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Abstract

Recent trends in econometrics have led to a proliferation of statistical tools that lend them-

selves to data-driven evaluations of the housing market (Phillips et al., 2011, 2015; Bailey et al.,

2016). This thesis evaluates the suitability of existing statistical procedures in the identification

of explosive unit root processes, alongside the analysis of price diffusion in a time and cross-

sectionally dependent system. Having date-stamped three regional housing bubbles consistent

with the historical narrative, the predictive ability of macroeconomic and financial variables in

bubble formation is estimated.

Implementing the multi-step procedure proposed by Bailey et al. (2016), we estimate a het-

erogeneous dynamic spatial autoregressive model of the English housing market. The spatial

parameters yield unexpected results in contradiction to prevailing economic theories of spatial

dependence that remain unaddressed in the literature. To this end, we derive a unifying frame-

work that captures the endemically heterogeneous characteristics of house price spillovers with

joint treatment of common factors without loss of generality. The STARF model presents a

parsimonious representation of house price diffusion with directional analysis of spillovers and

identification of dominant units in the network. The derived spatial and system-wide diffusion

multipliers provide meaningful insights into how a perturbation in neighbourhood house price

inflation impacts a given district over a specified time horizon. The results reflect the London-

centric ripple effect as a dominant factor while core-periphery spillovers dominate in urbanised

areas. This thesis contributes a salient evaluation of housing dynamics and network effects

consistent with theories of rational bubbles, new economic geography and spatial dependence.
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PC by region . . . . . 156



Chapter 1

Introduction

Residential property possesses a variety of disparate, near incompatible characteristics that cul-

minate in a complex effect on the wider economy. It is both a durable consumption good,

distributing a service stream, and an asset effectuating capital accruals or losses (Beatty et al.,

2010; Muellbauer and Murphy, 2008). At the individual level, housing fulfils the basic necessity of

shelter (Abraham and Hendershott, 1996; Capozza et al., 2002; Meen, 2002; Otto, 2007; Abelson

et al., 2005), while concurrently functioning as a store of purchasing power (Zhu, 2005; Barker,

2005). The housing market itself is mired by high transaction costs, low turnover volumes and

complications arising from pricing a highly heterogenous good under a distinctly asymmetric

information setting. In the wake of the Global Financial Crisis (GFC), the deep and complex

interlinkages between housing market have become painfully apparent, as financial innovations

have fuelled contagion effects across geographical segments and asset classes (Bernanke et al.,

1996).

While global real estate markets have had a shared experience of increased volatility, the UK

presents a unique system of housing conditions. London house prices are consistently ranked

amongst the highest in the world, and remain sustained across the country1 (?). Real house

prices have increased at a rate unsurpassed by any other OECD country. In comparison to our

OECD counterparts, the UK economy is particularly affected by changes within the housing

market due to a steady increase over time in the value added of the real estate sector. This has

almost doubled since 1990 where the property sector contributed 6 percent of output2, compared
1Compared to more densely populated countries, a new house is 38% or 40% smaller in London than in

Germany or Netherlands respectively
2measured in terms of gross value added (GVA)
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CHAPTER 1. INTRODUCTION ix

to 12 percent in 2013.3 In light of this, the UK is considerably higher than the OECD and G7

average, accentuating the expanding role of housing in the UK economy4.

The recessionary wielding powers of the property market has firmly placed housing market

dynamics at the heart of the macroeconomic stability agenda in the the 21st century (Forni et al.,

2003). Recent trends in econometrics have led to a proliferation of statistical tools that lend

themselves to data driven evaluations of the housing market (Phillips et al., 2011, 2015; Bailey

et al., 2016). We are able to analyse the suitability of existing statistical procedures in gleaning

meaningful insights in practical applications. In doing this, we fill this lacuna for a unifying

framework able to capture the endemically heterogenous characteristics of house prices alongside

global impacts of macroeconomic factors without loss of generality. This thesis contributes a

salient evaluation of house price dynamics and network effects consistent with theories of rational

bubbles, the new economic geography and spatial dependence in the housing context.

1.1 Overview

1.1.1 Housing Bubbles

Historically, the housing market has played a primary role in financial crises, with housing booms

preceding sluggish economic growth. Chapter 2 contributes to understanding this mechanism by

evaluating the formation of bubbles in regional segments of the housing market between 1983(1)

to 2014(4). By contrasting the experience of prices with their fundamentals, we ascertain whether

explosive episodes are driven by fundamentals or speculative behaviour reconcilable with the

notion of an asset price bubble. We contribute to the existing literature by identifying periods

of exuberance in the regional housing market using a data driven approach. Common criticisms

of data driven methods pertain to failure to taking into consideration qualitative factors and

the economic context. We account for this by providing a in-depth historical analysis of the

identified periods. Furthermore, we contribute the first study to provide a robust analysis of the

role of financial and macroeconomic variables in predicting explosive trends in the UK housing

market, accounting for regional differences. To this end, the correlated random effects model is
3This value balloons further from 12 percent to 25 percent when sectors relating to the property market are

included; these are as finance, real estate and construction.
4See International Monetary Fund (2014) for a detailed account
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estimated using the Mundlak-Chamberlain correction to control for region specific heterogeneity.

While studies have considered changes in stock prices, interest rates and income (Muellbauer and

Cameron, 2006), the results highlight the predictive content of the unemployment rate across

regions that has not been evaluated in the existing literature.

The testing outcomes reveal two prominent bubbles materialise, firstly in the late eighties to

early nineties, followed by a greater peak in the noughties. In the first episode during the early

nineties, our findings indicate southern regions are typically the first to experience the advent

of explosive growth, before nearby regions successively sharing the same experience from the

mid nineties. The length of bubbles also tend to decrease as distance from the southern areas

increases, leading to Northern regions experiencing a shorter exuberant period. These episodes

are unmatched by explosive growth in fundamentals, indicating bubbles persisted across regions

during the late nineties to early noughties.

There is a decoupling of this spatial relationship during the GFC, where we find bubbles ma-

terialise across regions contemporaneously, lasting for two years on average. The results present

evidence of the ripple effect initially, however in recent periods there is a decoupling of this

pattern when considering how the first bubble transpires across regions compare to the second

bubble in the early 2000s episode. Unexpectedly, real house prices in Yorkshire first experiences

bubble behaviour in mid 2007, before being detected further north and further south over the

successive year. We note less evidence of the ripple effect perhaps due to more interconnectedness

between regional housing markets and credit conditions. The duration of exuberance is lower

than the preceding boom, with most regions failing to exceed two years in price and affordabil-

ity measures. Cross referencing these periods with historical events, we find the episodes are

explained by the macroeconomic context (Muellbauer and Murphy, 2008).

The unemployment rate is found to be a good predictor of regional bubbles across England,

particularly in Northern areas. We find the marginal effect in predicting exuberant episodes

is particularly weak in London. The findings indicate underlying structural differences across

regions with housing bubbles in the south driven less by economic factors (such as unemployment)

than in northern regions. In contrast to this, changes in disposable income have no power in

predicting exuberance in the price to earnings ratio, and an extremely low marginal impact in

predicting explosivity in prices. Our findings are consistent with Muellbauer and Cameron (2006)
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who also find that region specific income growth rates hold surprisingly little explanatory power

with respect to house prices. As expected, interest rates are found to be predictive of exuberant

episodes. We note that as the Bank of England official bank rate decreases, the probability of

exuberance in the housing market increases, both in reference to price and affordability measures.

These findings support concerns pertaining to monetary policy creating a chronically low interest

rate environment since the GFC, potentially instigating exuberance in the property market.

These concerns may be materialising given the detected bubble in the South West commencing

in 2014.

1.1.2 Spatio-Temporal Models of the Housing Market

Recent developments in panel data methods have precipitated substantial progress in charac-

terising and modelling cross-sectional dependence (CSD). It has become increasingly apparent

that panel data models ignoring CSD may suffer from biased and inconsistent estimates (Chudik

et al., 2011; Pace et al., 2000). Nonetheless, the majority of studies fail to account for local and

global forms of CSD (Rapach and Strauss, 2009; Gupta and Das, 2010; Kuethe and Pede, 2011).

Previous studies have often focused on the spatial effects (Whittle, 1954; Anselin, 1988; Kelejian

and Prucha, 1999; Lee, 2004) or common effects5.

The interdependence between cross sectional units in the housing literature is a widely recog-

nised (Can, 1990; Gillen et al., 2001; Basu and Thibodeau, 1998). Houses are often constructed

at the same time in a given area leading to commonalities in dwelling age, building materials,

and architectural features. Secondly, houses within the same area may capitalise on shared

amenities that are reflected in the property price. For example, proximity to public services

and accessibility benefits are common across the neighbourhood (Can, 1990). House prices are a

function of these characteristics and shared amenities, leading to house prices clustering across

geographical areas (Gillen et al., 2001). These relationships between cross-sectional units may

be characterised by spatial econometric models.

From a computational perspective, subregional house price data provides a rich environment

to evaluate the dynamics of the property market in detail (Brakman et al., 2009). Decisions

affecting residential property prices have the scope to be implemented at the district level, and
5See Hotelling (1933); Stone (1947); Bai (2003); Stock and Watson (2003)
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as such, a greater understanding of the effect an area has on nearby districts may precipitate a

more cohesive housing policy on aggregate. While some studies utilise regional data, few favour

the district level disaggregation applied in Chapters 3 and 4. The analysis put forward in this

thesis captures the heterogeneity within regions that is shown to be a prevalent feature across

both models. Local government plays a vital role in housing, local planning and building strategy

at the local authority district level. Delineating the housing market into districts, we are able

to capture whether the differences arising from administrative structures affect the transmission

of house price inflation between neighbourhoods. Some districts may be highly affected by

neighbourhood house price inflation, while others behave less interdependently. We summarise

the key findings from both estimation methods.

Estimation under Bailey et al. (2016) Model

Chapter 3 continues in the tradition of panel estimation under network dependence (Anselin,

1988; Elhorst, 2003; Baltagi, 2005; Anselin et al., 2008; Kapoor et al., 2007; Fingleton, 2008,

2010) with a focus on revealing the spatial structure of house prices diffusion in England. The

results confirm a factor structure exists. Estimation methods that do not explicitly account

for the factor structure may overstate spillover effects6. After accounting for common factor

regional and national effects, evidence of spatial dependence is found in two thirds of regions

indicating interdependencies between neighbourhoods. The results highlight both positive and

an unexpectedly high incidence of negative spillover effects.

We extend our analysis by deriving spill-in and spill-out effects following a partial derivative

decomposition of the impacts of persistence in house prices. This approach extends the analytical

framework put forward in BHP to allow for directional analysis of district level impacts on their

respective neighbours and vice versa. However, these measures also suffer from a high level of

negative values that are incompatible with theories of spatial spillover effects in the literature

pertaining to neighbourhood effects, migration and capital transfer and follower behaviour (Gill,

2012). In reference to the ripple effect hypothesis, our results indicate a more nuanced spatial

impact than the theory implies, where areas with higher levels of economic activity find stronger

spillover effects that are not unique to London areas but also districts surrounding cities such as
6Assuming factors are positively related to house price inflation.
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Nottingham and Sheffield.

The results indicate region or nation wide policies may serve to increase divergence in house

price inflation across districts, as clusters of areas are not only more susceptible to impacts of

house price growth in neighbouring areas, but also vary in terms of the impact having either

negative or positive long run impacts. As local government is able to control housing policy

at the district level, the findings suggest cities and transport networks play a key role in the

propagation of multiplier effects.

Estimation under STARF Model

Motivated by the unexpectedly negative spatial estimates derived from the procedure put forward

in Bailey et al. (2016), we derive a heterogeneous model of house prices in England using a novel

dynamic spatial panel model put forward by Shin (forthcoming). The STARF model presents a

parsimonious representation of house price diffusion with joint treatment of common factors and

spatial dependence.

The derived spatial and system wide diffusion multipliers provide meaningful insights into

how a perturbation in neighbourhood house price inflation impacts a given district over a given

time horizon. Our findings indicate rural areas experience stronger spatial dependence that

may be attributed to increased reliance on nearby urban areas for services and commodities.

Cumulative dynamic multipliers with respect to neighbourhood house price changes, we find

that more urban areas are characterised by faster rates of adjustment. This may be explained

by more individuals in densely populated areas serving to pass on information signals pertaining

to changes in neighbourhood house prices and developments in amenities between districts at

a more efficient rate compared to their rural counterparts. This may be explained by higher

levels of commuters travelling to urban areas and higher provision of services and commodities

in urban settlements. Lending from the network literature, we estimate in-degree and out-degree

measures for a directional analysis of house price spillovers. Ranking these out-degree effects we

identify periphery areas to economic centres have the most influence on neighbourhood house

price changes. The findings underscore preferences for convenience and low commuting times

may often be at odds to good quality air and landscapes.

In contrast to the ripple effect, we hypothesise periphery areas surrounding cities play a



CHAPTER 1. INTRODUCTION xiv

primary role in propagating spillover effects to the neighbouring regions, accordant with the

core-periphery and new economic geography framework (Berry, 1969; Krugman, 1997). The

importance of the physical characteristics of the periphery areas is integral in the formation of our

hypothesis, while the ripple effect is underpinned by urbanisation effects. The importance of these

geographic characteristics are consistent with ?Saiz (2010) who find areas facing geographical or

regulatory constraints7 experience low elasticities of supply which are in turn endogenous to price

growth. The areas that are able to provide both sets of attributes are found to be dominant units

in influencing house prices in a given area. The findings in this chapter confirm the importance of

proximity to economic centres in influencing house price inflation in nearby areas, aligning with

the findings of Fik et al. (2003). These findings may reflect the London-centric ripple effect as a

dominant factor while the core-periphery spillover effect would be dominant at higher levels of

urbanisation. Our findings may also reflect the time-varying nature of the house price inflation

spillover as we note the variation in the speed of adjustment between urban and rural areas.

1.2 Outline

The rest of the thesis is structured as follows. Chapter 2 identifies and dates-stamps exuberance

in regional housing markets during 1983(1) to 2014(4) using the econometric procedures devised

by Phillips et al. (2011, 2015). We identify two bubbles common across regions during the

mid nineties and noughties which are compatible with the historical narrative. Additionally, we

extend our analysis by considering the predictive ability of financial and macroeconomic variables

in anticipating explosive growth in the housing market. Estimating a correlated random effects

probit model, we identify a set of significant variables including unemployment as potential

predictors of exuberance in the housing market, that has previously been overlooked in the

literature. Chapter 3 constructs a spatio-temporal model of house price changes in England

following the BHP methodology. We derive spill-in and spill-out measures to provide a directional

analysis of spill over effects. While the results highlight the heterogenous nature of spatial

dependence across districts, the prevalence of negative spillover effects is unexpected. Given

theories of spatial dependence in the housing market predominantly endorse positive spillover
7The green belt is a prominent example of regulatory constraints.
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effects, the outcomes from this method are problematic. In response to this, Chapter 4 proposes a

spatio-temporal model with factors devised by Shin (forthcoming) which generates results in line

with the economic theories pertaining to spillover effects in the housing market. Furthermore,

we derive dynamic multipliers with respect to neighbourhood price changes and system wide

diffusion multipliers. The results highlight core-periphery relationships that are analysed in the

urban/rural context. Finally, Chapter 5 outlines the limitations of the research, alongside policy

recommendations and potential venues for future research work.



Chapter 2

Testing for Multiple Episodes of
Exuberance in the UK Regional
Housing Market

2.1 Introduction

The Global Financial Crisis (GFC) triggered by the US sub-prime mortgage market has served to

attracted a renewed interest in housing market dynamics. The depth of the subsequent recession

marked the longest downturn on record1 in the UK (Hincks et al., 2014). Asset bubbles are

a long-standing subject of interest for both theoretical and empirical research. This chapter

employs the novel method of Phillips et al. (2011) and Phillips et al. (2015) for testing and

date stamping exuberant episodes in asset prices to detect bubble behaviour across UK regions

throughout the past thirty years. Through the analysis of time series properties of regional house

prices, our research contribution is twofold; firstly we are able to identify the date stamp when

house price appreciation mutates into exuberance for each area. Secondly, our findings illustrate

the synchronisation of regional segments of the housing market which ultimately improve our

understanding of how national UK house price bubbles materialise through inspection of the

disaggregate components. In the context of the extensive literature surrounding the transmission

of house price shocks to surrounding areas, this chapter finds mixed evidence supporting the

established ‘ripple effect’ hypothesis.

By addressing these research aims, we further the framework for both monitoring and under-
1Since quarterly data began publication in 1955. Measured in terms of gross domestic product

2
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standing the UK housing market. The policy implications are both retrospective in the analysis

of past bubble formation, but also proactive in furthering the existing framework of anticipating

episodes of exuberance. This ultimately leads to the design of effective policy. Additionally, these

methods serve as an early warning diagnostic of bubble activity for UK regions. Our research

provides the starting point for further analysis into what are the fundamental antecedent factors

in the evolution of house price exuberance.

The results indicate two bubbles transpire across the tested period, firstly in the late eighties

to early nineties, followed by a greater peak in the noughties. GSADF and SADF testing sub-

stantiates house prices were explosive for all regions during both peaks, however the severity of

house price appreciation and ensuing decline vary across regions. While the duration and scale

may vary, the severity of house price appreciation and ensuing decline vary from region to region

similarities in the hypothesis testing results affirm fundamental house price drivers are common

among regions. The first bubble detected is more distinctive than the noughties episode. The

latter manifests a largely undisrupted protracted period of exuberance for some regions such as

Scotland and the South West, while other regions have more fractious experiences of explosive

prices that could be disaggregated to two smaller peaks; the first in and around 2005, preceding

the larger peak in 2008. While some general trends are shared between price and affordability

anchors in terms of testing for exuberance, the results demonstrate a far higher incidence of

rejections of the null hypothesis for testing prices compared to both tested ratios, indicating

several exuberant episodes are not driven by fundamentals but may be attributed to speculative

forces (Shiller, 2014).

The rest of the chapter is organised as follows. Section 2.2 outlines the relevant literature

in terms of bubbles in the UK housing market and detecting periods of explosive growth in a

given asset class. Section 2.3 summarises the data selection. Section 2.4 specifies the model and

describes the process of testing and date-stamping periods of explosive growth in the housing

market. Section 2.5 proposes the correlated random effects model to analyse the ability of

macroeconomic and financial variables to predict periods of exuberance in the housing market.

Section 2.6 presents an analysis of the estimated results, and Section 2.7 concludes.



CHAPTER 2. REGIONAL HOUSING BUBBLES 4

2.2 Related Literature

2.2.1 UK Housing Market Bubbles

Regional house prices in the UK have been intensively researched using a range of techniques.

These studies range from aggregate and regional studies of house price fundamentals and the

presence and of bubbles. Please refer to Muellbauer and Cameron (2006) for an exposition of

the UK regional house price literature. The range of fundamentals vary from paper to paper,

but typically include income, stock of housing, interest rates, credit conditions and demographic

factors. Notable studies of this class are (Muellbauer and Murphy, 1997) and (Muellbauer and

Cameron, 2006).

The most prevailing theory of regional house price trasmission is the ‘ripple effect’ hypothesis

developed in the seminal work of Meen (1999). The term refers to “a distinct spatial pattern over

time, rising first in a cyclical upswing in the south-east and, then, spreading out over the rest of

the country.” Meen (1999). This shock may ripple out across the economy through migration,

equity transfers, spatial arbitrage and other variables that play a determinant role. Meen (1999)

puts forward a convincing case outlining the theoretical underpinning of the hypothesised effect.

Numerous studies have explored this hypothesis including Macdonald and Taylor (1993); Alexan-

der and Barrow (1994); Drake (1995); Ashworth and Parker (1997); Meen (1999); Peterson et al.

(2002); Cook and Thomas (2003); Cook (2005); Holmes and Grimes (2008); Holmes et al. (2011).

Empirical investigations have often revised the boundaries of what constitutes the ripple ef-

fect. Drake (1995) finds house price changes occur more substantially and imminently in South-

east England compared to other regions as evidence of this. Studies conducted by Macdonald

and Taylor (1993); Cook (2005) find evidence of an asymmetric ‘ripple effect’. The term refers to

a “consistent pattern of reversion to equilibrium occurring more rapidly when housing prices in

the south of England decrease relative to those of other regions and occurring in a slower place

when the prices increase relative to that of other regions” (Tsai, 2014).

Empirical estimation techniques have also varied in their detection methods. While some

research has opted for Granger causality testing, others have employed a Vector Autoregressive

(VAR) model in order to capture a leader follower pattern of behaviour between regions Kuethe

and Pede (2011); Gupta and Miller (2012). Cointegration tests have also been used by authors
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including Macdonald and Taylor (1993); Alexander and Barrow (1994); Ashworth and Parker

(1997), utilising the work of Engle and Granger (1987) and Johansen (1988). Given the date

stamping attributes of the bubble detection method this chapter uses, we are able to analyse

whether our finds are congruous with the ’ripple effect’ hypothesis. Following the framework of

Drake (1995), bubbles are hypothesised to begin first in the South East region before detection

in other areas in subsequent periods.

Regional and national house price ratios are often applied Meen (1999); Peterson et al. (2002)

for stationarity testing where the objective is to find whether affordability and relative price

ratios show constancy.If the house price to earnings ratio is nonstationary, a shock would have a

permanent effect thus decreasing the probability for the series to revert to initial pre-shock levels

(Gregoriou et al., 2014). Accordingly, stationarity properties can indicate the long run outlook

for the housing market alongside providing evidence in relation to the ripple effect (Cook, 2005).

A range of empirical papers consider housing affordability. Girouard et al. (2006) test for

unit roots in house price to income ratios across 18 OECD countries spanning 35 years; the

findings indicate the presence of unit roots cannot be rejected. Similarly, Malpezzi (1999) also

find nonstationarity across a panel of 133 maj metropolitan areas in American from 1979-96.

More recently, Gregoriou et al. (2014) test the UK and desegregate regions and are unable to

reject the the trends contain a unit root between 1983 and 2009. These findings are relatively

robust given the allowance for structural breaks and use of both linear and non linear unit root

tests.

The relationship between income and house prices are considered in Muellbauer and Murphy

(2008) in which the findings indicate long-run elasticity of house prices with respect to non-

property income relative to the housing stock are both positive and surpass unity at 1.6, while

also asserting most instances of house price increases since 1997 are attributable to corresponding

rises in average real income per household. These findings are in accordance with Muellbauer

and Cameron (2006) in which income dynamics are found to be significant determinants of house

prices when tested on a regional panel of UK house prices. The linkage is most prominent in

London and the Southeast. In terms of bubble detection, the results conclude a bubble cannot

be precluded during the late eighties.



CHAPTER 2. REGIONAL HOUSING BUBBLES 6

2.2.2 Identifying Asset Price Bubbles

The existence of bubbles in asset markets remains one of the fundamental debates in economics

and finance, yet challenges to crafting suitable tests for bubbles have prevented an empirically-

driven resolution to the discourse (Giglio et al., 2014). In the literature there is debate even

with regard to the definition of bubbles. The asset pricing approach defines a bubble as the

proportion of the market price overshoots or undershoots the fundamental value of the asset

(West, 1987; Diba and Grossman, 1988; van Norden, 1996). Muellbauer and Murphy (2008) state

’the deviation of prices from their long run fundamentals is then the ‘bubble- burster’ in reference

to house prices may appreciate by the agency of a series of positive shocks to fundamentals.

The expectation of future price increases precipitates over-valuation of the asset. Eventually

the realisation that appreciation in fundamentals has been outstripped by house price growth

instigates a deceleration of price increases. Based on this, the detection of a bubble involves

estimating the fundamental drivers of asset prices, such as income. The fundamental price refers

to the discounted present value of payoff streams based on all information presently available

(Taipalus, 2012). As surmised by Brunnermeier and Oehmke (2013) “identifying bubbles in the

data is a challenging task. The reason is that in order to identify a bubble, one needs to know

an assets fundamental value, which is usually difficult to measure.”

The literature also encompasses alternative methods where the fundamental asset value does

not require modelling. These span from the Markov-Switching process method (Hall et al.,

1999) to the logistic curve approach (Foster and Wild, 1999). The former method devised by

Hall et al. (1999) discerns between explosive and non explosive periods, captured using Markov

chains. The explosive periods are characterised by an explosive autoregressive unit root. The

Markov switching Augmented Dickey Fuller (MSADF) test detects the explosive AR process

where bubble and non bubble regimes are defined.

The test suffers from low power in the presence of high volatility as the distinction between

high volatility and explosive autoregressive unit root is not always distinguishable in GSADF

testing. This issue is especially notable in light of asset price volatility often being pervasive.

While the Markov switching process is prone to misspecification owed to MSADF testing sensi-

tivity (as discussed further in Shi (2013)), this method has the added benefit of multiple bubble
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detection capabilities.

Similar to the present chapter, Black et al. (2006) investigates the connection between house

prices and earnings also utilising the present-value approach adapted from the stock market

research undertaken by Campbell and Shiller (1998). Under this framework, the paper esti-

mates the fundamental housing value in relation to real disposable income. Akin to the method

employed in Case and Shiller (2003), they employ cointegration and unit root testing to find

evidence of a cointegrated relationship between variables in contrast to stationarity in the UK

house price to income ratio. While the unit root test findings are not robust given the standard

linear unit root testing employed and the effect of extended upswing periods, the overall find-

ings indicate UK housing market is unaffected by explosive bouts of exuberance. These findings

may be debated given the weak evidence from unit root testing and the possibility of intrinsic

mispricing typical within the property market (Muellbauer and Murphy, 2008). The effects may

be sustained such that upswings are smoothed and gradual (André, 2011), thus accounting for

the empirical results obtained by (Black et al., 2006).

2.3 Data

Regional house price and housing affordability data is used to identify explosive growth periods.

The results derived from GSADF and SADF tests are then regressed against macroeconomic and

financial variables to ascertain the predictive power of exuberant episodes.

We use quarterly data recorded by the UK mortgage lender Halifaxover the period 1983(1)

to 2014(4). Data is collected across these regions aggregating to form the UK; namely: North

(N), Yorkshire & The Humber (YH), North West (NW), East Midlands (EM), West Midlands

(WM), East Anglia (EA), Wales (W), South West (SW), South East (SE), Greater London (GL),

Northern Ireland (NI) and Scotland (S). Three datasets are considered; these include the House

Price Index (HPI henceforth), House Price to Earnings Ratio (HPER) and Mortgage to Earn-

ings Ratio (MER). The Halifax House Price Index have been described as a “good compromise

between accuracy and timeliness” (Wood, 2005, p. 218). Similar to the Nationwide housing

indices, the data uses hedonic regression methods for quality adjusting the data allowing for like

for like comparisons between houses in different regions. The indices provided by both building
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societies are more encompassing than their mixed adjusted counterparts.

The hedonic regression method specifies a set a characteristics which contribute in different

ways to the price of the house. The weighting and treatment of each characteristic actualise

the majority of differences between the Halifax and Nationwide statistics. while this approach

enables comparisons to be drawn between regions, the framework comes with drawbacks. A

well documented failing pertains to the sample selection bias from the collection of only a single

mortgage lender, unlike for example the Land Registry House Price Index that is not consigned

to a single bank or building society. However, among the two hedonic regression based house

price indices, Nationwide has a smaller dataset thus exacerbating the bias compared to the

Halifax HPI. The index is adjusted for inflation using the private consumption deflator for the

UK accessed through the OECD statistical database.

Ratios of housing prices to income and rents are often used as indicators of over valuation of

housing prices . House price to income ratios are a measure of the affordability of property as they

gauge whether housing is within the reach of a typical buyer. Deviations between house prices

and income growth are in theory unable to diverge indefinitely (André et al., 2014) as households

will eventually be unable to afford property thus reducing demand resulting in downward pressure

on house prices, lowering to the new market clearing rate. If this ratio exceeds its long term

average trend, it can be take as evidence that prices are overvalued (Girouard et al., 2006).

The house price to earnings ratio variable produced by Halifax is estimated as the ratio of

Halifax standardised average house prices for all houses and all buyers, to the average earnings

for full-time male employees. The standardisation accounts for variations through the use of

hedonic regression method outlined above. By only incorporating male only earnings, results for

HPER may result as biased from overestimation of the severity of non-affordability (Gregoriou

et al., 2014). Incorporating male only earnings may have been suitable in the context of 1983

when data was first collected, however the bias caused can be attributed to the rise of both

individuals in a housing unit often earning, so they are able to share the burden of mortgage

repayment costs. Data from the 1991 census reveals 23.81 per cent of owner occupied households

are headed by women with these households generally comprising of single women (Gilroy and

Woods, 1994). By only including male only earnings, this considerable demographic , which

has increased since 1991, is excluded from the housing affordability measure. Furthermore, the
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General Household Survey 1991 identifies married couples comprise a far higher percentage (77%)

than any other group. This trend has only continued based on The English Housing Survey 2014-

15 identifying more first time buyer households were couples than single people, compared with

20 years ago (DCLG (Department for Communities and Local Government), 2015). The study

notes 80% of all first time buyers were couple households, a significant increase since 1994-95

(63%) and 2004-05 (62%). The report ascribes this trend to the growing need for two incomes

for households to afford purchasing property. Based on these identified trends, the bias increases

over the timespan, as households increasingly rely on both male and female earnings to shoulder

mortgage costs.

The use of male only full time earnings also induces bias from the exclusion of part time income

and individuals participating in the ’gig’ economy. The rising number of workers participating in

these more flexible forms of employment result in full-time earnings painting a less representative

measure of household earnings. Congruent to the bias from exclusion of female earnings, the use

of full-time income in the affordability measure also leads to an underestimation of bubbles in

housing markets, with this bias increasing over the time-span. Despite these drawbacks, the

dataset benefits from a large time frame, comprehensive coverage and regional comparisons can

be easily drawn. In light of these advantages, we opt to retain use of the Halifax dataset with

the drawbacks in mind.

The price to income ratio is often used as a bubble indicator. A popular justification is

given by (Case and Shiller, 2003, p.308) where the relationship between these two components

in the US case are shown to be very stable across time. The paper finds in most instances that

when this ratio increases, it later regresses back to an historical average (Case and Shiller, 2003,

p. 311). These findings are compatible with the characteristics of bubble behaviour and the

desirable traits of a “bubble indicator” set out by (Lind, 2009, p. 84), where “the purpose of the

indicators is to identify cases where a strong increase in the price is (more) likely to be followed

by a decrease”.

For a given substantial house price increase, the price to income ratio will most likely also

demonstrate an increase given changes in income tend to be incremental and less prone to sudden

changes proportional to house prices. Ideally an indicator should draw a distinction between the

situation where an appreciation in the price to income ratio is likely to be followed by a notable
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decline, from the situation where this is not probable. Case and Shiller (2003) propose a simple

workaround whereby a significant increase in the price to income ratio will always be followed

by a fall, such that no specific indicator is necessary (Lind, 2009). McCarthy and Peach (2004);

Himmelberg et al. (2005) warn against this mechanistic use of the price to income ratio as a

bubble indicator. Accordingly, agents may be more sensitive to the relationship between housing

expenditure and earnings as opposed to price and earnings, hence we employ the use of the

mortgage to earning ratio.

Smith and Smith (2006) also prefer mortgage to income compared to to the price to income

variable given that mortgages are more accurate indications of payments made by households

McCarthy and Peach (2004). This is partly attributable to mortgages often reflecting changes

in interest rates, but measurement difficulties exist from variations such as interest rates are

typically lower when the payment period is longer.

2.3.1 Data Trends

Figure 2.1 demonstrates the regional variation in both real house prices and affordability over

time. Normalised to the start date, we are able to map how house prices and affordability

across regions has diverged over the past thirty years. These trends underscore our motivation

to cultivate a deeper understanding of how these variations have evolved over time and why

regional dynamics have continued to branch further apart from the late nineties onwards. As

noted by Chamberlin (2009), regional house prices show a uniformity in their experience of

appreciation and decline over time, albeit at varying rates of adjustment.2

Up until the late eighties, we note a marked divergence across regions, with Greater London

and the South East appreciating faster than other regions throughout the mid to late eighties.

