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Abstract   

Sunlight-driven water disinfection system could help provide clean water to some of 

the world’s poorest regions where contaminated surface water is a major public health 

problem and bright solar irradiation is available for free. In this work, photosensitiser - 

5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin tetra p-toluene sulfonate 

(TMPyP) was chosen and immobilised onto chitosan nanofiber mats and chitosan 

membranes for photodynamic disinfection of water since preliminary studies with 

TMPyP in solution showed it caused a high rate of photodynamic inactivation (PDI) of 

model viral organisms (bacteriophages MS2 and Qβ, murine norovirus and bovine 

enterovirus 2). Native gel electrophoresis, SDS-PAGE and western blotting, TEM and DLS 

were used to analyse pre- and post-PDI samples of the model viruses. The rate of PDI in 

model viruses was in the order MS2 > phage Qβ > murine norovirus > bovine enterovirus 

2. Our data showed that PDI caused aggregation of MS2 particles and crosslinking of 

MS2 coat protein. However, the aggregation and crosslinking did not correlate to the 

rate of PDI we observed in MS2. Using sequence specific antibodies raised against MS2 

A-protein (host attachment protein), our results suggest that the rate of PDI is relative 

to loss of antigenicity of sites on the A-protein. The differences in the rate of PDI were 

compared to amino acid compositions and surface accessibility of host attachment 

proteins/sites of the model viruses. Possible modes of action are discussed as a means 

to gaining insight to the targets and mechanisms of PDI of viruses. Chitosan electrospun 

nanofibers and chitosan membranes were modified by pyromellitic dianhydride in 

order to introduce carboxyl groups and facilitate adsorption of the cationic TMPyP. The 

physico-chemical properties of these modified nanofibers and membranes were 

investigated by microscopy, absorption spectroscopy, Fourier-transform infrared 

spectroscopy and Midland surface blotting approaches.The chitosan 
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nanofiber/membrane-TMPyP composite showed photodynamic inactivation of MS2 

and E. coli BL21.  
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P/S penicillin – streptomycin 
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Q Net charge 

RB Rose Bengal  

RO Reverse osmosis  

ROS                      Reactive oxygen species 

TCID50 50 % tissue culture infective dose 

THMs                  Trihalomenthanes 
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toluenesulfonate)    

TSA                       Tryptic soy agar 
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Chapter One: Introduction  



Chapter 1: Introduction 

1.1 Overview 

Conventional methods of wastewater disinfection are costly and complex because of 

intensive use of chemical, manpower and energy, as well as the centralised nature of 

their infrastructures and operations. As such, they are not affordable in most instances 

in rural areas of developing countries. Also, the rural areas of developing countries 

especially in the Sub-Saharan Africa and South-East Asia lack energy infrastructures that 

will power centralised wastewater disinfection systems. The consequence is the high 

number of  deaths which are recorded daily due to unsafe water especially in children 

in these regions of the world (Loeb et al., 2016, UNICEF, 2016, WHO, 2015). New 

methods of water disinfection that are cheap, simple, efficient and environmentally 

friendly are needed to inactivate and or remove dangerous waterborne pathogens 

including those resistant to chlorination such as enteric viruses, Cryptosporidium 

parvum, cysts of Entamoeba hystolytica and Giardia lamblia (Shannon et al., 2008). 

Photosensitisers, when irradiated with visible light and in the presence of oxygen can 

generate reactive oxygen species (ROS) in aqueous solution which may efficiently 

inactivate waterborne pathogens including those resistant to chlorine. The ability and 

effectiveness of ROS to oxidise biomolecules has been studied and exploited with some 

success in the treatment of cancer, dental and dermatological diseases, as well as for 

synthetic chemistry and environmental remediation (DeRosa and Crutchley, 2002, 

Costa et al., 2013, Dolmans et al., 2003, Dwivedi and Pande, 2012, Lucena et al., 2015, 

Usuda et al., 2006). However, the environmental applications are still in their infancy.  

For water disinfection, there is a consensus for the need to attach the photosensitiser 

onto a solid support such as nanofibers, glass fibres, chitosan polymeric membrane and 

so on. So that after phototreatment of water the supported photosensitiser is not 
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released into the water (Bonnett et al., 2006). This will allow re-utilisation of the 

photosensitiser functionalised solid support, thereby reducing the overall cost and 

increasing the advantage of using an environmental-friendly technology. Also, the 

prospect of using sunlight as the source of visible light for a photosensitiser 

functionalised solid support disinfection system is attractive as it could be used to clean 

water even in those places where there is no man-made energy infrastructure.   

In this study, photosensitiser - 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin 

tetra p-toluene sulfonate (TMPyP) was chosen for immobilisation onto chitosan 

nanofiber/ polymeric membrane for light driven water disinfection. This was because 

our preliminary investigation with TMPyP in solution showed it causes a rapid and high 

rate of photodynamic inactivation (PDI) of our model viral organisms (bacteriophages 

MS2 and Qβ, murine Norovirus and bovine enterovirus). Chitosan nanofiber and 

polymeric membranes were used as solid supports for attaching TMPyP because of 

chitosan’s properties such as easy fabrication, presence of numerous reactive groups, 

rigid D-glucosamine structure, and lack of toxic reactions.  Chitosan is also 

biodegradable, cheap and readily available. In the Introduction chapter (Chapter 1), 

brief overviews of waterborne pathogens/diseases, conventional water disinfection, 

photodynamic effect, photodynamic inactivation and photosensitised reaction, 

biological targets of singlet oxygen, photodynamic inactivation of viruses, solid supports 

and coupling chemistry for attaching photosensitisers, types and characteristics of 

photosensitisers, TMPyP, bacteriophage MS2, bacteriophage Qβ, bovine enterovirus 

and murine norovirus and project aims are presented. Then general methods are 

presented in Chapter 2 followed by research data presented in the subsequent 

chapters. An overall General Discussion is presented in Chapter 6 at the end with focus 
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on future work. Overall, the information and primary findings presented here will aid in 

the development of simple sunlight driven water disinfection devices that could be used 

with the UK to save energy or in developing countries as a zero-man-made energy input 

system to produce clean and safe drinking water. Additionally, it could lead the way to 

understanding from a biological perspective the targets and mechanisms of 

photodynamic inactivation in viruses; whilst waterborne pathogens can be eukaryotic, 

bacterial and viral, the work in this thesis concentrated on viral inactivation.    

1.2 water availability and public health importance 

Water is one of the most basic essential needs of man and other life forms. It is the 

medium of support for life processes. The average recommended intake of water for 

adult human being is about 3 litres per day, via food and drink consumption (WHO, 

2012). Water covers about two-third (70.9%) of earth surface (Figure 1.1). About 96.5% 

of earth’s water is found in oceans (salt water) and only 2.5% of the earth’s water that 

is fresh water (Figure 1.1). However, the amount of fresh water on earth is limited, only 

very small portion of it (about 1.2% of all fresh water) is available for immediate and 

essential needs of man (Figure 1.1). The remaining fresh water (about 98.8%) is held in 

glacier and ground water (Figure 1.1) (Gleick and Howe, 1995).  
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Figure 1. 1: Earth’s water availability and distribution. Only 1.2% of all fresh water, 
which is also 2.5% of earth’s water, is available for immediate and essential needs of 
man (Gleick and Howe, 1995). 

 

The quality of the available fresh water is under constant pressure due to human 

activities and industrialisation which have produced dangerous pathogens and toxic 

pollutants into our environment including water (WHO, 2015). Open defecation, 

indiscriminate discharge of untreated sewage and runoff of animal farm wastes in to 

surface waters (rivers, ponds, streams, lakes), drainage of pit latrines into wells that are 

in close proximity, etc. are some of the ways sources of water are continuously 

contaminated with waterborne pathogens in Sub-Saharan Africa and South East Asia 

(WHO, 2016, UNICEF, 2016). However, despite continuous pollution of water in these 

regions of the world, in most cases, they lack or have least developed and efficient 

systems of wastewater treatment and disinfection especially in the rural areas. The lack 

of efficient water clean-up systems to produce safe drinking water is attributable to the 

cost of conventional methods of wastewater treatment and disinfection and also, the 
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lack of energy infrastructures in these parts of the world (Loeb et al., 2016).  From a 

public health perspective, it is important to ensure the microbiological quality of 

drinking water through adequate and efficient treatment and disinfection of 

wastewater (WHO, 2016). This is to prevent transmission of waterborne pathogens that 

can cause diseases and deaths especially in children (UNICEF, 2016). Epidemics of 

historic diseases like cholera and many other waterborne diseases are still reoccurring 

in developing countries in the sub-Saharan Africa and South East Asia including IDPs and 

refugee camps, war torn areas and places afflicted with natural disasters such as 

flooding and earth quake (UNICEF, 2016, WHO, 2016). 

1.3 Waterborne diseases and the need for alternative water disinfection 

methods   

Lack or inadequate access to clean water is a serious global problem. It was estimated 

more than 700 million people still lack access to improved sources of drinking water 

and nearly half are in sub Saharan Africa (UNICEF, 2014, WHO, 2015). More than 660 

million people lack access to safe drinking water with 530 million of them living in rural 

areas especially in the sub-Saharan Africa and south East Asia (Loeb et al., 2016). About 

2.5 billion people - one third of the world population have little or no sanitation 

(UNICEF, 2014, WHO, 2015, WHO, 2011b). The consequence of lack or inadequate 

access to safe water is high mortality rate in the sub-Saharan Africa and south East Asia 

(Figure 1.2). 



 

 

Figure 1. 2 Global mortality rate attributed to unsafe water, sanitation and hygiene (WASH) services 2012. There is usually high mortality 
rate (≤70 deaths per 100,000 population) in the sub-Saharan Africa and south East Asia (WHO, 2015). 



Millions of people die annually from diseases (Table 1.1) transmitted through unsafe 

water and many more are made ill (Shannon et al., 2008). Gastroenteritis and 

diarrheal disease caused by waterborne pathogens (Table 1.1) have become a 

leading cause of malnutrition owing to poor digestion of the food eaten by people 

made ill by water borne pathogens (Shannon et al., 2008). 
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Table 1. 1: Common water borne diseases and their primary sources of transmission and infection 

Pathogen    Diseases  Primary sources  

 
Bacteria 

  

Salmonella typhi                              Typhoid fever                                               Human faeces 
Salmonella paratyphi                      Paratyphoid fever                                       Human faeces 

Other Salmonella                             Salmonellosis Human and animal faeces 

Shigella spp.                                      Bacillary dysentery                                     Human faeces 

Vibrio cholerae                                 Cholera Human faeces and zooplankton      

Enteropathogenic E. coli                Gastroenteritis   Human faeces 

Yersinia enterocolitica*                    Gastroenteritis Human and animal faeces 

Campylobacter jejuni                      Gastroenteritis Human and animal faeces 

Legionella pneumophila*                legionellosis Thermally enriched water                                                     

Leptospira spp.                               Leptospirosis Animal and human urine 

Various mycobacteria                   Pulmonary illness                                         Soil and water 

Opportunistic bacteria                  Variable    Natural waters 

Pseudomonas aeruginosa*            Necrotising enterocolitis                            Soil, water, human skin flora 

Atypical mycobacteria*                  Case of fish tank granuloma                      Soil, water 

Aeromonas hydrophila*                  Gastroenteritis Water 

Acinetobacteria* Urinary tract infection                               Soil 

 
 
Enteric viruses 

  

Poliovirus                                   Poliomyelitis Human faeces 

Coxsackie virus A                       Aseptic meningitis                                     Human faeces 

Coxsackie virus B                       Aseptic meningitis                                     Human faeces 

Echo viruses                                   Aseptic meningitis                                     Human faeces 
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List of common waterborne pathogens and diseases and their primary sources of transmission and infection. There are 4 major groups 
of water borne pathogens which are bacteria, enteric viruses, protozoa and helminths.  (*), Pathogens which can proliferate in water 
distribution systems. 

 
Table 1.1 continued 
 
Other enteroviruses                     

 
 
 
Encephalitis   

 
 
 
Human faeces 

Rotaviruses Gastroenteritis Human faeces 

Adenoviruses Upper respiratory and gastrointestinal 
illness                                                                                   

Human faeces 

Hepatitis A virus                            Infectious hepatitis                                   Human faeces 

Hepatitis E virus                           Infectious hepatitis                                                      
miscarriage and death 

Human faeces 

Norovirus Gastroenteritis Fomites and water 

 
Protozoa 

  

Acanthamoeba castellani*          Amoebic meningoencephalitis              Human faeces 

Balantidium coli                          Balantidosis (dysentery)                      Human and animal faeces 

Cryptosporidium homonis        Cryptosporidiosis Water, human and other   

Cryptosporidium parvum          Cryptosporidiosis (gastroenteritis)                                    Mammal   faeces               

Entamoeba histolytica               Amoebic dysentery                                 Human and animal faeces 

Giardia lamblia                           Giardiasis (gastroenteritis)                   Water and animal faeces 

Table 1.1 continued 
Naegleria fowleri*                        

 
Primary amoebic meningoencephalitis                                     

 
Warm water 

 
Helminths 

  

Ascaris lumbricoides                  Ascariosis                                                  Animal and human faeces 
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Unsafe water and inadequate sanitation is responsible for about 90% of diarrheal 

deaths worldwide (UNICEF, 2016, WHO, 2011b, WHO, 2016) and diarrhoea is the 

second leading cause of deaths in children under age of five (UNICEF, 2016, UNICEF, 

2012). About 1, 400 children die daily due to diarrhoea mostly caused by rotaviruses 

especially in sub-Saharan Africa and south-east Asia (Figure 1.3) (UNICEF, 2016).  

Waterborne pathogens such as Cryptosporidium parvum, cysts of Entamoeba 

hystolytica, Giardia lamblia and enteric viruses are resistant to chlorination which is 

the gold standard presently for water disinfection during wastewater treatment 

(Shannon et al., 2008). Generally, compared to faecal bacteria, viruses are more 

difficult to remove and inactivate during wastewater treatment. The small size and 

higher resistance of viruses to disinfectants has made it almost impossible to 

completely remove viruses from water by conventional treatment processes such as 

sedimentation and filtration (Silverman et al., 2013). There are several instances 

where infectious human viruses have been found in wastewater effluents treated by 

these conventional methods (Silverman et al., 2013). The resistance of these 

pathogens to chlorination allows them to transmit diseases   and cause outbreaks 

even in developed nations. The annual cases of waterborne diseases such as 

cryptosporidiosis in developed nations have been reported (WHO, 2009). In the UK, 

unreported rate of disease from a single pathogen group, Cryptosporidium spp., has 

been estimated at 60,000 cases per year, and tap water is the most common risk 

factor in recorded cases of cryptosporidiosis (Chalmers and Giles, 2010, Gormley et 

al., 2011, Hill et al., 2011). Viral gastroenteritis is one of the most common causes of 

morbidity and mortality globally with more impact in developing countries and on 

children. An estimated 2.5-3.2 million children aged <5 years old die annually (Lodder 
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et al., 2010). Rotavirus causes about 2 million hospitalisations and up to 600,000 

deaths annually in children under 5 years of age (Clark and McKendrick, 2004, 

Parashar et al., 2003). This mortality rate associated with rotavirus has been strongly 

linked to lack of, or  inadequate, access to safe water and poor hygiene especially in 

the developing countries (Parashar et al., 2003, Clark and McKendrick, 2004). 

Noroviruses which account for over 90% of the cases of acute viral gastroenteritis 

causes the disease in patients of all age groups, in both developed and developing 

countries (Haramoto et al., 2004, Lodder and Husman, 2005). It causes annually 

several hundreds of millions of cases and hospitalisations worldwide (Haramoto et 

al., 2004). 

However, fortunately, the regions of the world that cannot afford conventional water 

disinfection (especially sub-Saharan Africa and south-East Asia) have enough solar 

irradiation throughout the year (Figure 1.4) that could be harnessed and used for 

sunlight driven water disinfection (Figure 1.5) which would be a cheap, simple, 

efficient and environmentally friendly way to produce safe water for consumption.   
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Figure 1. 3: Estimated global distribution of 440,000 annual deaths in children caused by rotavirus diarrhoea. One red dot = 1,000 deaths. 
There is usually more deaths in the sub-Saharan Africa and south East Asia (Parashar et al., 2003). 
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Figure 1. 4: World map of horizontal irradiation by GeoModel Solar. Sub-Saharan Africa and south-East Asia have daily sunlight that 
could be harnessed for water disinfection. 
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Figure 1. 5: A scheme showing the potential for harnessing solar irradiation for water disinfection. Photosensitisers such as TMPyP are 
attached onto a solid support which can then be used for water disinfection. The TMPyP functionalised nanofiber in the presence of 
sunlight & the molecular oxygen generates singlet oxygen and other ROS that can inactivate/kill waterborne pathogens to make the 
water safe.
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1.4 Wastewater treatment and disinfection 

Measures to eliminate the risk of infectious diseases transmitted by water were used 

even before the discovery of their etiologic agents (Amin et al., 2013). These 

measures include boiling, filtration and storage of water in silver vessels. 

Contemporary knowledge shows that these measures can suppress pathogenic 

organisms in water, either partially or completely (Amin et al., 2013). However, they 

are most effective and can be applied only when dealing with smaller quantities of 

water.  

The rapid increase of population as well as industrialisation and urbanisation of 

different cities and towns in the early 19th century led to sharp increase in water 

demand. Water distribution systems were built to cater for these industrial, business, 

domestic, agricultural and community needs but with little concern for water quality. 

As a consequence, cholera and typhoid fever outbreaks were on the increase and 

were a serious problem (Amin et al., 2013). The findings in the field of bacteriology 

in the second half of 19th century provided the clue and led to the development and 

adoption of an efficient and centralised wastewater treatment plants (Figure 1.6) in 

cities and towns (USEPA, 1999a). The centralised system of wastewater treatment 

which has since been in practice in the developed nations is the most effective way 

of managing the amount and quality of limited surface fresh waters on earth because 

of reuse and recycling of wastewaters (USEPA, 1999a). However, it is chemically, 

operationally and energy intensive.  
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Figure 1. 6: Schematic showing sources of water for treatment, different stages of 
wastewater treatment and possible end users of water after treatment.  Dotted 
arrows indicate that the first two stages of water treatment could be missed and 
avoided depending on the physico-chemical characteristics of the source of water 
(surface water; river, lake, and ground water) unlike sewage that will have to pass 
through all the three stages of water treatment. Irrespective of the sources of 
wastewater, it is necessary for it to pass through the last stage of water treatment 
(disinfection) before it is safe for domestic usage to avoid transmission and outbreak 
of waterborne disease. 

 

1.4.1 Types of water disinfection  

Disinfection is the last and most important stage of waste water treatment (Figure 

1.6) from public health perspective (Amin et al., 2013). The choice of a disinfectant 

or disinfection process for wastewater treatment is dependent on criteria such as; 

• Ability of the disinfectant/disinfection process to kill all or majority of 

pathogens under normal operating conditions. 

• Safety and simplicity of the disinfectant/disinfection process: Safe and easy 

handling, storage and shipping. 



35 
 

  
 

• Absence of or minimal toxic residuals and mutagenic/carcinogenic 

compounds after disinfection in treated water. 

