*x^2+

449229339659507583056463037)[i,1];

end for;

S1 := #Input from Pari/Maple#

S0 := #Input from Pari/Maple#

if #Roots(Gcd(S1,S0)) eq 0 then print("Lower precision"); end if;

L!Roots(Gcd(S1,S0))[1][1];

k0:= -17941281554531385703*pi - 1642411916650948342733;

k1:= 7171238387715271312855459004354*pi+24286784622717622225346255220993;

f6:=195608513282305175713895862395;

f5:=-424962183048752626904916200784;

f4:=409447650864544168422857967194;

f3:=-434788551464416289602879131169;
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f2:=-421976419914104625636084734691;

f1:=-333971947948636334014272446973;

f0:=361508596740887370132967316821;

f:=f6*x^6+f5*x^5+f4*x^4+f3*x^3+f2*x^2+f1*x+f0;

a:=0;b:=0;

s:=-952285979047593664384812;

p:=-267879165965281691699340;

/* f_i are coefficients of $FF$, $s$ and $p$ are sum and products

of $u1$ and $u2$ */

g4:=f6-k1^2;

g3:=s*f6+f5+k1^2*s-2*k0*k1;

g2:=(s^2-p)*f6+s*f5+f4+2*k0*k1*s-k1^2*p+2*a*k1-k0^2;

g1:=(s^3-2*p*s)*f6+(s^2-p)*f5+s*f4+f3+k0^2*s-2*k0*k1*p+2*b*k1+2*a*k0;

g0:=(s^4-3*p*s^2+p^2)*f6+(s^3-2*p*s)*f5+(s^2-p)*f4+s*f3+f2-k0^2*p+2*b*k0-a^2;

g:=g4*x^4+g3*x^3+g2*x^2+g1*x+g0;

u11:=L!(g3/(2*g4));

u10:=L!(((g2/g4)-u11^2)/2);

x1 := Roots(x^2+u11*x+u10)[1,1];

x2 := Roots(x^2+u11*x+u10)[2,1];

C := HyperellipticCurve(FF);

J := Jacobian(C);

P1 := Points(C,293373868206747480214176122)[1];

P2 := Points(C,-692572509041583714509503793)[1];

P3 := Points(C,x1)[1];

P4 := Points(C,x2)[1];

D:=P3-(-P4);P1-P2;D+D;

/*

$[P3+P4]$ is the bisection of $[P1+P2]$ ($=[u1+u2]$). One has to

manually check the signs of the $y$- coordinate of $P3$ and $P4$ to

make sure they are right.

*/

//Rescaling $P3$ & $P4$ so that the curve is monic

C := HyperellipticCurve(FFF);

J := Jacobian(C);

P3:=[L!P3[1],L!P3[2]];

P4:=[L!P4[1],L!P4[2]];

if Valuation(Evaluate(FF,P3[1])-P3[2]^2) le 20 then

print("Error: Check P3");

elif Valuation(Evaluate(FF,P4[1])-P4[2]^2) le 20 then

print("Error: Check P4"); end if;

P3[2]:=P3[2]/Sqrt(L!LeadingCoefficient(FF));

P4[2]:=P4[2]/Sqrt(L!LeadingCoefficient(FF));

if Valuation(Evaluate(FF/LeadingCoefficient(FF),P3[1])-P3[2]^2) le 20 then
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print("Error: Check P3");

elif Valuation(Evaluate(FF/LeadingCoefficient(FF),P4[1])-P4[2]^2) le 20 then

print("Error: Check P4"); end if;

//Applying Richelot to P3

Q1,Q2:=Richelot(P3);

Q1:=[L!Q1[1],L!Q1[2]*Sqrt(L!LeadingCoefficient(FF))];

Q2:=[L!Q2[1],L!Q2[2]*Sqrt(L!LeadingCoefficient(FF))];

if Valuation(Evaluate(FFF,Q1[1])-Q1[2]^2) le 20 then

print("Error: Check Q1");

elif Valuation(Evaluate(FFF,Q2[1])-Q2[2]^2) le 20 then

print("Error: Check Q2"); end if;

if Valuation(Q1[2]-Points(C,Q1[1])[1][2]) gt 20 then

Q1:=Points(C,Q1[1])[1];

elif Valuation(Q1[2]-Points(C,Q1[1])[2][2]) gt 20 then

Q1:=Points(C,Q1[1])[2];end if;

if Valuation(Q2[2]-Points(C,Q2[1])[1][2]) gt 20 then

Q2:=Points(C,Q2[1])[1];

elif Valuation(Q2[2]-Points(C,Q2[1])[2][2]) gt 20 then

Q2:=Points(C,Q2[1])[2];end if;

D1:=Q1-(-Q2);

//Applying Richelot to P4

Q3,Q4:=Richelot(P4);