While the effect looks modest in figure 2.1, this increase was accompanied with a period of

high inflation, masking the steep price increase across a short time scale. In contrast, Scotland,

North West and North depict the lowest speeds of increase. This North-South regional disparity

continues across the following decades, further exacerbated during boom periods, with Southern

regions showing a greater proclivity to increment over boom periods, while bust periods tend to
2Contrastively, the US experience bears a differentiated narrative, where regional trends were much more

divergent. In this respect, several areas experienced sharp declines in house prices while the national house prices
were at an all time high.
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narrow the disparity between regions, notably in the late nineties. However, this contractionary

effect between regional prices decreases over time, leading to a sustained and widened gap be-

tween London and the southern regions compared to the northern areas of the UK. Affordability

demonstrates a relatively similar reflection of trends in real house prices until more recent peri-

ods. We note similar levels of appreciation from 1983 to 1989 where both real house prices and

mortgage to earnings both just over doubled. However, as one would expect from an affordability

measure, the dynamics are less pronounced compared to real house prices, reflected in the range

of values across both series.
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Figure 2.1: Normalised Real House Prices and Mortgage to Earnings by Region over Time
(Index:1983Q1=1)

These divaricating trends are representative of a decoupling of regional housing markets, engen-
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dering labour inflexibility, income inequality among a host of other derivative impacts across the

wider economy. While housing affordability explains parts of this puzzle, it is unable to cap-

ture how regions may have different sensitivities to changes in the macroeconomic and financial

environment. Under the assumption that an equilibrium relationship exists between between

house prices and income, the two variables can themselves evolve over time linked with other

fundamentals. This relationship has changed due to structural shifts in financial markets and

institutional changes that have exerted varying levels of pressures across regions (Campbell and

Cocco, 2007). The proposed model is able to capture potential regional heterogeneity from the

impact of these macroeconomic variables.

Two notable examples are credit availability and the interest rate regime. In the mid-1980s

financial deregulation led to a rapid easing of credit constraints, making it easier to borrow larger

sums for housing purchases (Chamberlin, 2009). As discussed in Evans and McCormick (1994),

the effect of financial liberalisation was greatest in the South due to a larger oner occupied sector

and buoyant expected growth rates in an already high price environment. Hence, McCormick

(1997) reason the easing of credit conditions contribute to the increased relative sensitivity to

interest rate fluctuations in the South. The authors posit the increased cyclicality in the more

prosperous southern regions and rationing of incremental loans in this period has promoted

increase differentials in regional unemployment. Ashworth and Parker (1997) finds low income

elasticity in the South East that may be a possible impact of unemployment. As such, we find

it pertinent to estimate the impact of unemployment on bubble formation.

Short term interest rates and long term bond yields are included in our model to account

for the impact of shifts in the credit environment on the formation of bubbles across regions

and to measure how this impact has affected regions differently. The shift towards inflation

targeting from 1993 has coincided with a protracted low interest rate environment, depressing

the cost of borrowing and incentivising households to purchase mortgages. We account for these

changes by incorporating the official bank rate in our estimated model. The final model also

includes alternative asset classes to capture the financial characteristics of housing when purposed

in the context of a commodity. The commodification of housing is likely to be most strongly

experienced in London and southern regions given higher levels of foreign investment and ’Buy

to Let’ purchases (Wallace et al., 2017). While there is an distinct lack of statistics pertaining
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to the scale of investment outside of London, it is widely accepted that the prevalence of foreign

investment in residential property is higher in London compared to other regions (Savills, 2014).

As such, we expect growth in alternative asset classes such as gold and shares to be related to

booms in the London and southern housing submarkets. In more recent periods, we expect this

relationship to be heightened given how property has increasingly become a mainstay of investor

portfolios (Chan et al., 2011).

Summary statistics are provided for nominal house prices, real house prices, house price to

earnings and mortgage to earnings ratio in Table 2.2. In both nominal and real terms, house

prices are highest in greater London on average across the sample. However, while affordability

ratios identify Greater London as relatively unaffordable, it is superseded by South East England

as the most unaffordable region on average. The level of variation is much higher in Greater

London in both real and nominal terms than all other regions. The difference is less pronounced

in the mortgage to earnings ratio, with the South East and South West both demonstrating

higher levels of dispersion to Greater London. The South East in particular shows a larger range

in values, with the mortgage to earnings ratio reaching as high as 99.8. The lowest variation in

affordability ratios is experienced in the Northern regions, particularly in Scotland, North West

and North.

Table 2.1: Summary Statistics of Financial and Macroeconomic Variables
Variable Mean Std. Dev. Min. Max. N

Unemployment 6.947 1.653 4.7 10.6 111
10 year Government Bond Yield 5.777 2.693 1.681 12.172 111
Official Bank Rate 5.268 3.884 0.5 14.875 111
Real Disposable Income Per Capita 3837.928 609.139 2649 4535 111
FTSE100 index 85.568 27.858 33.018 126.578 111
∆ FTSE100 0.741 4.954 -20.132 11.031 111
Gold Price 391.204 278.172 161.819 1076.126 111
∆ Gold Price 1.157 6.471 -12.41 25.063 111
Oil Price 44.979 30.793 12.93 123.78 111
∆ Oil Price 1.916 14.411 -50.393 47.552 111
Current Account -7417.306 6786.693 -32662 1018 111
∆ Current Account 48.747 355.327 -462.868 3043.456 111
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Table 2.2: Summary Statistics for House Prices and Affordability Ratios

Nominal House Prices
Area Mean Std. Dev. Min. Max.
EA 390.853 170.469 190.1 712.033
EM 387.438 166.126 178.4 648.6
GL 474.64 238.562 190.4 1045.172
N 350.581 156.891 133.2 619.1
NI 342.476 191.076 126.4 892.800
NW 358.647 149.982 144.8 604
S 296.494 112.901 136.1 502.1
SE 402.186 177.863 181.2 753.135
SW 393.641 175.027 183 665.172
W 371.58 167.225 154.6 648.5
WM 394.612 162.117 179.7 655.300
YH 378.561 161.614 146.9 648.4
UK 378.476 175.461 126.4 1045.172

Real House Prices
Mean Std. Dev. Min. Max.
196.943 61.604 112.461 311.761
195.313 59.807 118.634 310.993
235.33 85.396 113.86 409.459
176.025 57.154 108.958 296.849
170.713 79.601 91.409 428.083
180.896 52.445 118.446 287.834
150.076 35.670 111.33 238.322
201.733 24.800 111.208 313.439
197.696 63.588 108.733 311.179
186.493 60.374 113.271 313.889
199.3 56.973 126.766 311.287

190.754 56.965 120.164 310.898
190.106 64.977 91.409 428.083

Area
EA
EM
GL
N
NI
NW
S
SE
SW
W
WM
YH
UK

Mortgage to Earnings
Mean Std. Dev. Min. Max.
34.071 13.062 21.818 81.332
32.675 10.867 21.701 65.327
41.77 13.28 24.112 81.711
29.186 8.662 20.341 53.016
28.151 10.143 17.035 64.064
29.253 9.140 20.661 57.033
27.542 7.724 19.216 50.888
44.903 16.32 28.771 99.805
41.213 13.974 25.286 86.149
31.847 9.803 21.264 58.574
36.301 11.786 24.794 70.132
28.379 8.782 20.456 54.922
33.774 12.724 17.035 99.805

House Price to Earnings
Mean Std. Dev. Min. Max.
4.247 0.825 3.141 6.871
4.102 0.852 2.942 5.537
4.926 1.404 2.928 9.629
3.786 0.939 2.555 5.918

- - - -
3.693 0.764 2.595 5.062
3.596 0.562 2.604 4.83
5.349 1.093 3.727 8.032
5.13 1.197 3.315 7.009
4.126 0.983 2.836 6.105
4.539 0.918 3.18 6.15
3.635 0.754 2.448 5.127
4.284 1.127 2.448 9.629

2.4 Testing and Date-stamping Bubbles under the Present

Value Approach

Based on the time series properties of a series, periods of mild explosive should be amenable

to such statistical testing given these stochastic characteristics. Based on the outcome of the

testing procedure, explosive behaviour is recognised regardless of cause.3 Rooted in the standard

asset pricing model, we assume risk neutral agents and rational behaviour. The model adopts
3The cause may span from pricing errors to biases.
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the prevailing framework for explosive asset price behaviour analysis discussed further in Clayton

(1996); Hiebert and Sydow (2011).

To ensure the robustness of the findings, we employ both the log linear and levels specification

for asset pricing with rational bubbles. While log-linear appropriations of this type are often

used interchangeably with its levels counterpart for both theoretical and empirical work, Phillips

et al. (2011) remark the log-linear approximation “may be less satisfactory in non stationary

contexts where the sample means do not converge to the population constants.” As such, we also

test the series both in log levels and in levels in our empirical work. Based on the findings of

Phillips et al. (2011), we expect very similar results across both cases.

Appendix A.2 outlines the standard asset pricing model employed and how exuberant house

price behaviour s characterised by explosive behaviour within this framework. Consequently, we

relate asset pricing theory with the chosen testing procedures to generate findings parsimonious

with the prevailing rational theory literature.4 A bubble subsequently manifests in the dynamic

and stochastic properties of the observed asset price. Hence, we are able to detect bubble

behaviour through statistical methods consistent with this specification.

In our adoption of Mortgage to Earnings and House Price to Earnings ratios, we rely on

incomes to account for all fundamental drives of house prices. Given this is not a conclusive

way to account for the complete set of fundamental components, (such as property taxation and

other factors examined in Himmelberg et al. (2005)), episodes of exuberance in both affordability

ratios may still yet be derived from unobserved fundamentals (Ut) unaccounted for by income

level. While we cannot be certain that detected periods of explosive growth in affordability ratios

are due to bubbles, this method is more rigorous that sole reliance on house price estimation.

While the log linear approximation is employed in other papers such as Caspi (2013), we

follow the advice of Phillips et al. (2011) and use the levels approach given the data for prices

and affordability ratios is non stationery. As a robustness check results using the logarithm of

prices is included in Appendix A.4. As expected, the results are both very similar.
4The classic rational bubble is the workhorse model of bubbles in macroeconomics. It is based on a failure of

the transversality condition that necessitates the present value of a payment occurring infinitely far in the future
to be zero (Giglio et al., 2014). See A.2 for a detailed account.
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2.4.1 Monitoring the Housing Market for Rational Bubbles

According to Case and Shiller (2003), a rational bubble occurs when expectations of future price

increases drives current house prices up, as opposed to price increases in fundamentals. Hence

testing for periods of bubbles can be specified as a statistical test for explosive tendencies in

the log price to dividend ratio.Based on the stochastic properties, we know that if economic

fundamentals follow either an I(0) or I(1) process as described above, asset prices show explo-

sive tendencies compatible with the rational bubble literature. We may then detect for mildly

explosive behaviour in the time series properties of the data itself. While the results may in-

dicate rational bubble behaviour, the results are not conclusive and must be treated as such.

Indeed, explosive dynamics may materialise in house prices that are not associated with bubbles.

House prices may present explosive tendencies due to fundamentals showing exuberance. As

such despite no bubble necessarily prevailing, a fundamentals caused period of explosive prices

may without direct observability.

These findings provide evidence supporting the use of housing affordability data. When test-

ing the time series properties on housing ratios, we account for movements in fundamentals

through the use of earnings data. While other factors feed into the determination of the funda-

mental house price, given the key role of income, we find this to be a particularly informative

tool.5

2.4.2 Econometric Methodology for Detecting Bubbles

We utilise a right tailed recursive process adaptation of the augmented Dickey Fuller (ADF) test

developed by (Phillips et al., 2015, 2011). These tests allow for ex post identification of mildly

explosive periods and corresponding date stamps for each series. We apply these tests on real

house prices for each region and national series to detect explosive behaviour in both real house

prices and the potential decoupling between house prices and the fundamental price.

Housing affordability is considered through testing the house price to earnings ratio so we

can draw conclusions as to whether housing is over or undervalued in rental terms. As this ratio
5See Pavlidis et al. (2014) for an account of fundamental driven exuberance and the role of time varying

discount rates as instances in which explosive behaviour may manifest itself in the testing procedure in spite of
no rational bubble arising.
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diverges from fundamental values, we can infer market prices are maligned with fundamentals.

While this model is intended to review rental data, we adapt the model in line with Pavlidis

et al. (2014) through extension of the present value model in equation A.5 with “other economic

relationships that relate housing rents to a set of macroeconomic variables (fundamentals)”.

Our methods are consistent with the literature in using the house price to earnings ratio as an

assessment of how aligned prices are to the fundamentals providing an insight into whether prices

are (un)sustainable.

Fundamentals are considered through the participation of income in the house price to earn-

ings ratio. This strategy allows an exposition of the dynamics of these fundamentals. Explosive

behaviour ascribed from fundamental movements can thus be considered, allowing one to deter-

mine whether observed fundamentals instigate bubble behaviour.

In line with the conventions of Phillips et al. (2015), the following random walk process with

asymptotically negligible drift is assumed:

yt = dT−η + θyt−1 + et, et
iid∼ N(0, σ2), θ = 1 (2.1)

where d denotes a constant, η is a localising coefficient for controlling the magnitude of the drift

as sample size, denoted by T approaches infinity and et represents the error term. Following

Phillips et al. (2011), the model is set to random walk without drift such that n → ∞. The

generalised form developed in Phillips et al. (2015) differ as d, η and θ are set to unity.

The Rolling Augmented Dickey Fuller (RADF) test, Suprenum Augmented Dickey Fuller

(SADF) test and Generalised Suprenum Augmented Dickey Fuller (GSADF) test are based on

variations of the reduced form equation given below.

yt = µ+ δyt−1 +
p∑
i=1

ϕi∆yt−i + ϵt (2.2)

where yt is the asset price, µ denotes the constant, p is the maximum lag length, ϕi for i = 1, . . . , p

refers to the differenced lag coefficients and ϵt is the error term. We test for episodes of exuberance

using a variation on a right tailed Augmented Dickey Fuller test in which the null refers to a unit

root, against the alternative hypothesis of a mildly explosive process. That is,
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H0 : δ = 1

H1 : δ > 1

As a benchmark for the work of Phillips et al. (2011, 2015), we additionally implement the

Rolling Augmented Dickey Fuller (RADF) test. The RADF test is the basis which Phillips et al.

(2011, 2015) build upon and as such have many common characteristics. The RADF is a rolling

version of the ADF test where the ADF test statistic is calculated over a rolling window with

a fixed size such that rw = r0 across all computations. rw refers to the fractional window size

of the regression across the normalised sample [r1, r2] with r0 denoting the initial window size.

The dataset covers a normalised sample interval of [0, 1] and δr1,r2 relate to the coefficients given

above.

The RADF test rolls forward in increments of one observation, at each point the estimated

ADF test statistic is calculated and referred to in the form ADFr1,r2 . This overlapping process

involves r2 − rw statistic calculations. We define the RADF statistic as the supremum ADFr1,r2

statistic across all estimated windows. The SADF test also relies on iterative calculations of

the ADF statistic with a fixed point of departure. However, the SADF has a user specified

increasing window size. While the first observation begins at r1 = 0, r2 is determined through

a minimal window size, so r0 is determined according to rw = r2. The ADF procedure is then

estimated across the incrementing window size, with the subsample increasing each time by a

singe observation, each producing an ADFr2. Eventually the final computation includes the

complete sample thus equating to ADF1. Henceforth we refer to the SADF statistic as the

supremum of ADFr2 .

The GSADF test pioneered by Phillips et al. (2015), outlines a general form of the SADF

test through increased flexibility with window estimation. This is achieved through the starting

point also being able to vary between [0, r2 − r0]. It is denoted as follows:

GSADF (r0) = sup
r2∈[r0,1]

r1∈[0,r2−r0]

ADF r2
r1

(2.3)

this specification is inherently suitable for testing bubbles because the drift term is asymptotically

negligible such that the drift term does not dominate the outcome.
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2.4.3 Date Stamping Explosive Episodes

A key benefit of the procedures developed by Phillips et al. (2011, 2015) is the property to

consistently estimate start and end dates for explosive periods. If the null hypothesis is rejected,

we are able to determine commencement and termination dates. We consider the date stamping

methodology in brief.

The SADF test functions through the comparison of each subset rolling window sequence to

the relevant critical values of the original ADF statistic. The start date of a bubble is defined as

the first observation for which the relevant test statistic is greater than the corresponding critical

value. These critical values are constructed through Monte Carlo simulations of 1000 replications.

In a similar vein, the end date of an exuberant episode is noted as the first observation occurring

after the episode commencement date where the test statistic is less than the relevant critical

value. The episodes are then manually checked to ensure the identified periods are greater than

log(T ) units, in our case 5 quarters. This selection process is demonstrated in 2.6, 2.7, 2.8 and

2.9 where dark grey periods signify a length of 5 or more consecutive periods of exuberance.

Periods under 5 quarters are shown in light grey for full disclosure of test results.6

2.5 The Predictive Ability of Macroeconomic and Finan-

cial Variables

2.5.1 Probit Model with Correlated Random Effects

We estimate a correlated random effects probit model to determine the in-sample predictive

capability of a range of financial and macroeconomic variables. The panel probit likelihood

function is calculated by Gauss–Hermite quadrature. We included an established set of financial

and macroeconomic predictors based on theoretical underpinnings discussed in Pavlidis et al.

(2014). The model is described as:
6In addition to the aforementioned results given in the proceeding section, Appendix A summarises the

outcomes for a smaller window size of 13 observations on the logarithm of prices. Both set of results are extremely
similar, serving well as a robustness check. This appendix is able to capture periods of exuberance otherwise missed
in the late eighties given the larger window size eschews these periods predating r1 = 0.
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Bit = βxt + γzit + vi + ϵit where ϵit ∼ N(0, 1) (2.4)

Where xt, the vector of countrywide predictive variables, zit, the vector of region specific pre-

dictive variables and Bi,t is the dependent binary variable for i = 1, ..., N . Bi,t takes on a value

of one when a period of exuberance is detected at a given time t in region i, and zero otherwise.

Formally,

Bi,t =


1, if GSADFi,t(r0) < scuαt ,

0, if GSADFi,t(r0) > scuαt ,

(2.5)

The respective probabilities that a region is in a state of exuberance given the covariates xt and

zit are fitted by the probit model under maximum likelihood estimation with random effects as

follows:

P (Bit = 1|xt, zit) = Φ(βxt + γzit + vi) for i = 1, . . . , N t = 1, . . . , T (2.6)

where Φ denotes the standard normal cumulative distribution function. Nationwide indicators

in the model include unemployment, growth in GDP, inflation and changes in oil prices. These

variables capture macroeconomic developments and have some predictive content with respect

to consumption and investment in property. We account for global economic conditions using

gold crude oil prices from the West Texas Intermediate Growth in real disposable income per

capita encompasses fundamental housing demand drivers expected to maintain long term prices.

Given the majority of individuals fund house purchases through mortgage products, we examine

growth in the current account.

With respect to the behaviour of housing as an investment tool, we consider long and short

interest rate spreads.The former is proxied with ten year government issued bond yields and serves

to capture changes in future expectations of interest rates and market conditions. In addition to

bond yields, we also include changes in the share price index which serves to incorporate future

profitability of alternative asset classes alongside reflecting fluctuations in household wealth.

Variable zit denotes regional growth in real disposable household income. As households have

experience a growth in disposable income , this may lead to increased demand for housing, thus

increasing the likelihood of explosive growth in house prices. However, typical estimates of the
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income elasticity of demand for housing lie in the between 0.5 to 0.87 indicating demand for

housing may be less sensitive to changes in income levels. Hence we hypothesise income growth

is likely to have a low impact on the probability of exuberance in a given period.

We estimate a correlated random effects model using the Mundlak-Chamberlain correction

following Wooldridge (1995); Mundlak (1978); Chamberlain (1980, 1982) in order to control for

the unobserved heterogeneity between regions by including the the region specific average of

time varying covariates. In our case, this only applies to the growth in real disposable household

income.

2.5.2 Comparing Predictive Power Across Regions: Regional Probit

Model

By estimating a probit model for each region on a set of covariates such that differences in

predictive ability of macroeconomic factors can be assessed across regions. Given the same

vector of predictive variables are used as in the panel probit estimation, the model follows

equation (2.5). Some areas may be more sensitive to changes in the economy than others. By

estimating these variations, policy makers are able to better target regional housing market and

anticipate explosive growth in the housing sector based on the macroeconomic environment.

We estimate the following model for each region:

Bt = βxt + γzt + ϵit where ϵit ∼ N(0, 1) (2.7)

where

P (Bt = 1|xt, zt) = Φ(βxt + γzt) for t = 1, . . . , T (2.8)

where Φ denotes the standard normal cumulative distribution function, xt is a vector of coun-

trywide predictive variables (as given above), zt denotes growth in disposable income for the

respective region, and Bt is the dependent binary variable. Bt takes on a value of 1 when a

period of exuberance is detected at a given time t, and zero otherwise. This follows extremely

closely to the panel probit model but is estimated separately for each region such that the
7See Malpezzi and Wachter (2012) for a recent survey
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marginal effects may then be compared.

2.6 Empirical Results

The SADF and GSADF test is first employed to identify explosive properties for both house

price series and affordability ratios. In light of the findings of exuberance for a given series, we

are then able to further inspect the duration and episodes in time when the trend is explosive,

thus indicating bubble behaviour. We consider how synchronised periods of exuberance are

across the sample period and compare whether housing affordability ratios experience exuberance

concurrently with house price movements. Results are provided for GSADF, SADF and RADF

testing of regional and national areas.

2.6.1 SADF and GSADF Hypothesis Testing Results

The Augmented Dickey Fuller test statistics for nominal and real house prices alongside the

respective critical values are given in Table 2.2 . The overall results indicate all regions follow

a unit root process when considering the three methods of testing in tandem. GSADF testing

yields the strongest evidence of nonstationarity across both national and regional house prices

with all t statistics significant to the 99 percent level, with the exception of real house prices

in Greater London slightly less significant at the 95% level. This outcome is bolstered by the

SADF results with again exception to Great London real house prices, while all other regions

are significant at the 99 percent significance level in both nominal and real terms. RADF testing

echoes similar findings, with marginally lower levels of significance in the case of Greater London,

Northern Ireland and Scotland house prices. We find the more robust testing methods used in

the GSADF procedure provide convincing evidence of non stationary house prices significant at

the 99 percent level. The results outlined in Table 2.3 summarise the non stationary nature of

both regional and national housing affordability ratios. With the exception of SADF results for

Scotland, Mortgage to Earnings is found significant across RADF, SADF and GSADF testing

for all series with GSADF results presenting the most convincing case for unit root processes

across all regions significant at the 95 percent level at least. House Price to Earnings data present

mixed evidence for the case of nonstationarity across certain regions. With respect to GSADF
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results, East Midlands, Greater London and the South East do not provide enough evidence

to conclude nonstationarity at the 90% level. However, SADF testing finds the aforementioned

areas are nonstationary at the 90% level. The least evidence for a unit root process is attributed

to the South East, however even in this case stationarity is rejected under SADF testing at the

90% significance level. In conclusion, all regions are found to show some evidence of a unit root

process.

As expected, fewer instances of rejecting the null of a unit root process occur across RADF

and SADF results compared to GSADF results. This can be attributed to lower power of SADF

testing under multiple instances of bubbles that are likely to be prevalent over three decades

of house price data. Given the GSADF test performs better in cases of multiple periods of

exuberance, the GSADF findings that most series are significant across regions and nationwide

hold superior credence. In summary, the ADF test results for house prices and affordability

anchors provide overwhelming evidence rejecting a unit root process in favour of explosive trend

properties, thus indicating the potential for one or multiple housing bubbles transpiring across

the sample time frame.

2.6.2 Periods of Exuberance in House Prices and Affordability Ratios

GSADF results are presented by region in Figures 2.6, 2.7, 2.8 and 2.9 for real house prices,

nominal house prices, house price to earnings and mortgage to earnings. Figures 2.6.3 to 2.6.3

plot each series coupled with the SADF results8. Across both house price indices, RADF results

demonstrate a higher incidence of exuberance detection compared to GSADF and SADF testing.

The latter two exhibit more distinct episodes of explosive house prices. With the exception of

Northern Ireland, all regions tend to have some commonality with respect to when periods of

exuberance take place.

The upper graph in each figure summarising house price movements has a prevailing theme

of a peak in the late eighties to early nineties, followed by a greater peak in the noughties.

While the severity of house price appreciation and ensuing decline vary from region to region,

GSADF and SADF testing substantiates house prices were explosive for all regions during both
8SADF House price to Earnings results are relegated to Appendix A.3. Results using nominal house prices

are available on request.
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peaks. While the duration and scale may vary, similarities in the hypothesis testing results

affirm fundamental house price drivers are common among regions. This serves as an impetus

for estimating how sensitive regional segments of the housing market may be to macroeconomic

and financial variables.

The first bubble detected is more distinctive than in the two thousands period. The latter

manifests a largely undisrupted protracted period of exuberance for some regions such as Scotland

and the South West, while other regions have more fractious experiences of explosive prices that

could be disaggregated to two smaller peaks; the first in and around 2005, preceding the larger

peak in 2008. For certain regions such as the North and East Midlands, this manifests as a

sustained increase in house prices coinciding with a protracted period of rejections of the null

hypothesis interspersed.
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Table 2.3: Regional ADF Test Results for Nominal and Real House Prices

Test Statistics
Nominal House Prices Real House Prices

Region RADF SADF GSADF RADF SADF GSADF
EM 5.324*** 5.669*** 5.669*** 4.678*** 4.996*** 4.996***
EA 3.695*** 3.695*** 4.814*** 10.114*** 10.114*** 10.114***
GL 1.895*** 1.895*** 2.225*** 1.129** 0.165 1.129**
NI 0.989** 8.060*** 8.060*** 0.579* 6.791*** 6.791***
N 3.134*** 2.991*** 9.045*** 2.917*** 2.20*** 7.676***
NW 2.250*** 2.752*** 6.928*** 1.984*** 2.098*** 6.281***
S 1.174** 1.191*** 3.732*** 1.451*** 1.241*** 3.297***
SE 3.200*** 3.200*** 3.200*** 4.987*** 4.987*** 4.987***
SW 2.071*** 2.134*** 3.188*** 3.048*** 3.048*** 3.048***
WM 2.554*** 2.554*** 3.656*** 3.497*** 3.826*** 3.826***
W 2.268*** 2.150*** 7.771*** 5.200*** 5.576*** 5.823***
YH 5.825*** 6.132*** 6.135*** 4.584*** 4.852*** 5.321***
UK 0.692* 0.679** 1.661*** 1.788*** 1.788*** 3.405***
Critical Values
99% -0.151 0.980 1.672 -0.151 0.980 1.672
95% -0.786 0.485 1.118 -0.786 0.485 1.118
90% -1.122 0.207 0.868 -1.122 0.207 0.868

*, ** and *** denote statistical significance to the 10, 5 and 1 percent level respectively.
Table 2.4: Regional ADF Test Results for House Price to Earnings and Mortgage to Earnings

Test Statistics
House Price to Earnings Mortgage to Earnings

Region RADF SADF GSADF RADF SADF GSADF
EM 0.561* 0.596** 0.61 4.219*** 4.219*** 4.219***
EA 2.442*** 2.542*** 2.542*** 6.652*** 6.652*** 6.652***
GL 0.792** 0.367* 0.792 1.854*** 1.391*** 1.856***
NI 0.372 1.191*** 2.037***
N 1.067** 0.253* 3.194*** 1.617*** 1.896*** 3.307***
NW 1.204*** 0.525** 1.558** 0.918** 1.197*** 2.332***
S 0.879** -0.121 1.274** 0.827** 0.057 1.465**
SE 0.445 0.464* 0.695 1.586*** 1.586*** 1.604**
SW 1.117** 1.117*** 1.117** 2.589*** 2.589*** 2.589***
WM 1.329*** 1.500*** 1.500** 3.359*** 3.359*** 3.359***
W 1.557*** 1.130*** 2.588*** 1.886*** 1.885*** 4.021***
YH 0.886** 0.547** 2.153*** 4.742*** 4.742*** 4.742***
UK 0.692* 0.679** 1.661*** 1.788*** 1.788*** 3.405***
Critical Values
99% -0.151 0.98 1.672 -0.14 1.03 1.648
95% -0.786 0.485 1.118 -0.782 0.497 1.12
90% -1.22 0.207 0.868 -1.123 0.238 0.891

*, ** and *** denote statistical significance to the 10, 5 and 1 percent level respectively.
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Table 2.5: Regional Incidence of Detected periods of Exuberance in Price and Affordability
Measures under GSADF Testing

Area No. of periods Bit = 1 % Periods Bit = 1 as proportion of T
RHP NHP ME HPE RHP NHP ME HPE

Northern Ireland 42 34 17 - 37.84 30.63 15.32 -
South 46 45 18 22 41.44 40.54 16.22 20.00
North 35 33 20 31 31.53 29.73 18.02 28.18
North West 40 34 11 31 36.04 30.63 9.91 28.18
Yorkshire & Humber 36 36 17 25 32.43 32.43 15.32 22.73
Wales 37 41 12 23 33.33 36.94 10.81 20.91
West Midlands 51 41 11 31 45.95 36.94 9.91 28.18
East Midlands 32 39 13 27 28.83 35.14 11.71 24.55
East Anglia 40 42 18 22 36.04 37.84 16.22 20.00
Greater London 30 47 14 20 27.03 42.34 12.61 18.18
South East 29 39 10 14 26.13 35.14 9.01 12.73
South West 29 37 8 17 26.13 33.33 7.21 15.45
United Kingdom 47 52 10 29 42.34 46.85 9.01 26.36

While general trends are shared between price and affordability anchors in terms of testing

for exuberance, the results demonstrate a far higher incidence of rejections of the null hypoth-

esis for testing prices compared to both tested ratios, indicating several exuberant episodes are

not driven by fundamentals. Indeed, detected ‘bubble’ periods are less enduring such that the

majority do not surpass the specified minimum length; The North West experiences the longest

bubble in housing affordability (measured by house price to earnings ratio) of thirteen quarters -

this is far less than those detected in prices which on occasion exceed twenty quarters. Housing

affordability ratios both share a bout of exuberance in the late eighties or early nineties, corrobo-

rating the same findings in house prices. Affordability ratios have a lower incidence of exuberance

detection, implying that the periods of explosive growth in prices unmatched by the ratios may

be inherited from escalating growth in housing fundamental drivers. Variation between the fre-

quency of periods sustaining explosive properties is also greater in the later period of exuberance

encountered in the two thousands. While the estimation results indicate common factors have

affected housing affordability across the UK, the variation in periods of exuberance underscore

regional disparities in sensitivities to housing determinants which potentially worsen over time.

As the decoupling in patterns of exuberance become more disparate between affordability and

price movements variables.
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2.6.3 Chronology of Exuberance

Tables 2.6 and 2.7 display date-stamped periods of exuberance in real and nominal house prices

respectively using the GSADF testing procedure across 12 UK regions and nationwide. The

results for the same testing procedure on the affordability ratios are also provided in Table 2.9

and 2.8.

Unlike its English and Scottish counterparts, Northern Ireland remains markedly different in

its explosive growth properties with little to no synchronisation across the tested period. This

result is accordant with the institutional and geographical distinctions that affect housing policy

in Northern Ireland. Alongside Scotland and Wales, Northern Ireland enjoys devolved status

such that housing policy is decided by the NI assembly. As the smallest and historically most

deprived region as discussed in McCord et al. (2011), this area is more susceptible to volatility

with higher levels of unemployment, lower productivity and greater reliance on public sector

subvention. House Prices in Northern Ireland start at a much lower price base in our tested

period and Scotland has its own housing market system based on sealed bids that differentiates

its regional housing market to the rest of the UK. The differences between this area and the

remaining UK regions is further compounded through geographical separation, curbing labour

market mobility and population migration. Wales and Scotland are expected to demonstrate

less interdependent behaviour with English regions due to devolved parliamentary powers and

geographical separation to a lesser extent; the results confirm this behaviour but remain related

to English house price movements unlike the tested Northern Ireland series.