• Affordable capital and operation and maintenance costs. 

Generally, disinfectants/disinfection processes both conventional and alternatives 

presently in-use to clean water could be classified into three (3) main groups, namely; 

• Chemical disinfection 

• Radiations and  

• Membrane systems.    

1.4.1.1 Chemical disinfectants/disinfection 

Chemical disinfection involves the use of chlorine, ozone or other chemical oxidants 

to kill or inactivate waterborne pathogens during wastewater treatment. However, 

in most cases chlorine is used to disinfect water (USEPA, 1999a). 

1.4.1.1.1 Chlorination 

The use of chlorine started from the late 19th century. However, most records 

showed that full adoption of chlorine as a disinfectant in water treatments was in the 

early 20th century (Snowden-Swan et al., 1998). This was a response to a rise in 

population across major cities of the world because of industrial revolution and 

simultaneous outbreaks of cholera and typhoid fever. Chlorination was fully adopted 

in Middelkerke (Oostende in Belgium) in 1902 and in Lincoln (England) in 1905. Baker 

and Whipple introduced chlorine disinfection of water in the USA in 1906. Since then, 

chlorine disinfection has been employed globally especially in developed nations and 

is at present taken as a decisive measure to eliminate water assisted transmission of 

pathogens (USEPA, 1999a).  
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Chlorine inactivates pathogens by oxidising their cellular materials (Schoenen, 2002, 

Shannon et al., 2008). Chlorine is available for use and can be supplied in many forms 

such as chlorine gas, hypochlorite solutions, chloramine and chlorine dioxide (Chen 

and Westerhoff, 2010). However, despite establishment of chlorine as water 

disinfectant globally, there are some drawback (Table 1.2). One of such setback is 

that chlorine react with compounds like nitrite in wastewater which can result in the 

formation of suspected mutagenic and carcinogenic disinfection by products (DBPs) 

such as trihalomethanes (THMs), and haloacetic acids (HAAs).
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Table 1. 2: Advantages and disadvantages of chlorination (USEPA, 1999a). 

Advantages Disadvantages 

chlorination is a well and most established method of waste 
water disinfection 

Chlorine residual even at low concentrations is toxic to aquatic 
life and may require dechlorination 

Presently, it is more cost-effective compared to UV or ozone 
disinfection (except when dechlorination is required after 
disinfection) 

All forms of chlorine are highly corrosive and toxic. Thus, storage, 
shipping and handling pose a risk, requiring increased regulations 

The chlorine residual that remains in the wastewater effluent 
can prolong disinfection even after initial treatment and can be 
measured to evaluate the effectiveness 

Chlorine oxidizes certain types of organic matter in wastewater, 
creating more hazardous compounds such as THMs and HAAs 

It is reliable and effective against a wide spectrum of pathogenic 
organisms 

The total dissolved solids are increased in the treated effluent 

It is effective in oxidising certain organic and inorganic 
compounds 

The chloride content of the wastewater is increased 

It has flexible dosing control Chlorine residual is unstable in the presence of high 
concentrations of chlorine-demanding materials, thus requiring 
higher doses to effect adequate disinfection  

It can eliminate certain noxious odours during disinfection Some parasitic species have shown resistance to chlorine 
including oocysts of Cryptosporidium parvum, cysts of Entamoeba 
hystolytica and Giardia lamblia and eggs of parasitic worms, also 
enteric viruses 

 Long-term effect of discharging dechlorinated compounds into 
the environment are unknown 
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1.4.1.1.2 Ozonation 

Ozone was the disinfectant used from late 19th century to early 20th century and 

during this period water supply systems were equipped with ozone treatment unit 

especially in France and Germany. After 1920, ozone treatment lost most of its 

importance, but was reintroduced on a massive scale in 1960s and 1970s as an 

oxidant to remove undesirable organic substances from water. Starting in the 1990s, 

it has been used as a disinfectant for killing parasites (Amin et al., 2013). 

Ozone is a relatively unstable molecule of oxygen which readily gives up one atom of 

oxygen providing a powerful oxidising agent which is toxic to most waterborne 

organisms (Amin et al., 2013). Conventional mechanical diffuser ozonation and 

dissolved ozone flotation (DOF) systems have been used to disinfect downstream 

municipal wastewater (Amin et al., 2013). Although fewer dangerous by-products are 

formed by ozonation, it has been shown that the use of ozone also produces a small 

amount of the suspected carcinogen (bromate).  Some incentives in the use of ozone 

as disinfectant during wastewater treatment are summarised in Table 1.3. 

Table 1. 3: Advantages and disadvantages of ozonation (USEPA, 1999a, Amin et al., 
2013). 

Advantages Disadvantages 

Ozonation is an effective method to kill 
harmful protozoans that form cyst 

Relatively more expensive than 
chlorination 

Production of relatively fewer harmful 
by products in comparison to 
chlorination 

It leaves no disinfectant residual in the 
water, so the process of disinfection is 
not prolonged 

Unlike chlorination, it does not 
produce taste and odour 

Ozonation can result in the production 
of bromate-a suspected carcinogen 
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1.4.1.2 Disinfection by radiations 

Wastewater can be disinfected by both ionising (e.g., gamma ray) and non-ionising 

(e.g., UV radiation, ultrasonic radiation) radiations. However, UV radiation is mostly 

employed in water disinfection during wastewater treatment (USEPA, 1999b). 

1.4.1.2.1 UV light disinfection 

 UV light is well established for disinfection of drinking water during wastewater 

treatment (USEPA, 1999b). UV light in the UV-C region is germicidal. UV radiation 

generated by an electrical discharge through mercury vapour can be absorbed by 

genetic material (DNA) of microorganisms and retards their ability to replicate 

(USEPA, 1999b). The effectiveness of a UV light disinfection system depends on the 

characteristics of the wastewater, the intensity of UV radiation, the amount of time 

the microorganisms are exposed to the radiation and reactor configuration (Jackson 

et al., 1999).  The main components of a UV disinfection system are mercury arc 

lamps, a rector and ballasts. The source of UV radiation is either low-pressure or 

medium-pressure mercury arc lamp with low or high intensities and the optimum 

wavelength to effectively inactivate microorganisms is in the range of 250nm to 

270nm (Jackson et al., 1999). Effectiveness of the UV radiation against viruses, spores 

and cysts is one of the several advantages (Table 1.4) of using it as disinfectant during 

wastewater treatment.
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Table 1. 4: Advantages and disadvantages of UV disinfection (USEPA, 1999b). 

Advantages Disadvantages 

UV disinfection is effective at inactivating most viruses, spores and 
cysts 

Low dose may not effectively inactivate some viruses, 
spores and cysts 

UV disinfection is a physical process rather than a chemical disinfectant, 
which eliminates the need to generate, handle, transport or store 
toxic/hazardous or corrosive chemicals 

Organisms can sometimes repair and reverse the 
destructive effects of UV through a repair mechanism 
known as photoreactivation or in the absence of light 
known as dark repair 

There is no residual effect that can be harmful to humans or aquatic life A preventive maintenance program is necessary to 
control fouling of tubes 

It is user friendly for operators Turbidity and total suspended solids (TSS) in the 
wastewater can render UV disinfection ineffective 

UV disinfection has a shorter contact time when compared with other 
disinfectants (about 20-30 seconds with low-pressure lamps) 

UV disinfection is not as cost-effective as chlorination 
but costs are competitive when dechlorination is 
required after chlorine disinfection 

UV disinfection equipment requires less space than other methods   
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1.4.1.3 Disinfection by membrane systems 

Membrane filters are powerful tools for various applications including wastewater 

treatment and the removal of particulate contaminants from drinking water. 

However, membrane microfiltration does not generally remove soluble pollutants 

(Amin et al., 2013, Jackson et al., 1999). A range of pressure driven membrane 

processes are available for wastewater disinfection; 

1. Microfiltration (MF) is a direct extension of conventional filtration capable of 

sieving out particles greater than 0.05 to 2 µm depending on the membrane 

and including bacteria and cysts. 

2. Ultrafiltration (UF) is a molecular sieving process and will reject organic 

material to the membrane cut-off (~100 Da), viruses, bacteria and large 

pathogens. 

3. Reverse osmosis (RO) is a high efficiency, high pressure membrane process 

capable of rejecting monovalent ions such as sodium and organics of 

molecular weight greater than 50 Da. It is typically used for desalination in 

arid countries, but is energy-expensive 

4. Nanofiltration (NF) is a low-pressure membrane process combining low 

efficiency reverse osmosis and high efficiency ultrafiltration. NF is capable of 

rejecting multivalent ions and dissolved organic matter of molecular weight 

above 200 Da (Amin et al., 2013).  

One of the main setback (Table 1.5) of membrane system is that in terms of whole 

life cost, it is not cost effective. 
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Table 1. 5: Advantages and disadvantages of membrane disinfection (Amin et al., 
2013). 

Advantages Disadvantages 

The use of membrane processes would 
avoid the formation of disinfection by-
products and reduce the concentrations 
of other undesirable chemicals  

The integrity of the membrane and 
efficiency of microorganism removal 
cannot be monitored. 

Depending on the pore size, all 
pathogens could be removed from water 
by membrane system 

In terms of whole life costs, 
membrane systems are more 
expensive than conventional method 

 Membrane systems generate liquid 
waste which might require treatment 
to destroy toxic chemicals or kill 
microorganisms 

 

 

1.4.2 Effects of wastewater characteristics on different disinfection 

methods and cost implications 

The source and characteristics of wastewater can affect the efficiency and 

performance of disinfection process during wastewater treatment (Table 1.6). In 

terms of whole life costs, both UV radiation and membrane systems disinfection are 

generally more expensive than chlorination (Snowden-Swan et al., 1998). This is 

particularly so for larger plants because there are economies of scale with 

chlorination plants that are not realised with UV and membrane systems which are 

essentially modular. Chemical costs for membranes and UV treatment are lower than 

for chlorination processes but their energy consumption is greater(Snowden-Swan 

et al., 1998). The overall assessment of the different types of water disinfection 

against several criteria (Table 1.7) shows that synergistic effect of 2 or more 

disinfection methods and or pre-treatment is the best way to adequately and 

efficiently inactivate resistant waterborne pathogens. Also, the source of water and 
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its characteristics can determine the choice of best disinfection method, its 

efficiency, performance and cost implication.
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 Table 1. 6: Effects of some water characteristics on the performance and efficiency of disinfection processes (USEPA, 1999a). 
Water 

characteristics 
 Chlorination   Ozonation UV radiation   Membrane system 

Ammonia  Forms chloramines when 
combined with chlorine 

Minor effect, if any Minor effect, if any Minor effect, if any 

Biochemical 
Oxygen 
Demand (BOD) 

The degree of interference 
depends on their functional 
groups and chemical 
structures  

The degree of interference 
depends on their functional 
groups and chemical 
structures 

Minor effect, if any Minor effect, if any 

Hardness, iron Minor effect, if any Minor effect, if any Affects solubility of metals 
that can absorb UV light. 
Can lead to the 
precipitation of carbonates 
on quartz tubes 

Minor effect, if any 

Nitrate Minor effect, if any Minor effect, if any Minor effect, if any Minor effect, if any 

Nitrite Reduces effectiveness of 
chlorine 

Minor effect, if any Minor effect, if any Minor effect, if any 

pH Affects distribution between 
hypochlorous acid and 
hypochlorite ions and 
among the various 
chloramine species 

Affects oxidising capacity of 
zone 

Affects solubility of metals 
and carbonates 

Minor effect, if any 

Total 
suspended 
solids 

 

Shielding of embedded 
bacteria  

Shielding of embedded 
bacteria  

Absorbs UV radiation and 
shields embedded bacteria 

Might block the membrane 
pores 

Humic materials The degree of interference 
depends on their functional 
groups and chemical 
structures 

The degree of interference 
depends on their functional 
groups and chemical 
structures 

High absorbency of UV 
radiation 

Minor effect, if any 
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Table 1. 7: An overall assessment of different types of water disinfection against several criteria (Jackson et al., 1999). 
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Chlorine - - - + + + + + + + + 
UF only - + + - + . . - - . - 

UV only + + + . + + . + + . . 
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Chlorine only - - - + - + + + + + - 
Pre-treat + 

chlorine 
+ - - + - . . + + . - 

UF only - - . - - . . - - . - 
Pre-treat + UF . + + - + - - - - - - 
Pre-treat + 

Ozone + UF 
- . - - + - - - - - - 

MF + UV . + - . - + . - - . + 
Pre-treat + UV . + + . - + . + + . . 

Pre-treat + 

Ozone + UV 
+ . + + + - - + + . + 

UF, ultrafiltration; MF, microfiltration; UV, ultraviolet; Pre-treat e.g. coagulation/sedimentation; +, better than average; -, worse than average; ., average. 
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1.5 Photodynamic effect, photodynamic inactivation and 

photosensitised reaction 

The photodynamic effect is the result of generation of singlet oxygen and other ROS 

by interaction of photosensitizer, visible light and oxygen (Figure 1.7).  Photodynamic 

inactivation is a process in which the generated singlet oxygen and other ROS oxidise 

and cause irreversible damage to proteins, lipids, nucleic acid and other cellular 

components of microorganisms and ultimately inactivate them (Costa et al., 2013, 

Komagoe et al., 2011, Tavares et al., 2011, Spannberger et al., 2012). The indirect 

photochemical reactions (also called photosensitised reactions) arise from the 

possibility that the energy of the excited photosensitizer molecule in its triplet state 

can be transferred to another molecule such as oxygen by a non-radiative mechanism 

(Figure 1.7) (Costa et al., 2013). The transfer can occur either by a charge transfer 

mechanism (type 1 photoreaction) or electronic energy transfer mechanism (type 2 

photoreaction) (Figure 1.7) (DeRosa and Crutchley, 2002, Costa et al., 2013). These 

transfers inhibit emission of radiation by the excited photosensitizer molecule and 

this is called quenching.  Quenchers, such as oxygen, become excited and can 

undergo various photophysical and photochemical processes according to their own 

characteristics. The energy transfer occurs before the excited photosensitizer 

molecule can radiate fluorescence and the acceptor molecule is thus excited 

indirectly, undergoing various photophysical and photochemical processes called 

photosensitisation or photosensitised reactions (Figure 1.7) (Costa et al., 2013, 

DeRosa and Crutchley, 2002).The characteristic feature of a photosensitised reaction 

is that the light absorbing species remains unchanged whilst the acceptor molecule 

undergoes chemical reactions.  
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The quenching efficiency of oxygen is due to its paramagnetic property, i.e. having 

two outer electrons with parallel spins. The absorption of visible light generally leads 

to electronic excitation of the photosensitizer molecules and since oxygen permeates 

most organic matter in solution it quenches their electronic excited state. This results 

in formation of singlet molecular oxygen which acts as an oxidising agent for the 

organic molecules present in the solution (DeRosa and Crutchley, 2002). This is the 

basis for photodynamic inactivation (PDI) of microorganisms and PDT of cancers, 

dental, skin and autoimmune diseases (Costa et al., 2013, Lucena et al., 2015, 

Dolmans et al., 2003, Usuda et al., 2006). 

Molecular oxygen has two low lying singlet oxygen excited states 1∆g and 1∑g
+, 95 and 

158 KJ mol-1 respectively above the triplet state (DeRosa and Crutchley, 2002). The 

electronic configurations of these states differ only by π-antibonding orbitals. The 

first singlet oxygen excited states 1∆g is different from the ground state 3∑g
- because 

of its last two electrons which have antiparallel spins in one orbital. In the second 

excited state   1∑g
+, the electronic configuration is identical to that of the ground state 

except that the last two electrons have antiparallel spins. The transition from 1∆g 

state to the   3∑g
- state is spin forbidden, thus the 1∆g O2 is relatively long-lived species. 

The second excited state of oxygen, on the other hand, is short-lived due to spin 

allowed transition to 1∆g state (DeRosa and Crutchley, 2002).  

Once dioxygen is in its singlet excited state, it can be deactivated by other species to 

return to its ground state. Singlet oxygen is more electrophilic than oxygen, thereby 

reacting rapidly with unsaturated carbon-carbon bonds, nucleophiles such as 

sulphides and amines, and anions (DeRosa and Crutchley, 2002).  
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Figure 1. 7: Jablonski diagram showing photosensitisation. PS, photosensitiser at 
ground state; 1PS*, photosensitiser at singlet excited state; 3PS*, photosensitiser at 
triplet excited state; O2, molecular oxygen in aqueous solution; 3O2, triple oxygen; 
1O2*, singlet oxygen; other ROS: O2

., superoxide anion; O2
.-2, peroxide; .OH, hydroxyl 

radical; OH-, hydroxyl ion; The singlet oxygen and other ROS oxidise and cause 
irreversible damage to proteins, lipids, nucleic acid and other cellular components of 
microorganisms including viruses and ultimately inactivates them (Costa et al., 2013, 
DeRosa and Crutchley, 2002). 

 

1.6 Photosensitisers used for photodynamic inactivation of 

microorganisms  

Photosensitisers are molecules capable of absorbing light and become excited to 

form a long lived excited triplet state. Several photosensitisers including methylene 

blue, Rose Bengal, porphyrines and phthalocyanines have been identified and used 

for PDT and PDI (Table 1.8) (DeRosa and Crutchley, 2002). After earlier studies with 

photosensitisers in solution, it has become clear that the desired properties of a good 

photosensitiser should include good solubility in water, intense absorption in the 

visible region (preferably extending to the near infra-red), good stability upon 

prolonged storage in aqueous solution, with few or no side photoreactions, high 

triplet yield and efficient production of separate ion products upon irradiation in the 
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presence of electron donor or acceptor (DeRosa and Crutchley, 2002). Organic dyes 

and aromatic hydrocarbons such as Rose Bengal, eosin and methylene are very good 

photosensitisers because they possess triplet states of appropriate energies for 

oxygen sensitisation. These dyes exhibit intense absorption within the visible 

spectrum and show high singlet oxygen yields (DeRosa and Crutchley, 2002). Many 

porphyrins and phthalocyanines (either in solution or attached onto solid supports) 

have been used and reported in photodynamic inactivation experiments (Table 1.8) 

because they have most, if not all of desired properties of a good photosensitiser. 

Additionally, because of their presence in natural systems, it is believed that 

porphyrins and phthalocyanines might generally lack cytotoxicity in the dark. This is 

good in some applications where only photosensitisation is required (DeRosa and 

Crutchley, 2002).  Some experts have shown and argued that since most 

microorganisms have net negative charge, cationic photosensitisers (Table 1.3) 

should be more efficient in PDI of bacteria and viruses. This is due to positive charge 

favouring binding of photosensitiser molecule at critical cellular sites, that once 

damaged by exposure to light, cause loss of cell viability. Also, because the negatively 

charged microorganisms can bind to the positively charged photosensitiser, this 

increases the proximity of microorganisms to the singlet oxygen generated. Thus, 

rate and extent of PDI is faster and higher as compared to anionic and neutral 

photosensitisers (Alves et al., 2009, Costa et al., 2012a, Eichner et al., 2012). 