Q3:=[L!Q3[1],L!Q3[2]*Sqrt(L!LeadingCoefficient(FF))];

Q4:=[L!Q4[1],L!Q4[2]*Sqrt(L!LeadingCoefficient(FF))];

if Valuation(Evaluate(FFF,Q3[1])-Q3[2]^2) le 20 then

print("Error: Check Q3");

elif Valuation(Evaluate(FFF,Q4[1])-Q4[2]^2) le 20 then

print("Error: Check Q4"); end if;

if Valuation(Q3[2]-Points(C,Q3[1])[1][2]) gt 20 then

Q3:=Points(C,Q3[1])[1];

elif Valuation(Q3[2]-Points(C,Q3[1])[2][2]) gt 20 then

Q3:=Points(C,Q3[1])[2];end if;

if Valuation(Q4[2]-Points(C,Q4[1])[1][2]) gt 20 then

Q4:=Points(C,Q4[1])[1];

elif Valuation(Q4[2]-Points(C,Q4[1])[2][2]) gt 20 then

Q4:=Points(C,Q4[1])[2];end if;

D2:=Q3-(-Q4);

print("");

D:=D1+D2;

136



APPENDIX C. LIFTING THE RICHELOT ISOGENY FOR GENUS 2 CURVES OVER
QP [1] (MAGMA)

Ker1:=Points(C,u1)[1]-Points(C,u2)[1];

Ker2:=Points(C,v1)[1]-Points(C,v2)[1];

Ker3:=Points(C,w1)[1]-Points(C,w2)[1];

u1;u2;

Roots(D[1]);

Roots((D+Ker1)[1]);

Roots((D+Ker2)[1]);

Roots((D+Ker3)[1]);

/*

This computes all four divisors by adding the kernel of the isogeny

to the first obtained answer. As mentioned in the paper this causes

severe loss of accuracy and therefore only the first divisor $D$

should be taken. One should take a different value of $k1$ and redo

the computation to obtain the other preimages.

*/
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Lifting the Richelot Isogeny for

Genus 2 Curves over Qp [2] (Pari)

These Pari codes fill in the missing gap in the previous section.

f6=195608513282305175713895862395;

f5=-424962183048752626904916200784;

f4=409447650864544168422857967194;

f3=-434788551464416289602879131169;

f2=-421976419914104625636084734691;

f1=-333971947948636334014272446973;

f0=361508596740887370132967316821;

a=0; b=0;

s=-952285979047593664384812;

p=-267879165965281691699340;

g4=f6-k1^2;

g3=s*f6+f5+k1^2*s-2*k0*k1;

g2=(s^2-p)*f6+s*f5+f4+2*k0*k1*s-k1^2*p+2*a*k1-k0^2;

g1=(s^3-2*p*s)*f6+(s^2-p)*f5+s*f4+f3+k0^2*s-2*k0*k1*p+2*b*k1+2*a*k0;

g0=(s^4-3*p*s^2+p^2)*f6+(s^3-2*p*s)*f5+(s^2-p)*f4+s*f3+f2-k0^2*p+2*b*k0-a^2;

u11=g3/(2*g4); u10=((g2/g4)-u11^2)/2;

s11=(g1/g4)-2*u10*u11; s10=(g0/g4)-u10^2;

S11=8*s11*(k1^2-f6)^3; S10=64*s10*(k1^2-f6)^4;

pol=polresultant(S10,S11,k0);

pol=pol/(k1^2-f6)^8;pol=pol/2^16; pol;

subst(S11, k1, 7171238387715271312855459004354*pi+24286784622717622225346255220993);

subst(%, k0, x)

subst(S10, k1, 7171238387715271312855459004354*pi+24286784622717622225346255220993);

subst(%, k0, x)

/* pol is the degree 16 polynomial, then S11 and S10 are the polynomials

needed in Magma */
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courbes de genre 1 et 2. Gazette des Mathématiciens, 38:36–64, 1988.

[Bre76] R. Brent. Fast multiple-precision evaluation of elementary functions. Journal of

the Association for Computing Machinery, 23:242–251, 1976.

[CF96] J. Cassels and E. Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of

Genus 2. Cambridge University Press, 1996.

[Cox84] D. Cox. The arithmetic-geometric mean of Gauss. L’Enseignement Mathema-

tique, 30:275–330, 1984.

[CS86] G. Cornell and J. Silverman. Arithmetic Geometry. Springer-Verlag New York

Inc., 1986.

[CT13] J. Cremona and T. Thongjunthug. The complex AGM, periods of elliptic curves

over C and complex elliptic logarithms. Journal of Number Theory, 133(8):2813–

2841, 2013.

139



BIBLIOGRAPHY

[DS00] F. Diamond and J. Shurman. A First Course in Modular Forms. Springer-Verlag

New York Inc., 2000.