The nationwide results for nominal and real house price GSADF testing indicate bubble

behaviour from 1988Q2 to 1989Q2 and to 1989Q1 respectively. This duration is the first phase

of exuberance in real and nominal house price appreciation detected at the advent of the testing

period. Referred to by Congdon (2005) as the ‘Lawson boom’, this explosion in property wealth

heralded a bust of a (then) unprecedented scale during the 1990s. Figure 2.2i demonstrates

this upswing in real house prices throughout the late eighties, finally peaking in 1989Q2 before

falling by a third (or 58 index points) over the subsequent seven years. While the dataset

range precludes date stamping the advent of explosive growth in real and nominal house prices,

closer inspection of regional components demonstrate the termination of exuberance follows a
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geographical progression across England.
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Figure 2.2: Date-stamping periods of exuberance in real house prices using sadf testing across 12 UK regions and nationwide.
The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates the sadf testing
results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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Figure 2.2: Date-stamping periods of exuberance in real house prices using sadf testing across 12 UK regions and nationwide.
The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates the SADF
testing results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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Figure 2.2: Date-stamping periods of exuberance in real house prices using sadf testing across 12 UK regions and nationwide. The upper graph in each subfigure
displays the behaviour of real house prices. The lower graph demonstrates the SADF testing results, with shaded areas corresponding to detected periods of exuberance
demonstrated across both graphs.
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Figure 2.3: Date-stamping periods of exuberance in mortgage to earnings using sadf testing across 12 UK regions and
nationwide. The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates
the sadf testing results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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Figure 2.3: Date-stamping periods of exuberance in mortgage to earnings using SADF testing across 12 UK regions and
nationwide. The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates the
SADF testing results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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Figure 2.3: Date-stamping periods of exuberance in mortgage to earnings using sadf testing across 12 UK regions and nationwide. The upper graph in each subfigure
displays the behaviour of real house prices. The lower graph demonstrates the sadf testing results, with shaded areas corresponding to detected periods of exuberance
demonstrated across both graphs.
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Appendix A.4 provides results using a smaller window size thus allowing inspection of exuber-

ance in the mid to late eighties that are sacrificed in the principal model in favour of more robust

outcomes. In regional terms, the period of explosive growth is first experienced in the South

East of England, closely proceeded by the South West and East Anglia. An increasingly lagged

effect is evident across West Midlands, East Midlands, Yorkshire and Humber, North West and

Northern England respectively. The first phase of exuberance initiates in the North 9 quarters

after the South East. This spatial pattern of exuberance experienced further forward over time

gives credence to the ’ripple effect’ hypothesis put forward by Meen (1999) as it demonstrates

“a cyclical upswing in the south-east and, then, spreading out over the rest of the country”.

Rejections of the null hypothesis also occur during the late eighties in both affordability mea-

sures. While most of these episodes are too short lived to constitute a ’bubble’, there is evidence

that all regions experienced explosive growth during this period at various intervals, indicating

the escalation in prices are driven beyond the changes in housing fundamentals. As discussed

in Muellbauer and Murphy (1997), financial deregulation in the eighties made mortgage credit

easily available such that households were able to leverage their house more than before. The

result of this is evident in the widening between mortgage debt to earnings, resulting in a sharp

upswing in the upper graphs in Figure 2.3. Indeed, income to earnings shows more sustained

periods of exuberance as a result of the shortfall between house prices and earnings being met

by credit. GSADF results in Table 2.9 depict a secondary short lived bout of exuberance for the

following southern regions: South West, South East,Greater London and East Anglia. While

results for Mortgage to Earnings ratio identifies the advent of exuberance in each region, house

price to earnings data for seven regions are in a phase of exuberance from the first tested win-

dow. Appendix A.4 signals the rejection of the null for house price to earnings ratio has a longer

duration than the scope of the primary results set. Tables 2.8 and 2.9 also display a geographical

spreading of exuberance from the South to the Northern regions by both measures. The mis-

match in magnitude between the duration of exuberance in prices and affordability underscore

a decoupling of movements in property value and earnings across all regions.

Greater London behaves anomalously as it bucks the trend of exuberance during this period

in real prices and affordability ratios. This result may be a consequence of market distortions

due to the political ramifications of abolishing domestic rates of local property tax in 1988 for
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the subsequent introduction of the Poll tax alongside mortgage interest restrictions to a single

property per household. As noted by Muellbauer and Cameron (2006), the political upheaval

sustained through to the early nineties with sizeable collection costs and ensuing demise of the

Poll tax, decoupling the impact of this from a house price bubble is not readily distinguishable.

The rapid rise and ensuing fall in both real and more unusually in nominal house prices, during the

late eighties to early nineties is evident across all other English regions and Scotland. Weeken

(2004) attribute this to housing asset over-valuation caused by mistaken perceptions of key

fundamental price drivers. An alternative explanation is suggested by Baddeley (2005) as house

price appreciation was a result of fiscal policy changes. Notably, the broadcasting of upcoming

restrictions to Mortgage Interest Relief at Source is considered to have fuelled a house price

upswing in mid 1988.

In the wake of the sharp and prolonged house price deflation lasting until the mid nineties,

interest rates were increased to fifteen percent for a year to combat stagflation. As unemployment

reached three million, record levels of households could not meet their mortgage repayments

taken out during credit expansion that fuelled the bubble. These conditions ensured the housing

market did not recover until the mid nineties. Nationwide house prices show evidence of only

mildly explosive behaviour across all regions from the early nineties until mid 1996.

First detected in Greater London, nominal property prices exhibit bubble tendencies in the

South East, South West and Midlands in the run up to 1997 with some regions lasting until

1999. Certain areas experience more protracted periods of explosive growth; most notably the

West Midlands exhibits exuberance from 1996Q1 to 2005Q1 in all but 5 quarters. Table 2.6

and 2.7 depict a spatial progression of exuberant episodes across England in a more convincing

geographical pattern compared to the ’Lawson boom’. Results summarised in Table 2.7 show

the sequence is more gradual in its advent compared to the contagion of the termination date of

exuberance. Evidence is further strengthened from real house price testing, suggesting evidence

of more immediate synchronisation of a reversion from explosive to mildly explosive house price

movements than vice versa. This pattern is most evident in nominal house prices but is also

strongly apparent in real house prices in Table 2.6. As a prospect of this mismatch in diffusion

of onset and expiry, regions further northward experience shorter periods of detected explosive

house price behaviour.
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GSADF testing reveals house prices have behaved explosively since 1996, corroborating the

findings of UK property overvaluation in Girouard et al. (2006). In contrast Meen (2008) argues

the strength of house prices can be explained in terms of fundamentals. This preposition is

strengthened by the results of Muellbauer and Cameron (2006) where no strong evidence of a

bubble exists. This is chalked up to chronically low levels of interest rates with future expectations

of low inflation, coupled with notably strong income growth and weak housing supply. During the

early nineties, Meen and Andrew (1998) consider the reform of the labour markets a key structural

change in the housing market composition. The effect on income distribution adversely affected

younger households; a change that has yet to be reversed (Andrew, 2012). While income growth

may explain some of the boom in house prices, the increase in prices far outstrips earnings growth

per household. The population increase between 1996 and 2006 of 1.8 million net additional

households increased housing demand; coupled with income growth, Muellbauer and Cameron

(2006) found both factors almost completely account for appreciation in prices.

With the exception of Scotland and Northern Ireland, expiry of explosive growth in both

prices and affordability terminate for all regions by (or during) 2006. Both of these regions

are alone in their experience of exuberance in mortgage to earnings ratio during 2006-7. All

remaining regions test negatively for explosive growth until mid 2007 in prices and 2008 onwards

in affordability.

The third episode of explosive growth shows more immediate signs of synchronisation with

all regions rejecting the null within the space of a year. Unexpectedly, real house prices in

Yorkshire first experiences bubble behaviour in mid 2007, before being detected further north

and further south over the successive year. We note less evidence of the ripple effect perhaps

due to more interconnectedness between regional housing markets and credit conditions. The

duration of exuberance is lower than the preceding boom, with most regions failing to exceed two

years in price and affordability measures. The southern regions of South East, South West and

Greater London encounter some quarters of null hypothesis rejection, but not for a sufficiently

prolonged time frame to constitute a bubble. Upper graphs in real and distinctly in nominal price

movements (shown in Figure 2.6.3) demonstrate that price appreciation was greatest through

this period despite the short duration. Termination of explosive growth is more contemporaneous

across areas than historic periods; this is particularly apparent in affordability measures. The
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boom in this period was fuelled by a combination of chronically low housebuilding interplayed

with demand side factors, including fifteen years of steady growth, cheap credit and a rising

population.

From mid 2010, houses prices and affordability do not exhibit explosive growth for four suc-

cessive years. This can be attributed to after effects of the global financial crisis originating from

the US sub prime lending contagion. In the wake of the crisis in 2008, credit conditions became

more restricted. Mortgage interest rate premiums over the central bank base rate increased as

fewer products were made available on the market. Lenders required increased downpayment,

leading to a decrease in modal Loan to Value from 95% to 75% from before and after the crisis

(White, 2015). This effect is reflected across all regions in both affordability measures as most

households rely on mortgages to afford property purchases.

In a bid to combat low LTVs the government introduced the Help to Buy mortgage guarantee

scheme with the expectation of increasing market transactions and supporting demand in the

housing market. As discussed in White (2015), evidence suggests significant increases in mortgage

lending since the policy’s inception. This factor may have fed into detected periods of exuberance

from 2014 onwards. First detected in southern regions, prices have begun to behave explosively,

most noticeably in the South West of England. House price to earnings also shows evidence of

exuberance most substantially in the southern regions. However, Mortgage to Earnings shows a

lower incidence of null hypothesis rejections. This may be due to sustained downward pressure

lending since the financial crisis. The identification of these final periods of exuberance potentially

continue beyond our timeframe such that we are unable to datestamp the termination date.
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2.6.4 Correlated Random Effects Probit Estimation Results

Table 2.10: Correlated Random Effects Probit Estimation with Mundlak-Chamberlain Correc-
tion using GSADF Outcomes

(1) (2)
Variable Real House Price House Price to Earnings

Region Specific:

Real Disposable Income -0.0000125*** -0.00000220
(0.00000315) (0.00000329)

Nationwide:

Unemployment -0.516*** -0.341***
(0.0426) (0.0452)

∆ FTSE100 -0.0400*** -0.0329***
(0.00832) (0.00888)

∆ Oil Price 0.00351 0.00281
(0.00280) (0.00300)

∆ Current Account -0.0000680 -0.000385
(0.000125) (0.000238)

∆ Gold Price 0.0156** 0.00149
(0.00634) (0.00686)

[1em] Official Bank Rate -0.206*** -0.0994**
(0.0372) (0.0412)

10 year Government Bond Yield 0.271*** 0.180**
(0.0647) (0.0721)

Constant 2.793*** 1.227***
(0.269) (0.260)

ln(σ2
u) -3.847*** -11.93

(0.758) (19.33)
Observations 1296 1177
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Table 2.11: Marginal effects from correlated random effects estimates on GSADF outcomes

Variable Real House Price House Price to Earnings
dy/dx Standard Error dy/dx Standard Error

Region Specific:
Real Disposable Income -3.62e-06 *** 9.00e-07 -5.72e-07 8.56e-07
Nationwide:
Unemployment -.1493868 *** .010475 -.0886922 *** .0112705
∆ FTSE100 -.0115842 *** .002353 -.0085527 *** .0022785
∆ Oil Price .0010157 .0008087 .0007315 .0007792
∆ Current Account -.0000197 .0000363 -.0001 .0000618
∆ Gold Price .0045132 ** .0018257 .0003875 .0017841
Official Bank Rate -.0597499 *** .0104754 -.0258411 ** .0106797
10 year Government Bond Yield .0783101 *** .0184447 .0469024 ** .0186606
Observations 1,296 1,177
* p<0.10, ** p<0.05, *** p<0.01

The results in Table 2.10 denote multiple significant outcomes within groups. In general

terms, the evidence suggests macro and financial variables have some predictive power for exu-

berance. With the exception of changes in the current account and oil prices, all macroeconomic

and financial variables are found to have some predictive content with respect to exuberance in

real house prices. While other studies have considered changes in stock prices, interest rates and

income (Muellbauer and Cameron, 2006), no studies formally assess the role of unemployment

which we find to be a strong predictor of bubbles across most regions.

The strongest predictor of exuberance in both housing affordability and house prices is the

unemployment rate, demonstrating how a fall in the unemployment rate is closely associated with

the increased likelihood of exuberance in the housing market. In contrast to this, we find that

changes in disposable income have no power in predicting exuberance in the price to earnings

ratio, and an extremely low marginal impact in predicting explosively in prices. While the effect

is found to be significant, the value is negative and very close to zero. Inspection of the results

at the regional level may yield more information as to how the relationship between changes in

disposable income impact bubble behaviour in the housing market. Our findings are consistent

with Muellbauer and Cameron (2006) who also find that region specific income growth rates hold

surprisingly little explanatory power with respect to house prices. As expected, interest rates are

found to be predictive of exuberant episodes. As interest rates increase, the cost of mortgages
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rises, reducing demand for housing as prospective home-buyers are deterred by higher costs and

may choose to substitute towards the rental sector. We note that as the Bank of England interest

rate decreases, the probability of exuberance in the Housing market increases, both in reference

to price and accounting for fundamentals. These findings are reconcilable with the concerns of

protracted periods of low interest rates since the Global Financial Crisis (GFC) that have led

critics to be wary of how this form of monetary policy may encourage the formation of asset

bubbles. These findings indicate this may indeed be a valid concern, with the Official Bank Rate

is found to be significant at the 1% for exuberance in real house prices and mortgage to earnings

ratio respectively. As the official bank rate increases, the probability of an episode of exuberance

is less likely; this is consistent with the findings of Pavlidis et al. (2014).

With respect to changes in the stock market, we find that increased growth in the FTSE100

decreases the likelihood of exuberance in both price and affordability measures. This may be

evidence of speculators substituting between both asset classes, such that as expected rates of

return in shares decreases, individuals may look for to housing as an alternative asset class,

fuelling the likelihood of a housing bubble. Our findings contrast with Muellbauer and Cameron

(2006) who find changes in stock prices have significant positive effects in London and the South.

Changes in the gold price however are positively associated with the increased probability of

exuberance in house prices. In the wake of the GFC, consumer confidence and investor fears

may have supported a shift towards investors seeking less risky investments such as gold and

housing. Exuberance in the housing market is also found to be robust to changes in worldwide

macroeconomic conditions, proxied by changes in the oil price and current account. These

variables are found to have no predictive power in anticipating periods of explosive growth in

house prices or their fundamental drivers. The findings reveal exuberance in the UK housing

market is robust to global macroeconomic conditions given the low predictive ability of changes

in the oil prices and the current account.

The results in Table A.6 to A.9 summarise the GSADF probit results by region9 for real

house prices and house price to earnings, along with their respective marginal effects. The

results demonstrate the strong impact of unemployment in predicting regional explosivity in

house prices, with all English regions except Greater London showing unemployment rates have
9Tables are reported in Appendix A.5
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predictive power over periods of exuberance at the 1% level. The marginal effect is highest in

the North and Midlands, while the South East and West show a lower impact compared to the

other regions. Greater London finds unemployment to be a predictor of exuberance in housing

affordability at the 1% and the short term rate at the 5%; all other variables are shown to have

no predictive power over exuberance in the region. These outcomes indicate that the drivers of

bubbles in these given areas are not adequately explained by the covariates enlisted.

2.7 Concluding Remarks

In this chapter we employ the novel method of Phillips et al. (2011) and Phillips et al. (2014)

for testing and date stamping exuberant episodes in asset prices to detect bubble behaviour

across UK regions from 1983(1) to 2014(4). Through the analysis of time series properties

of regional house prices, our research contribution is twofold; firstly we are able to identify

the date stamp at which house price appreciation mutates into exuberance for each area. By

contrasting the experience of prices with their fundamentals, we are able to ascertain whether

explosive episodes are driven by fundamentals or speculative behaviour consistent with the notion

of a bubble. Secondly, our findings illustrate the synchronisation of regional segments of the

housing market which ultimately improve our understanding of how national UK house price

bubbles materialise through inspection of the disaggregate components. In the context of the

vast literature surrounding the transmission of house price shocks to surrounding areas, this

paper finds mixed evidence supporting the established ‘ripple effect’ hypothesis.

By addressing these research aims, we further the framework for both monitoring and under-

standing the UK housing market. The policy implications are both retrospective in the analysis

of past bubble formation, but also proactive in furthering the existing framework of anticipating

episodes of exuberance. This ultimately leads to the design of effective policy. Additionally,

these methods serve as an early warning diagnostic of bubble activity for UK regions. Our re-

search provides the starting point for further analysis into what were the fundamental antecedent

factors in the evolution of house price exuberance.

The results indicate a high prevalence of bubble episodes experienced in prices with only a

fraction also exhibited in the affordability ratios. Based on these outcomes, we find house price
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fundamentals do not explain the explosive tendencies in house prices, most prominently expe-

rienced in the late 90’s and early 00’s, during which both affordability measures demonstrate a

decoupling effect from their exuberant price counterparts. These decoupled episodes of exuber-

ance can be thought of as bubbles given their departure from their fundamentals and explosive

characteristics. The relatively short periods of exuberance in both ratios have a lagged onset

compared to prices. Interestingly, we find a higher number of exuberant episodes in southern

areas that are unmatched by respective exuberance in housing affordability measures. Further-

more, our results indicate unemployment and short term interest rates hold significant power

in predicting regional episodes of exuberance. Regional results also demonstrate a significant

level of heterogeneity across regions, with London demonstrating the least episodes of exuber-

ance in real house prices combined with the lowest predictive content from the covariates in the

correlated random effects probit model.

The use of median salaries of full-time male earners severely limits the suitability of the

affordability measure. The exclusion of female and part time participation underestimates the

detection of bubbles over the tested period. Over the given timeframe, the number of females

and part time workers have steadily increased with joint household income playing a dominant

role in housing affordability. Indeed, as house prices have outstripped earnings in appreciation,

households have increasingly relied on both incomes to afford housing, in addition to part-time

and flexible working earners also contributing to housing costs. In light of this, the likelihood

of bubbles that are not detected using affordability measures comprising of full-time male me-

dian salaries increases over the tested period. The bias arising from the use of full-time male

only earnings data incurs severe errors-in-variables that must be taken into consideration when

interpreting the estimation output.

A key limitation of the GSADF procedure is that it lacks the flexibility to allow for both

an explosive root and a unit root (Engsted et al., 2015). The null hypothesis underlying the

test assumes the time series follows an I(1) process, against the alternative that the series is

characterised by an explosive process. Applying the test on the price to income ratio and rejecting

the null hypothesis is implicitly assuming that prices and income are cointegrated; this may not

be the case in practice. It is also important to note that both affordability measures are unable

to capture all fundamentals in house prices, and as such a major limitation of our work pertains
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to these unaccounted for fundamentals.

Future research would thus benefit from evaluating the cointegrating relationship between

prices and fundamentals in tandem with exuberance. We may pursue this using Engsted and

Nielsen (2012) co-explosive VAR framework to test for bubbles while concurrently allowing coin-

tegrating relationship between prices and their fundamentals and estimating the strength of this

cointegrating relationship. By using the SADF and GSADF procedure, we are able to date-stamp

the commencement and termination of bubbles for use in co-explosive VAR; this information must

be provided a priori so our existing GSADF estimation is a parsimonious extension in this con-

text. Alternatively we may also contrast our findings against a fractional integration approach.

We also consider extending the variable set to ascertain whether other measures may be good

predictors of bubbles. For example, behavioural measures of investor optimism and market stress

indicators may provide meaningful insights into the formation of bubbles.



Chapter 3

Estimating Spillover Effects in
the English Housing Market: A
Heterogeneous Spatial
Autoregressive Panel Approach

3.1 Introduction

Recent advances in the analysis of cross-sectional dependence has led to a range of novel tech-

niques in efficiently modelling cross-sectionally dependent systems. Spatial dependence has been

the recipient of exhaustive analysis in a wide range of disciplines ranging from geographical areas

to more abstract network systems. This chapter utilises the recent contribution of Aquaro et al.

(2015); Bailey et al. (2016) in estimating a sub-regional spatio-temporal model of the English

housing market, accounting for both strong and weak forms of cross-sectional dependence.

While the UK housing market has long sustained the scrutiny of empirical research, the

contributions from this chapter are novel in the use of nascent techniques that account for cross-

sectional dependence (CSD hereafter) to allow for accurate estimates of spatial dependence. This

chapter continues in the tradition of panel estimation under network dependence (Anselin, 1988;

Elhorst, 2003; Baltagi, 2005; Anselin et al., 2008; Kapoor et al., 2007; Fingleton, 2008, 2010)

with a focus on revealing the spatial structure of house prices diffusion in England. Further

contributions arise from the use of sub-regional data, capturing a rich set of dynamics that

elucidate how shocks to the system propagate across both dimensions. The estimated model

47
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exploits a large timeframe through the use of monthly data, capable of capturing short term

adjustments that are missed in lower frequency studies. The heterogenous spatial autoregressive

(HSAR) model allows for variation in the degree of spatial dependence in house price growth

between neighbouring districts, in addition to differences in the persistence of these changes

over time. The proposed model also allows for the effects of neighbourhood changes in house

price inflation to affect each corresponding area in the following period, alongside variation on

intercept and noise variance across districts. This level of flexibility is particularly suitable given

the complexity of the housing market and how housing by its very own nature is heterogenous.

In addition to the exogenous weights matrices, we also consider more recent developments by

Bailey et al. (2016) (hereafter BHP) using a data driven weighting matrix. Existing empirical

analysis allowing for weak cross sectional dependence often accounts for spatial relationships

using a priori information that may be inadequate in capturing all interrelations between cross-

sectional units. These imprecisions may lead to inaccurate calculations of spatial lags or incorrect

spillover mechanisms (Pesaran et al., 2004). To combat this, we utilise the proposed method by

Bailey et al. (2016) where the spatial matrix is constructed using a data driven method. We

adapt this method by removing the multiple testing correction due to the sizeable reduction

in significant pairwise relationships. In the absence of this modification, the resulting weights

matrix is too sparse to characterise a reasonable number of neighbours, rendering the spatial

estimation procedure redundant.

The results indicate a common factor structure exists in the tested panel of English house

price growth alongside spatial effects. The estimated model show temporal dependence in house

price inflation is highly significant across all regions, indicating substantial persistence in house

price growth over time. After accounting for common factor impacts at the regional and na-

tional level, evidence of spatial dependence is found in two thirds of regions (under the 5 nearest

neighbour weights specification) indicating interdependencies between neighbourhoods.The re-

sults highlight both positive and negative spillover effects that can be attributed to equilibrating

and substitution effects between districts. Furthermore, neighbourhood price changes are found

to affect house price inflation to a greater extent in the next month than contemporaneously,

with indications of mean reversion between current and lagged effects. Interestingly, the mean

group estimate results of regional impact mask the rich dynamics of spatial dependence across
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the country. The results indicate region or nation wide policies may serve to increase divergence

in house price inflation across districts, as clusters of areas not only more susceptible to impacts

of house price growth in neighbouring areas, but also vary in terms of the impact having either

negative or positive long run impacts. At the subregional level, the results indicate delineating

housing markets by regions fails to capture significant inter-regional effects that are masked in

single parameter estimates for a region. As local governments are able to control housing policy

at the district level, the findings suggest cities and transport networks play a key role in the

propagation of multiplier effects.

The rest of the chapter is organised as follows. Section 3.2 outlines the relevant literature in

characterising spatial dependence within the housing context. Section 3.3 summarises the data

selection. Section 3.4 specifies the model and derives the marginal effects of persistence in house

prices on neighbourhood house price inflation. Section 3.5 presents an analysis of the estimated

results, and finally, Section 3.6 concludes.

3.2 Related Literature

Housing markets have often been considered better characterised as a series of interconnected

regional and local markets (Meen, 1996). Indeed, whilst house prices change over time and space,

these variations are not independent of one and other (Gong et al., 2016). These arise from dif-

ferentials in house price and construction costs across space such as income levels. Furthermore,

even assuming spatial homogeneity in this respect, structural differences between local areas

engender heterogenous adjustment mechanisms primarily with respect to migration flows and

wages (Meen, 1996). The reverse is also true as migration and wages are also affected by housing

market characteristics.

In theory, house prices at equilibrium are set by the balance between demand and supply.

However, in situations where supply is insensitive to increased prices, or where factors other

than fundamentals motivate price movements, housing may be persistently overvalued or deemed

unaffordable. This can place upward pressure on wages and the labour costs at the individual

and firm level, in addition to increased risks for macroeconomic stability. In this sense, residential

property prices play a key function in urban economic models, equilibrating house prices such that
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individuals and firms are indifferent between houses situated across all spatial units. The impact

of this calibration can only be fully realised in the long run due to the difficulties associated with

household relocation and the time-scale for housing construction.

If a district is overpriced, the divergence from the long run house price should diminish over

time as consumers’ search activity substitutes away from the overpriced home, redirecting search

behaviour towards other homes within the local housing market area. The upward pressure on

property prices in neighbouring districts combined with the downward pressure of prices in the

initial district may lead to an equilibrating impact over time (Jones et al., 2004). In this sense,

a housing market may be considered as a group of dwellings with shared dwelling characteristics

such that individuals are largely substitutable between properties. This theory is compatible

with Pollakowski and Ray (1997) who find spillovers are not restricted to neighbours but posit

only an economic relationship is required.

The interregional relationships of house prices are often typified by theories of convergence

(Holmes and Grimes, 2008; Cook, 2005; Cotter et al., 2011) or diffusion mechanisms. The latter

is examined across regions in Britain in Alexander and Barrow (1994); Ashworth and Parker

(1997); Meen (1996, 1999). A popular hypothesis of diffusion is put forward by Meen (1999)

as the ‘ripple effect’, where the diffusion of house price increases first occur in the South East

and London, before spreading across the rest of the country (Giussani and Hadjimatheou, 1991;

Meen, 1996, 1999). Balcilar et al. (2013); Canarella et al. (2012); Pollakowski and Ray (1997)

consider a transitory or pervasive spillover effect in this context. Canarella et al. (2012) finds that

migration flows may precipitate the ripple effect as households relocate in response. As noted

in Meen (1999), spatial dependence is not required for rationalising the ripple effect. Meen and

Andrew (1998) identify five potential causes of spillovers arising from the ripple effect, namely:

migration, transaction and search costs, equity transfer, spatial arbitrage and leads and lags in

house prices. Some district level studies have considered house price spillovers in the Scotland,

England and Wales (Jones and Leishman, 2006; Gray, 2012). Gray (2012) finds some evidence

supporting the ripple effect, in addition to significant spatial and temporal lags of London areas

on low priced homes in the North.

Understanding the propagation of house price movements across both dimensions is also

important in the context of the economic signals these movements send. High growth in property
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prices in a district implies that future residents have to pay escalating costs to reside in a given

area. The effect is exacerbated in areas with greater population growth. While fundamentals of

price theory denote that persistently raised house prices precipitate a corresponding increase in

the supply side, in the case of housing, the limitations to changes in supply persist. In the case

of no supply constraints, where land is available in abundance and construction could supply

new units in response to prices increasing sufficiently above production costs to provide them

a profitable return, prices would never surpass the construction costs in the long run. Other

researchers have studied supply side constraints, demonstrating compelling evidence of hurdles

that raise the cost of developing new housing imposed by local and national governing bodies

(Glaeser and Gyourko, 2003; Glaeser et al., 2005b,a; Gyourko et al., 2008; Saks, 2008).

While this chapter focuses on the estimation of interdependencies in house price growth, there

exists a considerable literature dedicated to understanding what motivates these changes in the

price level. Gyourko et al. (2010) considers four drivers for growth in house prices stemming

from urban research of the housing market. Firstly, agglomeration effects have an increasing

value in areas characterised by inelastic housing supply. House price growth may also be a result

of increased productivity unrelated to the impact of agglomeration. Alternatively, the increases

may be driven by increased levels of amenities in cities or the dispersion may stem from an

increasing number of high income households at the national level in tandem families ’sorting’

across districts. In the latter case, high income households are able to outbid other families for

the scarce properties in a supply constrained district.

3.3 Data

We use house price data collected by the Land Registry made available through the Office

of National Statistics (ONS). The subregional dataset includes 33 London boroughs, 201 non-

metropolitan districts, 36 metropolitan districts and 55 unitary authorities. Henceforth, these

areas are collectively referred to as districts.1

From 1974, a two tier administrative structure was instigated across England and Wales,

impacting the division of functions between councils and districts. This process created a struc-
1The history and structure of the UK administrative geography is reviewed in Wilson and Game (2011).
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ture of shire counties and non-metropolitan districts, with the exception of the Isles of Scilly,

Greater London and the metropolitan counties. While counties assumed responsibilities such as

transport, education, strategic planning, local authority districts appropriated functions includ-

ing local planning, housing and building. Further restructuring in the 1990s introduced unitary

authorities as single tier structures with full responsibility across all local government operations.

The subdivision of district level disaggregation is primarily used by local government.

The districts may be further aggregated into nine regions: South East, London, North West,

East, West Midlands, South West, Yorkshire and the Humber, East Midlands and North East.

Monthly data spanning from January 1995 to August 2016 is used to capture a rich set of

dynamics often masked in quarterly or annual data studies. House prices are adjusted for inflation

as follows.

pirt = ln
(
Pirt
CPIt

)
, i = 1, ..., Nr; r = 1, ..., R; t = 1, ..., T (3.1)

where average house price of district i situated in region r in month t is given by Pirt, for

i= 1, ..., Nr, r = 1, ..., R and t= 1, ..., T , where
∑R
r=1 = Nr = N = 325, R = 9 and T= 260. CPIt

denotes the national consumer price index at month t. Seasonally adjusted growth in house

prices, πirt are derived using the X-12-ARIMA process.

3.4 Econometric Methodology

3.4.1 Testing for Cross Sectional Dependence

In spite of the considerable spatial literature concerning house prices, past studies often fail

to assess the level of cross sectional dependency (Rapach and Strauss, 2009; Gupta and Das,

2010; Kuethe and Pede, 2011). Models incorrectly specified for spatial connections where factor

dependence persists puts the validity and accuracy of the results obtained into question. 2

The degree of cross sectional correlation is assessed using the CD test and exponent of CSD.

CD =
[
TN(N − 1)

2

] 1
2

ˆ̄ρN (3.2)

2See Chudik et al. (2011) for a detail account of weak and strong CSD.
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where:

ˆ̄ρN = 2
N(N − 1)

N∑
i=1

N∑
j=i+1

ρ̂ij (3.3)

The CD statistic conforms to the standard normal distribution as shown in Pesaran (2015),

where the null hypothesis denotes weak CSD. Strong cross-sectional dependence is accounted

for using cross sectional national and regional averages. After testing for weak cross sectional

dependence against the alternative of strong CSD, if evidence of the latter is found, residuals

are taken from the estimated factor model. This process accounts for the strong cross-sectional

dependence in the model. Alternative methods exist including principal components analysis

(Bai, 2003) and maximum likelihood estimation of observed factors (Robertson and Symons,

2007). Accounting for all observable factors affecting house price changes requires more data

than available at the district level on a monthly basis. We opt to use cross sectional averages due

to the clear economic interpretation of both factors. Additionally, Bailey et al. (2016) compute

both principal components analysis and cross sectional averaging methods - while both methods

demonstrate effective in accounting for common effects, the use of cross sectional averages is less

computationally demanding.