Furthermore, many PDI studies have revealed that just like other antimicrobial 

agents, there are factors that proportionally affect it. Several reports (Table 1.8) have 

shown that the rate and extent of PDI of microorganisms is dependent on the 

concentration/dose of photosensitiser and time/duration of PDI.  However, there are 
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very few investigations of how other factors such as source of light, light intensity, 

co-pollutant and type of microorganisms could affect PDI of microorganisms.     In 

most of the PDI studies (Table 1.8), much of the work has been focused on the 

physical and quantitative aspects of the inactivation with no or little emphasis on the 

molecular targets of the PDI within the microorganisms or its mechanisms from a 

biological perspective. Although, there are studies that demonstrate the evolution of 

viruses to drugs and common water disinfectants (Zhong et al., 2016), there are none 

that show whether viruses could be resistant to PDI. 
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           Table 1. 8: Summary of some photodynamic inactivation studies with photosensitisers in solution 

PS Q C (µM) Light 
source 

Light 
intensity 
(mW cm-2) 

Illumination   
time (min) 

Model organism PDI  
reductions of 
log PFU/ml or 
CFU/ml 

Reference 

TPF +3 50 WL1 4 270 V. fischeri ≈7 (Alves et al., 2011) 
TPM +4 5 " " " E. coli 6.2 (Tavares et al., 2011) 
TSF +3 0.5 " " " " 6.1 " 

TPP +4 50 WL2 200 20 P. chrysogenum 3.4 (Gomes et al., 2011) 
TPM " 5 " 169  45 T4-like >7 (Costa et al., 2010) 
TPF +3 " " " 25 " >7 " 
TPM +4 1 " " 30 " 1.3 " 
TPF +3 " " " " " 2.2 " 
TPM +4 5 Sun  60 180 " 7.0 " 
TPF +3 " " " 90 " 7.2 " 
TPM +4 0.5 " " " " 0.1 " 
TPF +3 " "  " " " 1.5 " 

TPM +4 5 WL1 4 270 " 7.2 " 
TPF +3 " " " 180 " 7.0 " 
TPM +4 1 " " 270 " 1.5 " 
TPF +3 " " " " " 3.6 " 
TPM +4 5 " " " E. coli 6.2 (Alves et al., 2013) 
TPF +3 " " " " " 7.7 " 
TPM +4 0.5 " " 40 S. warneri 0.4 " 
TPF +3 " " " " " 4.8 " 

TPM +4 " " 40 270 T4-like  <2 (Costa et al., 2008) 
" " 1 " " " " <2 " 
" " 5 " " " " >7 " 
TPF +3 0.5 " " " " ≈2 " 
" " 1 " " " " ≈4 " 
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Table 1.8 continued 
TPF +3 5 WL1 40 180 T4-like  >7 (Costa et al., 2008) 
TPMM " 0.5 " " 270 " ≈1 " 
" " 1 " " " " ≈2 " 
" " 5 " " " " >7 " 
TPMC " 0.5 " " " " <1 " 
TPMC " 1 " " " " <1 " 

TPMC " 5 " " " " 3.9 " 
DiPa +2 0.5 " " " " <0.2 " 
" " 1 " " " " <0.2 " 
" " 5 " " " " >1 " 
DiPo " 0.5 " " " " <0.2 " 
" " 1 " " " " <0.2 " 
" " 5 " " " " <1 " 
MB +1 ≈0.1 WL3 9 10 H. pylori ≈1 (Choi et al., 2010) 
" " ≈0.15 " " " " ≈4 " 

" " ≈1 " " " " ≈8 " 
TMPyP +4 1000 UV 2.2 1 MS2  >4.1 (Casteel et al., 2004) 
TMPyP " 10 " " " " >4.1 " 
TPPS " 1000 " " 30 " >3.8 " 
TPPS " 10 " " " " >3.6 " 
TMPyP " " " " 10 HAV >3.7 " 
TPPS " 10 UV 2.2 90 HAV 3.6 " 
TBuPyP " " " " 30 " >3.8 " 

TOcPyP " " " " 1 " >3.9 " 
TPF +3 5 WL1 4 90 P. damselae ≈8 (Arrojado et al., 2011) 

" " " " " 180 P. piscicida ≈8 " 
" " " " " " V. 

parahaemolyticus 
≈8 " 

" " " " " 270 V. anguillarum ≈8 " 
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Table 1.8 continued 
" " " " " " Pseudomonas sp. ≈8 " 
TPF +3 " " " 180 E. coli ≈8 (Arrojado et al., 2011) 
" " " " " 270 A. salmonicida >6 " 
" " " " " 90 E. faecalis ≈8 " 
" " " " " 60 S. aureus ≈8 " 
         

The photosensitisers used were: TPF, 5, 10, 15-tris (1-methylpyridinium-4-yl)-20-(pentafluorophenyl) porphyrin tri-iodide;  
TPM, 5,10,15,20-tetrakis (1-methylpyridinium-4-yl) porphyrin tetra-iodide;  TSF, 5-(pentafluorophenyl)-10,15,20-tris [2,3,5,6-
tetrafluoro-4-(1-methylpyridinium-4-ylsulfanyl) phenyl] porphyrin tri-iodide;  TPP, 5,10,15,20-tetrakis (N-pentylpyridinium-4-yl) 
porphyrin tetra-iodide;  TPMM, 5-(4-methoxy carbonylphenly)-10,15,20-tris (N-methylpyridium-4-yl) porphyrin tri-iodide;  
TPMC, 5-(4- carboxyphenly)-10,15,20-tris (N-methylpyridium-4-yl) porphyrin tri-iodide; DiPa, 5, 10-bis (4- carboxyphenly)-
15,20-bis (N-methylpyridium-4-yl) porphyrin di-iodide;  DiPo, 5, 15-bis (4- carboxyphenly)-10,20-bis (N-methylpyridium-4-yl) 
porphyrin di-iodide; TMPyP, Meso-tetrakis (N-methyl-4-pyridiniumyl) porphyrin tetratosylate; TPPS, Tetrakis (4-
sulfonatophenyl) porphyrin; TBuPyP, Tetrakis (N-[n-butyl] -4-pyridiniumyl) porphyrin; TOcPyP, Tetrakis (N-[n-octyl] -4-
pyridiniumyl) porphyrin. PS, photosensitiser; Q, net charge of photosensitiser in solution; C, concentration of photosensitiser 
used for the PDI; WL1, white light (PAR radiation, 380-700 nm, 13 OSRAM 21 lamps of 18 W each; WL2, white light from a 
compatible fiber optic probe (400-800 nm) attached to a 250 W quartz/halogen lamp; WL3, fujinon endoscopy system EPX-
4400, EG-590WR. V. fischeri, Vibrio fischeri; E. coli, Escherichia coli; P. chrysogenum, Penicillium chrysogenum; T4-like, 
bacteriophage T4-like; S. warneri, Staphylococcus warneri; H. pylori, Helicobacter pylori; MS2, bacteriophage MS2; HAV, 
Hepatitis A virus; P. damselae, Photobacterium damselae; P. piscicida, Photobacterium piscicida; V. parahaemolyticus; Vibrio 
parahaemolyticus; V. anguillarum, Vibrio anguillarum; A. salmonicida, Aeromonas salmonicida; E. faecalis, Enterococcus 
faecalis; S. aureus, Staphylococcus aureus.  
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1.7 Biological targets of singlet oxygen 

Singlet oxygen is the most common ROS implicated in the PDI of bacteria and viruses 

(Costa et al., 2013). Singlet oxygen can react with a range of biomolecules such as 

proteins, DNA, RNA and lipids. Singlet oxygen readily and rapidly reacts with proteins 

with a bimolecular rate constant ranging from 105 to 109 M-1 S-1. This is much higher 

than with other biomolecules including RNA, where the rate constant ranges from 

104 to 106 M-1 S-1 (Cho et al., 2010, Davies, 2003). The interaction of singlet oxygen 

with potential targets can either be by physical quenching, which is only observed in 

tryptophan, or chemical modification which is observed in almost all amino acids. 

Chemical modification usually results in irreversible changes in amino acids (Davies, 

2003). The bimolecular rate constant and oxidation effects and products vary among 

different amino acids (Table 1.9). Amino acids tryptophan, histidine, methionine, 

cysteine and tyrosine are the most susceptible to singlet oxygen mediated oxidation 

(Table 1.9). Side chains of some α-amino acids, principally the aromatic and sulphur 

containing amino acid residues, unsaturated lipids and nucleic acids are most likely 

the targets of PDI in microorganisms. These constituents are associated mainly with 

cellular and subcellular membranes such as plasma, mitochondrial, lysosomal and 

nuclear membranes in bacterial and eukaryotic cells, as well as the viral envelope 

glycoproteins, coat proteins, host receptor recognition and binding proteins. 

However, little is known about the exact mechanism of PDI, especially in viruses 

because of diversity of the viral components (Costa et al., 2013). Gram positive 

bacteria are easily inactivated by singlet oxygen oxidation as compared to gram 

negative bacteria due to differences in the structure of their cell membrane (Alves et 

al., 2013, Bourre et al., 2010, Carvalho et al., 2007, Costa et al., 2012a, Komagoe et 
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al., 2011, Maisch et al., 2012a). Gram negative bacteria have an additional outer 

membrane apart from the cytoplasmic (inner) membrane (Figure 1.8), giving them 

extra protection against antimicrobial agents including singlet oxygen and other ROS 

produced during photosensitisation. For viruses, although protein photo-oxidation 

by singlet oxygen has been extensively studied and the most sensitive viral 

components are protein in nature, it is an over-generalisation to assume a particular 

mechanism of protein photo-oxidation for viral PDI.  This is because apart from 

diversity of PDI targets within viruses, the reaction of singlet oxygen with proteins 

can produce a range of effects such as oxidation of side chains, peptide backbone 

fragmentation, dimerisation/aggregation, unfolding or conformal changes, 

enzymatic inactivation and alterations in cellular handling and turnover (Gracanin et 

al., 2009, Gracanin et al., 2007).  

Table 1. 9 : The most susceptible amino acids to singlet oxygen mediated oxidation 
 
Amino 
acid 

k  (M-1 S-1)  Oxidation products Effects of 1O2* mediated 
oxidation on protein 

Trp  3 x 107  
2-7 x 107 

Dioxetane, hydroperoxide,  
N-formylkynurenine, 
kynurenine, aspartic acid, 
CO2, NH3  

Protein peroxide formation, 
side chain product formation, 
enzyme inactivation 

His 3.2  x 107 Endoperoxides, aspartic 
acid, asparagine derivatives 
and urea, His-His and His-
Lys crosslinks 

Protein peroxide formation, 
side chain product formation, 
formation of cross-links and 
aggregates, enzyme 
inactivation 

Met 1.6 x 107 Sulphoxide, H2O2 Protein peroxide formation, 
enzyme inactivation 

Cys 8.9 x 106 Disulphide, cysteic acid Formation of cross-links and 
aggregates 

Tyr 0.8 x 107 3a-hydroxy-6-oxo-
2,3,3a,6,7,7a-hexahydro-1H-
indole-2-carboxylic acid 
(HOHICA) 

Protein peroxide formation, 
side chain product formation, 
back bone fragmentation, 
enzyme inactivation 

List of the most susceptible amino acids to singlet oxygen mediated oxidation as well 

as their oxidation products and effects on proteins. Trp (Tryptophan), His (Histidine), 

Met (Methionine), Cys (Cysteine) and Tyr (Tyrosine) (Davies, 2003).  
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Figure 1. 8: Schematic of a bacterial cell showing the differences in the structure and 
morphology of membrane of Gram positive and Gram negative bacteria. Gram 
positive bacteria have one cytoplasmic membrane while gram negative bacteria have 
additional outer membrane apart from the cytoplasmic (inner) membrane, giving 
them an extra protection against antimicrobial agents including singlet oxygen and 
other ROS produced during photosensitisation process (Ahmed et al., 2014a). 

 

1.8 Photodynamic inactivation of viruses 

Photodynamic inactivation (PDI) of viruses has been shown to be an efficient 

alternative to antiviral agents in the control of resistant and emerging viruses (Costa 

et al., 2012b, Casteel et al., 2004, Costa et al., 2008, Costa et al., 2010, Costa et al., 

2009, Wainwright, 2004). When irradiated with visible light and in the presence of 

molecular oxygen in aqueous solution, photosensitisers such as 5,10,15,20-tetrakis 
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(1-methyl-4-pyridinio)porphyrin tetra p-toluenesulfonate (TMPyP) can generate 

singlet oxygen by a type 2 reaction and other ROS by type 1 reaction (Costa et al., 

2013, Costa et al., 2014, DeRosa and Crutchley, 2002). Singlet oxygen and other ROS 

can react rapidly and cause irreversible damage to biomolecules thereby leading to 

the inactivation of viruses and other microorganisms (Costa et al., 2013, Baumler and 

Maisch, 2012, Maisch et al., 2012b, Spannberger et al., 2012, Alves et al., 2013, 

Carvalho et al., 2007, Komagoe et al., 2011). Singlet oxygen is the most likely ROS 

involved in the viral PDI (Costa et al., 2013, Silverman et al., 2013). All ROS have a 

short-life and high reactivity, thereby causing damage  only to the surrounding 

molecules close to the point of ROS generation (Costa et al., 2013). Capsid proteins 

including host recognition proteins are immediate targets of singlet oxygen mediated 

oxidation in non-enveloped viruses, while envelope glycoproteins, including host-

recognition proteins are potential targets of singlet oxygen oxidation in enveloped 

viruses. (Figure 1.9). Prolonged exposure to singlet oxygen may also result in 

oxidative damage to viral nucleic acid (Davies, 2003, Gracanin et al., 2009, Hotze et 

al., 2009, Cho et al., 2010).  

Although virus capsids serve to protect the genome, they may contain small pores. 

Furthermore, under physiological conditions, the capsids of non-enveloped viruses 

can undergo  constant motion that suggests a dynamic state otherwise referred to as 

“capsid breathing” e.g. picornaviruses (Lewis et al., 1998, Jimenez-Clavero et al., 

2000, Pulli et al., 1998), nodaviruses (Bothner et al., 2005), tombusviruses (Jaegle et 

al., 1988), sobemoviruses (Witz and Brown, 2001) and others. By means of a 

thermofluor assay that incorporates a pair of dyes to bind the nucleic acid and 

hydrophobic capsid residues respectively, capsid permeability of picornaviruses has 
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been shown to increase with temperature (Wang et al., 2015, Adeyemi et al., 2017, 

Walter et al., 2012). Although the permeability of viral capsids to singlet oxygen 

molecules has not been shown, it has been suggested that access to the viral genome 

could result to oxidation-induced damages to the viral genome as well or the capsid.
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Figure 1. 9: Schematic of (A) enveloped and (B) non-enveloped viral particles showing first targets of singlet oxygen mediated oxidation. 
Envelope including host recognition glycoproteins/spikes are the first targets of the oxidation in enveloped viruses while in non-
enveloped viruses, capsid proteins including host recognition proteins and spikes are the immediate targets of the oxidation.
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1.9 Solid supports for attaching photosensitisers 

The possibility of removing supported porphyrins and other photosensitiser from 

environmental or drinking water after phototreatment is attractive as it can allow re-

use of sensitiser functionalised solid supports thereby reducing the cost. Also, 

because the sensitisers will not be let into the water during and after treatment, it 

would be an environmental-friendly technology. However, all these features could 

be achieved by finding the right solid supports and coupling chemistry for attaching 

the desired sensitisers.  

Studies are on-going for the development of novel hybrid materials (e.g. polymers, 

silica, glass) for attachment of photosensitisers which could be used to efficiently 

inactivate bacteria and viruses in water. The focus of the studies has been on 

producing a solid phase support with the desired physical, chemical and mechanical 

characteristics (Table 1.10).  
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Table 1. 10: Desired characteristics of a solid phase support for attachment of 
photosensitisers  

List of desired characteristics of a solid phase support for attaching photosensitisers 
for water disinfection application (Li et al., 2008, Narband et al., 2009, Ma et al., 2005, 
Bechet et al., 2008) 

 

Solid supports such as chitosan electrospun nanofibers and polymeric membranes 

fulfil most of the desired qualities required for the attachment of photosensitisers 

for photodynamic disinfection of water (Suchanek et al., 2014, Crini and Badot, 

2008). Nanofiber cloths are made-up of fibres with diameters ranging from tens of 

nm to a few µm and are often produced by the process of electrospinning. Several 

electrospun nanofibers have been successfully produced from different polymers 

(Table 1.11). A nanofiber could either be produced from one polymer or a blend of 2 

or more polymers (Table 1.11). Depending on the coupling chemistry needed, their 

Physical  
characteristics 

Chemical 
characteristics 

Mechanical 
characteristics 

• a large surface to 

volume ratio 

• easy and reproducible 

immobilization 

• good 

mechanical 

strength 

• good porosity and 

compatibility with 

the photosensitiser 

• avoids 

photosensitiser 

leaching to the water 

• stability 

towards 

sunlight 

• high 

biocompatibility to 

maximize the 

interaction 

between the 

immobilized 

sensitizer and the 

microorganism 

• good oxygen 

permeability for 

efficient singlet 

oxygen quenching 

 

 

• commercial 

availability and low 

cost 

  

• insolubility in 

water 
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surfaces can be modified with functional groups possessing a diverse array of 

chemical properties. Electrospun nanofibers have found applications in tissue 

engineering, drug delivery systems, wound dressing, antibacterial fabrics, water 

desalination and filtration, protective clothing and biosensors (Haider et al., 2015). 