[DvH99] B. Deconinck and M. van Hoeij. Computing Riemann matrices of algebraic

curves. 1999.

[FK80] H. Farkas and I. Kra. Riemann Surfaces. Springer-Verlag New York Inc., 1980.

[Gau07] P. Gaudry. Fast genus 2 arithmetic based on theta functions. Journal of Mathe-

matical Cryptology, 1:243–265, 2007.

[GM17] X. Guitart and M. Masdeu. Periods of modular GL2-type abelian

varieties and p-adic integration. Published online 1st March 2017

(https://doi.org/10.1080/10586458.2017.1284624), 2017.

[Got59] E. Gottschling. Explizite Bestimmung der randflaechen des Fundamentalbere-

iches der Modulgruppe zweiten Grade. Mathematische Annalen, 138:103–124,

1959.

[Gra88] D. Grant. A generalisation of Jacobi’s derivative formula to dimension two.

Journal für die reine und angewandte Mathematik, 392:125–136, 1988.

[GvdP80] L. Gerritzen and van der Put. Schottky Groups and Mumford Curves. Springer-

Verlag New York Inc, 1980.

[HM89] G. Henniart and J.-F. Mestre. Moyenne arithmético-géométrique p-adique.
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[Ser59] J. Serre. Groupes Algébriques et Corps de Classes. Hermann, Paris, 1959.

[Sie64] C. Siegel. Symplectic Geometry. Academic Press, New York and London, 1964.

[Sil86] J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag New York Inc.,

1986.

[Sil94] J. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Springer-

Verlag New York Inc., 1994.

[Smi05] B. Smith. Explicit endomorphisms and correspondences. PhD Thesis, University

of Sydney, 2005.

[SvS12] J. Spandaw and D. van Straten. Hyperelliptic integrals and generalised arith-

meticgeometric mean. The Ramanujan Journal, 28:61–78, 2012.

[Tat97] J. Tate. A review of non-archimedean elliptic functions. In J. Coates and S. T.

Yau, editors, Elliptic Curves, Modular Forms and Fermat’s Last Theorem, pages

310–332. International Press of Boston Inc, 1997.

[Tei88] J. Teitelbaum. p-adic periods of genus two Mumford-Schottky curves. Journal

für die reine und angewandte Mathematik, 385:117–151, 1988.

[Tho70] C. Thomae. Beitrag zur Bestimmung von θ(0, 0, ...0) durch die Klassenmoduln

algebraischer Funktionen. Journal für die reine und angewandte Mathematik,

71:201–222, 1870.

141



BIBLIOGRAPHY

[Wam06] P. Wamelen. Computing with the analytic Jacobian of a genus 2 curve. In

Discovering mathematics with Magma, pages 117–135. Springer-Verlag Berlin,

2006.

142


	Cover
	Thesis
	Abstract
	Contents
	Introduction
	1 The Arithmetic-Geometric Mean
	1.1 Gauss and the AGM
	1.2 Theta Functions
	1.3 AGM and Elliptic Functions
	1.4 Elliptic Curves over C and Towers of Isogeny
	1.5 Descending Landen Transformation

	2 Generalisation to Genus 2
	2.1 Hyperelliptic Curves and Their Jacobians
	2.2 Symplectic Matrices
	2.3 Theta Functions in Higher Genera
	2.4 Thomae's Formula
	2.5 Two Generalisations of the AGM
	2.5.1 The Four Variable AGM
	2.5.2 The Six Variable AGM

	2.6 Hyperelliptic Curves over C
	2.6.1 The Algorithm
	2.6.2 Proof of the Algorithm
	2.6.3 An Algebraic Interpretation


	3 Elliptic Curves over the p-adics
	3.1 Uniformisation Theory
	3.2 p-adic AGM
	3.3 Coleman Integration

	4 Genus 2 Curves over the p-adics
	4.1 Introduction
	4.2 p-adic Analysis
	4.2.1 Uniformisation Theory
	4.2.2 Automorphic Forms
	4.2.3 The Jacobian and Periods of p-adic Schottky Groups

	4.3 The Genus 2 p-adic AGM
	4.3.1 Riemann Theta Functions

	4.4 Period Doubling
	4.5 Arithmetic in the Jacobian
	4.6 An Overview of the Strategy
	4.7 Kummer Surfaces
	4.8 Lifting the Richelot Isogeny
	4.9 An Explicit Example: X0(23)
	4.10 Conclusion and Future Work

	Appendix A Computing Periods for Genus 2 Curves over C (Magma)
	Appendix B Computing Tiny Coleman Integrals for Genus 1 Curves over Qp (SAGE)
	Appendix C Lifting the Richelot Isogeny for Genus 2 Curves over Qp [1] (Magma)
	Appendix D Lifting the Richelot Isogeny for Genus 2 Curves over Qp [2] (Pari)
	Bibliography