Following the Office of National Statistics classification of regional boundaries, we use this

hierarchical model to assign each district to its respective region. Changes in real house prices

are regressed on a constant, national average and relevant regional average. The defactored

house price changes are given by the residuals in the regression below. In the instance of strong

CSD, seasonally adjusted changes in real house prices are de-factored using national and regional

cross-sectional averages:

πirt = ϱir + βirπ̄rt + γirπ̄t + ξirt i = 1, ..., Nr; r = 1, ..., R; t = 1, ..., T (3.4)

where π̄t = N−1 ∑N
i=1 πit, π̄rt = N−1

r

∑Nr
i=1 πirt, with Nr denoting the number of districts

within each region r for r = 1, . . . , R,
∑R
r=1 Nr = N . The residuals from the above equation

denote the de-factored real house price changes, ξ̂t. The CD test and the strength of CSD are

both measured again for comparison with the results obtained from the original real house price

changes to ensure the process has been successful in extracting the strong component of CSD.
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Table 3.1: Summary Statistics of House Price Indices Adjusted for Inflation

Mean Std. Dev. Maximum Minimum Skewness Kurtosis No. Districts
NE 6.94 0.370 7.61 6.27 -0.229 1.63 12
NW 6.99 0.438 7.92 5.92 -0.250 2.15 39
YH 7.08 0.440 8.01 6.11 -0.173 2.06 21
EM 7.14 0.419 8.02 6.16 -0.395 2.20 40
WM 7.22 0.416 8.04 6.10 -0.405 2.32 30
E 7.45 0.452 8.57 6.29 -0.462 2.50 47
L 7.88 0.521 9.52 6.60 -0.0462 3.00 33
SE 7.62 0.445 8.79 6.24 -0.577 2.75 67
SW 7.44 0.413 8.19 6.39 -0.660 2.27 36
England 7.37 0.523 9.52 5.92 -0.0738 2.75 325

3.4.2 A priori Weights Specifications

The selection of a suitable spatial weight matrix is a key element of the spatial model; it assumes

a predetermined structure of spatial dependence, which attempts to summarise the spatial de-

pendencies derived from the true DGP. Hence, we may consider the weighting matrix as a method

to parameterise Tobler’s first law of geography: “Everything is related to everything else, but

near things are more related than distant things.” (Tobler, 1970). Spatial weights are inter-

preted as functions of proximity, often using geographic or economic measures (Anselin, 1988).

Ord (1975) built on the work of Whittle (1954) to propose a salient parameterisation of the

dependence between units by imposing a structure on the dependencies between units, giving

rise to a spatial autoregressive data generating process. Following in the tradition of the spatial

literature, three types of exogenous weights matrices are considered; queen, nearest neighbour

and inverse distance measures are implemented as a robustness check. In order to account for

different levels of connections, we connect districts based on a proximity of 7.5, 10 and 15 miles.

These measures yield a population of 0.56%, 1.04% and 2.47% respectively.

Using GIS software, each ‘polygon’ or district is converted to a centroid value. The process

summarises an area space into the most central point from its bounding perimeter. The latitude

and longitude coordinates for each centroid is then used to determine distances between districts.

We opt for orthodromic (or ‘great-circle’) distance in place of Euclidian measures.3 The Haversine
3While both measures calculate the shortest distance between two points, the former accounts for the spherical

surface of the Earth to provide more accurate values of distance compared to the non-projected straight-line
measure between coordinate sets in Euclidean space.
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formula below calculates great-circle distances between each district centroid.

dst = r × c

where,

c = 2a tan 2(
√
a,

√
1 − a)

a = sin2 ∆
(

lat
2

)
+ cos(lat1) cos(lat2) sin2

(
∆long

2

)
where r denotes the radius of the Earth measured in miles, d is the distance, and coordinates

are given at two points 1 and 2 in terms of latitude and longitude coordinates.

3.4.3 Pairwise Correlation Determined Spatial Weights Matrix

We also employ Bailey et al. (2016)’s pairwise correlation based method of establishing the

spatial weights matrix using de-factored house price changes. The sample correlation matrix

from equation (3.4), gives:

ρ̂ξ̂,ij = ρ̂ξ̂,ji =
∑T
t=1(ξit − ξ̄i)(ξjt − ξ̄j)[∑T

t=1(ξit − ξ̄i)2
]1/2 [∑T

t=1(ξjt − ξ̄j)2
]1/2 =

σ̂ξ̂,ij

[σ̂ξ̂,iiσ̂ξ̂,jj ]
1
2

(3.5)

where ξ̄i = T−1 ∑T
t=1 ξit. The purpose of the adjacency matrix is to summarise the relationships

between cross-sectional units. In the case where the weights matrix has near zero connections,

this purpose is unfulfilled. The BHP method recommends implementing Holm (1979)’s multiple

testing correction at a specified significance level (set at 5% in their application), where N(N-1)/2

pairwise connections take a value of 1 or 0 based on the statistical significance of the respective

correlation. In our application, the multiple testing correction dramatically reduces the incidence

of connections in the adjacency matrix to near zero connections (0.03%). Given this violates the

purpose of the weights matrix, we trial the use of the less conservative Bonferroni correction

but find this has the same overly penalising effect. In light of this, no multiple correction is

applied. Based on whether statistically significant correlations are negative or positive, values

are distinguished into Ŵ− and Ŵ+ matrices respectively such that Ŵ = Ŵ− + Ŵ+.

In order to ascertain how closely related the correlation based weights matrices are to the
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distance based measures Wd
4, the statistical association between the weights is measured using

Pearson’s chi-squared statistic. Given the weights matrices are by their nature sparse, the prob-

ability that both weights will share a zero realisation lies near unity. Following the BHP method,

we create a contingency table from the upper triangular portion of the adjacency matrices given

their symmetric nature as follows:  n11 n10

n01 n00


The 4 categories are: 1) n11 denotes the incidence that elements from Ŵ+ displays an entry of 1

when Wd also displays 1 2) n00 denotes the incidence that elements from Ŵ+ displays an entry

of 0 when Wd also displays 0 3) n01 denotes the incidence that elements from Ŵ+ displays an

entry of 0 when Wd displays 1 4) n10 denotes the incidence that elements from Ŵ+ displays

an entry of 1 when Wd displays 0 Consequently, n11 + n00 + n01 + n10 = N(N − 1)/2 and the

Pearson chi-squared statistic is:

χ2 = N(N − 1)
2

 1∑
i,j=0

n2
ij

(ni. + n.j)
− 1

 (3.6)

where ni. = ni0 + ni1, n.j = n0j + n1j .

3.4.4 The Heterogenous Spatial Autoregressive Model

The spatial autoregressive panel (SAR hereafter) model with homogeneous spatial autoregressive

coefficient, ψ is given as

ξt = ψ

N∑
j=1

wijξjt + εit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (3.7)

where w′
iξt =

∑N
j=1 wijξjt with wi = (wi1, wi2, ..., wiN )′ denoting an N x 1 vector of fixed

weights associating the ith district to it’s respective neighbours where wii = 0. Furthermore,

ξi = (ξi1, ξi2, ..., ξiN )′ and εit represents the district specific error component, assumed to be both

serially and cross-sectionally independently distributed. Equation 3.7 can be stacked across N
4For this purpose, we use Wd=15m
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units to give ξt = ψWyt+εt, t = 1, 2, ..., T, whereW = (wij), i, j = 1, 2, ..., N denoting an N×

N row normalised spatial weight matrix summarising all the connections between cross sectional

units. Given the restrictive nature of enforcing a constant spatial autoregressive parameter across

all districts, we utilise the contribution of Aquaro et al. (2015) (hereafter ABP). Adapted from

the first order SAR given in equation 3.7, the HSAR model can be written as:

ξit = ψi

N∑
j=1

wijξjt + εit, i = 1, 2, ..., N ; t = 1, 2, ..., T, (3.8)

where ψi is the spatial autoregressive parameter. In matrix form this gives:

ξt = ΨWξt + εt t = 1, 2, ..., T (3.9)

where Ψ = diag(ψ),ψ = (ψ1, ψ2, ..., ψN )′, and σ2
εi = var(uit), i = 1, 2, ..., N . BHP adapt the

ABP model to incorporate temporal and spatial effects:

ξt =
hλ∑
j=1

Λjξt−j +
hψ∑
j=0

ΨjWξt−j + ζt (3.10)

where hλ = max(hλ1, hλ2, ..., hψN ), hψ = max(hψ1, hψ2, ..., hψN ). Λj ,Ψj are N × N matrices

with diagonal elements of λij and ψij respectively. Note the variance of the disturbance term,

σ2
ui = var(uit), alongside λij and ψij are able to vary across each district i. We model defactored

house price changes ξ̂it using the following spatio-temporal model under QML estimation in

ABP:

ξ̂t = aξ + Λ1ξ̂t−1 + Ψ0W̃ ξ̂t + Ψ1W̃ ξ̂t−1 + ζt (3.11)

The model is estimated using the concentrated log likelihood function:

ℓ
(
ψ+

0 , ψ
−
0

)
∝ T ln

∣∣IN − Ψ+
0 W+ − Ψ−

0 W−∣∣ − T

2

N∑
i=1

(
1
T
ξ̃′
iMiξ̃i

)
(3.12)

where ψ+
0 =

(
ψ+

10, ..., ψ
+
N0

)′
, ψ−

0 =
(
ψ−

10, ..., ψ
−
N0

)′
, ξ̃i = ξi−ψ+

i0ξ
+
i −ψ−

i0ξ
−
i , Mi = IT−Zi (Z′

iZi)
−1 Zi,Zi =(

ξi,−1, ξ
+
i,−1, ξ

−
i,−1

)
The lagged coefficients λ1, ψ+

1 and ψ−
1 are estimated by least squares for each individual
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district conditional on ψ+
i0 and ψ−

i0. Inferential analysis is based on the unconcentrated log-

likelihood, θ = (θ′
1, ..., θ

′
N )′, where θi =

(
ψ+
i0, ψ

−
i0, ψ

+
i1, ψ

−
i1, λi1, σ

2
ui

)′. The variance–covariance

matrix of θ̂ML is computed as

Σ̂θ̂ML =

− 1
T

∂2ℓ
(
θ̂ML

)
∂θ̂ML∂θ̂′

ML

−1

In the case where a priori weights are used, separate parameters for positive and negative

spillovers are not implemented. In this case, the log-likelihood function takes the form:

ℓ (ψ0) ∝ T ln |IN − Ψ0W| − T

2

N∑
i=1

(
1
T
ξ̃′
iMiξ̃i

)
(3.13)

where ψ0 = (ψ10, ..., ψN0)′
, ξ̃i = ξi − ψi0, Mi = IT − ξi,−1

(
ξ′
i,−1ξi,−1

)−1
ξi,−1. Lagged estimates

are calculated using least squares estimates for each individual district conditional on ψ. How-

ever, interpretation at the district level requires analysis using the unconcentrated log likelihood

function as discussed in BHP. We also consider the model proposed by BHP in the context of

the data driven weights matrix:

ξ̂t = aξ + Λ1ξ̂t−1 + Ψ+
0 W̃

+
ξ̂t + Ψ−

0 W̃
−
ξ̂t + Ψ+

1 W̃
+
ξ̂t−1 + Ψ−

1 W̃
−
ξ̂t−1 + ζt (3.14)

whereW− andW+ are row standardised versions of Ŵ− and Ŵ+ respectively; aξ = (αξ1, αξ2, ..., αξN )′;

is an N × 1 vector of intercepts. Λ = diag(λ), Ψ+
0 = diag(ψ+

0 ), Ψ−
0 = diag(ψ−

0 ), Ψ+
1 =

diag(ψ+
1 ), Ψ−

1 = diag(ψ−
1 ), where λ1 = (λ11, λ12, ..., λ1N )′,ψ+

r = (ψ+
r1, ψ

+
r2, ...ψ

+
rN )′, ψ−

r =

(ψ−
r1, ψ

−
r2, ...ψ

−
rN )′, for r=0 and 1, and ζt = (ζ1t, ζ2t,...,ζNt)′ gives the error terms. We assume

under QML estimation ζit ∼ IIDN(0, σ2
ζi

) for i = 1, ..., N . This model allows for heterogeneity

across spatial dependencies and dynamics for all districts alongside no minimum restrictions on

the number of neighbours.
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3.4.5 Interpreting the HSAR model estimates

We base our discussion on LeSage and Chih (2016)’s derivation of the marginal effects for the

HSAR model. The reduced form HSAR model can be decomposed into an N × N matrix of

partial derivatives in the form:

∂yt
∂y′

t−1
=



∂y1
∂y1,t−1

∂y1
∂y2t−1

· · · ∂y1
∂yN,t−1

∂y2
∂y1,t−1

∂y2
∂y2,t−1

· · · ∂y2
∂yN,t−1

...
...

. . .
...

∂yN
∂y1,t−1

∂yN
∂y2,t−1

· · · ∂yN
∂yN,t−1


= (IN − Ψ0W )−1(Λ + Ψ1W ) (3.15)

The above expression summarises how the persistence in house prices in a given district could

impact own-district house price inflation in addition to house price inflation in all other districts.5

The diagonal elements of the matrix in expression (3.15) denote own-partial derivatives, express-

ing how the persistence of house prices in the given district directly impacts own-district house

price inflation in the current period. The cross-partial derivatives which populate the off-diagonal

elements show how persistence in house prices in a district spillover to affect house price inflation

in other districts. To capture the heterogeneity between districts, we follow the conventions put

forward in LeSage and Chih (2016) where each diagonal element estimates the direct effects of

persistence in house prices for each district, and the row sum of the off-diagonal elements produce

a vector of district specific indirect effects. The cumulative sum of off diagonal elements of each

row give a vector of district-specific cumulative spill-in effects(i.e. ∂yi/∂yj,t−1, j ̸= i). These

effects show how changes in neighbouring districts’ persistence in house price inflation create a

spill-in impact on each district i’s house price growth. The cumulative sum of the off-diagonal

columns produces the cumulative spill-out effects, measuring how changes in house price growth

in district i impact neighbouring districts j ̸= i (i.e. ∂yj/∂yi,t−1, j ̸= i).
5This discussion is analogous to Korniotis (2010) where internal and external habit formation is analysed. See

Section 4.6.1 for further discussion.
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3.5 Empirical Results

3.5.1 Weights Specification

Figure 3.1 summarises the weights matrices in this chapter. All connections are identified in

black, with the white areas signifying no connections. Observations are organised in order of

distance from a ‘corner’ of England. To serve this purpose, Cornwall is selected for its far South

West placement. We restrict all areas to not be neighbours with itself, keeping the diagonal

of each matrix clear. The contiguity and nearest neighbour based measures are very similar,

both in terms of distribution and sparsity at 1.65% and 1.54%. We consider three distance based

measures to yield similar levels of sparsity to the tested values in BHP. Districts within 7.5, 10 and

15 miles correspond to sparsity levels of 0.56%, 1.04% and 2.47% respectively. Results from 7.5

and 10 mile inverse distance adjacency matrices are relegated to the appendices. The difference

in the data driven spatial weights compared to all exogenous measures is most apparent. The

matrix is extremely sparse with only 17 connections out of a possible 52650 connections; this

low value corresponds to 0.03%. Noticeably, all boroughs in London are connected. This is most

marked using the distance based measures, showing the close proximity shared by the districts

in the city.

Table 3.2: Contigency table for W+
CS and W−

CS vs W15m

W15m W15m
1 0

∑
rows 1 0

∑
rows

Ŵ+
CS 1 52 1261 1313 Ŵ−

CS 1 52 1462 1514
0 1248 50089 51337 0 1248 49888 51136∑
cols 1300 51350 52650

∑
cols 1300 51350 52650

Table 3.3: Contigency table for Wcs+ and Wcs− vs Wpc+ and Wpc−

Ŵ+
PC Ŵ−

PC
1 0

∑
rows 1 0

∑
rows

Ŵ+
CS 1 906 314 1220 Ŵ−

CS 1 1039 385 1424
0 407 51023 51430 0 475 50751 51226∑
cols 1313 51337 52650

∑
cols 1514 51136 52650
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Table 3.4: Pearson’s χ2 statistics against ŴCS
W7.5m W10m W15m WQC W5NN

Ŵ+
CS 8.19 5.31 12.4 5.13 4.16

Ŵ−
CS 0.773 3.50 6.03 5.08 0.160

Table 3.5: Pearson’s χ2 statistics against ŴPC
W7.5m W10m W15m WQC W5NN

Ŵ+
PC 10.0 12.4 15.2 5.03 6.00

Ŵ−
PC 4.70 10.5 36.4 26.7 16.0

Table 3.2 presents the contingency table for Ŵ+
CS and Ŵ−

CS against W15m. It is apparent

that W15m shares equal similarities with Ŵ+
CS and Ŵ−

CS. Both contingency results demon-

strate 52 connections are shared with both Ŵ+
CS and Ŵ−

CS. However, this is the minority of

detected connections (total of 1300) demonstrating a low level of similarity as expected from the

demonstrably different patterns in the figures. These results contrast to the US house price case

in BHP, where the similarities between both Ŵ+
CS and W15m are stronger than with Ŵ−

CS. The

Pearson’s χ2
5% statistics given in Table 3.4 and Table 3.5 compare a priori adjacency matrices

against the cross-sectional and principal component data driven matrices respectively using a

critical value of 3.84. The cross-sectional weights matrices have statistically significant χ2 statis-

tics particularly with respect to Ŵ+
CS, demonstrating a close association with the pre-specified

weight specifications. Ŵ−
CS shows a statistically significant similarity with W15m and WQM,

but low association with W7.5m, W10m and W5NN.

The contingency results in Table (3.3) show the de-factored house price changes using both

methods obtain similar results across positive and negative counterparts. The shared outcomes

have a far higher incidence than the Ŵ+
CS and Ŵ−

CS versus W15m results in Table (3.2). The

Pearson χ2
5% statistics given in Table (3.5) show statistically significant results across all a priori

weights matrices against the Ŵ+
PC. The results are convincingly similar to the Ŵ+

PC case, with

only W7.5m showing a statistically insignificant association. The results underscore a significant

difference between the data driven weights in comparison to the distance based measure. At this

stage, the findings indicate that nearby areas may not be a reasonable indicator of association,

or that these data driven methods do not adequately characterise the local relationships between

units. In the former case, it provides evidence against the ‘ripple effect’ hypothesis, which dictates
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areas near London or the South East have an impact on nearby areas, which then move further

onwards to other neighbouring districts.6

0 50 100 150 200 250 300

nz = 1737

0

50

100

150

200

250

300

(a) Queen contiguity

0 50 100 150 200 250 300

nz = 2600

0

50

100

150

200

250

300

(b) Districts within 15 miles

Figure 3.1: Sparsity of A Priori Weights Matrices WQC and W15m

3.5.2 Cross-Sectional Dependence in House Price Changes

In order to assess the level of cross sectional dependence in real house price growth, we utilise

the CD statistic developed by Pesaran (2004, 2015). Results are summarised in Table (3.6).

Before defactoring, real house price changes compute an average pairwise correlation ρπ = 0.241

and CDπ = 888.24, greatly surpassing a critical value of 1.96 at the 5% significance level.

This statistically significant result infers a sizeable degree of cross sectional dependence in real

house price movements. The outcome rejects the null hypothesis of weak dependence, in turn

signifying strong cross sectional dependence persists. This may be attributed to common country

and region wide effects. As the null hypothesis of weak cross sectional dependence is rejected,

the exponent of cross sectional dependence may then be estimated using the procedure outlined

in Bailey et al. (2016). The obtained measure απ = 0.9998 with standard error 0.03, is very

close to one, suggesting a high degree of correlation across areas. Both results indicate strong

cross sectional dependence, hence rendering typical spatial methods on real house price changes

as inappropriate and severely biased.

After defactoring, The CD test on the residuals greatly decreases from 888.24 to -8.82. Ad-

ditionally, pairwise correlation has substantially decreased from 0.241 to -0.002. The exponent
6Due to the similarity in sparsity between 15km inverse distance and the correlation based adjacency matrices,

we only report the the results using both of these weights.
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of cross sectional dependence has also fallen from near unity (απ = 0.9998(0.03)) to near the

lower bound value of 0.5 (ατ = 0.515 with an associated standard error of 0.01). These results

demonstrate a sufficient level of cross sectional dependence allowing the use of spatial techniques

to account for the remaining weak CSD.

Table 3.6: CD Test and Cross sectional Exponent Measures before and after De-factoring
Changes in Real House Prices given in Equation 3.4

Variable ¯̂ρij CD α 95% CIα

πit 0.241 888.24 0.9998 [0.947,1.053]
(0.027)

ξ̂it -0.002 -8.82 0.515 [0.490,0.541]
(0.013)

πit denotes house price inflation in district i at time t and ξ̂it refers to de-factored house price infla-

tion using Equation (3.4). ˆ̄ρN = 2
N(N−1)

∑N

i=1

∑N

j=i+1 ρ̂ij measures average pairwise correlation.

CD =
[
TN(N−1)

2

] 1
2 ˆ̄ρN . α denotes the exponent of CSD and CIα refers to the 95% confidence

interval for α. See Bailey et al. (2016) for details on exponent calculations.
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Table 3.8: Quasi Maximum Likelihood estimates of the spatio-temporal
model 3.11 applied to de-factored changes in house prices derived from equa-
tion 3.4 using predetermined adjacency matrices.

WQC λ1 ψ0 ψ1 σζ
Median 0.0448 0.0033 0.0618 1.2703
Mean Group Estimates 0.0470*** -0.0088 0.0433*** 1.3390

(0.0049) (0.0126) (0.0108) (0.0271)
% significant (at 5% level) 21.8% 15.1% 14.2% -
Number of non-zero coef. 325 325 325 325
Maximum 0.3263 0.5879 0.6384 5.8213
Minimum -0.2203 -0.9950 -0.9458 0.6026
W15m λ1 ψ0 ψ1 σζ
Median 0.0467 -0.0097 0.0487 1.2639
Mean Group Estimates 0.0470*** -0.0518*** 0.0528*** 1.3407

(0.0049) (0.0178) (0.0152) (0.0272)
% significant (at 5% level) 22.5% 18.3% 11.3% -
Number of non-zero coef. 325 301 301 325
Maximum 0.3371 0.7571 1.2926 5.8261
Minimum -0.2048 -0.9950 -1.8759 0.5983

Table 3.9: Quasi Maximum Likelihood estimates of spatio-temporal model 3.14 applied
to de-factored changes in house prices derived from equation 3.4 using data driven weights
matrices. Pairwise correlations are detected after de-factoring through CSA or PCA.

WCS λ1 ψ+
0 ψ−

0 ψ+
1 ψ−

1 σζ
Median 0.0302 0.4744 -0.5531 0.0029 0.0054 1.0147
Mean Group Estimates 0.0302*** 0.5023*** -0.5776*** -0.0011 -0.0067 1.0866

(0.0046) (0.0127) (0.0138) (0.0107) (0.0130) (0.0263)
% significant (at 5% level) 17.5% 90.5% 95.7% 13.5% 11.7% -
Number of non-zero coef. 325 325 325 325 325 325
Maximum 0.2572 0.9950 0.9948 0.7036 0.6903 6.1894
Minimum -0.1848 -0.5817 -0.9950 -1.1109 -2.2507 0.4204
WPC λ1 ψ+

0 ψ−
0 ψ+

1 ψ−
1 σζ

Median 0.0338 0.4273 -0.5256 0.0031 0.0204 1.0376
Mean Group Estimates 0.0370*** 0.4259*** -0.5235*** 0.0079 0.0290 1.1183

(0.0047) (0.0176) (0.0160) (0.0115) (0.0116) (0.0267)
% significant (at 5% level) 19.1% 83.4% 89.2% 10.8% 12.0% -
Number of non-zero coef. 325 325 324 325 324 325
Maximum 0.2848 0.9950 0.9950 1.4266 0.8641 5.7168
Minimum -0.1947 -0.9950 -0.9950 -0.5549 -0.7016 0.4137

Mean group estimates are calculated as unweighted averages from district level parameter estimates.

E(ψi0) = ψ0 where ψ̂0,MG = N−1
r

∑Nr

i=1
ψ̂i0 for i = 1, . . . , N , r = 1, . . . , R where Nr is the total number

of districts with connections in region r and ψ̂i0 denotes QML estimation of ψi0. As detailed in Pesaran

and Smith (1995), v̂ar(ψ̂0,MG) = 1
Nr(Nr−1)

∑Nr

i=1
(ψ̂i0 − ψ̂0,MG)2 denotes the non-parametric estimator

of the variance. Standard errors of MGE are reported below each regional estimate. Parameter coefficients

are restricted to zero if district i has no connections: ψ̂i0 = 0, ψ̂i1 = 0 for i = 1, . . . , N .
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Table 3.10: Quasi Maximum Likelihood estimation of spatio-temporal model from equation 3.11 using W15m weights matrix.
Results are given for de-factored house price changes from equation 3.4 are provided for each region

λ1 ψ0 ψ1 σζ

North East
Median 0.0614 -0.2358 0.0029 1.3000
Mean Group Estimates 0.0808*** -0.1632** 0.0718 1.3717

(0.0271) (0.0750) (0.0690) (0.0858)
% significant (at 5% level) 41.7% 30.0% 30.0% -
Number of non-zero coef. 12 10 10 12
Maximum 0.2258 0.2958 0.5713 2.0418
Minimum -0.0408 -0.4335 -0.2104 0.8773
London
Median 0.1140 -0.4771 0.2020 1.0576
Mean Group Estimates 0.1192*** -0.4381*** 0.1270 1.2798

(0.0165) (0.0815) (0.1047) (0.1605)
% significant (at 5% level) 45.5% 33.3% 9.1% -
Number of non-zero coef. 33 33 33 33
Maximum 0.3371 0.5375 1.2926 5.8261
Minimum -0.0749 -0.9950 -1.8759 0.6101
South West
Median 0.0294 -0.0316 0.0441 1.2818
Mean Group Estimates 0.0309** -0.0280 0.0400** 1.4102

(0.0122) (0.0306) (0.0194) (0.0830)
% significant (at 5% level) 16.7% 6.9% 6.9% -
Number of non-zero coef. 36 29 29 36
Maximum 0.1736 0.3735 0.3046 2.8779
Minimum -0.1396 -0.4559 -0.1349 0.7068
East Midlands
Median 0.0395 0.0358 0.0425 1.5270
Mean Group Estimates 0.0286* -0.0010 0.0591** 1.5201

(0.0161) (0.0319) (0.0269) (0.0603)
% significant (at 5% level) 27.5% 7.7% 7.7% -
Number of non-zero coef. 40 39 39 40
Maximum 0.2349 0.3457 0.5158 2.5958
Minimum -0.1619 -0.6323 -0.3514 0.7089
North West
Median 0.0752 0.0063 0.0257 1.2653
Mean Group Estimates 0.0584*** 0.0053 0.0120 1.4861

(0.0128) (0.0529) (0.0370) (0.0995)
% significant (at 5% level) 20.5% 24.2% 9.1% -
Number of non-zero coef. 39 33 33 39
Maximum 0.1912 0.7571 0.4201 3.1764
Minimum -0.1064 -0.6299 -0.5243 0.7090
West Midlands
Median 0.0371 -0.0653 0.0395 1.2339
Mean Group Estimates 0.0453*** -0.0573 -0.0032 1.2262

(0.0154) (0.0426) (0.0351) (0.0595)
% significant (at 5% level) 23.3% 6.9% 20.7% -
Number of non-zero coef. 30 29 29 30
Maximum 0.2074 0.3308 0.4572 1.9704
Minimum -0.1154 -0.5634 -0.4013 0.5983
South East
Median 0.0139 0.0510 0.1122 1.2575
Mean Group Estimates 0.0180* 0.0185 0.0681*** 1.2573

(0.0101) (0.0320) (0.0247) (0.0295)
% significant (at 5% level) 14.9% 20.9% 7.5% -
Number of non-zero coef. 67 67 67 67
Maximum 0.2062 0.5410 0.9308 1.7213
Minimum -0.2048 -0.6343 -0.3266 0.7682
East
Median 0.0434 0.0174 -0.0030 1.2460
Mean Group Estimates 0.0481*** 0.0362 0.0379 1.2697

(0.0113) (0.0410) (0.0299) (0.0447)
% significant (at 5% level) 17.0% 18.2% 13.6% -
Number of non-zero coef. 47 44 44 47
Maximum 0.2355 0.6701 0.5855 2.0676
Minimum -0.1742 -0.8729 -0.4060 0.7703
Yorkshire and The Humber
Median 0.0614 0.0182 0.0610 1.0536
Mean Group Estimates 0.0483*** 0.0005 0.0587* 1.2762

(0.0171) (0.0511) (0.0332) (0.1196)
% significant (at 5% level) 14.3% 23.5% 17.6% -
Number of non-zero coef. 21 17 17 21
Maximum 0.1636 0.2922 0.4393 2.6325
Minimum -0.0961 -0.6989 -0.2019 0.6861

Mean group estimates are calculated as unweighted averages from district level parameter estimates. E(ψi0) = ψ0 where
ψ̂0,MG = N−1

r

∑Nr

i=1
ψ̂i0 for i = 1, . . . , N , r = 1, . . . , R where Nr is the total number of districts with connections in region

r and ψ̂i0 denotes QML estimation of ψi0. As detailed in Pesaran and Smith (1995), v̂ar(ψ̂0,MG) = 1
Nr(Nr−1)

∑Nr

i=1
(ψ̂i0 −

ψ̂0,MG)2 denotes the non-parametric estimator of the variance. Standard errors of MGE are reported below each regional
estimate. Parameter coefficients are restricted to zero if district i has no connections: ψ̂i0 = 0, ψ̂i1 = 0 for i = 1, . . . , N .
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Table 3.11: Regional Results from HSAR model with CSA de-factored pair-wise correlation based
weights matrix

λ1 ψ+
0 ψ−

0 ψ+
1 ψ−

1 σζ

North East
Median 0.0674 0.3910 -0.5717 0.0529 -0.0391 1.0297
Mean Group Estimates 0.0485* 0.5041*** -0.6565*** 0.0668 -0.0079 1.1030

(0.0248) (0.0803) (0.0620) (0.0483) (0.0539) (0.0735)
% significant (at 5% level) 25.0% 100.0% 100.0% 8.3% 8.3% -
Maximum 0.1594 0.9947 -0.4015 0.4689 0.4915 1.6390
Minimum -0.0798 0.1371 -0.9950 -0.1148 -0.2641 0.7114
London
Median 0.0736 0.4648 -0.3409 -0.0318 -0.0119 0.8242
Mean Group Estimates 0.0778*** 0.5053*** -0.3546*** -0.0130 -0.0330 1.0982

(0.0160) (0.0483) (0.0566) (0.0299) (0.0323) (0.1736)
% significant (at 5% level) 33.3% 87.9% 93.9% 15.2% 3.0% -
Maximum 0.2572 0.9950 0.9948 0.4006 0.2207 6.1894
Minimum -0.1279 -0.4201 -0.9949 -0.2841 -0.9499 0.4857
South West
Median 0.0058 0.4292 -0.5428 -0.0196 0.0154 1.0370
Mean Group Estimates 0.0218 0.4648*** -0.5851*** -0.0006 0.0045 1.1503

(0.0135) (0.0312) (0.0372) (0.0293) (0.0247) (0.0748)
% significant (at 5% level) 16.7% 86.1% 88.9% 16.7% 8.3% -
Maximum 0.1953 0.9475 -0.2081 0.3610 0.3438 2.5832
Minimum -0.1486 0.1506 -0.9949 -0.3558 -0.4385 0.5647
East Midlands
Median 0.0074 0.5159 -0.6408 0.0383 0.0187 1.2272
Mean Group Estimates 0.0008 0.5366*** -0.6159*** 0.0337 0.0007 1.2289

(0.0138) (0.0342) (0.0347) (0.0324) (0.0277) (0.0537)
% significant (at 5% level) 17.5% 80.0% 95.0% 10.0% 15.0% -
Maximum 0.1434 0.9948 -0.2267 0.4445 0.3485 2.2710
Minimum -0.1744 0.1197 -0.9950 -0.5682 -0.3154 0.6106
North West
Median 0.0356 0.4278 -0.4630 0.0146 0.0041 1.0147
Mean Group Estimates 0.0328** 0.4375*** -0.4946*** -0.0065 -0.0662 1.2458

(0.0131) (0.0458) (0.0456) (0.0380) (0.0702) (0.0959)
% significant (at 5% level) 15.4% 84.6% 89.7% 15.4% 15.4% -
Maximum 0.2176 0.9950 0.4807 0.5227 0.4899 3.1907
Minimum -0.1848 -0.5817 -0.9950 -1.1109 -2.2507 0.5554
West Midlands
Median 0.0012 0.4761 -0.5313 0.0384 -0.0635 1.0192
Mean Group Estimates 0.0162 0.5237*** -0.5725*** 0.0243 -0.0388 0.9856

(0.0149) (0.0389) (0.0344) (0.0303) (0.0404) (0.0492)
% significant (at 5% level) 13.3% 96.7% 100.0% 10.0% 23.3% -
Maximum 0.1588 0.9948 -0.1730 0.2749 0.4269 1.5503
Minimum -0.1136 0.1808 -0.9950 -0.4386 -0.6302 0.4204
South East
Median 0.0196 0.4314 -0.6285 -0.0155 0.0158 1.0043
Mean Group Estimates 0.0169* 0.5060*** -0.6477*** -0.0209 0.0078 0.9904

(0.0099) (0.0260) (0.0243) (0.0197) (0.0219) (0.0251)
% significant (at 5% level) 16.4% 95.5% 100.0% 13.4% 11.9% -
Maximum 0.1778 0.9949 -0.1899 0.3918 0.4617 1.4113
Minimum -0.1713 0.1566 -0.9950 -0.4679 -0.4741 0.5854
East
Median 0.0266 0.5143 -0.6434 -0.0229 0.0382 0.9724
Mean Group Estimates 0.0441*** 0.5505*** -0.6320*** -0.0185 0.0474* 1.0027

(0.0105) (0.0266) (0.0345) (0.0345) (0.0287) (0.0344)
% significant (at 5% level) 14.9% 97.9% 97.9% 17.0% 10.6% -
Maximum 0.2275 0.9764 -0.0854 0.7036 0.6903 1.6492
Minimum -0.1285 0.1481 -0.9950 -0.5189 -0.4076 0.5812
Yorkshire and The Humber
Median 0.0584 0.4874 -0.5770 0.0247 0.0254 0.8339
Mean Group Estimates 0.0417** 0.4655*** -0.6127*** -0.0129 -0.0087 1.0219

(0.0163) (0.0563) (0.0401) (0.0427) (0.0555) (0.1056)
% significant (at 5% level) 9.5% 85.7% 95.2% 9.5% 4.8% -
Maximum 0.1702 0.9950 -0.2717 0.3743 0.3435 2.4767
Minimum -0.1300 -0.2218 -0.9949 -0.6172 -0.9139 0.5708

Mean group estimates are calculated as unweighted averages from district level parameter estimates. E(ψi0) = ψ0

where ψ̂0,MG = N
−1
r

∑Nr

i=1
ψ̂i0 for i = 1, . . . , N, r = 1, . . . , R where Nr is the total number of districts with

connections in region r and ψ̂i0 denotes QML estimation of ψi0. As detailed in Pesaran and Smith (1995), v̂ar(ψ̂0,MG) =
1

Nr(Nr−1)

∑Nr

i=1
(ψ̂i0 − ψ̂0,MG)2 denotes the non-parametric estimator of the variance. Standard errors of MGE are

reported below each regional estimate. All districts have one or more neighbours so no parameters coefficients are

restricted to zero in the model.
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(c) Direct Effects (d) Spill-in Effects (e) Spill-out Effects

Figure 3.2: Choropleth map of direct and indirect effects of persistence in house price inflation based on the HSAR model using WQC, with red and blue areas signifying
positive and negative values respectively. Indirect effects are given as spill-in and spill-out effects. The darkest red (blue) areas signify values over 0.2 (less than -0.2) with
shades increasing at 0.05 increments across 5 red and 5 blue shade categories.
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3.5.3 A Heterogenous Spatio-Temporal Model of English House Price

Changes

We generate model estimates using contiguity, nearest neighbour and distance measures. Table

3.10 presents mean group estimates by region using the 15 mile inverse distance matrix.7 Median

and mean group estimated coefficients for λ̂1, ψ̂0, ψ̂1 and σ̂ζ are reported, with standard errors

for mean group estimates provided in parentheses. Mean group estimates are calculated as

unweighted averages from district level parameter estimates. E(ψi0) = ψ0 where ψ̂0,MG =

N−1
r

∑Nr
i=1 ψ̂i0 for i = 1, . . . , N , r = 1, . . . , R where Nr is the total number of districts with

connections in region r and ψ̂i0 denotes QML estimation of ψi0. As detailed in Pesaran and

Smith (1995), v̂ar(ψ̂0,MG) = 1
Nr(Nr−1)

∑Nr
i=1(ψ̂i0 −ψ̂0,MG)2 denotes the non-parametric estimator

of the variance. Standard errors of MGE are reported below each regional estimate.