The polymeric architecture and nature of electrospun nanofibers provides a 

functional nano-environment and can alter the photophysical behaviour of 

photosensitisers and affect the photoreaction activity and selectivity (Suchanek et 

al., 2014). Hypothetically, the small diameter and porosity of nanofiber should allow 

diffusion of the singlet oxygen (and other ROS) outside of the fibres where biological 

and organic chemical targets can be oxidised. Retention and maintenance of a porous 

structure by electrospun nanofibers even after attachment of photosensitisers and 

immersion in several solutions of varying pH and temperature is of importance if they 

are to be used continuously to generate ROS for water disinfection. 
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Table 1. 11: Types of electrospun nanofibers  
Polymer Reference Polymer Reference 

PAN (Mei et al., 2012) Whey protein* (Sullivan et al., 2014) 

PAA (Haider et al., 2015) Elastin* (Huang et al., 2000) 

PVA (Hang et al., 2010) Soy protein* (Gerstenhaber et al., 2014) 

PCL (Ramesh Kumar et al., 

2012) 

Wheat protein* (Woerdeman et al., 2005) 

HA* (Ji et al., 2006) PCL-EEP (Haider et al., 2015) 

Chitosan* (Schiffman and 

Schauer, 2007) 

PGA           " 

CA* (Deng et al., 2013) PLA (Thakur et al., 2008) 

PVP (Ramesh Kumar et al., 

2012) 

PLA/PCL (Del Valle et al., 2011) 

PLGA (Katti et al., 2004) PLA/PEVA (Hong et al., 2008) 

PEVA (Ramesh Kumar et al., 

2012) 

Collagen*  (Rho et al., 2006) 

PVDF " PLA/PEG/PU (Haider et al., 2015) 

PES " PLA/Collagen (Torres‐Giner et al., 2012) 

PET " PAN/PLA (Haider et al., 2015) 

PEO " PLA/PEG             " 

Chitosan/PEO (Spasova et al., 2004) CA/PEU (Liu et al., 2012) 

PU (Haider et al., 2015) PDLA/PEO (Heunis et al., 2011) 

PCL/PEG (Zhang et al., 2005) PLA/PCL/PAN/PVA/

PEO 

(Au et al., 2012) 

PCL/Collagen " PLA/ Chitosan             " 

Gelatin* (Huang et al., 2004) PVA/ Chitosan (Hang et al., 2010) 

PGA/Chitin (Haider et al., 2015) PU/PVA/Silk fibroin  (Lee and Lee, 2012) 

Fibrinogen* (Wnek et al., 2003) Nylon 6 (Haider et al., 2015) 

Chitin* (Holzwarth and Ma, 

2011) 

PET/PCL/PEO (Cooper et al., 2013) 

Silk fibroin* (Hang et al., 2012)   

List of electrospun nanofibers from different polymers. PAN, Polyacrylonitrile; PAA, 
Polyacrylic acid; PVA, Polyvinyl alcohol; PCL, Polycaprolactone; HA, Hyaluronic acid; 
CA, Cellulose acetate; PVP, Poly (vinylpyrrolidone); PLGA, Poly (lactic acid-co-glycolic 
acid); PEVA, Poly (ethylene-co-vinyl acetate); PVDF, Polyvinylidene fluoride; PES, 
polyether sulfone; PET, Polyethylene terephthalate; PEO, Polyethylene oxide; PU, 
Polyurethane; PGA, Polyglycolic acid; PLA, Polylactic acid; PCL-EEP, Poly 
(caprolactone-co-ethyl ethylene phosphate); PEG, Polyethylene glycol; PDLA, Poly (D, 
L-Lactic acid). (*), Biopolymers. 
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1.10 Chitosan 

Chitosan (Figure 1.10) is a partially deacetylated form of chitin which is the most 

abundant aminopolysaccharide in nature. It can be found in the exoskeleton of 

crustaceans, the cuticles of insects, and the cell walls of fungi (Crini and Badot, 2008). 

Chitin is usually extracted from waste materials of the sea food-processing industries, 

such as crab shells, shrimp, prawn and krill (Crini and Badot, 2008). Thus, chitin is a 

high abundant waste material and this makes chitosan a low cost material.  In 

addition, chitosan is non-toxic, biocompatible, biodegradable, rigid, insoluble in 

water, adsorbable and has many reactive amine groups for chemical activation and 

crosslinking. This makes it one of the most used support biomaterial in many fields 

including agriculture, biomedical engineering, biotechnology, chemical industry, 

cosmetics and toiletries, food production, pharmaceutics, textiles and dentistry (Crini 

and Badot, 2008, Tangpasuthadol et al., 2003, Hoven et al., 2007, Amornchai et al., 

2004).  

Chemically, chitosan is a linear homopolymer which is composed of β (1-4)-linked N-

acetyl glucosamine. It is structurally similar to cellulose, but it is an aminopolymer 

and has acetamide groups at the C-2 positions instead of hydroxyl groups. The 

repeating units of β (1-4)-linked N-acetyl glucosamines have large number of 

hydroxyl and amino groups which offer several possibilities for functionalisation and 

immobilisation of biological and photo-active molecules. Several studies showed that 

because chitosan has  intrinsic characteristics such as its low cost and outstanding 

chelating behaviour, it is a good biosorbent material for waste water remediation of 

dyestuff and heavy metals (Crini and Badot, 2008, Crini et al., 2008, Hoven et al., 

2007, Krajewska et al., 1990, Martel et al., 2001). 



65 
 

  
 

In this work we chose chitosan electrospun nanofibers and membranes as solid 

supports for attaching the photosensitiser TMPyP for development of sunlight driven 

water disinfection system that is cheap, simple, efficient and environmental friendly.  

 

 

Figure 1. 10: Chemical structure of chitosan. The amine side chains are useful reactive 
groups for coupling of photosensitisers and other modifications; they are shown as 
neutral but at pH 7.0 would be protonated. The chitosan structure was from 
ChemACX.com, ChemDraw Pro 13.0. 

 

1.11 Coupling chemistry 

Irreversible covalent bonding of a photosensitiser onto a solid support is possible 

when functional groups are available and chemically compatible. Reactive groups 

that are able to couple with amine containing materials are by far the commonest 

(Hermanson, 2013). The main coupling reaction for modification of amines occurs by 

nucleophilic attack e.g. acylation (Figure 1.11) (Hermanson, 2013). Most of these 

reactions are rapid and give a stable amide bond (Figure 1.11). However, in some 
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cases, and to increase the coupling efficiency, N-hydroxy succinamide (NHS) ester, 

which is the most common activation chemistry for creating acylation agents, is often 

used (Hermanson, 2013)(Figure 1.11 B). Carbodiimides such as 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) are zero-length crosslinking agents often 

used to mediate the formation of an amide bond between a carboxylate group and 

an amine (Figure 1.11 Ci and Cii)(Hermanson, 2013). Acid anhydrides are also very 

reactive toward nucleophiles and can acylate many important functional groups 

including amino group. Upon nucleophilic attack, the anhydrides yield one carboxylic 

acid for every acylated product. If the acid anhydride is dicarboxylic such as succinic 

acid anhydride (SA), upon reaction with a nucleophile, the ring structure of the 

anhydride opens, forming the acylated product modified to contain a newly formed 

carboxylate group (Figure 1.11 D) (Hermanson, 2013). Amine reaction involving 

dianhydrides such as pyromelitic dianhydride will typically generates three free 

carboxyl groups since the second anhydride ring is prone to attack by H2O, i.e. it is 

easily hydrolysed. This was the chemistry we used in this work (Section 5.2.2) to 

modify chitosan electrospun nanofiber and polymeric membrane. Direct covalent 

coupling of TMPyP onto chitosan was not possible, so, the nanofibers/membranes 

were first modified by pyromellitic dianhydride in order to introduce carboxyl groups 

and facilitate electrostatic adsorption of the highly basic TMPyP.  
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Figure 1. 11: Amine coupling reaction schemes. These are some examples of amine 
coupling reactions that proceed by acylation to form amide bond (highlighted in red). 
(NHS), N-hydroxy succinamide ester, is the most common activation chemistry for 
creating acylation agents. (EDC), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, is 
a zero-length crosslinking agent often used to mediate the formation of an amide 
bond between a carboxylate group and an amine. Reaction scheme (D) was used in 
this work to modify chitosan electrospun nanofibers and polymeric membranes to 
generate carboxylate groups (highlighted in yellow). The schemes were prepared by 
ChemDraw Pro 13.0 (Hermanson, 2013). 
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Reactive groups able to couple with sulfhydryl containing materials are the second 

commonest after amino reactive reagents (Hermanson, 2013). The main coupling 

reactions for modification of sulfhydryls occur by either alkylation or disulfide 

interchange to form a thioether or disulfide bond (Figure 1.12)(Hermanson, 2013). 

Compounds that have disulfide groups can participate in disulphide exchange 

reactions with another thiol (Figure 1.12 C). The disulfide exchange involves attack of 

the thiol at the disulfide, thereby breaking –S-S- bond, with subsequent formation of 

a new mixed disulfide comprising a portion of the original disulfide compound (Figure 

1.12 C) (Hermanson, 2013).   A vinylsufone group can be used to couple with 

nucleophiles especially thiol groups in aqueous solution and under mild conditions 

(Figure 1.12 D). The vinylsufone group can also react with amines and hydroxyls 

under higher pH (Hermanson, 2013). Metal ions can interact with thiol containing 

molecules to form thioether bonds commonly called dative or coordinate bonds 

(Figure 1.12 E). The dative bond differ from normal covalent bonds because they are 

formed by two electrons from a single atom, instead of two atoms each sharing one 

electron (Hermanson, 2013).   
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Figure 1. 12: Thiol coupling reaction schemes. These are some examples of thiol 
coupling reactions that proceed by alkylation to form thioether bond (highlighted in 
green). Reaction scheme (C) is an example of disulfide inter change to form another 
disulfide linkage (highlighted in blue). The schemes were prepared by ChemDraw Pro 
13.0 (Hermanson, 2013). 

 

Photosensitisers can be bound to solid supports externally or incorporated within the 

supports for water purification applications (Table 1.12). The sensitisers can be 

attached at the point of making the solid supports, or for externally bound 

sensitisers, they can be attached after the production of the supports using suitable 
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coupling chemistry. Fewer chemicals are involved for internally bound sensitisers and 

hypothetically, such composite fibres should be safer for water purification. 

However, internally bound sensitisers have the limitation that the diffusion length of 

singlet oxygen is only tens to hundreds of nm and this limits photodynamic 

inactivation of microorganisms to areas in close proximity to the fibre surface (Henke 

et al., 2013). There are several studies that showed that immobilisation of 

photosensitisers onto the surface of inert solid supports does not impair their 

photobiological activities (Table 1.12). Many experts have shown successful 

immobilisation of photosensitisers onto solid supports such as chitosan polymeric 

membrane, electrospun nanofiber, silicate matrix, nanoparticles and nanomagnetic 

particles, glass fibres etc. could be used for photodynamic disinfection of microbial 

polluted water (Table 1.12).  
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The photosensitisers used were: TMPyP,  5, 10, 15, 20-tetrakis (1-methyl-4- pyridinio) porphyrin tetra (p-toluenesulfonate); TPP, 5,10,15,20-
tetraphenylporphyrin;  p-THPP, 5,10,15,20-Tetrakis(p-hydroxyphenyl) porphyrin;  p-TAPP, 5,10,15,20-Tetrakis (p-aminophenyl)porphyrin; 
ZnPcS, Zinc (II) phthalocyanine tetrasulfonic acid tetrasodium salt; TMF, 5,10,15-tris (1-methylpyridinium-4-yl)-20-(pentafluorophenyl) 
porphyrin tri-iodide; TPF, 5-(pentafluorophenyl)-10,15,20-tris (4-pyridyl) prophyrin; TTPF, 5-(pentafluorophenyl)-10,15,20-triphenyl 
prophyrin. E. coli, Escherichia coli; T4-like, bacteriophage T4-like; E. faecalis, Enterococcus faecalis. (***), strong antimicrobial effect; (**), 
moderate antimicrobial effect; (*), low antimicrobial effect. PS, photosensitiser. 

 

Table 1. 12: Some studies that showed photodynamic inactivation of microorganisms with photosensitisers attached onto solid supports  
Solid 

support 
PS Coupling 

chemistry 
Photosensitiser 
bound 
externally or 
internally to 
support 

Illumination 
time (min) 

Model 
organisms 

Antimicrobial 
effect 

References 

Electrospun 
nanafiber 

TMPyP Adsorption by 
ion-exchange 

external 2 E. coli ** (Henke et al., 2013) 

 
" 

 
TPP 

 
Nano-spider 
electrospinning 

 
internal 

 
20 

 
" 

 
* 

 
(Suchanek et al., 
2014) 

" TMPyP Adsorption by 
ion-exchange 

external " " ** " 

Chitosan 
membrane 

p-THPP Adsorption from 
aqueous alkaline 
solution 

" 90 " ** (Bonnett et al., 2006) 

" p-TAPP Dissolution and 
casting  

Internal " " ** " 

" ZnPcS Covalent bonding External 160 " *** " 
" TMPyP Dissolution and 

casting 
Internal 180 " ** (Camargo et al., 2014) 

" p-TAPP " Internal " " ** " 
 
Nano-
magnetic 
particles 

TMF Covalent grafting External 270 E. coli, E. 
faecalis, T4-like  

*** (Carvalho et al., 2010) 

        
" TPF Covalent grafting External 270 " *** " 
" TTPF Covalent grafting External 270 " * " 
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1.12 Photosensitisers: Types and characteristics  

There are several group of photosensitisers that have shown singlet oxygen 

generating ability. The singlet oxygen generating ability of a photosensitiser is 

measured by its quantum yield (Table 1.13). Singlet oxygen quantum yield (Ф∆) of a 

photosensitiser is the number of times a singlet oxygen is produced from an excited 

triplet state photosensitiser molecule per photon of light absorbed.  

The methods used to measure the quantum yield of singlet oxygen generation ranges 

from; 

• Direct detection of the luminescence produced (at 1270 nm) upon relaxation 

of singlet oxygen (time resolved or steady-state infrared luminescence). 

• Calorimetric techniques (photoacoustic calorimetry and time resolved 

thermal lensing) and 

• Quantitative analysis of photooxidation reactions (loss of absorbance, or 

fluorescence of a probe molecule or oxygen uptake)(DeRosa and Crutchley, 2002).  

The loss of absorbance caused by singlet oxygen mediated oxidation of 2-amino-3-

hydroxypyridine was used in this work for quantitative analysis and indication of 

singlet oxygen generation by the photosensitisers TMPyP, Rose Bengal and 

methylene blue. 
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Table 1. 13: Some photosensitisers and their singlet oxygen quantum yield.  

Photosensitiser Singlet oxygen quantum yield (Ф∆) Reference  

Ф∆ (A) Ф∆ (B) Ф∆ (C) 

Rose Bengal 0.75 0.68 0.76 (Redmond and Gamlin, 1999) 

Eosin blue 0.52 0.37  " 

Methylene blue  0.52  " 

MBQ 0.11   (Alegrıá et al., 1999) 

SAS 0.44   " 

H2TPP  0.63  (Redmond and Gamlin, 1999) 

MgTPP  0.62  " 

ZnTPP  0.83  " 

PdTPP  0.88  " 

ZnPcTS 0.45   (Darwent et al., 1982) 

Pc   0.16 " 

PcTS   0.17 " 

Haematoporphyrin 0.65   (Spiller et al., 1996) 

Photofrin II 0.2   (Bonnett, 1995) 

Bacteriochlorin 0.32   " 

Benzoporphyrin 0.6   " 

TMPyP 0.74   (Lei et al., 2010) 

List of some photosensitisers and their singlet oxygen quantum yield in solution. 
MBQ, 2-methyl-1, 4-benzoquinone; SAS, sodium 9, 10-anthraquinone-2-sulfonate; 
TPP, tetraphynyl porphyrine; Pc, phthalocyanine; PcTS, phthalocyanine 
tetrasulfonate; TMPyP, 5, 10, 15, 20‐tetrakis (1‐methyl‐4‐pyridinio) porphyrin tetra 
(p‐toluene sulfonate). (A), water; (B), ethanol; (C), methanol. These are the solvents 
in which singlet oxygen quantum yields of the photosensitisers were determined.  

  

Organic dyes such as Rose Bengal, eosin and methylene blue (Figure 1.13) have good 

quantum yield of singlet oxygen (Table 1.13). Methylene blue is a phenothiazinium 

dye with a strong absorbance in the range 550-700 nm (DeRosa and Crutchley, 2002). 

Xanthene dyes such as Rose Bengal and eosin exhibit intense absorption in the range 

480- 550 nm (DeRosa and Crutchley, 2002). Aromatic hydrocarbons such as 

napthalenes, anthracenes and biphenyls have also be shown to possess 

photosensitising ability (DeRosa and Crutchley, 2002, Redmond and Gamlin, 1999). 

Quinones and anthraquinone derivatives (Figure 1.13) have been reported to be an 
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excellent sensitisers for singlet oxygen generation in aprotic solvents (Alegrıá et al., 

1999, DeRosa and Crutchley, 2002). Porphyrins and phthalocyanines (Figure 1.13) are 

another group of photosensitisers that has been shown to have high quantum yields 

of singlet oxygen in solution (Table 1.13). Porphyrins and their derivatives can absorb 

several wavelenths in the UV-vis range. The Soret band in the blue and the Q-band 

in the red are major bands which represent important components of sunlight 

(DeRosa and Crutchley, 2002). Porphyrins are a large class of deeply coloured red or 

purple, fluorescent crystalline pigments, with natural or synthetic origin, having in 

common a susbstituted aromatic macrocyclic ring joined by four methane bridging 

groups (Figure 1.13). The large planar core aromatic ring system (Figure 1.13) is 

believed to be an important feature because it is common to all of the tetrapyrrole 

inhibitors, whereas the peripheral substituents and metal ions (or lack thereof) can 

vary widely. The cyclic tetradentate (Figure 1.13) framework of the four central 

nitrogen atoms makes porphyrins a unique chelating agents; almost every metal on 

the periodic table is capable of forming a metalloporphyrin complex (Banfi et al., 

2006, Oliveira et al., 2009). Porphyrins belong to compounds that form vital 

constituents of several important and diverse biological functions, and as such, all life 

form depends on the ability of porphyrins to undergo oxidation-reduction and 

electron transfer reactions. The porphyrin-type nucleuses along with metal ions are 

found in cytochromes, peroxidases and catalases, haemoglobin and myoglobin (Fe-

porphyrin), chlorophyll (Mg-porphyrin), vitamin B12 (co-porphyrin) (Oliveira et al., 

2009, Banfi et al., 2006). Phthalocyanines are derivatives of the porphyrin skeleton 

and in addition have nitrogen atoms linked to the individual pyrrole units (Figure 
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1.12). Extended conjugation by the peripheral benzene ring gives phthalocyanines 

the ability to absorb at longer wavelengths (DeRosa and Crutchley, 2002). 

 

Figure 1. 13: Chemical structures of some groups of photosensitisers. Prepared by 
using ChemDraw Pro 13.0. 

 

1.13 TMPyP 

Photosensitiser ‐ 5, 10, 15, 20‐tetrakis (1‐methyl‐4‐pyridinio) porphyrin tetra (p‐

toluene sulfonate) (TMPyP) is our photosensitiser of choice (Figure 1.14). It is a planar 

tetra cationic porphyrin and is available commercially. TMPyP is soluble in water and 

has an absorption peak at 420 nm (Ceklovsky et al., 2008, Ye et al., 2012). This peak 

is within the visible region of the natural light spectrum and that makes it an ideal 

photosensitiser for the development of sunlight driven water disinfection. The singlet 

oxygen quantum yield of TMPYP is 0.74 (74%) in PBS (Lei et al., 2010). TMPyP in 

solution or attached onto a solid support in solution can absorb sunlight and 

ultimately become excited to its triple state which can interact with molecular oxygen 

in solution by type 2 reaction mechanism to generate singlet oxygen and by type 1 
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reaction mechanisms to generate other ROS. These ROS can then inactivate 

waterborne microorganisms including viruses. TMPyP has been extensively studied 

and because of its photo‐physical and electrochemical properties, it has been used 

as useful probe of nucleic acid structure and dynamics (Lubitz et al., 2007, Jin et al., 

2008), construction of devices for optical sensors  (Zhao et al., 2016, Jang et al., 2011) 

and as an efficient  photosensitiser for PDT of cancers and microorganisms (Hanakova 

et al., 2014, Eichner et al., 2013). Several reports showed that when an intense pulsed 

light source is used, TMPyP is a potent photosensitiser for the PDI of microorganisms 

including antibiotic resistant bacteria (Eichner et al., 2013, Maisch et al., 2012b, 

Baumler and Maisch, 2012).  

 

Figure 1. 14: Chemical structure of TMPyP shown with benzene sulphonate counter 
ions. The TMPyP structure was from ChemACX.com, ChemDraw Pro 13.0. 

 

1.14 Photodynamic inactivation experimental model 

Getting it right in the experimental setup of photodynamic inactivation studies is the 

first step towards successful development of a photodynamic disinfection device. 