Contemporaneous spatial dependence is measured by the parameter ψ̂i0, while ψ̂i1 represents

space-time lagged values of changes in house prices. The inclusion of ψ̂i1 allows for a time lag of

the average neighbouring values of the dependent variable observed during the previous period,

Wξi,t−1. House price growth in an area may serve as complementary or substitutes between

a different district, leading to negative or positive relationships between neighbourhood price

changes and own district property price growth. This may be due to individuals substituting

property in one area for nearby lower priced district. This behaviour increases demand for

housing in the neighbourhood, driving house price growth up; that is, causing positive spillover

effects in the housing market. Alternatively, as amenities improve in an area, house prices in

the neighbourhood may adjust to a new price level, representing the difference in amenities

between both districts. The change in relative prices leads to neighbourhood house prices to fall

as the value of amenities pushes prices in the given area higher. In this case, the neighbourhood

responds to the growth in house prices in a district with a fall in house price growth in the

connected area, known as a negative spillover effect.

It is immediately apparent there is strong evidence of both temporal and spatial effects across

the country given on all temporal effects are significant at the 1% level, and most spatial effects

are significant at the 10% level. This outcome suggests changes in house prices are affected
7Queen contiguity and 5 nearest neighbour specifications are relegated to Appendix B.3.
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by past property price growth in the same district, alongside changes in house prices in the

neighbourhood in the contemporaneous and past month. Very similar results between mean

and median values demonstrate evidence of temporal estimates having close to symmetrical

distributions across districts. Estimates for ψ0 show higher median estimates compared to the

mean, indicative of slight leftward distributional skew across cross-sections. With respect to ψ1,

results are fairly similar across spatial weight specification, serving as a robustness check for the

validity of the estimated results. Our findings show less precise estimates of contemporaneous

spatial effects, compared to the temporal and space time lagged values. This may be attributed to

the variation in adjustment time required for house prices to incorporate neighbourhood changes

in house prices into setting their own values.

Mean group estimates for the temporal effect are considerable in size, with the contiguity

based model estimating the average effect as high as 0.0571 (0.0052), very similar in value to

the distance based coefficient estimates. The effect is large considering common factors that

drive house prices across the nation and each region have been accounted for. With respect

to contemporaneous spatial effects, the magnitude is smaller than the respective lagged spatial

effect. This means that the impact of neighbourhood house price changes on a given district is

lower in the same month compared to the effect of price inflation movements from the last month.

As such, spillover effects from the last month is stronger and more significant than spillovers in

the current period. Furthermore, the effect goes from negative to positive, indicating a level

of reversal, with the spatial lagged change dominating. The spatial lag ψ0 is not statistically

significant using contiguity weights in our estimation, and is only significant at the 10% level

using the 10 mile distance based connected model, indicating a lack of robustness in the estimates.

Comparing the spatial lag and temporal effect, we see evidence of a comparable effect of spatial

spillovers to the temporal impact, with the spatial lag surpassing the temporal effect in the

distance based case. This highlights the significance of spatial effects in the housing market,

showing how pervasive these interrelationships are at the aggregate level.

Table 3.10 and Tables in Appendix B.3 summarise regional estimates of spatial and temporal

effects with a range of exogenous weights matrices. The temporal effect is most convincing, with

all regional mean group estimates found to be significant at the 10% with the exception of the

two lower distance weights measures. In particular, the temporal effect is as great as 0.1391 for
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London, which is found to have the strongest level of serial correlation over time by a significant

magnitude. All coefficient values are positively autocorrelated, with the effect next strongest in

the North, with Southern and Midlands areas showing far lower levels of persistence.

London also demonstrates a strong spatial effect, negative in the current period but turning

positive when lagged. This effect is particularly striking in Table 3.10, where London parame-

ters, denoting a large negative value (-0.438) for the contemporaneous spatial lag that drastically

changes in value in the diffusion term at 0.127. The results show the lagged spillover effect is

positive and among the strongest across the country. This mean reverting behaviour is repre-

sentative of the the growing difference between prices paid on average for properties in different

London boroughs across 1995 to 2014. Over a short period of time prices had increased rapidly

in an already high value market, with large fluctuations in price changes demonstrating signif-

icant negative spillovers, with the City of London far surpassing the mean group average, with

a contemporaneous neighbourhood effects in Tower Hamlets (-0.31406**) and Kensington and

Chelsea (-0.29718**). These findings are in accordance with Holly et al. (2011) who also find

house prices in London have an impact on the neighbouring region. We also find both negative

and positive relationships between districts and the impact of neighbour price growth on own

house price inflation. Holly et al. (2010) find this is the case in the American housing market,

indicative of districts behaving as both substitute and complimentary areas. We attribute this

to structural changes in areas and relative changes in district level attributes that may lead to

changes in house prices between areas (Berger et al., 2008; Chen and Rosenthal, 2008; Mcduff,

2011).

The spatial effect is weaker than the analogous temporal impact showing stronger serial

dependence compared to spatial dependence. This is consistent with US house price dynamics

studied by BHP. In contrast, Holly et al. (2011) find evidence that the effects of a shock decay

more slowly along the geographical dimension in comparison to over time with respect to London

price shocks. Focussing on the results in Table 3.10, The Midlands, North West and East mean

group estimates are not statistically significant with respect to the contemporaneous and lagged

spatial effect. However, district level results shows Burnley, South Holland and Liverpool (in

North West, East Midlands and East) have strong same period positive spatial effects ranging

from 0.563 to 0.450, significant at the 5% level. While the impact in London is fairly uniform
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across the region, this does not hold true across the rest of the country. Figure 3.2 demonstrates

how districts often do not share the same spillover effects as the rest of the region. Taking

Burnley as an example, this finding is unsurprising looking at neighbouring districts such as

Calderdale which has a significant at the 5% and a comparably high spatial lag value of 0.267.

Despite these districts sharing a boundary, both are classified in different regions, highlighting

how aggregate measures using regional data often masks the level of variation that persists in

the transmission of spillover effects. Inspection of Figure 3.2 confirms this, as we find clusters

do not remain delineated by regions. Instead, small clusters of districts share similarities in

the magnitude of the detected spillover effects, even after stripping common factor effects away.

Comparing both quantile choropleth maps, there is evidence that the effect of neighbourhood

price changes from the last period are more tightly distributed around cities such as Leicester,

Sheffield, Nottingham and Birmingham. The effect is equally significant for estimates of the

spatial lag in different areas with this effect even greater in magnitude in Eden, North West at

0.687. While some areas have significant contemporaneous and lagged spatial effects, a significant

proportion find only one spatial parameter to be significant, indicating heterogeneity in not only

the size but also the responsiveness of neighbourhood effects across different areas.

The spillover effects of house prices are not easily delineated by region, showing large vari-

ations within regions, often with certain districts being far more affected than other close by

neighbours. Once the common factors are accounted for, we find the spatial effects are still

significant scattered across England in a less uniform method than the ripple effect hypothesis

would lead us to believe. However, the diffusion of house prices may require a longer timeframe

to manifest this effect, and as such, our model is not well placed to consider this hypothesis.

There is however, evidence of spillover effects of a greater magnitude in London and surrounding

areas.

3.5.4 Estimation of Spatial Connections

Following the method of BHP, pair-wise correlations of de-factored price changes are used to esti-

mate a matrix of connections. The sample correlation matrix is estimated then Holm’s multiple

testing procedure is applied to the N(N-1)/2 pairwise correlation coefficients at a significance
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level set to 10%. Based on the signage of the correlation coefficient for each pairwise correlation,

each significant pair at the 10% is separated into a positive and negative weight matrix. Unlike

the results obtained on US house prices by BHP, the resulting matrix of spatial connections is

extremely sparse with some regions results in no spatial connections. Only 17 statistically signif-

icant connections are found - this prevents some regions from having any spatial parameters to

estimate in Table 3.14. As such, we opt to focus our discussion on the results derived from the

exogenously determined weights matrices which provide more information on the heterogeneity

of spatial and temporal effects across regions.

Table 3.11 displays computed parameters in the QML estimates of the spatio-temporal model

with standard errors included in parenthesis. Most striking is the low incidence of connections. As

such, all inferences drawn from these results are not robust with respect to the spatial parameters.

Results across districts are reasonably symmetrically distributed based on the relative similarity

between median and mean group estimates. In particular, the size of the temporal effect λ̂1

is modest (0.0456) - this may be due to de-factoring accounting for the majority of common

dynamics across across changes in house prices.

In reference to spatial spillover effects, both positive and negative contemporaneous spillovers

(0.157 and -0.140) are far greater than their lagged counterpart values of -0.045 and 0.023 re-

spectively. Interestingly, positive contemporaneous spillover effects have a greater magnitude

than negative spatial effect, compatible with tradition theories of spatial dependence in property

markets (Can and Megbolugbe, 1997). The reverse holds true for the lagged equivalent esti-

mates. The mean group estimate of the lagged spatial effect ψ+
1 = −0.027 and ψ−

1 = 0.038 show

a reversal of the immediate spatial effect based on the change in sign. This may be due to some

level of correction or dampening of the spatial effect. Our findings confirm similar behaviour to

US MSA house prices in BHP where the magnitude of positive spillovers surpassed the negative

effects. This is expected in the UK given the asymmetric nature in the persistence of house price

appreciation compared to insensitivity to declining prices.

The results summarised in Table 3.11 show London has the highest percentage of significant

estimates at 45.5%. In addition to this, London has the strongest temporal effect with λ̂1 =

0.12(0.017), this is far greater than any other region with all other regions taking values spanning

0.0231 (South East) to 0.077 (North East). This may be partly attributable to the close proximity
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of London boroughs compared to the distance between districts in the rest of England.

Compared to the temporal effect, the contemporaneous spatial impact is weaker with the

lagged effect weaker still. Conclusions based on the data driven weights matrix about house

price spillovers are limited due to the low incidence of statistically significant connections between

districts; this is most marked in Yorkshire and the Humber where no spillovers are found in either

the immediate or lagged spatial effects. This is due to no detected connections in this region,

so no parameter estimates could be calculated. Looking at Figure 3.2, notable exceptions in the

North East include large market towns, Stockton on Tees and Darlington. Both theses areas have

benefitted large employers (for example EE in Darlington) and service industries. Interestingly,

both Darlington and Stockton on Tees amongst other areas demonstrate a negative spillover

effect in the first period that is overshadowed by a positive spillover in the space time lagged

coefficient. This may be evidence of mean reversion or simply indicative of higher volatility in

price changes as prices overshoot and correct in the next period. There is a pattern of more

economically active areas experiencing stronger spillover effects, revealing how economic activity

and agglomeration effects may have a crucial role to play in the transmission of house price

inflation between districts. Further analysis using economic data is required to analyse whether

this is indeed the case.

Parameter heterogeneity allows us to compare the impact of changes in house prices across

all regions but we choose to focus on earlier results using traditional weights matrices given

the incidence of connected areas. The results indicate some level of variation given median and

mean group values are fairly similar for all regions, but this is mainly due to the low number of

connections that prevent us from being able to draw conclusions about the distribution across

multiple districts.

3.5.5 Marginal effects

Direct effects estimates are taken from the diagonal elements of the matrix in expression (16)

denoting own-partial derivatives with the values summarised in 3.2. This expresses how the

persistence of house prices in the given district directly impacts own-district house price inflation

in the current period. Rural areas situated further away from cities are found to have the lowest
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persistence in house prices, most apparent across the East coast. Unsurprisingly, we find strong

levels of persistence in house prices in several London boroughs, specifically Tower Hamlets,

Camden, Croydon and Bromley. However, several pockets of highly persistent house prices exists

across the country. Notable small districts such as Cambridge show high levels of persistence

that are distinctive to their neighbouring districts. These small areas are often characterised by

strong transport links and favourable amenities. Other highly persistent areas include Cornwall,

Bury St Edmunds and Lancaster which represent more affluent areas of the country with access

to favourable landscapes and less pollution.

The spill-in effects show how changes in neighbouring districts’ persistence in house price

inflation create a impact on each district i’s house price growth. Areas around the Northern cities

demonstrate strong positive spill-in effects, denoting how these nearby cities create an impact on

these districts’ own house price growth. Surprisingly, there is a larger prevalence of negative spill-

in effects compared to its spill-out counterparts. This indicates an inverse relationship between

house price inflation in neighbouring regions and the effect this has on a given district.

The cumulative sum of the off-diagonal columns produce the cumulative spill-out effects,

measuring how changes in house price growth in district i impact neighbouring districts j ̸= i

(i.e. ∂yj/∂yi,t−1, j ̸= i). The results indicate house prices spill out most strongly from districts

situated near scenic areas with good transport links or highly built up towns such as Canterbury

and Colchester. These districts have strong local economies and have enjoyed improved transport

links to London that attract commuters. This commuting proximity combined with accessibility

to the countryside is common across Three Rivers, Surrey Heath, Hart, Windsor and Maidenhead

districts; all districts with strong influences on house price inflation to their neighbouring districts

based on spill out estimates.

With reference to the ripple effect, our results do not show a strong inclination towards

the South East and London as primary centres where persistence in house prices have a strong

positive impact on their respective neighbours. There is some scattered evidence of areas in the

South East and London exerting spillover effects, however, it is not unique to these areas. Indeed,

the transmissions for spillover effects does not show a clear trend towards the North. Instead

we find that areas near economic centres have strong spillover effects. These findings underscore

the importance of a strong local economy and evidence against reliance of areas such as London
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to influence areas further afield.

3.6 Concluding Remarks

In the context of understanding the transmission of house price spillovers, the previous literature

has often failed to account for strong cross sectional dependence, inflating the level of spatial

relationships between areas. This chapter estimates a spatio-temporal model of house price

inflation across England from 1995 to 2016 using monthly data to reveal the short term dynamics

between districts. Having accounted for common factors we are able to reveal what spatial

relationships exist at the district level. The results indicate a high level of heterogeneity at both

the regional and subregional level. Stripping away the impact of national and regional factors,

we find London has a high level of both temporal and spatial dependence, with some reversal of

this effect in the lagged period.

The variation on spatial dependence across districts demonstrate how delineating the housing

market by regions may mask strong spatial effects in local areas (Bhattacharjee et al., 2016).

Our findings indicate a rich set of spatial and temporal dynamics across the country with neigh-

bourhood spillover effects stronger in the following period compared to the impact in the current

period. Given the impact nearby districts have on house price growth, our findings suggest local

government housing policy would benefit from incorporating changes in housing markets and

policies implemented in nearby districts into the decision making process. We find evidence of

both positive and negative spillover effects between districts, demonstrating districts serving as

substitutes and complements for other areas. Using the method of BHP, we find evidence to show

asymmetry in positive and negative spillovers with mean reversion in the next period. However,

the findings using this method lack precision due to the low level of detected connections. Hence,

future work considers different approaches to the multiple testing problem to ensure sufficient

connections may be detected for spatial modelling. In reference to the ripple effect hypothesis,

our results indicate a more nuanced spatial impact than the theory implies, where areas with

higher levels of economic activity find stronger spillover effects that are not unique to London

areas but also districts surrounding cities such as Manchester and Nottingham. However, the

spill-out effects show a cluster of strong positive impacts in London and the South East that
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provide some indication of spillover effects originating to surrounding areas. However, given this

effect is prevalent across a number of economic centres, we find the theory too simplistic to be

used to characterise house price diffusion across the UK.

The BHP method possesses a number of limitations. The proposed data driven weights

specification in BHP was unable to characterise the spatial dependence in the dataset. While

a high incidence of connections was initially found, the Holm-Bonferroni multiple testing proce-

dure stripped away nearly all connections. While alternative lower power methods were trialled

including the Bonferroni correction, these led to the same outcome. As a result we use the pair-

wise approach without the multiple testing correction, however the results did not provide any

material benefit over the predetermined weights matrices. This may be due to the unreliable

coefficient estimates based on the high incidence of negative values across a range of weights

specifications. Future research may benefit from a combination of both methods, such that the

data driven method is used with the added restriction of a minimum distance restriction. In

any case, we note the arbitrary nature of the a priori weights matrix. Recent developments in

GLASSO methods may provide a better alternative to the adjacency matrices used in this study.

A key limitation of the BHP method pertains to the high prevalence of negative spatial

estimates. Simulation studies to better understand this outcome would be beneficial. These

results may be contrasted against alternative models to ascertain under what conditions the

BHP method performs best. Interpretation of the results are also limited given the two stage

method returns spillover effects measured in terms of ‘de-factored’ price changes. This measure

does not readily lend itself to providing useful values to practitioners.Additionally, the impact

of common factors are not estimated, instead they are accounted for. Ascertaining the impact

of common factors in the housing market is an interesting avenue for future research that this

model is unable to accommodate.



Chapter 4

Spatial Dependence and Common
Factors in the English Housing
Market: A STARF Model

4.1 Introduction

The recent emergence of heterogenous spatio-temporal models are a welcome contribution to

the growing cross-sectional dependence literature. However, existing methods have in practice

failed to provide reasonable estimates, with a high prevalence of negative spatial parameters

that are unintuitive and unexpected from a theoretical perspective, (Bailey et al., 2016). To fill

this lacuna, we derive a heterogeneous model of house prices in England using a novel dynamic

spatial panel model put forward by Shin (forthcoming). The proposed method provides a unified

characterisation of local and global cross-sectional dependence, improving on the multi-step

procedure proposed in Bailey et al. (2016) and Halleck Vega and Elhorst (2016) one-step variant.

The STARF model presents a parsimonious representation of house price diffusion with joint

treatment of common factors and spatial dependence. Several benefits arise from this model

specification; our application accounts for the endogeneity in the spatial lag term, leading to

consistent estimates of structural parameters that may later allow comparisons with competing

models. Notably, we derive spatial and system-wide diffusion multipliers, providing insights

into how a perturbation in neighbourhood house price inflation impacts a given district over a

given time horizon. Borrowing from the network literature, we estimate in-degree and out-degree

measures for a directional analysis of house price spillovers (Wasserman and Faust, 1994; Atalay

79
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et al., 2011; Sun et al., 2015) . Ranking these out-degree effects identifies units which exert the

most influence on neighbourhood house price changes.

Heterogenous models of house price diffusion have been a recent application emerging from the

growing cross-sectional dependence literature. BHP apply their proposed two stage model to US

real house price changes at the Metropolitan Statistical Areas level, yielding a high incidence of

negative spatial connections. While the application highlights the procedure’s ability to capture

both negative and positive spatial connections, no discussion of the economic interpretation of

this outcome is provided. In the context of the housing market, this outcome is puzzling given

the lack of convincing explanations for outcome. Traditional theories of spatial dependence

in the property sector ascribe to notions of spatial arbitrage of capital, following behaviour

and migration and equity transfer (Can, 1990; Gillen et al., 2001). In Chapter 3 we apply

the BHP method to English house price inflation, yielding an unexpectedly high proportion of

negative spatial parameters, in accordance with the findings in BHP. While some areas may be

inversely related to neighbourhood house price changes, for example, due to affluent districts

being surrounded by deprived areas (for example Solihull district), we hypothesise these cases

would be in the minority. Motivated by this outcome, this chapter proposes the use of the

STARF model for providing more reasonable outcomes compatible with the prevailing theories

of positive spatial dependence in the housing market.

In addition to analysis of the housing market delineated by regions, we also classify areas

based on the level or urban/rural settlements. In reference to the cumulative dynamic multipliers

with respect to neighbouring house price inflation, we hypothesise more urban areas express

faster rates of convergence to their long run level of spatial dependence due to increased footfall

from commuters and higher relative populations. These attributes serve to increase the efficacy

of information signals pertaining to house price changes in neighbouring areas. The findings

indicate the urban/rural classification method demonstrates a better characterisation compared

to aggregating by region. Furthermore, we derive spill-in and spill-out impacts across all districts.

The findings show limited support for the ripple effect hypothesis, with the impact of house

prices near London affecting areas within an approximate 50 mile radius. Our findings show

house prices in London do spread out to the periphery areas, but are not responsible for house

price appreciation in areas beyond the 50 mile radius. Instead, local economies play a key role in



CHAPTER 4. STARF MODEL OF HOUSE PRICE SPILLOVERS 81

propagating spillover effects. Interestingly, we identify key dominant districts that influence house

price changes within their respective neighbourhoods. These areas are found to be periphery to

cities and active economic areas typically situated on the green belt. The importance of these

geographic characteristics are congruous with Hilber and Vermeulen (2016); Saiz (2010) who find

areas facing geographical or regulatory constraints experience low elasticities of supply which are

in turn endogenous to price growth. The areas that are able to provide both sets of attributes

are found to be dominant units in influencing house prices in a given area. The findings in

this chapter confirm the importance of proximity to economic centres in influencing house price

inflation in nearby areas, reconcilable with the findings of Fik et al. (2003). These findings may

reflect the London-centric ripple effect as a dominant factor while the core-periphery spillover

effect would be dominant at higher levels of urbanisation. Our findings may also reflect the

time-varying nature of the house price inflation spillover as we note the variation in the speed of

adjustment between urban and rural areas.

The rest of the chapter is organised as follows. Section 4.2 outlines the relevant literature in

characterising spatial dependence within the housing context. Section 4.3 reviews the existing

heterogenous spatial models and how the proposed procedure provides a timely contribution to

the growing literature. Section 4.4 specifies the STARF model and derives the spatiotemporal

and system-wide diffusion dynamic multipliers and Section 4.5 summarises the data selection.

Section 4.6 presents an analysis of the estimated results, and finally, Section 4.7 concludes.

4.2 Spatial Dependence in House Prices

Spillover effects in the housing market are a key channel for the transmission of information

across geographical distance. The property market is plagued with the obscurity of pricing a

highly heterogenous good in a profoundly information asymmetric setting. Combined with the

variation in nature and prevalence of public amenities and the chronically low elasticity of housing

supply, the perceived behaviour of house price inflation in nearby areas may be a primary source

of information for potential buyers and sellers engaging in the property market. Housing markets

are best characterised as a series of interconnected submarkets, often interacting on the basis of

migration and labour flows, capital transfers and market conditions.
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House price growth may spillover into nearby districts for a variety of reasons. For instance,

as house price growth in a district increases, the differential in property prices between housing

nearby may lead to equity transfers towards the lower priced location, causing the house price

increase in the initial areas to ‘ripple out’ across regions. A great deal of research has investigated

how changes in house prices are first observed in London before propagating to the rest of the

country (Macdonald and Taylor, 1993; Alexander and Barrow, 1994; Drake, 1995; Ashworth and

Parker, 1997; Meen, 1999; Holmes and Grimes, 2008). Holly et al. (2011) analyse the diffusion

of house prices in UK regions, finding evidence of shocks to London propagate to nearby areas.

Many studies have imposed London as a dominant region. In the US case, Chiang and Tsai (2016)

find evidence supporting this among metropolitan areas where cities such as Los Angeles, New

York and Miami are found to propagate shocks to their respective regions. A more recent study

by Cohen et al. (2016) demonstrates past growth in house prices in contiguous Metropolitan

Statistical Areas (MSAs) help explain price inflation in the contemporaneous period.

House price growth is affected by long and short-term influences. Over the long term horizon,

factors that influence house price growth include changing demographics, growth in household

income and features of the taxation system to (dis)incentivise home ownership. On the supply

side, the cost and scarcity of land, construction costs and quality of dwelling stock have long

term impacts. Supply-side changes are typically inelastic, with the bureaucratic process of UK

land planning schemes ensuring particularly sluggish responses to increased demand for housing.

The housing market is intrinsically characterised by local attributes with lengthy timeframes to

approve and construct new housing stock, exacerbating the differences between districts. This

inertia combined with differences in response to national and regional factors can give rise to

significant variation in house price growth dynamics across districts. The cost and provision

of financing is a key factor in determining housing purchases. The availability and cost of

financing plays a significant role in the growth of house prices as this in turn drives the return

on housing as an asset class in the short term. As interest rates decrease, the cost of servicing

mortgages decreases, boosting demand for housing. The UK mortgage market is characterised

by a prevalence of floating rate contracts, thus increasing the sensitivity of mortgage payments

in response to short-term dynamics of interest rates.

While the UK geographic landscape remains predominantly rural, under one third of the
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land area classified as urban, the remaining small urban areas account for 60 percent of the

population. It is well documented in the literature that there are substantial differences between

rural and urban areas; including crime, unemployment, demographics and other factors that

impact the demand for housing. Analysis by Pateman (2011) indicates that house prices are less

affordable to local workers in rural areas than urban areas in addition to increased costs, travel

time and carbon emissions resulting from transport. With respect to the supply side, the effect

of constraints due to local scarcity of developable land is largely confined to highly urbanised

areas Hilber and Vermeulen (2016). In light of these differences, we hypothesise rural districts

to display lower levels of diffusion in house price inflation.

The economic geography literature stresses the role of mobility, transport costs and travel

time for the growth of local districts (Fujita et al., 1999).The economic performance of a district

affects the equilibrium price on housing markets. Socio-economic factors have a direct influence

on house prices. For example, opportunities for employment serve as an attractive driver of local

house prices. Higher levels of unemployment are expected to drive property prices down (Berger

et al., 2008). To this end,De Bruyne and van Hove (2013) associates more agricultural areas with

lower opportunities for jobs, thus depressing house prices in these rural areas. Highly urbanised

areas are also likely to benefit from advanced transport infrastructure which have proven to have

a strong positive impact on property prices (Alonso, 1964; Muth and Wetzler, 1976; Evans, 1973;

Haig, 1974). Empirical studies by Coulson and Engle (1987); Damm et al. (1980); Dewees (1976);

Laakso (1992); Chau and Ng (1998) show transport network improvements have increased house

prices. More recently, empirical studies have confirmed the importance of proximity to economic

centres in the determination of house prices. Fik et al. (2003) provide empirical evidence that

accessibility and distance to economic centres is related to the the value of a location1. These

findings are echoed by Brounen and Huij (2004) in their empirical application to the Dutch

housing market.

We hypothesise that key cities, such as London, Manchester and Birmingham influence sur-

rounding districts’ house price inflation through information signals. Housing market activity in

these areas impact demand for housing in the neighbourhood through driving economic activ-
1The authors make the case that location value cannot be disentangled from the constituent determinants of

housing value
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ity in nearby areas and the benefits of increased infrastructure for transmitting these benefits

to surrounding districts. Correspondingly, areas with high urban populations are expected to

display more persistence in house price changes. Ioannides and Thanapisitikul (2008) considers

how informational inefficiency in housing markets exhibits itself as persistence in prices. The

considerable frictions within the market often prevent prices readjusting in response to economic

shocks.

We estimate a heterogeneous spatio-temporal autoregressive model with factors (STARF) to

capture the diffusion of house price growth across districts in Englands from January 1995 to

August 2016. Each estimated spatial lag coefficient reflects the influence of neighbourhood house

price changes on district i. House price changes in district i are related to past values, πt−1,

neighbouring districts house price growth, Wπt and previous changes in the neighbourhood,

Wπt−1 and common factors ft. Point estimations from spatial regression models to identify

spillover effects may lead to incorrect identifications of spatial dependence. Instead, we follow

the recommendations of LeSage and Pace (2009, p.74) who conclude a partial derivative interpre-

tation is a preferable method for testing for spatial dependence. Our analysis contrasts to BHP

who rely on mean group coefficient estimates alone. The proposed dynamic multipliers provide a

parsimonious representation of the marginal impacts of neighbourhood house price changes over

different time horizons.

4.3 Review of Heterogenous Spatial Models

Almost all spatial models impose parameter homogeneity with a few notable exceptions that have

arisen in recent years. Given the increasing availability of large datasets, heterogenous models

which capitalise on the large time dimension can be exploited to produce heterogenous param-

eter estimates. Aquaro et al. (2015) present the first contribution to the literature, outlined in

the preceding chapter. The proposed heterogenous spatial autoregressive model uses a QML

procedure2 While the former method does not account for common factors, BHP consider a two

step extension of this method to first control for global impacts that we apply to the English

housing market in Chapter 3. The method comes with a number of drawbacks highlighted in
2See Section 3.5.3 and Aquaro et al. (2015) for a detailed exposition.
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the previous chapter. Most notably, the interpretation of the final parameter estimates are not

straightforward based on the ‘de-factored’ values in the second stage. While we may infer the

relative strength of spatial dependence across districts, it is unclear how to interpret the param-

eter estimates in practice. The multi-stage method also fails to provide any formal distribution

theory that accounts for sampling errors arising in the first step. Secondly, the heterogenous

impact of aggregate factors is not captured in the final model. Rather, common factor impact

is ‘accounted for’ (in the first step) as opposed to being a feature of interest to be estimated.