Irrespective of materials and methods used, a good setup for photodynamic 
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inactivation experiment should be one that excludes factors (other than the 

photodynamic effect) which can inactivate model organisms. In many photodynamic 

experimental rigs, efforts have been made to exclude UV light by using cut-off filters 

or by using light sources that only generate visible light. UV-C (100-280 nm) is 

antimicrobial and can degrades range of biomolecules particular those with aromatic 

character. In this study, we avoided using a UV light source and used cold visible light 

source instead.  In addition, the majority of our experiments were carried at room 

temperature 20-22 oC. However, a range of temperature should be studied so as to 

mimic waste water treatment plants in locations with moderate to high 

temperatures such as tropical countries. The amount and availability of molecular 

oxygen is a vital factor in the photosensitisation process and as such photodynamic 

reactors should be built to allow easy diffusion of molecular oxygen and to create the 

desired aerobic environment. Presently, the majority of photoinactivation and 

photodegradation experimental set-ups are stationary based models which do not 

actually mimic waste water treatment plants or reactors and there is need to 

simulate a flowing system to see if the photosensitizing devices could achieve the 

same level of photodynamic inactivation performance. In this study, both stationary 

and flowing water experimental models were used.  

1.15 Model viruses used for PDI 

In most studies aimed at photodynamic inactivation of human viruses, enteric and 

non-enteric, pathogenic and non-pathogenic, bacteriophage MS2 has been used as a 

model organism because of its similarity in size and morphology to some human 

viruses. However, there are views that to use phage as a model organism in 

photoinactivation experiments may not accurately model inactivation of human 
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viruses under all experimental conditions (Silverman et al., 2013). It was argued that 

to fully understand photodynamic inactivation of human viruses, including poliovirus, 

adenovirus, and hepatitis A virus, the only approach is to study them directly. This 

was one of the reasons for using bovine enterovirus and murine norovirus in addition 

to bacteriophages MS2 and Qβ as model organisms in our study. 

 

1.15.1 MS2  

MS2 is a small (~ 27 nm), positive sense, single stranded RNA bacteriophage 

belonging to the genus Levivirus in the family Leviviridae. MS2 has been used as a 

viral model organism in several studies aimed at photoinactivation and chemical 

disinfection of human viruses because of its similarity in size and morphology to some  

human viruses such as noroviruses and picornaviruses (Kohn and Nelson, 2007, 

Zhong et al., 2016). Also, because it is non-pathogenic to human, so poses no health 

risk and easy to propagate.  The MS2 virion consists of an RNA genome (3,569 nt) 

enclosed in a non-enveloped icosahedral capsid with  T = 3 quasi-symmetry that is 

composed of 178 copies of coat protein (13.7 KDa) and one copy of maturation 

protein also called A-protein (44 KDa) (Figure 1.6) (Koning et al., 2016, Dai et al., 

2017). The assembled MS2 capsid has 32 pores, each of which is about 2 nm in 

diameter. This allows small molecules to diffuse more readily into and out of the 

capsid (Dedeo et al., 2010, Valegård et al., 1990).  The genome encodes 4 proteins 

comprising of A-protein, coat protein, lysis protein and replicase. The A-protein is 

attached to viral RNA from inside the capsid and during infection, it recognises and 

binds to the host bacteria pilus during infection (Figure 1.15).    
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(Placeholder1p. This image has been removed by the author of this thesis for 

copyright reasons) 

Figure 1. 15: MS2 capsid showing the coat protein 13.7 KDa (178 copies) labelled blue 
and the A-protein 44 KDa (one copy) labelled red. The A- protein is shown slightly 
tilted from the surface of the coat protein and (as inset) projecting into the capsid 
lumen. The α-helix domain of the A-protein is attached to the RNA inside the capsid, 
while the β-sheet domain is surface-exposed and is believed to recognise and bind to 
the host bacteria pilus during infection. The model was created by docking the MS2 
A-protein [PDB-5tc1] onto the MS2 capsid [PDB-2MS2] using PyMOL version 1.7rc1. 

 

1.15.2 Phage Qβ 

Phage Qβ is a small (~ 27 nm), positive sense, single stranded RNA bacteriophage 

belonging to the genus Allolevivirus in the family Leviviridae. The RNA genome (4,220 

nt) of phage Qβ encodes 4 proteins comprising of A1 (38 KDa), A2, coat protein (13.7 

KDa)  and Qβ replicase (61-65 KDa) (Golmohammadi et al., 1996). It has a non-

enveloped icosahedral capsid (Figure 1.16) with T = 3 quasi-symmetry consisting of 

178 copies of coat protein and one copy of A2 maturation protein (corresponding to 

the 44 KDa A-protein in MS2) which participate in host the bacterial cell recognition 

and attachment to bacteria pilus during replication (Gorzelnik et al., 2016). However, 

unlike MS2, It has been shown that coat protein subunits of Qβ are linked together 

by disulphide bonds in covalent pentamers and hexamers with a stoichiometric ratio 

12:20 that is consistent with icosahedral symmetry (Takamatsu and Iso, 1982).   
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Figure 1. 16: Phage Qβ capsid showing the coat protein 13.7 KDa (178 copies) labelled 
blue. The A2-protein 44 KDa (one copy) labelled red is also part of the capsid and its 
α-helix domain is attached to the RNA inside the capsid, while the β-sheet domain is 
surface-exposed and is believed to recognise and bind to the host bacteria pilus 
during infection. The images were created from the phage Qβ capsid [PDB-1QBE] and 
maturation protein (A2-protein) [PDI-5MNT] using PyMOL version 1.7rc1. 

1.15.3 Bovine enterovirus 2 

Bovine enterovirus 2 (BEV 2) also called enterovirus F, is a positive sense, single 

stranded RNA virus belonging to the genus Enterovirus in the family Picornaviridae. 

BEV 2 shows similarities with other viruses belonging to the same family of 

Picornarviridae. These include poliovirus, foot and mouth disease virus, human 

rhinovirus, and encephalomyocarditis virus (Goens et al., 2004, Smyth et al., 1993, 

Smyth et al., 1995). BEV 2 is about 27-30 nm in diameter and is usually part of the 

cattle gut normal flora. However, following infection of the reproductive tract, BEV 

can cause abortion, stillbirth, infertility, and neonatal mortality in cattle.  It can also 
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cause enteric and respiratory diseases in cattle. Enteric symptoms include diarrhoea 

and weight loss (Goens et al., 2004). The BEV 2 virion consist of an RNA genome 

(~7500 nt) enclosed in a non-enveloped icosahedral capsid (Figure 1.17) that is 

composed of 60 copies each of VP1 (34 KDa), VP2 (29 KDa), VP3 (27 KDa) and VP4 (7 

KDa). Proteins VP1, VP2 and VP3 are exposed on the surface of the capsid while VP4 

is internal and is myristylated at its N-terminal residue during replication and 

assembly. The host attachment sites occur on the surface ridge and they are 

analogous to canyon in polio and rhinoviruses (Figure 1.17). 

 

Figure 1. 17: BEV 2 capsid showing the 3 capsid proteins exposed on the surface of 
the capsid. The capsid is composed of 60 copies each of VP1 (34 KDa) labelled pale 
yellow, VP2 (29 KDa) labelled red and VP3 (27 KDa) labelled green, exposed on the 
surface of the capsid while VP4 (7 KDa) is internal. The host attachment sites (labelled 
blue) occur on the surface ridge across the 3 surface capsid proteins (Smyth et al., 
1995). The image was created from the capsid of bovine enterovirus VG-5-27 [PDB-
1BEV] using PyMOL version 1.7rc1. 

1.15.4 Murine norovirus 

Murine norovirus (MNV) is a positive sense, and single stranded RNA virus belonging 

to the genus Norovirus in the family Calciviridae. Human norovirus (HNV) belongs to 

the same genus of norovirus as MNV and because of a lack of good replication of HNV 

in animal models, MNV is currently used as a model to study biology of norovirus 
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(Katpally et al., 2010, Taube et al., 2010, Orchard et al., 2016). Human norovirus is 

the most common cause of viral gastroenteristis in humans. It affects people of all 

ages worldwide. The virus is fecal-orally transmitted through contaminated food, 

water, person-to-person contact, and via aerosolisation of vomited virus and 

subsequent contamination of surfaces (Patel et al., 2008). Annually, norovirus is 

associated with about 1 million outpatient visits and about 65,000 in patient 

hospitalisations in developed countries. In developing countries, it is associated with 

about 1.1 million hospitalisations with an estimated 218,000 deaths (Ahmed et al., 

2014b). Clinical symptoms of norovirus infection in human include nausea, vomiting, 

watery diarrhoea and abdominal pain (Patel et al., 2008).  MNV is the most prevalent 

virus in laboratory mice. It can only cause clinical signs in immunodeficient mice 

(Karst et al., 2003). MNV infection can cause wasting, diarrhoea and death in mice 

with severe deficiencies in innate immunity, specifically the interferon signalling 

pathways or multiple interferon receptors. Microscopically, hepatitis, peritonitis, and 

interstitial pneumonia can be seen in infected immunodeficient mice (Karst et al., 

2003, Mumphrey et al., 2007). The norovirus genome is composed of 3 major open 

reading frames (ORFs). ORF1 encode the non-structural poly protein (200 KDa), ORF2 

encode the major capsid protein VP1 (58 KDa) and ORF3 encode the minor capsid 

protein VP2 (20 KDa). ORF4 has been identified but its product and function have not 

been established (Taube et al., 2010). Norovirus capsids are formed from 180 copies 

of VP1 organised in a T = 3 quasi equivalent icosahedral symmetry. Each capsid 

protein is divided into an N-terminal arm (N), a shell (S), and C-terminal protruding 

(P) domain. The S and P domains are connected by a short hinge. The P domains form 

dimers appearing as an arch structure on the capsid surface (Figure 1.18). The P 
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domain is subdivided into P1 (stem of the arch) and P2 (top of the arch) domains 

(Figure 1.18). The P domain, specifically P2 domain contains the sites for antigenicity 

and host cell binding during infection (Taube et al., 2010).      

 

 

Figure 1. 18: Murine norovirus capsid showing the major capsid protein VP1 (58 KDa) 
(180 copies) labelled red. Each VP1 is divided into an N-terminal arm (N), a shell (S), 
and C-terminal protruding (P) domain. The P domain has two parts (inset); P1 domain 
labelled yellow and P2 domain labelled green. The P domains form dimer to look like 
an arch structure on the capsid surface and it is believed that host binding occurs at 
P2 domain. The images were created from the full and half capsid of Norwalk virus 
[PDB-1HIM] and murine norovirus P domain [PDB-3LQ6] using PyMOL version 1.7rc1. 
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1.16 Project aim  

The overall goal of this project was to develop a sunlight-driven water disinfection 

system which is simple, cheap, re-usable and environmentally friendly. These 

features would allow use in rural areas of developing countries where water 

treatment infrastructure is either absent or poorly developed.  However, the low 

energy input is also an attractive feature for water companies in developed nations. 

Here, disinfection of “grey water” might allow this to be excluded from full water 

processing and returned to the environment. This would reduce overall energy 

usage.    

The specific objectives include; 

To examine the PDI of model viruses with photosensitisers in solution. The rate and 

extent of PDI among model viruses will be compared and analysed. Effects of factors 

such as light intensity, time of illumination, types of photosensitiser, concentration 

of photosensitiser and co-pollutants on the PDI of viruses will be examined.  This 

should reveal information on all factors that should be considered when establishing 

an optimal PDI conditions for the control of viruses.  

A further objective is to examine mechanisms and targets of PDI in viruses from a 

biological perspective. Even though PDI of viruses in solution by photosensitisers has 

been reported previously, the molecular effect of PDI on virus particles has been 

poorly described.   

Another objective is to attach the most efficient photosensitiser onto a solid support 

and then use photosensitiser-functionalised solid support for PDI of model viruses. 
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Irreversible coupling of the photosensitiser onto solid support will make it suitable 

for all water disinfection application or the attached photosensitiser will not be 

leached into the water during treatment there by making it safe and environmentally 

friendly. Both stationary and flowing water models will be employed during PDI 

experiments.     

The proposed work will lead the way in the development of simple sunlight driven 

water disinfection devices that could be used within the UK to save energy, or in 

developing countries as a zero-man-made energy input system to produce clean and 

safe drinking water.  
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Chapter 2: Materials and methods 

2.1 Materials 

2.1.1 Chemicals  

Inorganic chemicals were purchased from Sigma-Aldrich (UK) unless otherwise 

stated. Organic chemicals are listed beside the company where they were purchased 

(Table 2.1). 

 Table 2. 1: Organic chemicals used in this work are listed beside the company where 
they were purchased. 

Sigma-Aldrich 

(UK)  

ethanol, formaldehyde (36.5 – 38% v/v in H2O), propidium iodide, 

sucrose, bromophenol blue, Tween-20, acetic acid, uranyl 

acetate, carbenicillin, agarose, chitosan, pyromelitic dianhydride, 

succinic anhydride, anti-Rabbit IgG, Hepes, skimmed milk, 

TMPyP, methylene blue hydrate, Rose Bengal, biotin-N-

hydroxysuccinimide (biotin-NHS) and dimethyl sulfoxide (DMSO) 

BDH 

laboratory 

supplies (UK) 

1-ethyl-3-(3-dimethylamiopropyl) carbodiimide (EDC) 

Generon (UK) Coomassie Blue 

Oxoid Ltd, UK Agar Technical 

Alfa Aesar (UK) Fluorescein diacetate (FDA) 

Thermo Fisher 

Scientific (UK) 

Tris Base, methanol, glycerol, Lipofectin reagent, Pierce ECL 

western blotting substrate, HRP-streptavidine and HRP-

conjugate secondary antibodies and Spectra multicolour broad 

range protein ladder 

Amersham - 

GE Healthcare 

Life Sciences 

(Germany) 

Nitrocellulose blotting membrane 

Bio-Rad 

Laboratories 

(Germany) 

Mini Protean Tris-Glycine (TGX) precast gels and Mini Proteans 

Tris-Tricine precast gels  

Expedeon (UK) Instant Blue 

Acros organics 

(UK) 

2-amino-3-hydroxypyridine 
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2.1.2 Solvents and buffers 

Solvents and buffers used in this study were shown in Table 2.2. 

Table 2. 2: Buffers  

Buffers Composition 

1 X Phosphate 

buffer saline 

(PBS), pH 7.4 

10 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, and 2.7 mM 

KCl 

Electron 

microscopy 

buffer, pH 8.0 

10 mM Hepes, 100 mM NaCl, and 1.274 mM EDTA 

Bio-Rad 1 X 

Tris/Glycine/SDS 

(TGS) running 

buffer, pH 8.3 

25 mM Tris, 192 mM Glycine, and 0.1% (w/v) SDS 

Bio-Rad 1 X 

Tris/Tricine/SDS 

running buffer, 

pH 8.3 

25 mM Tris, 192 mM Tricine, and 0.1% (w/v) SDS 

1 X TAE Buffer, 

pH 8.6 

40 mM Tris, 20 mM acetate and 1 mM EDTA  

1 X Transfer 

buffer for 

western blotting 

25 mM Tris, 192 mM glycine and 20% (v/v) methanol 

1 X Tris buffer 

saline (TBS) 

20 mM Tris and 150 mM NaCl 

Tris buffer 

saline with 

Tween-20 

(TBST) 

0.1% (v/v) Tween-20 in TSB 

2 X lammeli 

loading buffer 

(reducing), pH 

6.8 

4% SDS (w/v), 10% (v/v) mercaptoethanol, 20% (v/v) glycerol, 

0.004% (w/v) bromophenol and 0.125 M Tris-HCl  

 

2 X Loading 

buffer for native 

agarose gel 

5% (v/v) glycerol and 0.004% (w/v) bromophenol 
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2.1.3 Antibodies 

Rabbit anti MS2 virus protein polyclonal antibodies were sourced commercially from 

Genscript, USA. Four synthetic peptides corresponding to the amino acid sequences 

of antigenic determinant sites of MS2 A-protein (Figure 2.1) were commercially 

synthesised by Genescript, USA. Sequence specific antibodies against these peptides 

were raised in rabbits and the IgG fraction purified by protein A/G chromatography, 

then by peptide affinity chromatography. 

(Placeholder3p. This image has been removed by the author of this thesis for 
copyright reasons) 

Figure 2. 1: MS2 A-Protein, showing positions of four predicted antigenic sites. The 
RNA-binding domain of protein A, located within the capsid lumen, is shaded in 
darker grey, while the surface exposed domain is shaded in lighter grey. Antigenic 
sites 1, 2, 3 and 4 are shown in green, red, blue and purple underlined bold characters 
and spheres, respectively on the amino acid sequence and the model. The model was 
created from the MS2 A-protein [PDB-5tc1] using PyMOL version 1.7rc1. Predictions 
of antigenic binding sites were performed by Genscript using their proprietary 
software. 

2.1.4 Bacterial and viral strains 

The phage MS2 ATCC 15597-B1, phage Qβ and their E. coli host cell ATCC 15597 

stocks were donated by Prof. Peter Stockley (School of Molecular and Cellular 

Biology, University of Leeds, UK). The bovine enterovirus 2 (BEV2) and murine 

norovirus (MNV) and their host cells (BHK-21 and RAW 264.7 cells respectively) were 

provided by Prof. Nicola Stonehouse (School of Molecular and Cellular Biology, 

University of Leeds, UK). BL21 E. coli was from standard laboratory stocks. 

2.1.5 Growth media for bacteria 

Tryptic Soy Broth was purchased from Sigma and used throughout this work. Tryptic 

Soy Broth (TSB) and Tryptic Soy Agar (TSA) were prepared according to 

manufacturer’s instructions. 
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2.1.6 Growth media for BHK-21 and RAW 264.7 cells 

The tissue culture media - Dulbecco's Modified Eagle's Medium (DMEM) and 

Minimum Essential Medium (MEM), penicillin – streptomycin (P/S), trypsin and L-

glutamine were all purchased from Sigma-Aldrich (UK). Foetal bovine serum (FBS) 

and Horse serum (HS) were purchased from Biosera (UK). The media were prepared 

according to standard required compositions. The media for culturing of RAW 264.7 

cells and propagation as well as TCID50 assays of MNV was composed of DMEM, 10% 

(v/v) FBS and 1% (v/v) P/S. The media for propagation of BHK-21 cells and plaque 

assays was composed of DMEM, 10% (v/v) HS and 1% (v/v) P/S. The transfection 

media was composed of MEM, 10% (v/v) FBS and 1% (v/v) P/S. Serum-free media 

(SFM) were made of either DMEM, 1% (v/v) P/S or MEM, 1% (v/v) P/S.  

2.1.7 Light source and conditions for PDI 

The light source for PDI experiments was a Schott KL 2500 LCD (Schott Ltd., UK) 

which provides a cool visible light (Figure 2.2). Fluence rates of illumination during 

photoinactivation experiments were measured using a light meter (Clas Ohlson, UK). 

Stationary and flow models were adopted for PDI using TMPyP-functionalised 

chitosan membrane (CM-T).  Visible light was used and fluence rates (radiant 

exposure) were 32 mW cm-2 unless otherwise stated. This fluence rate is low, about 

10% of typical UK summer mid-day sunshine, but allowed a graded response after 

PDI (rather than an “all or none” response) to be measured. The conversion factor is; 

1 lux = 9.5 X 10-3 mW cm-2 = 1.8 X 10-3 μM m-2 s-1 of visible photons (400- 700 nm). 

The buffer used for PDI was 1 X PBS under aerobic conditions. 
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Figure 2. 2: Images of PDI experimental setup. (A), PDI experiment in progress; (B), 
labels of the components of the PDI experimental setup in solution.   

 

2.1.8 Equipment 

A Malvern Zetasizer (Malvern Instruments Ltd, Malvern, UK) was used for dynamic 

light scattering analysis (DLS) of pre-PDI and post PDI MS2 samples whilst a NanoDrop 

spectrophotometer (NanoDrop 2000C, Thermo Scientific, USA) was used to 

determine the concentration and purity of purified virus (proteins) samples at 280 

nm and extracted RNA from pre-PDI and post-PDI virus samples at 260 nm.   

Spectral properties of PDI light source and photosensitisers-TMPyP, Rose Bengal and 

methylene blue used in this study were determined by a spectrometer (QE Pro, 

Ocean Optics, USA) whilst fluorescence of dyes during dead and enzyme activity 

assays of the E. coli host cell were measured by Cary eclipse fluorescence 

spectrophotometer (Varian Australia Pty Ltd, Mulgrave Victoria, Australia). 
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Bacterial assays were carried out in a lamina flow cabinet (BSB-48, Gelaire Ltd., 

Sydney, Australia). Incubation of bacteria broth culture, bacteria agar plates and 

double layer plaque assay agar plates of purified, pre-PDI and post-PDI samples of 

bacteriophages MS2 and Qβ were performed in an Innova TM 4000 incubator (New 

Brunswick Scientific co., Edison, USA) with or without shaking. 

Mammalian cell culture works were carried out in UniMat-BS, Class II Microbiological 

Safety Cabinet (Envair Ltd., Lancashire, England). Incubation of cells (BHK and Raw 

cells) for propagation and titre determination of purified, pre-PDI and post-PDI 

samples of bovine enterovirus 2 (BEV 2) and murine norovirus (MNV 2) were 

performed in a NuAire DH Autoflow CO2 air jacketed incubator (NuAire, Plymouth, 

USA).  

A Philips CM10 electron microscope was used for the imaging of purified, pre-PDI and 

post-PDI virus samples. A Leica microscope (Leica Micro Systems LTD, Switzerland) 

was used to observe the growth and confluence of tissue cultures (BHK and Raw 

cells). A Hitachi tabletop scanning electron microscope TM3030 (Hitachi High-Tech, 

Tokyo, Japan) was used for the imaging of modified and unmodified chitosan electron 

spun nanofibers and polymeric membranes. 

2.2 Standard methods 

2.2.1 Growth curve of Escherichia coli  

A growth curve was used to determine the growth, viability and colony forming unit 

per ml (CFU/ml) of E. coli strains used throughout the work.  E. coli (ATCC 15597) is 

the host bacteria for bacteriophages MS2 and Qβ while E. coli BL21 is a carbenicillin 

resistant bacterium that was used as the bacteria model organism during PDI 



93 
 

  
 

experiments. TSB (100 ml) was inoculated with 1 ml of overnight culture of E. coli and 

was then placed on the shaking incubator set at 37 oC and 150 rpm. At 30 min 

intervals, the optical density (600 nm) of the culture was determined over a total of 

4 h.  Tenfold serial dilution from 102 to 106 were carried out at each time point and 

0.1 ml of dilutions from 103 to 106 were plated out on TSA plates which were 

incubated at 37 oC for up to 24 h. After the incubation those plates that contained 

30-300 colonies were counted. For those time sets that had more than one plate with 

30-300 colonies, the average was taken and recorded for that particular time set. 

 

2.2.2 Propagation, purification and enumeration of MS2 bacteriophage 

stock culture 

2.2.2.1 Propagation and purification of bacteriophages MS2 and Qβ 

The bacteriophages MS2 and Qβ were propagated according to the method 

described in (Lima et al., 2004) with slight modifications. One litre of exponential 

phase growth culture of E. coli (ATCC 15597) was infected with 300 µl of MS2 at 109 

PFU/ml or phage Qβ 1010 PFU/ml respectively and was incubated at 37 oC with 

shaking at 150 rpm for 48 h until E. coli cells were completely lysed. The lysates were 

then centrifuged at 1,431 xg for 30 min to removed bacterial cell debris. The material 

was precipitated using 50% (v/v) saturated ammonium sulphate overnight at 4 oC.  

Samples were then centrifuged at 1,431 xg for 30 min. Supernatants were discarded 

and the pellets re-suspended in 10 ml PBS. The re-suspended pellets were clarified 

again by centrifuging at 1,431 xg for 30 min.  Phage particles in the supernatants were 

pelleted through 30% (w/v) sucrose cushion by ultracentrifugation at 32,000 rpm for 

3 h using a Beckmann SW 32 Ti rotor. Pellets were re-suspended in 800 µl PBS 
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overnight at 4 oC. Re-suspended pellets were each purified through 15% - 45% (w/v) 

sucrose gradient by ultracentrifugation at 50,000 rpm for 50 minutes using a 

Beckmann SW 55 Ti rotor. Gradient fractions were collected from top to bottom and 

analysed by SDS-PAGE to identify MS2 and phage Qβ protein peak fractions 

respectively. 

2.2.2.2 Plaque assay of bacteriophages MS2 and Qβ 

A double layer agar plaque assay was used to determine the infectivity and titre of 

bacteriophages MS2 and Qβ before and after PDI to determine the titre after 

purification and as well as the extent and rate of PDI. In order to prepare 100 ml of 

top agar, 0.6 g of agar was added to 100 ml of TSB was then autoclaved. After 

sterilisation, 3 ml each of the top agar was dispensed into 15 ml falcon tubes and 

were placed in a water bath set at 45 oC. Tenfold serial dilutions of MS2 and phage 

Qβ from 102 to 1014 were carried out in TSB.   Microcentrifuge tubes (1.5 ml) were 

set up and labelled with dilution factor for the initial incubation of the bacteriophages 

and their host E. coli cells. To each of these, 0.1 ml of the corresponding MS2 or phage 

Qβ dilution and 0.3 ml log phase E. coli (ATCC 15597) culture (0.5 OD at 600 nm) were 

added and incubated for 20 min at 37 oC. After the incubation, they were added to 

their corresponding top agars in water bath and were votex before plating them out 

on their respective corresponding agar plates. After the top agar has solidified, the 

plates were incubated at 37 oC for 24 h. After incubation, the plates with 30-300 

plaques were counted.  
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2.2.3 Propagation, purification and enumeration of BEV 

2.2.3.1 Propagation and purification of BEV 

BHK-21cells were grown to 80-90% confluence in T175 flasks (10 flasks were used). 

Then the media (DMEM, 10% (v/v) HS, 1% (v/v) P/S) was removed and cells 

monolayer was washed with 10 ml PBS for each flask. To each flask, 10 ml of pre-

warmed media (DMEM, 10% (v/v) HS, 1% (v/v) P/S) was added. Each flask was then 

infected with 600 µl of stock BEV 2. The flasks were then incubated at 37 oC, 5% CO2 

for 48 h until full lysis. The flasks were then frozen at -20 oC overnight. The flasks were 

then thawed and   lysate transferred to Falcon tubes and were centrifuged at 1,431 

xg for 30 min. The supernatant was then precipitated by 50% (v/v) saturated 

ammonium sulphate overnight at 4 oC. After precipitation, this was centrifuged at 

1,431 xg for 30 min. The supernatant was discarded and the pellet re-suspended in 

10 ml PBS at 37 oC. The re-suspended pellet was clarified again by centrifuging at 

1,431 xg for 30 min.  The supernatant was then concentrated using 30% (w/v) sucrose 

cushion which was centrifuged at 32,000 rpm for 3 h using a Beckmann SW 32 Ti 

rotor. The pellet was re-suspended in 900 µl PBS overnight. The sample was then 

subjected to a 15 - 45% (w/v) sucrose gradient at 30,000 rpm for 2 h using a 

Beckmann SW 40 Ti rotor. Gradient fractions were collected from top to bottom and 

analysed by SDS-PAGE to identify BEV 2 protein peak fractions. 

2.2.3.2 Plaque assay of BEV 

Plaque assay was used to determine the infectivity and titre of BEV before and after 

PDI experiments. BHK-21 cells were first split from a T175 ml flask into 6 well cell 

culture plates. Media (DMEM, 10% (v/v) HS, 1% (v/v) P/S) was removed and cells (80–

90% confluence) monolayer washed with 10 ml PBS. Then 5 ml of 0.25% (v/v) trypsin 
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was added. It was incubated at 37 oC for 2-3 min, until the cells appeared rounded by 

microscopy. The side of the flask was gently tapped to detach cells. Then 5 ml media 

(DMEM, 10% (v/v) HS, 1% (v/v) P/S) was added to cells. It was then split in the ratio 

1:10. Finally, 0.2 ml was placed into each well and 2 ml of media was added to each 

well and the plate Incubated at 37 oC, 5% CO2, usually for around 24 h of incubation. 

After incubation, 1 ml of media was pipetted off and discarded from each well leaving 

1 ml of media on each cell monolayer. Then 10-fold dilutions of virus samples (101- 

106) were made and each well was labelled with the respective diluent. Each well was 

then infected with 100 µl of virus diluent. The plates were then incubated at 37 oC 

for 1 h and after internalisation of virus (i.e. 1 h post-infection), each well was 

overlaid with 2 ml of pre-warmed molten 1% (w/v) agarose in serum free media 

(DMEM, 1% P/S). After solidification of the agarose, the plates were incubated at 37 

oC, 5% CO2 for the duration of around 6-8 cycles of replication. Thus, infected cells 

were incubated for 48 h in order to see visible plaques. After full incubation for the 

completed number of cycles, infected cells were fixed for 1 h with 4% (v/v) 

formaldehyde. Supernatant serum-free media was removed. Solidified agar was 

carefully removed from each well without scratching the cell surface. Each cell 

monolayer was then stained with crystal violet and visible plaques counted. 

2.2.4 Propagation, concentration and enumeration of MNV 

2.2.4.1 Propagation and concentration of MNV 

RAW 264.7 cells were grown to 70-80% confluence in T75 flask (10 flasks were used). 

Then 5 ml of media (DMEM, 10% (v/v) FBS, 1% (v/v) P/S) was removed from each 

flask so that only 7 ml of the media remained. Each flask was then infected with 1 ml 

of stock MNV and flasks were incubated at 37 oC, 5% CO2 for 72 h until full cell lysis. 



97 
 

  
 

The flasks were then frozen at -20 oC and thawed intermittently 4 times. The lysate 

was then transferred to 50 ml Falcon tube (lysate from 5 flasks per tube). Then the 

lysate was clarified by centrifuging at 1,431 xg for 30 min and supernatant was taken 

and pellet discarded. This clarification step was repeated twice. The supernatant was 

then concentrated by ultracentrifugation at 32,000 rpm for 3 h using a Beckmann SW 

32 Ti rotor. After ultracentrifugation, the supernatant was discarded and the pellet 

was re-suspended in 1 ml PBS overnight. The concentrated MNV was then used with 

no further purification. 

2.2.4.2 TCID50 assay of MNV 

TCID50 assay was used to determine the infectivity and titre of MNV before and after 

PDI experiments to determine its titre after propagation and as well as extent and 

rate of PDI. RAW 264.7 cells were first split from a T75 ml flask into 96 well cell culture 

plates. Media (DMEM, 10% (v/v) FBS, 1% (v/v) P/S) (12 ml) was removed from cells 

(70–80% confluence) in a T75 flask. Then 6 ml of fresh media was added to the cell 

monolayer and the cells were scrapped using cell scrapper. An additional 6 ml media 

was added to the flask to make 12 ml. it was then pipetted up and down to wash the 

flask as well as to break the clumps of cells. The cells were first counted and 100 μl 

of 5 x 105 cells/ml were seeded per well. The plates were rocked gently to mix and 

disperse cells evenly in each well and then incubated at 37 oC, 5% CO2 overnight. 

After overnight incubation, 10-fold dilution of MNV samples (101- 106) were made. 

Each well (usually with 5 wells as replicates) was then infected with 100 μl of the 

respective MNV diluent. The plates were then incubated at 37 oC, 5% CO2  for 72 h. 

After the incubation, the plates were exposed to UV light for 1 h in a laminar flow 

hood. The media was removed and the cell monolayers stained with crystal violet. 
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The number of wells that showed cell death per MNV diluent were counted and MNV 

infectivity and titre were determined using Reed-Muench TCID50 formula (Reed and 

Muench, 1938).  

2.2.5 SDS-PAGE 

Pre- and post-PDI viral proteins were separated on a Bio-Rad mini Protean TGX 

Precast Gels 4-15% (w/v) bisacrylamide - acrylamide and Tris/glycine/SDS as running 

buffer or Bio-Rad mini Protean Tris-Tricine Precast Gels 10-20% (w/v) bisacrylamide 

- acrylamide and Tris/Tricine/SDS as running buffer for the separation of peptides 

and small proteins. Samples were first mixed in 2x Laemmli sample buffer to give 1 x 

sample buffer and then heated at 100 oC for at least 5 min. The samples were then 

loaded on the gel and separated at 110 V for 1.5 h. The gel was then stained using 

Coomassie blue stain for 1 h while on a 3D rocking platform set at 30 rpm. After 

staining, the gel was destained in dH2O for 2 h placed on a 3D rocking platform. The 

gel was imaged using a G-box gel imager (Syngene, UK). 

2.2.6 Western blotting 

Pre- and post-PDI viral proteins were detected and analysed by western blotting 

using a nitrocellulose membrane.  A nitrocellulose blotting membrane (Amersham, 

GE Healthcare Life Sciences, Germany) was pre-wet in 1 x transfer buffer. Meanwhile, 

after SDS-PAGE, the gel was removed, edges were trimmed and the gel was placed 

in 1 x transfer buffer to equilibrate for 10 min on a 3D rocking platform. Two each 

fibre pads and Bio-Rad blotting papers, cut to the size of the gel were also pre-soaked 

in 1 x transfer buffer.  Blotting sandwich was made using the gel holder cassette 

placed in a container with 1 cm deep 1 x transfer buffer with the black side of the 

cassette immersed in the buffer while the white side was up and out of the buffer. 
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One of the pre-soaked fibre pads was laid on the black side of the cassette. Then one 

of the pre-soaked blotting paper was placed on the pad. Throughout the sandwich 

construction a roller was used to remove any air bubbles between the gel and the 

membrane or between other layers. The sandwich was then inserted into an 

electroblotting machine (Bio-Rad) and blotting buffer and ice unit were added 

accordingly. The blot was run at 20 V for 2 h. After the transfer, the sandwich was 

disassembled, the nitrocellulose membrane removed and immediately immersed in 

25 ml 5% w/v skimmed milk for 30 min at room temperature for blocking. After 

blocking, the skimmed milk was poured off and the membrane was washed twice in 

TBST. Then the membrane was incubated in 10 ml of primary antibodies dilutions 

from 1:1000 to 1:100 dilution in TBST for at least 1 h at room temperature or 

overnight at 4 oC on a rocking platform at 60 rpm. After incubation, the primary 

antibody was poured off and the membrane rinsed quickly in 20 ml of wash buffer. 

Another 20 ml TBST was then added and the blot allowed to wash for about 5 min on 

3D rocking platform at 30 rpm. The wash buffer was then replaced with 10 ml of 

secondary goat anti-rabbit HRP conjugate (1:1000 dilution in TSBT) for 30 min at 

room temperature on a 3D rocking platform at 60 rpm. After incubation, the 

secondary antibodies were poured off and the membrane again rinsed quickly in 20 

ml of wash buffer and then 20 ml TBST was then added and to wash for about 5 min. 

finally, after removing wash buffer, 10 ml of ECL (Pierce ECL Western Blotting 

Substrate, Thermo Scientific, USA) was added to the membrane and incubated at 

room temperature for at least 1 min before the image was captured using a G-box 

gel imager (Syngene, UK). 
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2.2.7 Transmission electron microscopy of viruses 

Samples of viruses (pre- and post-PDI) were dialysed into electron microscopy (EM) 

buffer (10 mM Hepes, 100 mM NaCl, 1.274 mM EDTA, pH 8.0). The virions were then 

adsorbed onto a freshly prepared carbon coated copper grids prepared by adding 5 

µl of sample onto the copper grids, waiting  for 30 sec then washing the grid twice in 

dH2O. Excess liquid on the grid was then removed using blotting paper. The grid was 

then treated with 4% (w/v) uranyl acetate for 10 sec to negatively stain the virus 

coated surface. This was then washed twice in dH2O and excess liquid on the grid 

removed using blotting paper. The grids were observed using a CM10 Transmission 

Electron Microscope (Philips). This work was done with assistance of Mr Martin Fuller 

in the Astbury Centre Electron Microscopy unit (FBS Leeds) 

2.2.8 Assay of dead E. coli to determine MS2 viability  

Since plate based viral assays were time consuming, we investigated quantification 

of either dead bacteria or live bacteria after PDI. Assaying dead bacterial host cells 

by propidium iodide (PI) was tested as an indirect test MS2 viability. The assay of E. 

coli was carried out by measuring the fluorescence of PI at λex of 470 nm. The method 

is based on the ability of PI to selectively go into cells with a compromised membrane, 

intercalate with DNA and fluoresce. Membrane impairment could be by 

bacteriophage infection, heat treatment or photooxidation. Two hours log phase 

broth culture of bacteria in TSB was incubated for 30 min with different dilutions of 

MS2 at a ratio of 3:1 (bacteria to diluted MS2) in TSB. After incubation, the samples 

were washed once by centrifugation at 201 xg for 10 min, supernatant removed and 

re-suspended in equal volume of PBS. From each sample, 5 ml was taken into a 

separate tube and incubated with 50 µl of 3 mM PI in the dark for 15 min. Then, 
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fluorescence of each sample was measured in a Cary Eclipse fluorescence 

spectrophotometer at λex of 470 nm.  

2.2.9 Enzyme activity assay of E. coli to determine MS2 viability  

This approach was investigated as a complementary approach to the previous dead 

cell assay. Enzyme (esterase) activity of E. coli was measured by observing 

fluorescence of fluorescein diacetate (FDA). This method is based on the hydrolytic 

cleavage of FDA (colourless) into fluorescein (fluorescent yellow-green) by esterases 

inside the cell. Cells that have impaired membrane by phage infection are unable to 

retain the charged fluorescein. Two hours log phase broth culture of bacteria in TSB 

was incubated for 30 min with different dilutions of MS2 at a ratio of 3:1 (bacteria to 

diluted MS2) in TSB.  From each sample, 5 ml was taken into separate tube and then 

incubated with 8 µl of 12 mM FDA for 15 min. The remaining samples (5ml each) 

were also incubated with 8 µl of 12 mM FDA for 15 min, then centrifuged at 201 xg 

for 20 min. The supernatant from each sample was removed and labelled 

supernatant sample and the pellet of each sample re-suspended in 5ml of PBS. The 

fluorescence of each sample was measured in a Cary Eclipse fluorescence 

spectrophotometer at λex of 470 nm.  