While this may be appropriate in some settings, there are numerous examples where global ef-

fects are of interest, including our application to the housing market. The impact of nationwide

macroeconomic policies (for example the introduction of Help to Buy or Buy to Let policies in

UK), or global financial market conditions on subsets of the housing market are are of intrinsic

interest to economists and policy makers.

Halleck Vega and Elhorst (2016) (VE) propose a one-step variant of the BHP method with

an application to regional unemployment in the Netherlands. Based on the Brechling-Thirlwall

cyclical sensitivity model:

urt = γ0r + γ1r

N−1
N∑
j=1

ujt

 + ert ≃ γ0r + γ1ruNt + ert (4.1)

where urt denotes the unemployment rate for region r = 1, . . . , N at time t = 1, . . . , T , and ert is

an iid error term with zero mean and constant variance σ2
e . VE achieve this by substituting the

de-factored regional unemployment rate, êrt = urt − γ̂0r − γ̂1ruNt into the second stage of the

BHP method, modelling the de-factored regional unemployment rates using the dynamic spatial

panel model:

êrt = α0 + α1êrt−1 + α2

N∑
j=1

wrj êjt + α3

N∑
j=1

wrj êj,t−1 + µr + λt + εrt
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VE simultaneously accounts for spatial dependence and common factors by substituting êrt with

ert:

(urt − γ0r − γ1ruNt) = α0 + α1 (urt−1 − γ0r − γ1ruNt−1) (4.2)

+α2

N∑
j=1

wrj (ujt − γ0j − γ1juNt)

+α3

N∑
j=1

wrj (ujt−1 − γ0j − γ1juNt−1) + εrt

Rearranging terms, the regional unemployment rate can be expressed as:

urt = {α0 + (1 − α1) γ0r} − (α2 + α3) γ̄w0 (4.3)

+α1urt−1 + α2u
∗
rt + α3u

∗
r,t−1 + (γ1r − α2γ̄

w
1 )uNt − (α1γ1r + α3γ̄

w
1 )uNt−1 + εrt

Parameters are estimated by:

urt = β1urt−1 + β2u
∗
rt + β3u

∗
r,t−1 + β4ruNt + β5ruNt−1 + µ′

r + εrt (4.4)

where β1 = α1, β2 = α2, β3 = α3, β4r = γ1r (1 − α2), β5r = γ1r (−α1 − α3) and µ′
r =

{α0 + (1 − α1) γ0r} − (α2 + α3)
∑N
j=1 wrjγ0j . VE use a bias corrected QML estimator with

regional fixed effects and additionally with time fixed effects developed by Yu et al. (2008) and

Lee and Yu (2010) respectively. The first three coefficients are the same for all regions, while

the next two coefficients are heterogenous. The imposition of homogeneity for these parameters

is unduly restrictive given α1, α2, α3 are heterogenous in (4.2).

VE note that by not imposing the restriction

γ1r = β4r

(1 − α2)
= β5r

(−α1 − α3)
(4.5)

the simultaneous approach becomes more general than the two-stage variant3. However, based
3BHP can be obtained from imposing the restriction β4r

(1−α2) = β5r
(−α1−α3) for r = 1, . . . , N .
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on (4.3) , this restriction in (4.5) is incorrectly specified4. Hence,

β4r = γ1r −

α2

N∑
j=1

wrjγ1j

 = γ1r − α2γ̄
w
1 ̸= γ1r (1 − α2) (4.6)

β5r = −α1γ1r −

α3

N∑
j=1

wrjγ1j

 = − (α1γ1r − α3γ̄
w
1 ) ̸= γ1r (−α1 − α3) (4.7)

In view of the misspecified exposition and unnecessary homogeneity across regions in parameters

α1, α2, α3, the STARF model improves on the VE method. Both ABP and VE methods deal

with the endogeneity of the spatial lag term using QML estimation. By implementing the control

function approach, we obtain consistent estimates of the structural parameters that may be di-

rectly comparable to the BHP and VE method. Finally, the discussed models do not provide any

discussion of spatial or system-wide diffusion multipliers. The STARF model is able to capture

the total diffusion multiplier effects across time and space with respect to changes in neighbour-

hood price changes, or financial market conditions. This provides a substantial improvement to

alternative methods given the tractability of implementation and straight-forward interpretation.

With reference to application of the BHP method in Chapter 3, we find the HSAR model

produces a high proportion of negative spatial parameters. These findings are consistent with the

outcomes from BHP in US housing market application. While a key feature of the proposed BHP

model involves the detection of positive and negative relationships between cross-sectional units,

we note the authors do not provide a convincing economic interpretation or why this transpires,

or take note of the prevalence of negative spatial parameters as a cause for concern. This may

be caused by a lack of stability in the spatial parameter. According to Anselin (1988), positive

spatial autocorrelation occurs when high (or low) values for a random variable tend to cluster in

space. Clustering in the context of housing may arise from the fact that properties in similar areas

tend to have been built near the same time, with similar structural features, materials and design

characteristics leading similar house prices. Secondly, nearby properties share amenities with the

rest of the neighbourhood, including schools, job opportunities and public service provision. In

contrast, negative autocorrelation occurs when districts tend to be surrounded by neighbours
4Consequently, the results presented by VE in comparison to BHP using this restriction are not comparable.



CHAPTER 4. STARF MODEL OF HOUSE PRICE SPILLOVERS 88

with dissimilar values. In application to house price growth, the former holds more intuitive

appeal. While there may be specific areas that are inversely related to their neighbours, such as

affluent areas in pockets of relative deprivation (for example Solihull), these areas are unlikely to

constitute a significant proportion of all districts. Given the high incidence of negative spatial

parameter estimates, we are motivated to use an alternative model to test the robustness of this

unexpected outcome.

4.4 Econometric Method:5 The Spatio-Temporal Autore-

gressive Model with Factors

Consider the following STARF(1) model with heterogenous parameters:

πit = ϕiπi,t−1 + γ0iπ
∗
it + γ1iπ

∗
it−1 + λ′

0if t + λ′
1if t−1 + αi + eit (4.8)

where πit is the house price inflation of district i at time t and π∗
it is its spatial lagged variable. We

define π∗
it is defined by π∗

it =
∑N
j=1 wijπjt = wiπt with the N×1 vector πt = (π1t, ..., πNt)′where

wi = (wi1, ..., wiN ) denotes a 1 ×N vector of spatial weights determined a priori with wii = 0.

We opt to use an inverse distance weights specification with a 50 mile cutoff where districts

within the specified radius are assigned a value of one. As discussed in Chapter 3, the choice of

weights specification remains somewhat arbitrary. Districts are typically small spatial units that

often benefit from amenities in other nearby areas due to proximity that may exceed immediate

bordering districts. In light of this, contiguity measures seem restrictive and less preferable

to distance based measures which allow for a more permissible characterisation of neighbours

within the 50 mile radius. Alternative weight specifications also include nearest neighbour and

various distance based measures with various cut off values6. The author notes future research

would benefit from a more economically grounded weights specification in the model; the use

of commuting or migration data would be a useful future contribution. The matrix is then

row normalised. Correspondingly, π∗
i,t−1 =

∑N
j=1 wijπj,t−1 = wiπt−1 Factors are represented

by f t which denote national house price inflation, or observed data at the national level. The
5This section is derived following Shin (forthcoming)
6Results using the alternative weights specifications outlined in Section are available on request.
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former procedure uses the cross sectional averaging approach put forward by BHP as a method

to account for unobserved common factors. Adopting this method, we consider:

πit = ϕiπit−1 + ϕ∗
0iπ

∗
it + ϕ∗

1iπ
∗
it−1 + λ0iπ̄

N
t + λ1iπ̄

N
t−1 + αi + εit (4.9)

where π̄Nt = N−1 ∑N
i=1 πit is the unweighted national average of house price inflation. This

model includes BHP and VE as a special case. Here, π∗
it and π̄Nt may be endogenous. To deal

with the endogeneity of π∗
it in (4.9), we apply the control function approach, and consider the

following control function DGP for π∗
it by:

π∗
it = φ′

izit + vit with E (z′
itvit) = 0

where zit is the ℓ×1 vector of exogenous variables. For now we may assume that πnt
(

= N−1 ∑N
j=1 πjt

)
is exogenous. With reference to the selection of zit, we simply suggest to use π̄rt = N−1

r

∑Nr
i=1 πit,

r = 1, ..., R with N =
∑R
i=1 Nr, as IV for π∗

it in which case we have:7

π∗
it = φ′

iπ̄
r
t + vit (4.10)

In the second stage, we augment (4.9) with the control variable, vit as:

πit = ϕiπi,t−1 + ϕ∗
0iπ

∗
it + ϕ∗

1iπ
∗
it−1 + λ0iπ

n
t + λ1iπ

n
t−1 + αi +φivit + ε∗

it (4.11)

where π∗
it is now uncorrelated with εit and ε∗

it = εit +φi (φ̂i −φi)
′
zit depends on the sampling

error in φ̂i unless φi is exogeneous. Then, the OLS estimator from (4.20) is consistent.

Stacking the district-specific equations, STARF(1, 1) from (4.8):

πt = Φ1πt−1 + Φ∗
0Wπt + Φ∗

1Wπt−1 + Λ0f t + Λ1f t−1 + vt +α+ ε∗
t (4.12)

7While BHP and VE use QML estimation to deal with the endogeneity of the spatial variable, the control
function method is required for us to draw the necessary comparison with the BHP and VE method.
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where

W
N×N

=


w11 · · · w1N

...
. . .

...

wN1 · · · wNN

 , wii = 0, Λh
N×G

=


λ′

1h
...

λ′
Nh

 , h = 0, 1

Φ1
N×N

=


ϕ11 · · · 0

...
. . .

...

0 · · · ϕ1N

 , Φ∗
h

N×N
=


ϕ∗

1h · · · 0
...

. . .
...

0 · · · ϕ∗
Nh

 , h = 0, 1

The following stability conditions are considered: Spatial stability: The eigenvalues of Φ∗
0W

lie inside the unit circle. Time stability: We rewrite equation (4.12) as

πt = F 1πt−1 + ε̃t, (4.13)

where F 1 = (IN − Φ∗
0W )−1 (Φ1 + Φ∗

1W ), and ε̃t = (IN − Φ∗
0W )−1

εt. The roots of the N×N

matrix polynomial F (z) = IN − F 1z lie outside the unit circle.

4.4.1 The Spatio-temporal Dynamic Multipliers

It is straightforward to derive the dynamic multipliers associated with unit changes in π∗
t on πt,

denoted ∂πi,t+h
∂π∗

it
. To this end rewrite the STARF(1) model, (4.8) as

ϕi (L)πit = ϕ∗
i (L)π∗

it + uit (4.14)

where

ϕi (L) = 1 − ϕiL; ϕ∗
i (L) = ϕ∗

0i + ϕ∗
1iL; uit = λ′

0if t + λ′
1if t−1 + αi + eit

Premultiplying (4.14) by the inverse of ϕi (L), we obtain:

πit = ϕ̃∗
i (L)π∗

it + ũit (4.15)
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where ϕ̃∗
i (L)

(
=

∑∞
j=0 ϕ̃

∗
ijL

j
)

= [ϕi (L)]−1
ϕ∗
i (L), and ũit = [ϕi (L)]−1

uit. The dynamic multi-

pliers, ϕ̃∗
ij can be evaluated using the recursive relationship:

ϕ̃∗
ij = ϕi1ϕ̃

∗
i,j−1 + ϕi2ϕ̃

∗
i,j−2 + · · · + ϕi,j−1ϕ̃

∗
i1 + ϕij ϕ̃

∗
i0 + ϕ∗

ij , j = 1, 2, ... (4.16)

where ϕij = 0 for j < 1 and ϕ̃∗
i0 = ϕ∗

i0, ϕ̃
∗
ij = 0 for j < 0. Then, the cumulative dynamic

multiplier effects of π∗
it on πi,t+h can be evaluated as

mπi (π∗
i ,H) =

H∑
h=0

ϕ̃∗
ih, H = 0, 1, ...

By construction, as H → ∞,

mπi (π∗
i ,H) → β∗

yi

where β∗
yi =

∑1
h=0 ϕ

∗
ih/ (1 − ϕi) is the long-run coefficient.

4.4.2 The Diffusion Multipliers

We now derive the diffusion (spatial-dynamic) multipliers in terms of the spatial system repre-

sentation (4.12):

Φ (L)πt = Φ∗ (L)Wπt + ut (4.17)

where

Φ (L) = IN − Φ1L; Φ∗ (L) = Φ∗
0 + Φ∗

1L;ut = Λ0f t + Λ1f t−1 +α+ et

Premultiplying (4.17) by the inverse of Φ (L), we obtain:

πt = Φ̃∗ (L)Wπt + ũt (4.18)

where Φ̃∗ (L)
(

=
∑∞
h=0 Φ̃∗

hL
h
)

= [Φ (L)]−1 Φ∗ (L), and ũt = [Φ (L)]−1
ut. The dynamic multi-

pliers, Φ̃∗
j for j = 0, 1, ..., can be evaluated using the following recursive relationships:

Φ̃∗
j = Φ1Φ̃∗

j−1 + Φ2Φ̃∗
j−2 + · · · + Φj−1Φ̃∗

1 + ΦjΦ̃
∗
0 + Φ∗

j , j = 1, 2, ... (4.19)
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where Φj = 0 for j < 1 and Φ̃∗
0 = Φ∗

0, Φ̃∗
j = 0 for j < 0 by construction. The matrix of the

cumulative dynamic multiplier effects can be evaluated as

mπ∗ (H) =
H∑
h=0

∂πt+h
∂π∗′

t

=
H∑
h=0

Φ̃∗
h,

But, my∗ (H) are block-diagonal because Φ̃∗
h is block-diagonal.

Suppose that we are interested in the dynamic multipliers in terms of ∂πi,t+h∂πjt
for ij,= 1, ..., N .

Then, it is straightforward to show that

∂πt+h
∂π

′
t

= ∂πt+h
∂π∗′

t

×W

where
∂πi,t+h
∂πjt

= ∂πi,t+h
∂π∗

it

× wij for i ̸= j

Therefore, we have:

∂πt+h
∂π

′
t

=



∂π1,t+h
∂π1t

∂π1,t+h
∂π2t

· · · ∂π1,t+h
∂πNt

∂π2,t+h
∂π1t

∂π2,t+h
∂π2t

· · · ∂π2,t+h
∂πNt

...
...

. . .
...

∂πN,t+h
∂π1t

∂πN,t+h
∂π2t

· · · ∂πN,t+h
∂πNt


=



0 ∂π1,t+h
∂π∗

1t
× w12 · · · ∂π1,t+h

∂π∗
1t

× w1N

∂π2,t+h
∂π∗

2t
× w21 0 · · · ∂π2,t+h

∂π∗
2t

× w2N
...

...
. . .

...
∂πN,t+h
∂π∗

Nt
× wN1

∂πN,t+h
∂π∗

Nt
× wN2 · · · 0



where ∂πt+h
∂π

′
t

can be use used to identify the network effects from house price diffusion across

districts. Borrowing from the network analysis literature, we use the in-degree and out-degree

measure to construct a ranking of to and from spillover effects, demonstrating the direction and

level of influence across heterogenous districts (Wasserman and Faust, 1994; Atalay et al., 2011;

Sun et al., 2015).

We construct the row sum that measures the spillovers of neighbours’ house price inflation on

the region i’s inflation. Now, we construct the row sum that measures the spillovers of neighbours’

house price inflation on the region i’s inflation (similar to from-spillover or in-degree effect) by

rsumi = ∂πi,t+h
∂π∗

it

N∑
j=1

wij = ∂πi,t+h
∂π∗

it
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which is equal to the dynamic multiplier of π∗
it on πi,t+h. The column sum is given by

csumi =
N∑
j=1

∂πj,t+h
∂π∗

jt

wji

and this measures the spillover of the region i’s house price inflation on neighbours. The outde-

grees may then be used to estimate and rank the districts by the spillover effect of house price

inflation in district i has on neighbouring districts.

4.5 Data

The Index of Production is a key short-term measure of economic activity in the United Kingdom.

The dataset is used in the construction of Gross Domestic Product (GDP), with production in-

dustries’ comprising a 14.6% weighting of GDP under the output approach. The Index measures

the production volume from manufacturing, mining and quarrying, energy supply, and water and

waste management industries at specified base year prices. UK producer price inflation data is

used to deflate the index and underlying components are seasonally adjusted before the Index is

compiled. The dataset is transformed into growth in the Production Index as ηt = ln
(

IPt
IPt−1

)
where IP denotes the Index of Production at time t.

Monthly interest rates of standard variable rate mortgage rates from UK monetary financial

institutions to households is obtained from the Bank of England statistical database. The series

is seasonally adjusted using the X-12-ARIMA procedure also applied to the house price inflation

variable.

We adopt the ONS classification based on their rurality where local authorities are categorised

as rural or urban based on the proportion of their resident population in rural areas or rural-

related hub towns (DEFRA, 2004). Districts are categorised into 6 urban/rural classifications,

defined by the ONS as follows:

1. MU: Urban with major conurbation: districts with either 100,000 people or 50% of their

population residing in urban areas with a population over 750,000.

2. LU: Urban with minor conurbation: districts with either 50,000 people or 50% of their
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population in urban areas with a population ranging from 250,000 to 750,000.

3. OU: Urban with city and town: districts with fewer than 37,000 people or less than 26%

of their population in rural settlements and larger market towns.

4. SR: Urban with significant rural: districts with more than 37,000 people or more than 26%

of their population in rural settlements and larger market towns.

5. R50: Largely rural: districts with at least 50% but less than 80% of their population in

rural settlements and larger market towns.

6. R80: Mainly rural: districts with at least 80% of their population in rural settlements and

larger market towns.

The first three categories are predominantly urban with over 74% of the resident popula-

tion living in urban areas, whilst largely and mainly rural areas have over 50% of the resident

population and are thus referred to as predominantly rural.

4.6 Empirical Results

We estimate two variations of the heterogenous STARF(1) model based on the different type of

factors: cross sectional averages and nationwide economic data. Districts are often influenced

by the same aggregate housing demand and supply shocks. However, variation in economic con-

ditions across cross-sectional units can and do significantly influence district specific responses.

While monetary policy changes or financial shocks may be nationwide, the influence of these

common factors are often heterogenous. While BHP and VE allow for unobserved factors fol-

lowing the cross-sectional averaging approach, both methods do not consider observed aggregate

effects. While the analysis of systemwide unobserved effects may be of interest in general terms,

analysis using observed variables can be prescriptive in setting local governmental policies or

anticipating the influence of macroeconomic conditions. For example, while monetary policy

sets interest rates as a nationwide policy, district-level variations in home ownership levels and

wealth distribution leads to amplifying the transmission channel of monetary policy on segments

of the housing market. Several studies have highlighted the special transmission mechanism
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house prices plays through the influence of mortgage interest rates and bank lending channels

(Maclennan et al., 1998; Boivin et al., 2010). Fratantoni and Schuh (2003) confirm regional hous-

ing markets have heterogenous influences on the efficacy of monetary policy in the US. Variation

in the responses of districts or regions to interest rate changes may reflect differences in the in-

tensity of competition of the banking sector, legal practices, regulations in the rental sector and

housing transaction costs between districts. The STARF model begets a parsimonious dynamic

multiplier framework to analyse how nationwide factors (such as interest rates or changes in eco-

nomic activity) affect the system of districts over time. While observed factors are compatible

with the VE method, the BHP method is able to account for these observed effects in the first

step only. Consequently, the latter method is not well placed to evaluate the observed factors

interest. In contrast to the BHP and VE applications, the use of observed factors in this chapter

allow for readily interpretable impacts of nationwide factors of economic importance.

Using the two-step procedure, we obtain the reduced form residuals, v̂it = π∗
it − φ̂′

izit and

run the following regression:

πit = ϕiπi,t−1 + ϕ∗
0iπ

∗
it + ϕ∗

1iπ
∗
it−1 + λ0if t + λ1if t−1 + αi +φiv̂it + ε∗

it (4.20)

We evaluate the dynamic multipliers of πit with respect to unit changes in π∗
it for h = 0, ..., H

and for i = 1, ..., N . Using choropleth maps in Figure 4.4, we are able to view the heterogeneity

in short and long-run impacts from neighbourhood price changes. Dynamic multipliers are eval-

uated in terms of the impact of neighbourhood house price changes with respect to a percentage

change in neighbourhood house price inflation.

We report the system-wide diffusion multipliers at a horizon of 1 to compute the in-degree

effects and use the out-degree measure to identify and rank districts based on the magnitude of

spillover of district i onto its neighbours.

Dynamic multipliers are evaluated in terms of the impact of neighbourhood house price

changes with respect to a percentage change in neighbourhood house price inflation. Across

both short and long term horizons, there are apparent clubs of districts with shared responses to

property price inflation in nearby areas. These findings are compatible with the new economic

geography theories of core-periphery models (Krugman, 1997). Conversely to the London-centric
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models of house prices, the results show largely urban local economies have strong linkages with

the surrounding rural area consistent with the findings of (Fik et al., 2003). In comparison of

long and short run dynamic impacts, there is more concentrated clusters of spillover effects over

the long term, confirming the same findings using the BHP method in Chapter 3. While there

may be a heterogeneity in the pervasiveness of neighbourhood house prices in the short run, the

results indicate that areas experiencing similar effects from neighbouring areas cluster together

more convincingly over time. The long run dynamic multiplier results demonstrate strong con-

temporaneous spillover effects clustered on and around green belt areas. These areas represent

government policy to ring-fence surrounding areas of the countryside to prevent urban sprawl.

While reducing the availability of land for the construction of new dwellings, the value of houses

in such areas benefit from proximity to attractive landscapes, preserved characteristics of his-

toric towns without the threat of urbanisation encroachment over time. The effect is notably

apparent in the North and North West of outer London in the counties of Buckinghamshire,

Cambridgeshire and Hertfordshire. The results indicate these clubs of districts are impacted

by house price inflation in the neighbouring areas in the same period. Strong positive impact

multipliers are expected in these areas given how the value embedded in properties on the green

belt are likely driven by geographical characteristics which are captured by the spatial parameter.
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Table 4.1: Mean Group Estimates by Urban/Rural Classification from STARF(1) with Wd=50m with
Unobserved Common Factors (Cross-Sectional Averaging Approach)

α ϕ1 ϕ∗
0 ϕ∗

1 λ0 λ1 v̂
MU −0.0214 0.0880 *** 0.465 *** 0.449 *** 0.641 *** −0.527 *** −1.35 ***

( 0.0131 ) ( 0.0104 ) ( 0.0738 ) ( 0.0615 ) ( 0.0881 ) ( 0.0692 ) ( 0.254 )
LU −0.0388 *** 0.0317 ** 0.633 *** 0.335 *** 0.357 *** −0.281 *** −1.14 ***

( 0.00839 ) ( 0.0127 ) ( 0.0844 ) ( 0.0750 ) ( 0.0951 ) ( 0.0871 ) ( 0.0956 )
OU −0.0507 *** 0.0499 *** 0.823 *** 0.117 0.289 *** −0.163 ** −1.55 ***

( 0.00970 ) ( 0.0112 ) ( 0.0760 ) ( 0.0725 ) ( 0.0716 ) ( 0.0730 ) ( 0.210 )
SR −0.0471 *** 0.0296 ** 0.881 *** 0.146 ** 0.165 * −0.172 ** −1.43 ***

( 0.00684 ) ( 0.0125 ) ( 0.0680 ) ( 0.0565 ) ( 0.0907 ) ( 0.0766 ) ( 0.122 )
R50 −0.0396 *** 0.0232 * 0.753 *** 0.218 *** 0.264 *** −0.210 *** −1.67 ***

( 0.00697 ) ( 0.0128 ) ( 0.0765 ) ( 0.0715 ) ( 0.0850 ) ( 0.0808 ) ( 0.151 )
R80 −0.00712 0.0327 *** 0.976 *** 0.0498 0.0940 −0.140 −2.03 ***

( 0.00798 ) ( 0.0108 ) ( 0.109 ) ( 0.0811 ) ( 0.122 ) ( 0.0967 ) ( 0.211 )

Rural/Urban classification follows categories: major urban (MU), minor urban (LU), urban with city/town
(UO), largely rural (R50) and mainly rural (R80). See Section (4.5) for details.
Mean group estimates are calculated as simple averages from district level parameter estimates as follows:
E(ψi0) = ψ0 where ψ̂0,MG = N−1

r

∑Nu
i=1 ψ̂i0 for i = 1, . . . , N, u = 1, . . . , U where Nu is the total number

of districts with connections in rural/urban classification u and ψ̂i0.
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4.6.1 Urban and Rural Districts

Mean group parameter estimates based on urban and rural classifications are given in Table 4.1.

Mean group estimates are calculated as simple averages from district level parameter estimates.

E(ψi0) = ψ0 where ψ̂0,MG = N−1
u

∑Nu
i=1 ψ̂i0 for i = 1, . . . , N , u = 1, . . . , U where Nu is the total

number of districts with connections in a specific urban classification u and ψ̂i0. The results

indicate spatial and temporal dependence across all all levels of urbanisation even after stripping

away the impact of common factors. As discussed in Chapter 3 in the absence of factors, we may

obtain inflated spatial and diffusion measures, assuming common factors have a positive impact

on house prices. Having accounted for this global form of CSD, we are able to derive the pure

spatial effects.

There is a well-documented debate pertaining to the role of urban centres in rural development

(Boarnet, 1994; Krugman, 1997; Saraceno, 1994; Hughes and Holland, 1994). Where linkages

are strong between rural and urban areas, a regional approach to development may be optimal.

In instances where these connections are weak, targeted policies in rural areas may be more

appropriate. The strength of relationships between rural and urban areas may be ascertained by

measuring the effects of a change in economic activity in one district on the level of economic

activity in the other district (Roberts, 2000). The application in this chapter is thus able to

ascertain the influence of major urban areas on their peripheral counterparts in the housing

market. We hypothesise rural areas are more dependent on nearby urban settlements due to

employment, amenities and services that are more readily available in large economic centres.

The estimates in Table 4.1 display a clear pattern of stronger levels of persistence in more

urbanised areas, with major urban areas over twice as more affected by neighbourhood house price

inflation than in mainly rural areas. Major cities and large settlements have increased footfall as

commuters travel for work in and through other developed areas. These migration population

flows ensure information pertaining to house prices and neighbourhood characteristics are made

more apparent. These interactions may serve to ensure contemporaneous spillover effects as other

nearby areas adjust their expected house value based on their experience in the neighbourhood.
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In contrast to the ripple effect hypothesis, we conjecture house prices are not only driven by

London and the South East, rather local economies play an integral role in generating spillover

impacts. In this respect, we depart from a London centric approach to anticipating house price

dependence, that has often been a central feature in regional models of housing dynamics in the

UK (Holly et al., 2011).

We base the following discussion on the interpretation of the time-space recursive model in

Korniotis (2010). Using U.S. consumption data, the author investigates internal versus external

habit formation.8 In the housing context, we may consider the dynamic lag term ϕ1 measures the

internal persistence of house prices, contrasted against the contemporaneous neighbour effect ϕ∗
0.

In this respect, we may ascertain whether house price inflation in a given district is determined

by internal persistence in one’s own district or inflation is externally formed from neighbourhood

house price changes. We hypothesise the external contemporaneous neighbourhood effect will

outweigh the internal persistence in house prices in most instances. Given the small size of

districts, we expect the conditions in surrounding districts are likely to have a greater impact

on house price inflation in a given district in contrast to internal persistence.9 Furthermore,

given the minor size of a district relative to all neighbours, we anticipate the persistence in house

price inflation is only likely to be comparable to the spatial impact in highly urbanised areas

given the chronically high levels of demand in an typically highly densely populated area. For

example, in London we may anticipate high levels of persistence in house prices, however, good

transport linkages and urban sprawl around these areas may displace the demand to nearby

areas, alleviating the persistence in house prices. The extent of this can be evaluated by the

strength of the external neighbourhood effect term, ϕ∗
0 against ϕ1.

Most strikingly, the short term spatial impact drastically outweighs the own lagged impact of

house price inflation. As expected, we find contemporaneous neighbourhood house price inflation
8Korniotis (2010)investigates the issue of internal versus external habit formation using the annual consump-

tion data for the U.S. states, employing the time-space recursive model which imposes the zero restriction on
the contemporaneous spatial effect. In the more general case where the contemporaneous spatial lag term is
significant, Korniotis’s main empirical finding that the US state consumption growth is not significantly affected
by its own (lagged) consumption growth but it is affected by lagged consumption growth of nearby states, are
rather misleading. Thus, our current approach will provide a more general insight.

9The logic here is somewhat analogous to the notion small economies are often more vulnerable to global
macroeconomic developments. This may be due to reliance on imports for production processes, exports account-
ing for a large proportion of demand, or the lack of a large population to prop up domestic demand that may
otherwise mitigate changes in the external environment.
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outweighs internal persistence in house price inflation across all urban classifications, presented in

table 4.1. The difference of influence between past values of house price inflation compared to the

spillover effects from the neighbourhood is often over double, with mainly rural areas nearly three

times more affected by changes in the neighbourhood price inflation compared to own district

persistence in price movements. This evidence suggests persistence in house price inflation is

indeed greater in major urban areas relative to the contemporaneous neighbourhood impact in

comparison to rural settlements. Even in the major urban category, the internal persistence

is superseded by the external impact. While the diffusion parameter for major and largely

urban areas is significant, we find the cumulative impact of the contemporaneous and space time

lag show that major rural areas show greater spatial dependence. These findings reinforce a

preference for dynamic multipliers as an intuitive framework to evaluate spatial dependence (for

example see Figure 4.6.1).

Table 4.1 shows the impact of unobserved common factors (measured by cross sectional

averages) increases as areas are more urbanised. Given the concentration of the population in

these highly urban areas, it is unsurprising to find no statistically significant impact of common

factors in very rural districts. This is partly attributed to the demographic of individuals living in

rural areas of older individuals a disproportionate number of retired individuals relative to urban

areas (Pateman, 2011). This may reduce the sensitivity of households in rural areas to changes in

wages, unemployment levels and financial shocks. While rural areas make up over 85% of land,

82.4% of the population live in urban areas (DEFRA, 2004). In light of the low proportion of

individuals living in rural areas, the average house price inflation across all districts is likely not

be proportionally reflective of changes in the rural environment. That is, rural areas comprise

a relatively small proportion of districts and hence is likely not to be as closely correlated with

rural house price inflation movements, particularly in the major rural case. For all other levels of

rural population, there is some influence of national factors on district level house price growth.

The impact in the lagged period is negative, however the net effect for all categories demonstrates

a positive association between national house price changes and house price appreciation over

time. The fluctuations near zero across both estimates may be indicative of the volatility of house

price changes that are well documented in England (Hilber and Vermeulen, 2016). For example,

given house prices are characteristically volatile in the UK, small areas are likely to display more
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volatility than the aggregate trend. Common factors are by their very nature aggregated to

the regional or national level in our model, and hence likely to display lower levels of variation.

While there may be a positive relationship between house price inflation in a given district with

national house prices, month to month, this may deviate from the long run relationship between

the two variables.