2.2.10 Spectral properties of PDI light source and photosensitisers 

Spectral and optical absorption properties of the PDI light source and 

photosensitisers-TMPyP, Rose Bengal and methylene blue were determined. A 

spectrometer (QE Pro, high sensitivity spectrometer, Ocean Optics, USA) was used to 

determine spectral properties of PDI light source at different light intensities and 

colour temperatures/ filters. The different light intensities and colour temperatures/ 

filters measured were 32 mW cm-2 (2650 K, A), 200 mW cm-2 (2950 K, A), 450 mW 
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cm-2 (3000 K, B) and 950 mW cm-2 (3000 K, C). Absorption spectra of the 

photosensitisers in PBS were determined using a NanoDrop spectrophotometer 

(NanoDrop 2000C, Thermo Scientific, USA). 

2.2.11 Detection of singlet oxygen generated by photosensitisers 

Singlet oxygen generated by photo-irradiation in the presence of photosensitiser was 

measured by spectrophotometry. The method is based on the measurement of a 

decrease in the absorbance (318 nm) of 2-amino-3-hydroxypyridine when it reacts 

with singlet oxygen (Komagoe et al., 2011). An assay solution of 2-amino-3-

hydroxypyridine (200 µM) and photosensitiser (1 µM) dissolved in PBS was put in a 

conventional quartz cell with a light path length of 1 cm, and illuminated at 76.63 

Wm-2 for 1 - 5 minutes and changes in the A318 before and after photo-irradiation 

were measured.  

2.2.12 Statistical and graphical software 

Data from different experiments were imported to Microsoft Excel. All graphical 

output was plotted in Origin Pro 8. Images and schematics were drawn in Microsoft 

Powerpoint. Chemical structures were drawn using ChemDraw Pro v13.0. Image J 

was used to quantify the intensity of protein bands on SDS-PAGE and western blot 

images.     
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Chapter 3: Results I  

Standard protocols 

3.1 Overview 

This research on this project began by propagation and growth curve of E. coli (ATCC 

15597) which is the host bacteria for bacteriophages MS2 and Qβ. Then followed the 

propagation and purification of bacteriophages MS2 and Qβ. The double layer plaque 

assay, which is the gold standard method for determining titre and infectivity of 

bacteriophage was used before and after PDI to determine the rate and extent of PDI 

in bacteriophages.  However, the double layer plaque assay is labour intensive and 

time consuming. As an alternative, attempts were made to standardise assays of 

dead host E. coli or live cell enzyme activity to more rapidly determine titre and 

infectivity of the bacteriophage. The bovine enterovirus (BEV) was also propagated 

and purified and a plaque assay was used to determine the titre and infectivity of 

BEV before and after PDI. For MNV, it was propagated and concentrated before use 

because of the low titre usually associated with it. TCID50 assays was used to 

determine its titre and infectivity before and after PDI. SDS-PAGE, western blotting 

and TEM were used to confirm the purity of the viruses as well as to analyse viral 

particles/protein before and after PDI. Spectral properties of our light source for PDI 

and the spectra of photosensitisers-TMPyP, Rose Bengal and methylene blue were 

determined. This was to confirm whether the light source only produced visible light 

which these photosensitisers absorb within the visible light range. Also, in addition 

to showing of singlet oxygen induced oxidative damage which consequently lead to 

the inactivation of the viruses in solution, generation of singlet oxygen by the 

photosensitisers was shown.   
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3.2 Growth curve of Escherichia coli 

The growth, viability and colony forming unit per ml (CFU/ml) of E. coli strains (ATCC 

15597 and BL21) used in this work were determined by growth curves and serial 

dilutions as described in Section 2.2.1. The optical density at 600 nm and CFU/ml of 

the E. coli strains at 30 min interval over a period of 4 h were recorded and the growth 

curves (Figure 3.1) showed that the ATCC 15597 typically entered the log phase 

growth after 2 h of incubation with shaking at 150 rpm while BL21 typically entered 

the log phase growth after 2.5 h of incubation under the same conditions. 
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Figure 3. 1: Growth curves of E. coli strains used in this work. E. coli ATCC 15597 is 
the host bacteria for the bacteriophages MS2 and Qβ while E. coli BL21 is a 
carbenicillin resistant bacterium that was used as bacteria model organism during 
PDI experiment. (Ai) and (Bi), A600 of E. coli ATCC 15597 and BL21 respectively; (Aii) 
and (Bii), Log10 CFU/ml of E. coli ATCC 15597 and BL21 respectively. CFU/ml were 
determined by serial dilution and plating. Data are mean ± standard deviation (n = 
3). Error bars are too small to be seen. 

 

3.3 Infectivity and enumeration of model viruses 

The double layer agar plaque assay as described in Section 2.2.2.2 was used to 

determine the infectivity and titre of bacteriophages MS2 and Qβ after purification 

and before and after PDI to know the rate and extent of PDI. MS2 and phage Qβ have 

the same host bacteria E. coli (ATCC 15597). The double layer plaque assay is a labour 

intensive and time consuming assay. Ideally, plaques are counted and titre 

determined in PFU/ml after 24 h of incubation of double layer agar plates. However, 
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we observed that when the host bacteria enter the log phase of growth after 2 h of 

incubation and was used immediately for double layer plaque assay protocol, phage 

plaques were form and could be counted after 3 h of incubation instead of the 

conventional 24 hr. The conventional double layer plaque assay protocol 

recommended that the 10-fold serial dilution of the phage should be done in media 

that has 1-10 mM MgCl2  or CaCl2. This is because some phages require divalent ions 

for bacterial host attachment (Kropinski et al., 2009). Lack of Mg2+ or Ca2+ in the 

diluent can drastically affects the infectivity and titre of the phages (Kropinski et al., 

2009). However, we observed that for MS2 and Qβ infectivity and titre were not 

affected by the absence of Mg+2 or Ca+2 in the diluent and therefore in subsequent 

double layer plaque assays these were omitted. The virus plaques of double layer 

agar plates (Figure 3.2) were visible and could be counted without staining unlike 

animal viruses that require staining to make the plaques visible.  The titres observed 

were 109 PFU/ml and 1010 PFU/ml for the purified MS2 and phage Qβ respectively. 

Plaque assay as described in Section 2.2.3.2 was used to determine infectivity and 

titre of BEV 2 after purification and before and after PDI. For BEV 2, plaques were 

counted and titre determined after 48 h of incubation. The 6 well plates (Figure 3.3) 

were usually stained with crystal violet to make the plaques visible. We observed 108 

PFU/ml for the purified BEV 2. 
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Figure 3. 2: Double layer plaque assay plates showing the infectivity of bacteriophage 
MS2 (ATCC #15597-B1) grown on E. coli (ATCC 15597).  

 

 

 

Figure 3. 3: A plaque assay 6-wells plate showing the infectivity of bovine enterovirus 
2 grown on BHK-21 cells monolayer.  
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The TCID50 assay (Section 2.2.4.2) was used to determine the infectivity and titre of 

MNV after purification and before and after PDI. Usually, 96 well plates (Figure 3.4) 

and the number of wells with cell deaths were counted and the titre determined 

using Reed-MuenchTCID50 formula. The plates (96 well plates) (Figure 3.4) were 

usually stained with crystal violet to make the dead cells visible. Ideally, wells with 

cell death and or no cell death are counted after 72 h of incubation. The titre 

observed for the concentrated MNV was 107 PFU/ml.  

 

 

Figure 3. 4: A TCID50 assay 96 wells plate showing the infectivity of murine norovirus 
grown on RAW 264.7 cells monolayer.  
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3.4 SDS-PAGE, western blot and TEM images of purified viral model 

organisms 

3.4.1 MS2 

MS2 was purified through a 15% - 45% (w/v) sucrose gradient by ultracentrifugation 

as described in Section 2.2.2.1 and gradient fractions collected from top to bottom 

were analysed by SDS-PAGE to identify MS2 peak fraction. The MS2 capsid consists 

of two structural proteins; 178 copies of coat protein and 1 copy of A-protein.  The 

MS2 coat protein is ≈ 13.7 KDa while its A-protein is ≈ 44 KDa (Dai et al., 2017, Koning 

et al., 2016). Owing to the relative abundance of the coat protein over A-protein (i.e 

178 copies of coat protein to 1 copy of A-protein per virion) we were not able to 

detect A-protein on SDS-PAGE (Figure 3.5 A1). Only the coat 13.7 KDa protein was 

observed. This was the case for western blot even for antibodies that were raised 

against MS2 capsid were used (Figure 3.5 A2); However, presumably since the large 

excess of coat protein dominated in the immune response, we were able to observe 

A-protein in western blot by using sequence specific antibodies raised against 

peptides corresponding to antigenic sites of the A-protein (Figure 3.5 A3).  The SDS-

PAGE showing a clear band of the coat protein of MS2 and also THE TEM image 

showed individual icosahedral MS2 particles (Figure 3.5 B) with no background 

confirming that the purification of MS2 was successful and the sample was of high 

purity.  The sample was split into 50 µl aliquots and stored at -20 oC or -80 oC.  
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Figure 3. 5: Purified MS2 sample. (A1), SDS-PAGE showing a clear band that 
corresponds to the coat protein (13.7 KDa) of MS2. Electrophoresis was performed 
on   Bio-Rad Mini Protean Tris-Glycine precast gels 4-15% (w/v) bisacrylamide - 
acrylamide, 12 well comb, 20 µl and Tris/glycine/SDS buffer as running buffer; (A2), 
western blot showing a clear band that corresponds to coat protein (13.7 KDa) of 
MS2 using anti-MS2 capsid polyclonal antibodies; (A3), western blot showing a band 
that corresponds to the A-protein (44 KDa) of MS2. Sequence specific antibodies 
were synthesised against peptides that corresponds to antigenic sites of A-protein of 
MS2; (B), TEM images of 4% (w/v) uranyl acetate negative stained MS2 showing 
individual icosahedral particles.  

 

 

3.4.2 Phage Qβ 

Phage Qβ was purified through a 15% - 45% (w/v) sucrose gradient by 

ultracentrifugation as described in Section 2.2.2.1 and gradient fractions collected 

from top to bottom were analysed by SDS-PAGE to identify phage peak fraction. 

Phage Qβ is very similar to MS2 and like MS2, its capsid consists of two structural 

proteins, the capsid comprises 178 copies coat protein and 1 copy of A2-protein.  The 
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coat protein is ≈ 13.7 KDa while its A2-protein is similar to the MS2 A-protein and is 

about 44 KDa (Figure 3.6)  (Gorzelnik et al., 2016). However, the coat protein subunits 

of phage Qβ are linked together by disulphide bonds in covalent pentamers and 

hexamers (Golmohammadi et al., 1996). We assumed that the reducing agent and 

heating step of the SDS-PAGE protocol would have broken down the pentamers and 

hexamers into smaller units such as dimers and trimers (Figure 3.6).  The additional 

bands seen in SDS-PAGE were cross linked dimers and trimers of the coat protein, 

and not impurities, was further confirmed by the TEM image showing individual 

icosahedral phage particles (Figure 3.6) with no background. This also confirmed that 

the purification of phage Qβ was successful and the sample was of high purity.  The 

sample was split into 50 µl aliquots and stored at -20 oC or -80 oC.  

 

Figure 3. 6: Purified phage Qβ sample. (A), SDS-PAGE showing bands that 
corresponds to the trimer, dimer and monomer of coat protein (13.7 KDa) and A2 
protein (44 KDa) of phage Qβ. Electrophoresis was performed on   Bio-Rad Mini 
Protean Tris-Glycine precast gels 4-15% (w/v) bisacrylamide - acrylamide, 12 well 
comb, 20 µl and Tris/glycine/SDS buffer as running buffer; (B), TEM image of 4% (w/v) 
uranyl acetate negative stained phage Qβ showing individual icosahedral particles.  



113 
 

  
 

3.4.3 BEV 

BEV was purified through a 15% - 45% (w/v) sucrose gradient by ultracentrifugation 

as described in Section 2.2.3.1 and gradient fractions collected from top to bottom 

were analysed by SDS-PAGE to identify the BEV peak fractions. The BEV capsid is 

composed 60 copies each of VP1 (34 KDa), VP2 (29 KDa), VP3 (27 KDa) and VP4 (7 

KDa) (Kaminaka et al., 1999). SDS-PAGE showing the capsid proteins of BEV2 and the 

TEM image showed individual icosahedral BEV 2 particles (Figure 3.7) with no 

background confirmed that the purification of BEV 2 was successful and the sample 

was of high purity.  The sample was split into 50 µl aliquots and stored at -20 oC or -

80 oC.  

 

Figure 3. 7: Purified bovine enterovirus 2 (BEV 2) sample. (A), SDS-PAGE showing 
bands that corresponds to the capsid proteins of BEV 2; VP1 (34 KDa), VP2 (29 KDa), 
VP3 (27 KDa) and VP4 (7 KDa). Electrophoresis was performed on   Bio-Rad Mini 
Protean Tris-Tricine precast gels 10-20% (w/v) bisacrylamide - acrylamide, 12 well 
comb, 20 µl and Tris/tricine/SDS buffer as running buffer; (B), TEM image of 4% (w/v) 
uranyl acetate negative stained BEV 2 showing individual icosahedral particles.  
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3.4.4 MNV 

MNV was propagated, clarified and then concentrated by ultracentrifugation as 

described in Section 2.2.4.1. The concentrated MNV was used for PDI investigation 

with no further purification. This was because of the low titre usually associated with 

MNV and it was thought that purification through sucrose gradient by 

ultracentrifugation would further reduce the titre. Norovirus capsids are formed 

from 180 copies of VP1 (58 KDa) organised in a 3-quasi equivalent icosahedral 

symmetry. The western blot showed a clear band that corresponds to VP1 of MNV 

(Figure 3.8). However, because the concentrated MNV was not ultra-purified, SDS-

PAGE showed several bands (Figure 3.8) indicating that other proteins were present 

in addition to MNV. TEM was not carried out as we knew the sample was not ultra-

pure.  

 

Figure 3. 8: Concentrated murine norovirus (MNV) sample. (A), western blot showing 
a clear band that corresponds to a major capsid protein (VP1) (58 KDa) of MNV; (B), 
SDS-PAGE showing several bands that is an indication of some impurities as the 
sample was not ultra-pure. Electrophoresis was performed on   Bio-Rad Mini Protean 
Tris-Glycine precast gels 4-15% (w/v) bisacrylamide - acrylamide, 12 well comb, 20 µl 
and Tris/glycine/SDS buffer as running buffer.  
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3.5 Assay of dead E. coli cells to determine MS2 viability  

We examined assayed dead E. coli cells by measuring the fluorescence of PI at λex of 

470 nm. The method is based on the ability of PI to go selectively into a cell with a 

compromised membrane, intercalate with DNA and fluoresce. In our case, 

membrane impairment was caused by bacteriophage infection. Fluorescence of PI in 

different samples of E. coli host cell infected with different dilutions of MS2 was 

measured (Figure 3.9). 

We thought of using assay of dead E. coli by PI to indirectly test the viability of MS2.  

This was because, although the culturing (double layer agar plaque) method is still 

the gold standard method to determine viability of MS2 after inactivation by singlet 

oxygen, it has limitations such as being slow and laborious. Thus, there is a need to 

search for new methods to determine infectivity and titre. We exploited the fact that 

MS2 is lytic and its infection can cause membrane damage of its bacterial host. We 

expected that the control (no MS2 infection) and bacteria samples infected with 

dilutions higher than 106 (≤200 PFU/ml) of MS2 should have little MS2 that would 

damage the membrane and little PI would enter the cell and thus no fluorescence. 

However, our data showed otherwise (Figure 3.9). There was no clear difference in 

fluorescence of the bacteria samples with the MS2 infection and those with ≤200 

PFU/ml or no MS2 infection and thus making it impossible for us to determine 

viability of MS2 by this method.    
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Figure 3. 9: Fluorescence scan of PI in different samples of E. coli host cell infected 
with MS2. Stock MS2 were diluted 10 fold from 102 - 108 as shown. Peak emission 
wavelength for all samples was 646 nm.  

 

3.6 Enzyme activity assay in E. coli to determine MS2 viability  

Since the assay of dead E. coli cells was not successful, we decided to assess the 

member of live E. coli cells using assay of host cell esterase activity to indirectly test 

the viability of MS2. This method is based on the hydrolytic cleavage of fluorescein 

diacetate (FDA) which is colourless into fluorescein which fluoresces yellow-green by 

esterases inside the cell. FDA is an acetylated derivative of the green fluorescent dye 

fluorescein (Boyd et al., 2008). The attachment of acetyl groups on the xanthene 

group renders the dye non-fluorescent, but it confers the ability to passively diffuse 

through a phospholipid bilayer (Boyd et al., 2008). Once FDA is in the cytoplasm, non-

specific esterases de-acetylate the molecule to convert it to fluorescein and the by-

products acetic acid/acetaldehyde (Boyd et al., 2008). FDA is neutral and penetrates 

the bacteria cells. However, fluorescein has a negative charge of 2 and cannot escape 
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from intact live cells. The cells that have impaired membrane by phage infection will 

have little or no fluorescence.  

In order to determine the best type of sample for this method, three sets of samples 

were used; whole samples (WS) which were each 5 ml two hours log phase broth 

culture of E. coli incubated with 8 µl of 12 mM FDA for 15 min, supernatant samples 

(SS) were each 5 ml supernatant of two hours log phase broth culture of E. coli 

incubated with 8 µl of 12 mM FDA for 15 min and pellet samples (PS) were each 5 ml 

resuspended pellet of 5 ml two hours log phase broth culture of E. coli incubated with 

8 µl of 12 mM FDA for 15 min. Fluorescence of each sample was scanned at λex of 

470 nm. Our data showed that WS was probably the best sample for this method 

because the data shows the trend that was expected (Figure 3.10). It was expected 

that the control (no MS2) and bacterial samples infected with dilutions higher than 

106 (≤ 200 PFU/ml) should have very little MS2 that would compromise the 

membrane or cause the death of the bacteria host cells. As such, they should have 

more fluorescence. The control with no MS2 had the highest fluorescence peak and 

WS infected the lowest dilution of MS2 (102) had the lowest fluorescence peak as 

expected (Figure 3.10 A). There was a linear relationship between MS2 dilutions 

(expressed in log10 PFU/ml) and their respective peak emission intensities (Figure 

3.10 B). However, this method was not robust as it required more standardisation, 

so the plaque assay was retained. The other two samples; SS (Figures 3.11) and PS 

(Figures 3.12) were inconsistent. 



118 
 

  
 

 

Figure 3. 10: Enzyme activity assay in E. coli to determine MS2 viability. (A), 
fluorescence scan of FDA in different samples of E. coli (whole sample) infected with 
MS2. Stock MS2 were diluted 10 fold from 102 - 108 as shown; (B), Intensity of peak 
emission at 515 nm against MS2 dilutions. 7 - 1 log10 PFU/ml correspond to dilutions 
102 - 108 respectively. Data are mean ± standard deviation (n = 3). 
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Figure 3. 11: Fluorescence scan of FDA in different samples of E. coli (supernatant 
sample without cells) infected MS2. Stock MS2 were diluted 10 fold from 102 - 108 as 
shown. Peak emission wavelength for all samples was 515 nm. 