The estimation results from Table (4.2) summarise the STARF(1) model with observed com-

mon factors. Surprisingly, both factors are found to have little to no influence on house price

inflation. However, at the district level, we find 51 areas show interest rates have an influence on

house price inflation at the 10% significance level; 49 of these districts also find lagged interest

rates influence house price inflation at the 10% significance level. These results may indicate

delineating the housing market by urban classification (or region) does not capture the subset

of districts that show sensitivity to interest rate changes. Alternatively, by controlling for both

regional and global factors, this may have precluded estimating the impact of the selected factors

due to potential collinearity. The dynamic and spatial effects are well established, with the short

run impact of neighbourhood house price changes significant at the one percent level across all

urban/rural classifications. The estimates closely mirror the earlier findings of strong spillover

effects in more rural areas. The spatial impact is relatively strong across all areas, with the

lowest value of 0.843 still demonstrating strong spillover effects in minor urban areas. While the

immediate spatial effect has increased in power, the estimated diffusion parameters have fallen

compared to the estimated coefficients from the cross sectional averaging approach. Major urban,

minor urban, urban with city/town and largely rural areas shows statistically significant diffusion

effects but at the fraction of the impact from dynamic and spatial effects separately. The cumu-

lative dynamic multipliers with respect to neighbourhood house price inflation by mean group

estimates for rural/urban classifications are given in 4.6.1. In line with the core-periphery models

of the new economic geography, we hypothesise urban areas experience faster rates of adjust-

ment due to the increased flow of commodities and services from urban (core) districts to nearby

rural (periphery) areas (Krugman, 1997; Roberts, 2000). This directional dependence should

manifest itself in the spill-in impacts, denoting a district affinity to be affected by neighbourhood

(in this case core area) house price changes. This conjecture is in accordance with the notion

of economic growth ‘trickling down’ to the periphery area, serving to increase demand for the
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goods and services within the vicinity, eventuating overall regional growth (Berry, 1969). Urban

areas however, benefit from agglomeration effects related to the degree of urban classification10

includes transport, access to material and labor inputs by firms, in addition to employment,

cultural, leisure, and consumer services by households. These agglomeration benefits lead to

increased population density that serve as information signals pertaining to changes in amenities

or services in a given area, allowing households to respond to changes in neighbouring areas at

a faster rate of adjustment than in rural market segments.

We find more rural areas show a slower change in impact as over time from their neighbours,

but the overall impact is elevated above 1%. Both these findings are consistent with our predic-

tions. Major urban areas show the fastest rate of convergence to their long run level. This may

be attributable to increased information signals from more densely populated areas to higher

footfall from commuters. De Bruyne and van Hove (2013) theorise agricultural areas have fewer

job opportunities; we may argue this leads individuals living in rural areas to rely on neighbour-

ing districts for employment, strengthening the spatial dependence between districts compatible

with the core-periphery framework. Largely rural areas with significant rural settlements show

the highest levels of contemporaneous spatial dependence which then converge to a long-run level

just above unity. This contrasts with major urban areas at horizon zero, where the marginal

impact of neighbours is half that of its rural counterpart. While figure 4.6.1 shows a difference in

long run cumulative dynamic multipliers for different levels of urban/rural measures, these dif-

ferences are small in magnitude, with long run values ranging across classifications from 0.991 to

1.055. The author acknowledges the model may benefit from the inclusion of more lagged terms

which may improve the ability of the cumulative dynamic multipliers to capture the impacts over

time.

10The impact of urban scale is studied in Partridge et al. (2009)
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Figure 4.1: Average cumulative dynamic multipliers by classification of rurality. The district
level cumulative dynamic multiplier effects of π∗

it on πi,t+h are evaluated as mπi (π∗
i ,H) =∑H

h=0 ϕ̃
∗
ih, H = 0, 1, ..9. Average cumulative dynamic multiplier estimates are calculated

as simple averages from district level parameter estimates for a given subgroup. E(ϕi0) =
ϕ0 where ˆmπi (π∗

i ,H)Ur,MG = N−1
u

∑Nu
i=1

∑H
h=0

ˆ̃ϕ∗
ih,H = 0, 1, ..9 for i = 1, . . . , N, u =

1, . . . , U where Nu is the total number of districts with connections in a specific urban clas-
sification u.

Figure 4.2: Average cumulative dynamic multipliers by region. The district level cumulative
dynamic multiplier effects of π∗

it on πi,t+h are evaluated as mπi (π∗
i ,H) =

∑H
h=0 ϕ̃

∗
ih, H =

0, 1, ..9. Average cumulative dynamic multiplier estimates are calculated as simple averages from
district level parameter estimates for a given subgroup. E(ϕi0) = ϕ0 where ˆmπi (π∗

i ,H)Nr,MG =

N−1
r

∑Nr
i=1

∑H
h=0

ˆ̃ϕ∗
ih, H = 0, 1, . . . 9 for h = 1, . . . , H, i = 1, . . . , Nr, r = 1, . . . , NR where Nr is

the total number of districts with connections in a specific region r.

4.6.2 Regional Estimates

Regional estimates are calculated as simple averages of district parameter estimates as outlined

in Pesaran and Smith (1995). Regional group estimates are calculated as simple averages from
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district level parameter estimates as follows: E(ψi0) = ψ0 where ψ̂0,MG = N−1
r

∑Nr
i=1 ψ̂i0 for i =

1, . . . , N, r = 1, . . . , R where Nr is the total number of districts with connections in region r and

ψ̂i0. The results indicate common factors and spatial dependence both play a dominant role in

determining house price inflation in a given area. Inflation in house prices also show signs of

persistence as all regions except the East Midlands having a statistically significant effect at the

10% level. House prices in London are found to be far more persistent than in other regions

at 0.113, almost double the estimated effect compared to other regions. These findings are in

accordance with government reports outlining how London house prices display more volatility

and increase growth compared to other regions (Barker, 2008). Interestingly, surrounding areas

such as South East and South West demonstrate far lower levels of persistence in house prices,

contradicting some of the literature relating London house prices closely to changes in the South

East (Alexander and Barrow, 1994; Macdonald and Taylor, 1993).

The spatial effect is far more pronounced compared to the lagged dynamic parameter across

all regions with impacts ranging from 1.03 in the South West, to 0.258 in London. The evidence

indicated high levels of persistence in London house prices while the impact of neighbourhood

prices places a less, albeit statistically significant role, while the opposite holds true for all other

regions. The Southern areas show high levels of interdependence in house price inflation from

neighbourhood inflation changes. This also holds true for Northern regions, with North East,

North West, Yorkshire and Humber providing similar estimates across dynamic and spatial pa-

rameters. These areas in addition to South West do not show statistically significant evidence

of price diffusion. However, it is worth noting that given the significant spatial and dynamic

parameters in the model, the impact of past spatial and dynamic effects may still be felt recur-

sively at a decaying rate. The results taken from the dynamic multipliers provide a more reliable

source of information for inference.

In spite of the insignificance of the observed factors in the second STARF(1) model presented

in Table 4.4, we find estimated spatio-temporal coefficients do not materially change in value

across both factor specifications, demonstrating robust estimates of spatial dependence. The

findings contrast with Meen (1999) who finds interest rates have a significant impact on house

prices, with an increasingly positive effect moving northwards. Regional mean group cumulative

dynamic multipliers are reported in Figure 4.6.1 for H = 1. We note all regions display a
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relatively fast convergence to the long run multiplier with all regions close to convergence with

their long-run multiplier after two months with the exception of London where this occurs after

the three month horizon. London also demonstrates the largest adjustment value, with the initial

spatial impact of 0.258% that approaches a long run value approximately at 0.921%. In contrast,

the least adjustment occurs in the South West, where the long run dynamic multiplier is only

superseded by Yorkshire and Humber. We also find the South East shows a high level of spatial

dependence compared to West Midlands, approaches a value of 0.808% over a longer horizon.

In comparison to the results in the BHP method, no areas display negative spatial auto-

correlation. The incidence of significant regions is also higher, with all regions demonstrating

contemporaneous neighbourhood effects and persistence in house prices, with the exception of

the East Midlands. These findings contrast with the BHP method where the North East and

London alone experience contemporaneous neighbourhood effects, both of which are negative.

While both measures cannot be compared directly, London is found to display the highest level

of persistence by a considerable margin following both methods.

4.6.3 System-wide Diffusion of House Prices

In practice, we may represent (4.12) as follows:

πt = (IN − Φ∗
0W)−1 (Φ1 + Φ∗

1W)πt−1 + (IN − Φ∗
0W)−1 (Ψ0v̂t + ϵt) , (4.21)

∂πt
∂πt−1

= (IN − Φ∗
0W)−1 (Φ1 + Φ∗

1W)

=
(

IN + Φ∗
0W + (Φ∗

0W)2 + · · ·
)−1

(Φ1 + Φ∗
1W)

Given the equivalence of ∂πt+h
∂π

′
t

= ∂πt+h
∂π∗′

t
× W in Shin (2018) where ∂πi,t+h

∂πjt
= ∂πi,t+h

∂π∗
it

×

wij for i ̸= j, we are able to report the diffusion multipliers at h = 1 for ∂πi,t+1
∂πjt

, using the row

and column sum of (IN − Φ∗
1W)−1 (Φ1 + Φ∗

1W) to calculate the spill-in and spill-out effects

respectively.

Figure 4.7 summarises the to and from spillover effects of neighbourhood house price inflation

across districts over the one month horizon. The from-spillover effects measure the spillovers
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of neighbours’ house price inflation on the district i’s inflation. From Figure 4.5a, there is

markedly notable spatial distribution of strong in-degree effects greater surrounding London and

certain Northern cities. Areas surround these major cities display strong levels of dependence

on neighbouring house price inflation. These areas experience similar levels of long run impacts

as they tend to cluster around cities and key transport networks. The effect is not limited to

London, but also remains distinctive around Nottingham and the motorways associating major

Northern cities to one another, such as Birmingham and Sheffield. These findings indicate

these areas have a unifying similarity in terms of how neighbourhood house prices changes play a

relatively sizeable role in house price growth in a given districts. The relationship for these shared

characteristics may be a result of similar levels of amenities and shared proximity to rural areas

whilst remaining accessible to the agglomeration benefits from being situated by large economic

centres. These findings are affirmative of our initial hypothesis predicting periphery areas to large

economic centres are likely to experience large spill-in effects due to their sought after placement

balancing convenience and quality of life (relating to proximity to nature, quality of air etc.)

for large commuting populations. While individuals may reside in these periphery districts, the

working population are likely to commute into cities where the availability of employment is

higher. Individuals are thus likely to benefit (or suffer) from changes in the city environment.

For example, policies to improve congestion are likely to have a beneficial effect on commuters

travelling within the city. Given the policy impacts the commuters living in the periphery areas,

house prices may appreciate in these areas due to the spillover effect of improved conditions in

the city. The spill-in effects show clustering around London and the South East, providing some

evidence of the ripple effect. The hypothesis refers to the propensity for house prices to rise

first in the South East of the country during an upswing and to gradually spread out to the

rest of the country over time. However, we find this effect does not spread to the North as the

areas surrounding the strong positive spill-in band of areas around London are they themselves

surrounded by districts that display little to no spill-in effects. In this respect, we find that the

spill-in effects in the North are instigated by Northern districts, as opposed to the aftereffects

that have rippled out from London. These findings are compatible with the conclusions drawn

from Chapter 3 where economic centres were also seen to be the source of spatial dependence. In

this application however, we find there is some evidence that house price inflation does ripple out,
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but within an approximate fifty mile radius only. In light of this, we find limited evidence of the

ripple effect. Importantly, we note these regions are situated on the green belt. Inconsistent with

the ripple effect hypothesis, we find London does not share the same spill-in effects. We consider

the results in this chapter more robust than the estimates derived in the previous chapter due

to the lower incidence of negative spatial parameters that are unexpectedly prevalent in the the

preceding chapter and BHP application.

Table 4.5: District ranking by strength of spillover effect of district i’s house
price inflation onto neighbouring districts. Outdegrees are calculated from the
STARF(1) model with national house price inflation as factors.

District Rank Outdegrees Region
Cheltenham* 1 2.711 South West
Shropshire* 2 2.678 West Midlands
Cannock Chase 3 2.466 West Midlands
Wiltshire 4 2.346 South West
Thanet* 5 2.280 South East
Rushcliffe* 6 2.270 East Midlands
Lincoln 7 2.258 East Midlands
West Dorset 8 2.250 South West
Charnwood 9 2.227 East Midlands
Newark and Sherwood 10 2.136 East Midlands
New Forest 11 2.082 South East
City of Bristol 12 2.078 South West
North Warwickshire 13 2.072 West Midlands
Lambeth* 14 2.032 London
Hartlepool* 15 2.012 North East
Kettering 16 2.009 East Midlands
South Lakeland* 17 1.990 North West
Nuneaton and Bedworth 18 1.944 West Midlands
Calderdale* 19 1.914 Yorkshire and The Humber
Gravesham 20 1.912 South East
Barking and Dagenham 21 1.907 London
Brighton and Hove 22 1.879 South East
City of Westminster 23 1.876 London
Weymouth and Portland 24 1.869 South West
Shepway 25 1.868 South East
Craven 26 1.867 Yorkshire and The Humber
Dacorum* 27 1.867 East

∗ denotes 1st rank by strength of spillover effect of district i’s house price infla-
tion onto neighbouring districts in each respective region. The column sum of
(IN − Φ∗

1W)−1 (Φ1 + Φ∗
1W) to calculate the spill-out effects respectively.

The spillover of region i’s house price inflation on neighbours’ inflation is estimated from the out-
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degree effect. Areas are then ordered by the level of influence exerted on neighbourhood price

inflation. The ranking based on influence on neighbouring district inflation is given in Table

with asterisks denoting the largest to-spillover effects for a given region. Cheltenham district in

Gloucestershire has the strongest spillover effects to its neighbours. The district is located on

the edge of the Cotswolds, with sceneries protected by the green belt in addition a high number

of internationally renowned schools and low crime rates; these positive attributes affecting house

prices are unlikely to fluctuate greatly over time. The areas that are able to provide both sets

of attributes are found to be dominant units in influencing house prices in a given area. The

findings in this chapter confirm the importance of proximity to economic centres in influencing

house price inflation in nearby areas, consistent with the findings of Fik et al. (2003).

These findings may reflect the London-centric ripple effect as a dominant factor while the

core-periphery spillover effect would be dominant at higher levels of urbanisation. Our findings

may also reflect the time-varying nature of the house price inflation spillover as we note the

variation in the speed of adjustment between urban and rural areas. All highly ranked districts

enjoy the benefits of protection under the green belt policy in addition to high performing schools

and other sought after characteristics associated with increased demand for housing. While the

increased demand for housing in such areas cannot be met by increased supply given restrictive

planning permissions, individuals may substitute to nearby areas to enjoy the shared amenities

through proximity, hence these areas may propagate strong spillover effects to neighbouring

districts. The majority of districts reside in the South West, South East and the Midlands, in

contracts to the East which first appears in the ranking in 27th place, demonstrating low levels

of spillover effects from districts in the region to its respective neighbours.

Studies by Hilber and Vermeulen (2016) and Saiz (2010) demonstrate areas facing geographi-

cal or regulatory constraints11 experience low elasticities of supply which are in turn endogenous

to price growth. Our findings provide evidence supporting the role of inelastic supply in sustain-

ing house price inflation in these areas.
11The green belt is a prominent example of regulatory constraints.
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4.7 Concluding Remarks

The results in this chapter demonstrate a highly heterogeneous housing market, characterised

by strong spatial dependence in strategic subsets of the housing segments. Notably, periphery

areas to economic centres are shown to have the most influence on neighbourhood house price

changes. The findings underscore the complexity of the housing market where preferences for

convenience and low commuting times may often be at odds to good quality air and landscapes.

In contrast to the ripple effect, we hypothesise periphery areas surrounding cities play a primary

role in propagating spillover effects to the neighbouring regions, consistent with the new economic

geography framework. Our conjecture contrasts with the ripple hypothesis in two key respects:

firstly, we put forward that economic centres are key in the transmission of house price spillovers

as opposed to the London-centric view where house price appreciation begins in the South East

and London before spreading to the rest of the country. This implicitly confers London as

the single dominant unit. Secondly, the ripple effect attributes spillover effects first from an

urban area (London) which then fans out to the rest of the country over time. While cities

are economic centres, we put forward that they do not directly propagate the spillover effects

in the first instance. Instead, these periphery areas characterised by their placement near the

countryside while retaining access to the city are salient features of spatial dependence in the

housing market. The importance of the physical characteristics of the periphery areas is integral

in the formation of our hypothesis, while the ripple effect is underpinned by urbanisation effects.

The importance of these geographic characteristics are consistent with Saiz (2010) who find MSAs

who face geographical or regulatory constraints12 experience low elasticies of supply which are

in turn endogenous to price growth. The areas that are able to provide both sets of attributes

are found to be dominant units in influencing house prices in a given area. Areas surrounding

London are found to be most susceptible to the impact of neighbourhood house price changes,

providing limited evidence of house prices rippling out from areas surrounding London. However,

this impact decays beyond the approximate 50 mile radius, indicating that the comparable strong

spill-in effects in the North (surrounding key cities such as Manchester and Sheffield) are the

source of the spill-in effects experienced in these areas surrounding the strong local economies.
12The green belt is a prominent example of regulatory constraints.
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This is inconsistent with the theory that house prices ripple from the south-east and London to

reach the North over time. Furthermore, inconsistent with the ripple effect, London itself does

not play a dominant role in the propagation of spillover effects.

The results presented provide a parsimonious representation of spatial diffusion of house prices

in England that present results more in line with the economic theories of spatial dependence in

house prices. While we contribute a substantial improvement over existing methods for analysing

the housing market, the estimated model can be readily improved in a number of ways. Through

the use of an information criterion, the number of lags to include in our estimation may be

selected. This would prevent spatial and serial correlation in the error terms that may in turn

have biased our estimates. Furthermore, the use of factors should be changed given the low

association of house price inflation with the use measures of economic activity and interest rates.

Furthermore, we have made an arbitrary choice to use a weights matrix with a 50 mile distance

cut off. In place of this, we may extend our model with the use of an adjacency matrix based

on economic data with time variation to account for changing spatial dependence over time.

While we have made some general comparisons to the BHP method, we would benefit from some

Monte Carlo simulation results to formally compare how the three heterogenous models compare

in performance.

In future research, we may try alternative variables as factors in our model in light of the

low association of house price inflation with measures of economic activity and interest rates.

Furthermore, we have made an arbitrary choice to use a weights matrix with a 50 mile distance

cut off. In place of this, we may extend our model with the use of an adjacency matrix based on

economic data with time variation to account for changing spatial dependence over time. The de-

velopment of dynamic multipliers with respect to factors would be a natural and straightforward

extension. The analysis of its application may lead to better understanding of how house prices

in a given area respond to a financial or productivity shock. We may ascertain differences in the

speed of adjustment between districts, providing policy makers with tools to better anticipate

how macroeconomic shocks may unfold over time and space.
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(a) Short Run DM (b) Long Run DM (c) Spill-in (d) Spill-out

Figure 4.3: Key for quantile value ranges in chloropleth maps for short run dynamic multipliers
(4.4a), long run dynamic multipliers (4.4b), spill-in (4.5a) and spill-out (4.5b) effects in figures
(4.4) and (4.7).
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(a) Short Run Dynamic Multipliers (b) Long Run Dynamic Multipliers
(c) Map of England

Figure 4.4: Ten quantile choropleth map of long and short-run impacts of neighbouring house price inflation with darker areas signifying higher dynamic multiplier values.Figure
4.7 provides value ranges for each quantile.
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(a) Spill-in (b) Spill-out
(c) Map of England

Figure 4.5: Ten quantile choropleth map of spill-in and spill-out effects of neighbouring house price inflation with darker areas signifying higher dynamic multiplier values.
The row and column sum of (IN − Φ∗

1W)−1 (Φ1 + Φ∗
1W) to calculate the spill-in and spill-out effects respectively. Figure 4.7 provides value ranges for each quantile.



Chapter 5

Concluding Remarks

This thesis evaluates house price dynamics in the UK using a range of data driven techniques.

We now provide a succinct summary of the three chapters together with the limitations of the

research, policy recommendations and potential venues for future research work.

Chapter 2 identifies and dates-stamps exuberance in regional housing markets during 1983(1)

to 2014(4) using the econometric procedures devised by Phillips et al. (2011, 2015). A consis-

tent timeline of historic events in the UK housing market emerges from the empirical findings

supporting the use of the testing procedure in identifying bubbles within a regional context. Us-

ing affordability ratios, we are able to differentiate between exuberance driven by fundamentals

which prove to be less common. We find unemployment and short term interest rates are able to

predict bubbles in the housing market, while disposable income does not. Our findings highlight

the heterogeneity between regional segments of the housing market and identify factors that may

predict these episodes for policy makers.

The use of median salaries of full-time male earners severely limits the suitability of the

affordability measure used in detecting bubbles in housing affordability. The exclusion of female

and part time participation underestimates the detection of bubbles over the tested period. As

house prices have outstripped earnings, households have increasingly relied on both incomes to

afford housing, in addition to part-time and flexible working earners also contributing to housing

costs. The bias arising from the use of full-time male only earnings data incurs severe errors-in-

variables that must be taken into consideration when interpreting the estimation output.

The key limitation of the GSADF procedure is that it lacks the flexibility to allow for both

119



CHAPTER 5. CONCLUDING REMARKS 120

an explosive root and a unit root (Engsted et al., 2015). The null hypothesis underlying the

test assumes the time series follows an I(1) process, against the alternative that the series is

characterised by an explosive process. Applying the test on the price to income ratio and rejecting

the null hypothesis is implicitly assuming that prices and income are cointegrated; this may not

be the case in practice.

Future research would thus benefit from evaluating the cointegrating relationship between

prices and fundamentals in tandem with exuberance. We may pursue this using Engsted and

Nielsen (2012) co-explosive VAR framework to test for bubbles while concurrently allowing coin-

tegrating relationship between prices and their fundamentals and estimating the strength of

this cointegrating relationship. By using the SADF and GSADF procedure, we are able to

date-stamp the commencement and termination of bubbles for use in co-explosive VAR; this

information must be provided a priori so our existing GSADF estimation is a parsimonious

extension in this context. Alternatively we may also contrast our findings against a fractional

integration approach. Given the interdependencies between regions, our study would benefit

from explicitly estimating the spillover impact using a spatial term. We may then be able to

test whether the ripple effect changes over time. We also consider extending the variable set to

ascertain whether other measures may be good predictors of bubbles. For example, behavioural

measures of investor optimism and market stress indicators may provide meaningful insights into

the formation of bubbles.

Chapter 3 implements the 2 stage procedure devised by Bailey et al. (2016) to estimate a

heterogenous model of house price diffusion. The results indicate region or nation wide policies

may serve to increase divergence in house price inflation across districts, as clusters of areas more

susceptible to impacts of house price growth in neighbouring areas. As local government is able

to control housing policy at the district level, the findings suggest cities and transport networks

play a key role in the propagation of spatial effects that may alleviate persistence in house prices

in a given district.

The BHP method possesses a number of limitations. Final parameter estimates are measured

in terms of ‘de-factored’ price changes. This measure does not readily lend itself to providing

estimated spillover effects to practitioners. The two stage method also lacks any formal distri-

butional theory accounting for sampling errors derived from the first stage. Additionally, the
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impact of common factors are not estimated, instead they are accounted for. Ascertaining the

impact of common factors in the housing market is an interesting avenue for future research that

this model is unable to accommodate. Most prominently, the high incidence of negative spatial

parameter estimates is a cause of concern. These findings are inconsistent with theories of spa-

tial spillover effects in the housing market (Gillen et al., 2001) which anticipate positive spatial

dependence in most cases.1 While we have made some general comparisons to the BHP method,

we would benefit from some Monte Carlo simulation results to formally compare how the Bailey

et al. (2016); Halleck Vega and Elhorst (2016) and STARF models compare in performance under

different conditions.

Future work is required to implement the proposed data driven method in BHP. We propose

a mixed approach, where a minimum distance cut-off measure is used in tandem with the pair-

wise base spatial weights. At this stage, the poor HSAR estimates from the data driven weights

may be attributed to the either the adjacency matrix or the HSAR estimates which show a high

prevalence of negative values.

Chapter 4 provides a parsimonious representation of spatial diffusion of house prices in Eng-

land that present results more in line with prevailing economic theories of spatial dependence in

house prices. While we contribute a substantial improvement over existing methods for analysing

the housing market, the estimated model can be readily improved in a number of ways. The use

of an information criterion to select the number of lags in the model would be a straightforward

and material improvement. This would prevent spatial and serial correlation in the error terms

that may in turn have biased our estimates. Furthermore, we may try alternative variables as

factors in our model in light of the low association of house price inflation with measures of

economic activity and interest rates. Furthermore, we have made an arbitrary choice to use

a weights matrix with a 50 mile distance cut off. In place of this, we may extend our model

with the use of an adjacency matrix based on economic data with time variation to account for

potentially time-varying and endogenous spatial dependence.

The STARF model provides an exciting workhorse for the development of future analytical

tools. While we have only considered multipliers with respect to neighbourhood house price
1The STARF model succeeds in providing a material improvement with respect to the aforementioned draw-

backs.
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changes, it is straightforward to extend this framework to evaluate the dynamic multiplier effects

of factors. Furthermore, we may also recast the STARF model under a VAR framework and

compute impulse responses and forecast error variance decomposition analyses. In the housing

context, impulse response analysis is ideally placed to test the ripple effect hypotheses. These

results may then be contrasted against impulse responses from core-periphery groups.
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Appendix A

A.1 Data Characteristics

Real households’ disposable income is combined with historic data accessed via the ONS from

the Regional Accounts dataset, 1971-19991 which is interpolated using the cubic spline method

for quarterly results. Disposable income data is manually adjusted to convert GOR regions to

their predecessor, SSR to follow the format of the Halifax house price regional dataset. Prices are

expressed in real terms using chained volume measures. The process involves expressing prices in

terms of the preceding year, then chain linking the figures such that the effect of changes in price

are eliminated. The unemployment rate is given as the percentage of the working population aged

16 and over as a proportion of the working population. CPI data is not seasonally adjusted and

observations predating 1988 are estimated values and the GDP growth rate is measured according

to the expenditure approach compared to the previous quarter with seasonal adjustments. Crude

oil prices and gold price data serve as an gauge of international economic conditions. The share

price index reveals information on the profitability of an alternative asset class as the price

embodies future valuation by investors. The IMF provides UK share price index data before

April 1984. Since April 1984, FTSE100 index values are collected by the Bank of England.

Other financial predictors include long and short term interest rates. The former is estimated

using ten year government bond yield data whilst short term is accounted for using the official

bank rate set by the Bank of England.

1Office for National Statistics, Regional Accounts Data, 1971-1999 [computer file]. 8th Edition. Colchester,
Essex: UK Data Archive [distributor], December 2002. SN: 4010
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A.2 Asset Pricing with Rational Bubbles

This approach to the property market is based on the instrumental research of Blanchard (1979);

Blanchard and Watson (1982) and ensuing rational bubble literature in line with rational expec-

tations theory. The following exposition of asset pricing theory follows the notation of (Pavlidis

et al., 2014) closely. 2

The house price is derived under the following no arbitrage and risk neutrality conditions,

ϱt = Et(Rt+1) (A.1)

expressly, the discount rate ϱ > 0 is initially assumed time invariant, such that Et(Rt) = ϱ

for all values of t. The no arbitrage condition expresses the return on an asset is equivalent to

the risk free expected net return denoted as ϱ > 0, on an alternative investment opportunity.

Here the expectations operator Et accounts for all available information up until time period t

and Rt+1 is the rate of return on the asset at time period t+ 1 connotes the return on the asset

as,

Rt+1 ≡ Pt+1 + Ft+1

Pt
− 1 (A.2)

where Pt denotes asset price and Ft is the stream of payoffs arising from the asset. This future

stream may be monetary or otherwise. The latter can be generally specified as below, where Ft

denotes the economic fundamentals of (the asset which in our case is) the housing market. This

is comprised of payoff stream, Xt and the unobserved factors driving price Ut:

Ft = Xt + Ut (A.3)

where {Ut}∞
t=1 denotes the stream of unobserved price driving factors. These unobserved fun-

damentals, which may for example include the impact of bias, pricing errors, and mismeasurment

issues, are captured by Ut term.
2While we adopt the levels approach, the exposition following the log-linear approximation is available on

request.
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In the housing case, {Xt}∞
t=1 refers to the payoff stream of housing rents including housing

services. Blanchard and Watson (1982); Campbell et al. (1997) detail the payoff stream process

in general terms while Gordon and Shapiro (1956) provide as an account on the dividend discount

model adapted for constant growth rate for the payoff stream {Xt}∞
t=1. The payoff stream can

be alternatively specified whereby macroeconomic fundamentals are linearly related through a

housing demand equation A.4. Imposing further constraints on preferences , the following linear

expenditure function is constructed

Ft = θ + δYt + Ut (A.4)

Note this specification also retains the unobserved term Ut while demand for rental housing

describes the relationship between housing rents Xt and macroeconomic fundamentals, here given

as disposable income, Yt.Rearranging and solving the equation A.2 for Pt under the no arbitrage

condition in A.1 yields the log-linear approximation:

Pt = 1
1 + ϱ

Et[Pt+1 + Ft+1] (A.5)

where the asset prices (ex dividended) in the current period t equates to the expected fundamental

price combined with the expected price from the sale of the asset in the future period t+ 1, both

discounted to reflect present value. Solving forward by iterative substitution, the standard asset

pricing function is derived:

Pt = Et

 T∑
j=1

(
1

1 + ϱ

)j

Ft+j

 + Et

[(
1

1 + ϱ

)T

Pt+T

]
(A.6)

where asset price at time period t comprises of the expected future dividend (or payoffs) up until

the final time period T , and expected discounted price of asset resale in time T . Prescribing the

following transversality condition:

lim
t→∞

E

[(
1

1 + ϱ

)T

Pt+T

]
= 0 (A.7)
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and setting T to tend towards infinity, equation A.6 can be rewritten as equation A.8:

P ∗
t = Et

 ∞∑
j=1

(
1

1 + ϱ

)j

Ft+j

 (A.8)

where
(

1
1+ϱ

)T
is a valid stochastic discount factor for this asset. Note how this function is deter-

mined entirely by the discount rate ϱ and the economic fundamentals Ft, such that P ∗
t denotes

the fundamental-based asset price at time t. This is consistent with dividend based models in

valuing equity. Examples include Gordon and Shapiro (1956) where the dividend stream growth

rate remains constant while Blanchard and Watson (1982); Campbell et al. (1997) relax this for

a general treatment of Xt
∞
t=1. In this instance, the asset price refers to the fundamental based

price, Pt = P ∗
t .

Asset asset prices are determined by fundamental drivers alone, predicated that the transver-

sality condition must always hold. Often the very existence of housing bubbles associated with

a failure of the transversality condition that requires the present value of payments occurring

infinitely far in the future to be zero. 3 The transversality condition ensures there is one so-

lution to the difference equation for asset pricing, as opposed to infinite forward solutions that

would otherwise exist. Asset Price can thus be decomposed into following form, made possible

by solving for into the unique form:

c+Bt (A.9)

where Bt is the non fundamental bubble components, fulfilling the submartingale property:

E(Bt+1) = (1 + ϱ)Bt (A.10)

Given we assume (ϱ > 0), the expectation for the bubble term must accordingly be explosive.

Whether the stochastic discount factor ϱt > 0 is I(0) or autoregressive, there is no impact to

alter the submartingale shown above in equation A.10. Periods in which prices depart from

the economic fundamentals fuel expectations exhibiting exuberant behaviour as agents expect

to be compensated for overpriced (based on fundamental price) assets in the future, based on
3See Giglio et al. (2014) for the treatment of bubbles associated with the failures of the transversality condition.



APPENDIX A. 140

expectations of future price appreciation with remunerations expected at the discount rate ϱ.By

combining equations A.8 and A.9 as ascribed by Campbell and Shiller (1988), it follows:

Pt = 1
ϱ
Ft +

(
1 + ϱ

ϱ

)
Et

 ∞∑
j=1

(
1

1 + ϱ

)j

∆Ft+j

 +Bt (A.11)

where Ft denotes the fundamental component known as the economic rent of housing. Assuming

the economic rent of housing follows an AR(1) process,

Ft = ϕFt−1 + ϵt, ϵt ∼ WN(0, σ2
ϵ ) (A.12)

where ϵt is a stationary process and Ft follows an I(1) process when ϕ = 1, and explosive when

ϕ > 1. In the instance of no bubbles such that Bt = 0∀t, equation A.9 denotes price equates to

the fundamental component such that equations A.11 and A.12 give:

Pt = P ∗
t =

[
1 + (1 − ϕ)

(
1 + ϱ

1 + ϱ− ϕ

)]
1
ϱ
Ft (A.13)

While property prices may exhibit explosive trends due to the underlying explosive dynamics in

fundamentals (that is, ϕ > 1 in A.2), this does not preclude the absence of a bubble. As noted

by Pavlidis et al. (2014, p.6), in this instance, "exuberance in the housing market is inherited

from fundamental factors which might not be directly observable." While this may be the case

with house prices, the ratio of prices to fundamentals is not explosive in the case of no bubbles

regardless of the value of ϕ. This ratio is given as:

Pt
Ft

=
[
1 + (1 − ϕ)

(
1 + ϱ

1 + ϱ− ϕ

)]
1
ϱ

(A.14)

In light of this benefit, we include estimation on affordability ratios in our results.
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A.3 Exuberance in House Price to Earnings Ratio
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Figure A.1: Date-stamping periods of exuberance in house price to earnings using sadf testing across 12 UK regions and
nationwide. The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates
the sadf testing results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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Figure A.1: Date-stamping periods of exuberance in house price to earnings using sadf testing across 12 UK regions and
nationwide. The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates
the sadf testing results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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Figure A.1: Date-stamping periods of exuberance in house price to earnings using sadf testing across 12 UK regions and
nationwide. The upper graph in each subfigure displays the behaviour of real house prices. The lower graph demonstrates
the sadf testing results, with shaded areas corresponding to detected periods of exuberance demonstrated across both graphs.
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A.4 GSADF Testing with Smaller Window
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A.5 Probit Estimation Results by Region

Table A.6: Regional Probit Estimation on GSADF outcomes with Respect to Real House Prices
(1) (2) (3) (4) (5) (6)
EA EM GL N NI NW

Unemployment -1.058*** -1.549*** -0.387* -0.927*** 0.113 -1.244***
(0.337) (0.431) (0.226) (0.312) (0.279) (0.367)

10YBY 0.0226 0.422 0.399 0.271 0.148 -0.105
(0.286) (0.323) (0.269) (0.281) (0.293) (0.299)

Official Bank Rate -0.373** -0.615*** -0.316** -0.284* -0.0346 -0.276
(0.175) (0.203) (0.139) (0.164) (0.160) (0.180)

Disposable Income -0.000237*** -0.000178*** -0.00000722 -0.000117 0.000386*** -0.000116***
(0.0000878) (0.0000594) (0.0000147) (0.0000742) (0.000147) (0.0000383)

∆ FTSE100 -0.111*** -0.112*** -0.0299 -0.0390 0.0492 -0.0849**
(0.0361) (0.0399) (0.0286) (0.0297) (0.0310) (0.0349)

Gold Price 0.00267 0.00542** -0.000604 0.00229 -0.00908*** 0.00345*
(0.00208) (0.00252) (0.00193) (0.00181) (0.00291) (0.00203)

∆ Oil Price 0.00399 0.0176 -0.0116 0.0128 -0.00607 0.0261**
(0.0109) (0.0115) (0.00992) (0.00994) (0.0113) (0.0109)

∆ Current Account -0.000419 -0.000755 -0.0000254 -0.000196 0.000402 -0.000480
(0.000607) (0.00110) (0.000507) (0.000544) (0.000688) (0.000677)

Constant 14.48*** 17.63*** 2.438 8.880** -5.892 17.51***
(4.302) (5.161) (2.972) (4.197) (3.864) (4.874)

Observations 108 108 108 108 108 108
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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(7) (8) (9) (10) (11) (12)
S SE SW W WM YH

Unemployment -0.0795 -0.627** -0.908*** -1.137*** -0.937*** -1.212***
(0.202) (0.257) (0.315) (0.383) (0.283) (0.341)

10YBY 0.158 -0.0504 -0.321 1.004*** 0.365 0.480
(0.240) (0.256) (0.289) (0.348) (0.255) (0.299)

Official Bank Rate 0.0435 -0.131 -0.301* -0.770*** -0.572*** -0.364**
(0.139) (0.155) (0.161) (0.201) (0.159) (0.173)

Disposable Income 0.0000534* -0.0000434** -0.000123*** -0.0000753 -0.0000854** -0.0000757*
(0.0000292) (0.0000186) (0.0000405) (0.0000721) (0.0000411) (0.0000424)

∆ FTSE100 -0.00295 -0.0586** -0.119*** -0.0539* -0.0293 -0.0564*
(0.0271) (0.0297) (0.0360) (0.0325) (0.0312) (0.0316)

Gold Price -0.000389 0.00325* 0.00275 0.00249 0.000801 0.00376**
(0.00137) (0.00171) (0.00194) (0.00197) (0.00162) (0.00183)

∆ Oil Price 0.00773 -0.00400 -0.00615 0.0196* -0.0117 0.00909
(0.00949) (0.00978) (0.0117) (0.0109) (0.0104) (0.00991)

∆ Current Account 0.000114 -0.000363 0.0000831 -0.000164 -0.000530 -0.000103
(0.000384) (0.000558) (0.000397) (0.000680) (0.000581) (0.000570)

Constant -4.124 8.931** 16.00*** 7.063* 12.47*** 9.861**
(2.860) (3.502) (4.628) (4.245) (4.395) (4.215)

Observations 108 108 108 108 108 108
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Table A.7: Marginal Effects from Correlated Random Effects Probit Estimation with Mundlak-Chamberlain Correction using
GSADF Outcomes

EA EM GL N NI NW
Variables dy/dx dy/dx dy/dx dy/dx dy/dx dy/dx
Unemployment -0.236*** -0.306*** -0.106* -0.245*** 0.0238 -0.260***

(0.0679) (0.0696) (0.0592) (0.0739) (0.0587) (0.0662)
10YBY 0.00505 0.0834 0.110 0.0717 0.0310 -0.0219

(0.0638) (0.0626) (0.0718) (0.0735) (0.0611) (0.0624)
Official Bank Rate -0.0833** -0.121*** -0.0866** -0.0751* -0.00726 -0.0577

(0.0370) (0.0348) (0.0353) (0.0416) (0.0335) (0.0366)
Disposable Income -5.29e-05*** -3.51e-05*** -1.98e-06 -3.09e-05 8.10e-05*** -2.43e-05***

(1.83e-05) (1.02e-05) (4.03e-06) (1.92e-05) (2.82e-05) (7.18e-06)
∆ FTSE100 -0.0248*** -0.0220*** -0.00821 -0.0103 0.0103* -0.0177***

(0.00720) (0.00691) (0.00775) (0.00770) (0.00625) (0.00683)
Gold Price 0.000596 0.00107** -0.000166 0.000605 -0.00191*** 0.000721*

(0.000463) (0.000469) (0.000530) (0.000474) (0.000532) (0.000413)
∆ Oil Price 0.000891 0.00347 -0.00317 0.00338 -0.00128 0.00546***

(0.00242) (0.00216) (0.00268) (0.00255) (0.00238) (0.00209)
∆ Current Account -9.34e-05 -0.000149 -6.98e-06 -5.19e-05 8.44e-05 -0.000100

(0.000134) (0.000217) (0.000139) (0.000144) (0.000144) (0.000141)
Observations 108 108 108 108 108 108

S SE SW W WM YH
Variables dy/dx dy/dx dy/dx dy/dx dy/dx dy/dx
Unemployment -0.0261 -0.160*** -0.188*** -0.287*** -0.252*** -0.306***

(0.0663) (0.0615) (0.0595) (0.0826) (0.0640) (0.0712)
10YBY 0.0518 -0.0129 -0.0665 0.254*** 0.0981 0.121*

(0.0786) (0.0654) (0.0587) (0.0775) (0.0665) (0.0727)
Official Bank Rate 0.0143 -0.0335 -0.0624* -0.195*** -0.154*** -0.0920**

(0.0454) (0.0393) (0.0321) (0.0388) (0.0344) (0.0410)
Disposable Income 1.75e-05* -1.11e-05** -2.55e-05*** -1.90e-05 -2.30e-05** -1.91e-05*

(9.14e-06) (4.46e-06) (7.55e-06) (1.78e-05) (1.04e-05) (1.04e-05)
∆ FTSE100 -0.000969 -0.0150** -0.0246*** -0.0136* -0.00787 -0.0143*

(0.00892) (0.00718) (0.00639) (0.00783) (0.00830) (0.00766)
Gold Price -0.000128 0.000830** 0.000570 0.000628 0.000215 0.000950**

(0.000451) (0.000422) (0.000396) (0.000482) (0.000435) (0.000441)
∆ Oil Price 0.00254 -0.00102 -0.00127 0.00495* -0.00314 0.00230

(0.00309) (0.00250) (0.00244) (0.00263) (0.00276) (0.00246)
∆ Current Account 3.75e-05 -9.27e-05 1.72e-05 -4.14e-05 -0.000142 -2.60e-05

(0.000126) (0.000142) (8.23e-05) (0.000172) (0.000154) (0.000144)
Observations 108 108 108 108 108 108

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table A.8: Regional Probit Estimation on GSADF outcomes with Respect to House Price to Earnings
(1) (2) (3) (4) (5) (6)
EA EM GL N NW S

Unemployment -0.113 -0.437*** -0.388** -0.534*** -0.492*** 0.0159
(0.149) (0.163) (0.187) (0.175) (0.166) (0.140)

10YBY -0.209 0.146 0.914*** 0.192 0.0937 0.329
(0.267) (0.288) (0.346) (0.308) (0.282) (0.276)

Official Bank Rate 0.124 -0.126 -0.328** -0.147 -0.0295 0.00250
(0.143) (0.144) (0.164) (0.150) (0.148) (0.142)

Disposable Income -0.0000288 - -0.0000149 0.0000184** -0.0000438 -0.0000343 0.0000591**
(0.0000441) (0.0000271) (0.00000869) (0.0000476) (0.0000651) (0.0000235)

∆ FTSE100 -0.0438 -0.0713** -0.0229 -0.0432 -0.0433 -0.0110
(0.0309) (0.0325) (0.0326) (0.0305) (0.0302) (0.0315)

∆ Gold Price -0.00382 0.00635 -0.0176 0.0511** 0.0399 -0.0146
(0.0234) (0.0238) (0.0241) (0.0245) (0.0246) (0.0223)

∆ Oil Price -0.00118 -0.00533 -0.00651 0.0293*** 0.0193* -0.000222
(0.0101) (0.0106) (0.0106) (0.0109) (0.0103) (0.0107)

∆ Current Account -0.000769 -0.000480 0.000165 -0.000125 -0.000241 -0.000639
(0.00128) (0.000906) (0.000699) (0.000538) (0.000585) (0.000952)

Constant 1.216 2.770 -4.248** 4.042 2.886 -7.370**
(2.236) (2.446) (2.062) (2.731) (2.105) (3.062)

Observations 107 107 107 107 107 107
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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(7) (8) (9) (10) (11)
SE SW W WM YH

Unemployment -0.172 -0.196 -0.705*** -0.543*** -0.578***
(0.172) (0.221) (0.195) (0.161) (0.182)

10YBY -0.213 -0.994** 0.714** 0.742*** 0.573*
(0.286) (0.396) (0.356) (0.286) (0.316)

Official Bank Rate 0.130 0.199 -0.476*** -0.378*** -0.238
(0.162) (0.205) (0.168) (0.141) (0.148)

Disposable Income -0.0000193 -0.0000683*** -0.00000450 0.0000452 0.0000154
(0.0000213) (0.0000200) (0.0000224) (0.0000446) (0.0000267)

∆ FTSE100 -0.00517 -0.0992** -0.0175 -0.0285 -0.0520
(0.0350) (0.0453) (0.0299) (0.0306) (0.0321)

∆ Gold Price 0.00801 -0.0508 -0.0121 -0.0196 0.0148
(0.0253) (0.0424) (0.0246) (0.0229) (0.0243)

∆ Oil Price -0.0103 0.0277* 0.00176 -0.0104 -0.00787
(0.0116) (0.0151) (0.0105) (0.00987) (0.0104)

∆ Current Account -0.000633 -0.00187 0.000181 -0.00171 -0.000663
(0.00113) (0.00217) (0.000525) (0.00162) (0.00119)

Constant 1.756 13.36*** 2.576 -0.722 0.103
(2.311) (3.741) (2.627) (2.656) (2.876)

Observations 107 107 107 107 107
Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Table A.9: Marginal Effects from Regional Probit Estimation on GSADF outcomes with to House Price to Earnings
(1) (2) (3) (4) (5) (6)

EA EM GL N NW S
Variables dy/dx dy/dx dy/dx dy/dx dy/dx dy/dx
Unemployment -0.0268 -0.104*** -0.0851** -0.130*** -0.123*** 0.00384

(0.0353) (0.0356) (0.0393) (0.0374) (0.0369) (0.0338)
10YBY -0.0495 0.0348 0.201*** 0.0467 0.0234 0.0797

(0.0630) (0.0684) (0.0713) (0.0747) (0.0704) (0.0663)
Official Bank Rate 0.0293 -0.0300 -0.0719** -0.0358 -0.00736 0.000606

(0.0338) (0.0342) (0.0346) (0.0362) (0.0369) (0.0345)
Disposable Income -6.83e-06 -3.53e-06 4.03e-06** -1.07e-05 -8.55e-06 1.43e-05**

(1.04e-05) (6.41e-06) (1.85e-06) (1.15e-05) (1.62e-05) (5.28e-06)
∆FTSE100 -0.0104 -0.0169** -0.00502 -0.0105 -0.0108 -0.00265

(0.00716) (0.00719) (0.00711) (0.00721) (0.00734) (0.00762)
∆Gold Price -0.000906 0.00151 -0.00387 0.0124** 0.00995* -0.00355

(0.00556) (0.00565) (0.00527) (0.00564) (0.00593) (0.00535)
∆Oil Price -0.000279 -0.00127 -0.00143 0.00713*** 0.00481** -5.38e-05

(0.00241) (0.00252) (0.00231) (0.00238) (0.00241) (0.00259)
∆Current Account -0.000182 -0.000114 3.62e-05 -3.05e-05 -6.02e-05 -0.000155

(0.000301) (0.000215) (0.000153) (0.000131) (0.000145) (0.000229)
Observations 107 107 107 107 107 107

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

(7) (8) (9) (10) (11)
SE SW W WM YH

Variables dy/dx dy/dx dy/dx dy/dx dy/dx
Unemployment -0.0331 -0.0260 -0.164*** -0.146*** -0.141***

(0.0329) (0.0293) (0.0382) (0.0367) (0.0389)
10YBY -0.0408 -0.132*** 0.166** 0.200*** 0.140*

(0.0547) (0.0466) (0.0795) (0.0708) (0.0749)
Official Bank Rate 0.0250 0.0265 -0.111*** -0.102*** -0.0581*

(0.0310) (0.0267) (0.0356) (0.0346) (0.0353)
Disposable Income -3.70e-06 -9.08e-06*** -1.05e-06 1.22e-05 3.76e-06

(4.09e-06) (2.22e-06) (5.20e-06) (1.19e-05) (6.50e-06)
∆FTSE100 -0.000991 -0.0132** -0.00406 -0.00766 -0.0127*

(0.00670) (0.00538) (0.00691) (0.00814) (0.00751)
∆Gold Price 0.00154 -0.00676 -0.00280 -0.00527 0.00361

(0.00485) (0.00553) (0.00570) (0.00610) (0.00590)
∆Oil Price -0.00198 0.00368* 0.000411 -0.00279 -0.00192

(0.00221) (0.00192) (0.00245) (0.00262) (0.00253)
∆Current Account -0.000121 -0.000248 4.21e-05 -0.000462 -0.000162

(0.000216) (0.000285) (0.000122) (0.000429) (0.000290)
Observations 107 107 107 107 107

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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B.1 Sparsity of Alternative Adjacency Matrices
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Figure B.1: Sparsity of Alternative A Priori Weights Matrices
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(a) Negative connections under CSA approach with
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(b) Negative connections under PCA approach with
no MT at 1% significance level
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Figure B.2: Sparsity of Correlation Based Weights Matrices
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B.2 Alternative Specifications of Adjacency Matrices

Table B.1: Quasi Maximum Likelihood estimates of spatio-temporal model 3.11 applied to de-factored changes in
house prices derived from equation 3.4.

W7.5m λ1 ψ0 ψ1 σζ
Median 0.0439 0.0171 0.0267 1.2687
Mean Group Estimates 0.0471*** -0.0292 0.0420*** 1.3471

(0.0049) (0.0216) (0.0134) (0.0272)
% significant (at 5% level) 21.8% 19.3% 11.4% -
Number of non-zero coef. 325 166 166 325
W10m λ1 ψ0 ψ1 σζ
Median 0.0456 0.0073 0.0203 1.2697
Mean Group Estimates 0.0462*** -0.0432* 0.0530*** 1.3454

(0.0049) (0.0231) (0.0190) (0.0272)
% significant (at 5% level) 21.5% 23.9% 12.4% -
Number of non-zero coef. 325 218 218 325

W5NN λ1 ψ0 ψ1 σζ
Median 0.0456 0.0063 0.0650 1.2658
Mean Group Estimates 0.0472*** -0.0165 0.0478*** 1.3409

(0.0049) (0.0134) (0.0096) (0.0272)
% significant (at 5% level) 22.5% 14.5% 12.3% -
Number of non-zero coef. 325 325 325 325
Maximum 0.3319 0.9708 0.7352 5.8542
Minimum -0.2112 -0.9950 -0.3854 0.6010
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B.3 Regional Mean Group Estimates from Alternative Weights Speci-
fications

Table B.2: Quasi Maximum Likelihood estimation of spatio-temporal model using Queen contiguity weights matrix. Results
are given for de-factored house price changes from equation 3.4 are provided for each region

λ1 ψ0 ψ1 σζ

North East
Median 0.0720 -0.1656 0.0558 1.2981
Mean Group Estimates 0.0834*** -0.1549*** 0.0706 1.3728

(0.0262) (0.0553) (0.0605) (0.0863)
% significant (at 5% level) 41.7% 8.3% 25.0% -
Maximum 0.2241 0.2428 0.5346 2.0504
Minimum -0.0432 -0.4117 -0.2268 0.8753
London
Median 0.1086 0.0726 0.0716 1.0434
Mean Group Estimates 0.1102*** 0.0348 0.0353 1.2874

(0.0165) (0.0442) (0.0428) (0.1607)
% significant (at 5% level) 42.4% 12.1% 21.2% -
Maximum 0.3263 0.4959 0.5410 5.8213
Minimum -0.0829 -0.9950 -0.9458 0.6289
South West
Median 0.0218 -0.0176 0.0706 1.2812
Mean Group Estimates 0.0316*** -0.0059 0.0444 1.3997

(0.0122) (0.0331) (0.0318) (0.0815)
% significant (at 5% level) 13.9% 11.1% 22.2% -
Maximum 0.1720 0.5879 0.4364 2.8370
Minimum -0.1081 -0.3443 -0.4487 0.6992
East Midlands
Median 0.0397 -0.0219 0.0845 1.5180
Mean Group Estimates 0.0300* -0.0166 0.0573* 1.5174

(0.0159) (0.0347) (0.0323) (0.0605)
% significant (at 5% level) 25.0% 7.5% 15.0% -
Maximum 0.2379 0.3395 0.5263 2.6096
Minimum -0.1756 -0.4358 -0.3402 0.7115
North West
Median 0.0700 0.0176 0.0134 1.2703
Mean Group Estimates 0.0586*** 0.0203 0.0231 1.4846

(0.0126) (0.0380) (0.0318) (0.0988)
% significant (at 5% level) 20.5% 20.5% 7.7% -
Maximum 0.1974 0.4953 0.6384 3.1397
Minimum -0.1092 -0.4860 -0.4235 0.7045
West Midlands
Median 0.0368 -0.0497 0.0412 1.2341
Mean Group Estimates 0.0463*** -0.0496 0.0312 1.2243

(0.0157) (0.0356) (0.0410) (0.0592)
% significant (at 5% level) 23.3% 13.3% 23.3% -
Maximum 0.2122 0.4179 0.5625 1.9303
Minimum -0.0997 -0.4022 -0.5089 0.6026
South East
Median 0.0229 0.0520 0.0682 1.2642
Mean Group Estimates 0.0179* -0.0004 0.0417* 1.2546

(0.0101) (0.0277) (0.0226) (0.0295)
% significant (at 5% level) 13.4% 19.4% 11.9% -
Maximum 0.2092 0.4486 0.4523 1.7045
Minimum -0.2203 -0.7430 -0.3542 0.7630
East
Median 0.0442 -0.0077 0.0443 1.2454
Mean Group Estimates 0.0493*** 0.0092 0.0427* 1.2713

(0.0117) (0.0365) (0.0235) (0.0451)
% significant (at 5% level) 17.0% 17.0% 6.4% -
Maximum 0.2326 0.5486 0.4869 2.0809
Minimum -0.1861 -0.5807 -0.2394 0.7773
Yorkshire and The Humber
Median 0.0812 -0.0092 0.0709 1.0392
Mean Group Estimates 0.0535*** -0.0473 0.0735** 1.2701

(0.0179) (0.0493) (0.0317) (0.1184)
% significant (at 5% level) 23.8% 19.0% 4.8% -
Maximum 0.1556 0.2612 0.4138 2.6088
Minimum -0.0942 -0.6761 -0.2784 0.6858

Mean group estimates are calculated as simple averages from district level parameter estimates. E(ψi0) = ψ0 where ψ̂0,MG = N
−1
r

∑Nr

i=1
ψ̂i0 for

i = 1, . . . , N, r = 1, . . . , R where Nr is the total number of districts with connections in region r and ψ̂i0 denotes QML estimation of ψi0. As detailed

in Pesaran and Smith (1995), v̂ar(ψ̂0,MG) = 1
Nr(Nr−1)

∑Nr

i=1
(ψ̂i0 − ψ̂0,MG)2 denotes the non-parametric estimator of the variance. Standard

errors of MGE are reported below each regional estimate. All districts have one or more neighbours so no parameters coefficients are restricted to zero
in the model.
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Table B.3: Quasi Maximum Likelihood estimation of spatio-temporal model from equation 3.11 using 5 nearest neighbours weights matrix.
Results are given for de-factored house price changes from equation 3.4 are provided for each region

λ1 ψ0 ψ1 σζ

North East
Median 0.0575 -0.1920 -0.0048 1.3069
Mean Group Estimates 0.0795*** -0.2146** 0.0713 1.3676

(0.0251) (0.0887) (0.0713) (0.0841)
% significant (at 5% level) 41.7% 33.3% 16.7% -
Maximum 0.2252 0.4123 0.6718 2.0071
Minimum -0.0377 -0.7023 -0.3352 0.8674
London
Median 0.1151 0.0418 0.0693 1.0459
Mean Group Estimates 0.1123*** 0.0038 0.0470* 1.2904

(0.0165) (0.0422) (0.0248) (0.1616)
% significant (at 5% level) 45.5% 15.2% 15.2% -
Maximum 0.3319 0.4999 0.2803 5.8542
Minimum -0.0861 -0.9950 -0.2695 0.6289
South West
Median 0.0245 -0.0230 0.0744 1.2841
Mean Group Estimates 0.0298** -0.0438 0.0590* 1.4025

(0.0120) (0.0345) (0.0305) (0.0817)
% significant (at 5% level) 13.9% 8.3% 11.1% -
Maximum 0.1732 0.3710 0.6497 2.8747
Minimum -0.1108 -0.4353 -0.2448 0.6995
East Midlands
Median 0.0381 0.0207 0.1022 1.5293
Mean Group Estimates 0.0286* 0.0099 0.0617** 1.5179

(0.0162) (0.0355) (0.0248) (0.0606)
% significant (at 5% level) 27.5% 12.5% 10.0% -
Maximum 0.2444 0.5659 0.3413 2.6047
Minimum -0.1711 -0.3996 -0.2937 0.7092
North West
Median 0.0737 0.0044 0.0454 1.2634
Mean Group Estimates 0.0603*** 0.0079 0.0114 1.4831

(0.0125) (0.0408) (0.0336) (0.0985)
% significant (at 5% level) 20.5% 17.9% 12.8% -
Maximum 0.1831 0.5869 0.7352 3.1106
Minimum -0.1043 -0.7719 -0.3854 0.7072
West Midlands
Median 0.0405 -0.0555 0.0742 1.2397
Mean Group Estimates 0.0476*** -0.0415 0.0433 1.2279

(0.0154) (0.0377) (0.0294) (0.0596)
% significant (at 5% level) 23.3% 13.3% 13.3% -
Maximum 0.2114 0.3340 0.4484 1.9614
Minimum -0.1133 -0.5033 -0.2987 0.6010
South East
Median 0.0133 0.0592 0.0819 1.2628
Mean Group Estimates 0.0192* 0.0037 0.0538*** 1.2552

(0.0101) (0.0266) (0.0190) (0.0293)
% significant (at 5% level) 13.4% 13.4% 9.0% -
Maximum 0.2014 0.5374 0.3504 1.6898
Minimum -0.2112 -0.5831 -0.3166 0.7650
East
Median 0.0449 0.0063 0.0035 1.2441
Mean Group Estimates 0.0497*** -0.0044 0.0324 1.2791

(0.0115) (0.0438) (0.0268) (0.0459)
% significant (at 5% level) 17.0% 14.9% 14.9% -
Maximum 0.2384 0.9708 0.5879 2.0659
Minimum -0.1935 -0.8233 -0.2770 0.7702
Yorkshire and The Humber
Median 0.0708 -0.0200 0.1078 1.0532
Mean Group Estimates 0.0514*** -0.0402 0.0795** 1.2710

(0.0178) (0.0454) (0.0370) (0.1184)
% significant (at 5% level) 23.8% 14.3% 14.3% -
Maximum 0.1557 0.2859 0.3238 2.6286
Minimum -0.1086 -0.5466 -0.3484 0.6859

Mean group estimates are calculated as simple averages from district level parameter estimates. E(ψi0) = ψ0 where ψ̂0,MG = N
−1
r

∑Nr

i=1
ψ̂i0 for i = 1, . . . , N,

r = 1, . . . , R where Nr is the total number of districts with connections in region r and ψ̂i0 denotes QML estimation of ψi0. As detailed in Pesaran and Smith (1995),

v̂ar(ψ̂0,MG) = 1
Nr(Nr−1)

∑Nr

i=1
(ψ̂i0 − ψ̂0,MG)2 denotes the non-parametric estimator of the variance. Standard errors of MGE are reported below each regional

estimate. All districts have one or more neighbours so no parameters coefficients are restricted to zero in the model.
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Table B.4: Regional Results from HSAR model with PCA de-factored pair-wise correlation based
weights matrix

λ1 ψ+
0 ψ−

0 ψ+
1 ψ−

1 σζ

North East
Median 0.0718 0.2617 -0.5772 0.0022 0.0631 1.0453
Mean Group Estimates 0.0664*** 0.2374 -0.5537*** -0.0076 0.0625 1.1536

(0.0209) (0.1613) (0.0708) (0.0399) (0.0602) (0.0876)
% significant (at 5% level) 25.0% 91.7% 91.7% 8.3% 0.0% -
Maximum 0.1637 0.9950 -0.1808 0.2256 0.3592 1.9118
Minimum -0.0752 -0.9950 -0.9950 -0.2707 -0.3611 0.7364
London
Median 0.0939 0.3620 -0.4039 -0.0136 0.0593 0.8469
Mean Group Estimates 0.0918*** 0.3412*** -0.4174*** 0.0335 0.0358 1.1148

(0.0151) (0.0676) (0.0625) (0.0537) (0.0358) (0.1599)
% significant (at 5% level) 33.3% 78.8% 90.9% 9.1% 3.0% -
Maximum 0.2848 0.9948 0.9950 1.4266 0.7743 5.7168
Minimum -0.0766 -0.9950 -0.9950 -0.3184 -0.3763 0.4786
South West
Median 0.0105 0.3476 -0.5266 0.0256 0.0137 1.0608
Mean Group Estimates 0.0192 0.3687*** -0.5162*** 0.0440 0.0029 1.1847

(0.0166) (0.0542) (0.0586) (0.0352) (0.0336) (0.0803)
% significant (at 5% level) 27.8% 75.0% 83.3% 11.1% 11.1% -
Maximum 0.1936 0.9928 0.9950 0.7383 0.4737 2.8245
Minimum -0.1680 -0.9950 -0.9950 -0.5549 -0.4811 0.5726
East Midlands
Median 0.0092 0.5003 -0.5998 0.0115 0.0118 1.2644
Mean Group Estimates 0.0100 0.4840*** -0.5541*** 0.0225 0.0137 1.2633

(0.0152) (0.0559) (0.0473) (0.0345) (0.0260) (0.0606)
% significant (at 5% level) 25.0% 75.0% 80.0% 15.0% 10.0% -
Maximum 0.1804 0.9950 0.4347 0.7434 0.5402 2.6216
Minimum -0.1947 -0.9946 -0.9950 -0.4620 -0.2100 0.6128
North West
Median 0.0436 0.4604 -0.3684 -0.0065 0.0296 1.0428
Mean Group Estimates 0.0454*** 0.4426*** -0.4585*** 0.0113 0.0310 1.2699

(0.0125) (0.0508) (0.0432) (0.0324) (0.0370) (0.0993)
% significant (at 5% level) 15.4% 82.1% 84.6% 7.7% 10.3% -
Maximum 0.2125 0.9712 0.2789 0.7991 0.6036 3.2128
Minimum -0.1658 -0.5237 -0.9950 -0.4706 -0.7016 0.5471
West Midlands
Median 0.0111 0.4672 -0.5045 0.0237 0.0290 1.0256
Mean Group Estimates 0.0290* 0.4327*** -0.5279*** 0.0070 -0.0257 1.0175

(0.0153) (0.0545) (0.0329) (0.0315) (0.0444) (0.0567)
% significant (at 5% level) 13.3% 86.7% 90.0% 10.0% 16.7% -
Maximum 0.1988 0.9223 -0.2284 0.3116 0.4555 1.7993
Minimum -0.0977 -0.3180 -0.9950 -0.3449 -0.5242 0.4137
South East
Median 0.0173 0.4116 -0.5757 -0.0127 0.0054 1.0584
Mean Group Estimates 0.0204** 0.4447*** -0.5792*** -0.0168 0.0360 1.0209

(0.0094) (0.0262) (0.0250) (0.0201) (0.0235) (0.0266)
% significant (at 5% level) 13.4% 88.1% 97.0% 13.4% 13.4% -
Maximum 0.1933 0.9036 -0.0443 0.4368 0.5997 1.4611
Minimum -0.1903 -0.0557 -0.9950 -0.4327 -0.2863 0.6267
East
Median 0.0467 0.4549 -0.5517 -0.0299 0.0302 0.9921
Mean Group Estimates 0.0413*** 0.4889*** -0.5689*** -0.0086 0.0390 1.0388

(0.0103) (0.0366) (0.0414) (0.0341) (0.0317) (0.0415)
% significant (at 5% level) 12.8% 89.4% 91.3% 10.6% 19.6% -
Maximum 0.1772 0.9949 0.1362 0.7369 0.4916 1.9892
Minimum -0.1228 -0.1969 -0.9950 -0.5110 -0.3671 0.6075
Yorkshire and The Humber
Median 0.0732 0.4158 -0.4980 0.0130 0.0333 0.8413
Mean Group Estimates 0.0554*** 0.4120*** -0.4644*** -0.0022 0.1037* 1.0647

(0.0161) (0.0736) (0.0864) (0.0292) (0.0531) (0.1169)
% significant (at 5% level) 14.3% 85.7% 90.5% 4.8% 14.3% -
Maximum 0.1487 0.8420 0.9950 0.2869 0.8641 2.7384
Minimum -0.1139 -0.7791 -0.9950 -0.2999 -0.1816 0.5708

Mean group estimates are calculated as simple averages from district level parameter estimates. E(ψi0) = ψ0
where ψ̂0,MG = N

−1
r

∑Nr

i=1
ψ̂i0 for i = 1, . . . , N, r = 1, . . . , R where Nr is the total number of districts

with connections in region r and ψ̂i0 denotes QML estimation of ψi0. As detailed in Pesaran and Smith (1995),

v̂ar(ψ̂0,MG) = 1
Nr(Nr−1)

∑Nr

i=1
(ψ̂i0 − ψ̂0,MG)2 denotes the non-parametric estimator of the variance. Standard

errors of MGE are reported below each regional estimate. All districts have one or more neighbours so no parameters
coefficients are restricted to zero in the model.
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