 

 

 

Figure 3. 12: Fluorescence scan of FDA in different samples of E. coli (pellet sample) 
infected MS2. Stock MS2 were diluted 10 fold from 102 - 108 as shown. Peak emission 
wavelength for all samples was 515 nm.  
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3.7 Spectral properties of PDI light source and absorbance spectra of 

photosensitisers 

Spectral properties of the PDI light source (Schott KL 2500 LCD, Schott Ltd., UK) and 

the absorbance spectra of photosensitisers-TMPyP, Rose Bengal and methylene blue 

were determined. The PDI light source spectra (400 nm – 786 nm) (Figure 3.13 A) 

showed that it mainly emitted visible light including some near infrared. However, 

the emission was within the visible light regions. The PDI light spectra and its peak 

did not seem to be affected drastically by the different light intensities and colour 

temperatures/ filters available (Figure 3.13). The spectra absorption peaks for  32 

mW.cm-2 (2650 K, A), 200 mW.cm-2 (2950 K, A), 450 mW cm-2 (3000 K, B) and 950 

mW cm-2 (3000 K, C) were at 661 nm, 642 nm, 643 nm and 645 nm respectively 

(Figure 3.13 A). The absorption spectra of the photosensitisers in PBS showed that 

their absorption peaks were within visible light regions (Figure 3.13 B). The 

absorption peaks for TMPyP, Rose Bengal and methylene blue were at 422 nm, 550 

nm and 666 nm respectively (Figure 3.13 B).  
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Figure 3. 13: Spectral properties of PDI light source and absorption spectra of 
photosensitisers. (A), light spectra of our PDI light source (Schott KL 2500 LCD, Schott 
Ltd., UK). The PDI light source spectra (400 nm – 786 nm) showed that it is mainly 
emitted visible light including some near infrared. The spectra peak is between 641 
nm - 661 nm; (B), absorption spectra of the photosensitisers used in PDI 
investigations. The absorption peaks for TMPyP, Rose Bengal and methylene blue 
were at 422 nm, 550 nm and 666 nm respectively. 
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3.8 Detection of singlet oxygen generated by photosensitisers 

Spectrophotometric measurement of the decrease in A318 of 2-amino-3-

hydroxypyridine (AHP) when reacted with singlet oxygen was used to detect the 

singlet oxygen generated by TMPyP, Rose Bengal and methylene blue. An assay 

solution of 2-amino-3-hydroxypyridine (200 µM) and a photosensitiser (1 µM) 

dissolved in PBS was put in a conventional quartz cell with a light path length of 1 cm, 

and photo-irradiated with light of fluence rate of 466.45 mW.cm-2 for 1 to 5 minutes. 

Changes in A318 before and after photo-irradiation were measured (Figure 3.14). 

There are several methods of detecting singlet oxygen generated by photosensitisers 

in solution (Komagoe et al., 2011, Kohn and Nelson, 2007, Kraljic and Mohsni, 1978). 

We measured singlet oxygen produced by the photosensitisers (Komagoe et al., 

2011). However, it is an indirect and semi-quantitative method. (Komagoe et al., 

2011). Our data showed that singlet oxygen was generated by photosensitisers in 

solution as shown by the decrease in A318 (Figure 3.14). The decrease in A318 was 

proportionally related to illumination time (Figure 3.14), and the implication of this 

is that photodynamic inactivation of waterborne pathogens using these 

photosensitisers (TMPyP, Rose Bengal and methylene blue) will also be dependent 

on the illumination time amongst other factors. 
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Figure 3. 14: Decrease in absorbance (318 nm) of 2-amino-3-hydroxypyridine due to 
singlet oxygen generated by the photosensitisers in solution after illumination at 
different time. Data are mean ± standard deviation (n = 3). 

 

 

3.9 Conclusion 

 

The data presented in this chapter showed that model viral organisms 

(bacteriophages MS2 and Qβ, bovine enterovirus and murine norovirus) were 

successfully propagated in their respective host cells and purified.  The purified 

samples of the model viruses were of high purity except for MNV. The MNV samples 

were usually diluted 10 fold in PBS before PDI experiments to reduce (protein 

impurities) to the barest minimum.  High purity was necessary to avoid interference 

that might be caused by impurities such as media proteins to PDI of these viruses. 

There are 2 possible ways the impurities could affect the PDI of these viruses, this is 

either by competing with the viruses in quenching the singlet oxygen and other ROS 

or by shielding the viruses thereby preventing direct damage induced by the singlet 
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oxygen. Either way, the rate and extent of PDI of these viruses would most likely be 

affected.    

The use of 50% (v/v) saturate ammonium sulphate to precipitate viruses and other 

host cell protein present in the clarified lysate after the propagation and then 

subsequent purification through   15 - 45% (w/v) sucrose gradient proved to be an 

efficient method of achieving ultra-pure virus stock. This method is reproducible, 

easy and cheap as it involves the use of few chemicals.  

Bacteriophages MS2 and Qβ were easier and cheaper to propagate and purify as 

compared to BEV 2 and MNV. Our effort to assess and standardise dead and or live 

host E. coli cells in order to determine the infectivity and titre of MS2 was not 

successful.  It was assumed that these assays when standardised could make 

determination of infectivity and titre of MS2 much easier and quicker. We could not 

observe any significant difference in the fluorescence of PI of the test and control 

samples in assay of dead E. coli cells.  Also, we could not observe any significant 

difference in the fluorescence of FDA of the test and control samples (SS and PS) in 

esterase activity assay of live E. coli host cells to indirectly test the viability of MS2 

phage. And because of these reasons   the double layer agar plaque assay was 

retained as a way of determining the viability of the phages before and after the PDI. 

Our light source emits visible light and the photosensitisers (TMPyP, Rose Bengal and 

methylene blue) that were used for PDI investigations in this work have their 

absorption maxima within the visible region of the spectrum. This is important as this 

study was aimed at developing a sunlight driven water disinfection system that could 

be used to clean water in the regions of the world that lack energy infrastructures for 
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conventional centralised water treatment process. Also, because our light source 

does not include other regions of light spectrum that can inactivate microorganisms 

such as UV light, we are sure that the inactivations of model viruses and bacteria 

observed were solely as result of photodynamic effect during PDI experiments.     
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Chapter 4: Results II 

Photodynamic inactivation of bacteriophages MS2 and Qβ, murine 

norovirus and bovine enterovirus in solution 

4.1 Overview  

Although the ultimate aim of this work was to get photosensitisers such as TMPyP 

attached onto chitosan nanofiber and polymeric membrane before PDI of microbial 

pathogens in water, testing the photoinactivation capacity and efficiency of TMPyP 

and other photosensitisers in solution was the first step. To do this, we used 

bacteriophages MS2 and Qβ, murine norovirus and bovine enterovirus as model 

viruses. However, the majority of the PDI investigations were done using MS2. PDI 

of model viruses were investigated with different concentrations of TMPyP in 

solution, different light intensities and at different times of light illumination. The 

concentrations of TMPyP used were 0.1 µM to 50 µM, light intensities were 5 

mW.cm-2 to 466 mW.cm-2 and illumination times were 10 sec to 120 min. 

Photosensitisers- Rose Bengal and Methylene blue were also used to investigate PDI 

of MS2 in solution. SDS-PAGE, western botting, native agarose electrophoresis, TEM, 

and DLS were used in trying to understand mechanisms of PDI in viruses. Effort was 

made to select a PDI resistant mutant MS2 in order to confirm the universality and 

irreversibility of the PDI damages in viruses. Also, RNA was extracted from MNV PDI 

samples and transfected in order to show the effects of PDI on its RNA genome. 

In this chapter, data from PDI of the model viruses in solution are presented. The 

rate and extent of PDI were shown as reductions in log10 PFU/ml of the viruses. These 

data highlighted effects of several factors/conditions on the PDI of model viruses. 

Also, data are presented in this chapter that possibly reveal the mechanism and 

targets of PDI in the viruses used in this study.  
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4.2 Effects of concentration of TMPyP and illumination time on PDI of 

MS2  

The dependency of the extent of PDI on TMPyP concentration/dose and illumination 

time were investigated in solution. PDI of MS2 was investigated at constant visible 

light intensity of 32 W.cm-2 with different concentrations of TMPyP in solution and 

at different times of illumination. This light intensity (32 W.cm-2) is low and is about 

10% mid-day sunshine during summer in the UK but allows a graded response to be 

shown. Double layer agar plaque assay was used to carry out viability test and to 

determine the extent of PDI in MS2.  

Our data showed that TMPyP with concentration of at least 0.2 µM in solution could 

achieve complete inactivation of MS2 within 60 sec when illuminated at 32 W.cm-2 

(Figure 4.1 A). At 10 seconds of illumination there were 1.5 log reductions in PFU/ml 

(Figure 4.1 B) and at 30 seconds of illumination there were 4 log reductions in PFU/ml 

of MS2 (Figure 4.1 B). There was no significant difference between the rate and 

extent of PDI in MS2 caused by 0.2 µM TMPyP (Figure 4.1 A) as compared to that 

caused by higher concentrations such as 50 µM TMPyP (Figure 4.1 C). In fact, 

complete MS2 inactivation was observed at 50 sec of PDI when 0.5 µM TMPyP was 

used (Figure 4.1 B) while it was 60 sec when 50 µM TMPyP was used (Figure 4.1 C). 

However, only the reductions of 4 log PFU/ml of MS2 was observed when 0.1 µM 

TMPyP was used for 60 sec PDI (Figure 4.1 A). TMPyP alone in the dark or light alone 

without sensitiser do not cause any detectable reduction in log PFU/ml of MS2 

(Figure 4.1). Previous work has shown that tetra-porphyrins like TMPyP can 

efficiently inactivate bacteriophages such as phage T4-like in solution (Costa et al., 

2008, Costa et al., 2010). It was reported that complete inactivation phage T4-like 

from sewage was achieved only at the highest TMPyP concentration used, 5 µM, and 
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illuminated at 40 W.m-2 for 270 minutes. Complete inactivation within 1 minute was 

also reported but at higher concentrations of 1 mM and 10 µM of TMPyP illuminated 

at 2.2 mW.cm-2 with a UV lamp (Casteel et al., 2004). In this work, we avoided using a 

UV lamp as source of light and used cold visible light source instead, as UVC can 

inactivate microorganisms directly.  

(Placeholder4p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 1: MS2 PDI in solution. Phage were illuminated at 32 mW.cm-2. (A), PDI 
using different concentrations (0.1 µM to 0.4 µM) of TMPyP; (B), PDI using 0.5 µM 
TMPyP in solution from 10 to 60 sec; (C), PDI using 50 µM TMPyP in solution from 10 
to 60 sec. The dark controls were treated with the concentration of photosensitiser 
shown but not illuminated whilst no photosensitiser controls (NS) were illuminated 
without photosensitiser present. Data are mean ± standard deviation (n = 3). 

 

4.3 Effects of light intensity and co-pollutants on PDI of MS2  

The ultimate aim of this project was to develop a sunlight driven water disinfection 

system that could be used in both developed and developing countries to produce 

safe drinking. However, in reality, sunlight intensity varies from place to place, 

position of the sun in the sky, different altitude/latitude and sky conditions (Figure 

4.2).  

, complete inactivation. 
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Figure 4. 2: Sunlight intensities differ according to place, position of the sun in the 
sky, different altitude/latitude and sky conditions. The light intensity used for most 
of our PDI investigations is about 3% of bright mid-day sunlight under clear sky 
conditions in the Sub-Saharan Africa and about 10% of mid-day sunlight during 
summer in Northern Europe. 

 

Even though our data has shown that the illumination time has a proportional 

relationship with the rate and extent of PDI of MS2 (Figure 4.1), the effect of light 

intensity on PDI of MS2 was also investigated.  This could inform the timing and 

climatic conditions for sunlight driven water disinfection. PDI of MS2 was 

investigated at a constant concentration of 0.5 µM of TMPyP in solution and 60 sec 

illumination but at different light fluences. The different light intensities used were 

from 5 mW.cm-2 to 40 mW.cm-2. 

Also, we carried out experiments to determine the effect of co-pollutants on the rate 

and extent of PDI in MS2. This was to determine whether in a real-life situation, a 

pre-treatment such as removal of soluble organic pollutants by 

coagulation/precipitation or filtration would be required before PDI can be 
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effectively used for water disinfection during waste water treatment. We used PDI 

conditions (0.5 µM photosensitiser, 32 mW.cm-2 and 30 sec and 60 sec of 

illumination) which caused a reductions of 4 log10 PFU/ml and complete inactivation 

of MS2 for 30 sec and 60 sec of illumination respectively. However, to test the effect 

of organic pollutants on PDI of MS2, in addition to these conditions the PDI was 

carried out in PBS that contained 0.1% (w/v) of humic acid.  

In each PDI light experiment i.e. with photosensitiser present was carried out with 

two controls. These were a dark control, with photosensitiser but not illuminated 

and no sensitiser but still illuminated. Double layer agar plaque assay was used to 

carry out viability test and to determine the extent of PDI in MS2.  

Our data showed that 20 mW.cm-2, about 1.8 % of mid-day sunlight in sub-Saharan 

Africa,  could  achieve complete inactivation i.e. reductions of 9.5 log PFU/ml of MS2 

PDI for 1 min using 0.5 µM TMPyP (Figure 4.3). We observed 3, 4 and 6 log reductions 

of PFU/ml of MS2 for the light intensities of 5, 10 and 15 mW.cm-2 respectively for 1 

min MS2 PDI, also using 0.5 µM TMPyP (Figure 4.3). This indicates that there is 

proportional relationship between the light intensity and extent of PDI of MS2. It has 

been reported that using tetra and tri cationic porphyrins as photosensitisers, the 

extent of PDI of phage T4-like depends on the type of sensitiser and its 

concentration, light source, energy dose and fluence rate (Costa et al., 2010). They 

observed that when the same light source and a fixed light dose was applied at 

different fluence rates, phage inactivation was significantly higher when low fluence 

rates were used (Costa et al., 2010). This contradicts our findings at least for the light 

intensities from 5 mW.cm-2 to 20 mW.cm-2 where we observed proportional 

inactivation of MS2 (Figure 4.3).  
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 Our data also showed that 0.1% (w/v) of humic acid in solution gave 100% 

protection to MS2 during PDI (Figure 4.4). This was at least true for the PDI 

conditions used (0.5 µM photosensitiser, 32 mW.cm-2 and 30 sec and 60 sec of 

illumination). No MS2 inactivation was observed. (Figure 4.4). This concentration 

[0.1% (w/v) equivalent to 1 mg/ml] of humic acid gave dark chocolate colour to PDI 

solution leading  to reduction of  light transmittance and therefore molecules of 

photosensitiser- TMPyP were not excited or few were excited and ultimately no or 

very few singlet oxygen and other ROS were generated. It is also possible that the 

humic acid quenched the singlet oxygen and other ROS generated or shield the virus 

from direct effect of singlet oxygen mediated oxidation. However, some studies have 

shown that constituents (dissolved and particulate) from stabilisation ponds as well 

as synthetic humic acid and natural humic acid extracted from a river can act as 

photosensitisers when exposed to full spectrum sunlight thereby  inactivating MS2, 

adenovirus type 2 and bacteriophage PRD1 (Kohn and Nelson, 2007, Silverman et al., 

2013). It was reported that the efficiency of these photosensitisers at inactivating 

MS2 was in order; synthetic humic acid > natural humic acid extracted from a river > 

constituents of a stabilisation pond (Kohn and Nelson, 2007). 
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Figure 4. 3: PDI of MS2 using 0.5 µM TMPyP in solution. Phage were illuminated for 
60 sec at different light intensities. L5 to L40 indicates fluence rates of 5 mW.cm-2 to 
40 mW.cm-2. The dark controls were treated with the concentration of 
photosensitiser shown but not illuminated whilst no photosensitiser controls (NS) 
were illuminated without photosensitiser present. Data are mean ± standard 
deviation (n = 3). 

 

 

 

 

 

  

 

 

 

 

 

 

, complete inactivation. 
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Figure 4. 4: PDI of MS2 in the presence and absence of humic acid.  Phage were 
illuminated at 32 Mw.cm-2. L30 and L60 indicates 30 sec and 60 sec illumination times 
respectively. The dark controls were treated with the concentration of 
photosensitiser shown but not illuminated whilst no photosensitiser controls (NS) 
were illuminated without photosensitiser present. Data are mean ± standard 
deviation (n = 3). 

 

  

4.4 Selection and evolution of MS2 resistant to PDI 

Our data showed that under PDI conditions of 0.5 µM TMPyP, 32 mW.cm-2 and 30 

sec illumination, reductions of 4 log PFU/ml of MS2 (Figure 4.1) were found with 

about 5 log PFU/ml of the MS2 population still viable. In order to test whether MS2 

could evolve into PDI resistant MS2, this viable population can be selected and then 

subjected to repeated cycles of PDI. Evolution experiments were carried out by 

subjecting MS2 to repeated cycles of PDI condition each time causing reduction of 

about 4 log PFU/ml of MS2. After each PDI cycle, the remaining viable MS2 were 

recovered by propagation in E. coli host cells and the titre was determined before 
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exposure to the next cycle of PDI. All experiments were in triplicate and a double 

layer agar plaque assay was used to test viability and to determine the extent of PDI.  

Our data showed that even at the 10th cycle of PDI, we could not observe any 

resistance of MS2 to PDI (Figure 4.5). Throughout the PDI cycles, we consistently 

observed reductions of 4 log PFU/ml of MS2 (Figure 4.5) and this indicates, that at 

least over the 10 cycles no resistance to PDI had emerged in the MS2 population. 

The lack of evolution of resistance of MS2 to PDI we observed confirms many reports 

and hypothesis that PDI modification/damage is universal and irreversible (Bourre et 

al., 2010, Jori et al., 2006). The universality and irreversibility of the PDI process as 

well as lack of resistance of microorganisms, especially viruses, to PDI is a positive 

news as there are reports of resistance to virtually every antimicrobial agent 

including water disinfectants. Chemical oxidants such as free chlorine and chlorine 

dioxide (CLO2) are used for disinfection during wastewater treatment. Viruses are 

generally more resistant to disinfectants than traditional bacterial indicators such as 

E. coli and Enterococci (Mamane et al., 2007, Aronino et al., 2009). This is because 

compared to other organisms, RNA viruses, which are the largest group of human 

viral pathogens, have high mutation rates which increases diversity within their 

population and thereby helps then evolve to adapt to environmental stress (Zhong 

et al., 2016, Domingo et al., 1996, Duffy et al., 2008). There are many reports about 

emergence of resistant viruses upon continuous administration of antiviral drugs and 

exposure to common water disinfectants (Zhong et al., 2016, Lauring et al., 2013, 

Sanjuan et al., 2010). It has been shown that after repeated exposure of MS2 to ClO2, 

resistant MS2 population to the disinfectant emerged (Zhong et al., 2016). The 

resistant population had fixed mutations which substituted ClO2 –labile amino acids 
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with ClO2 –stable ones thereby resulting in a more stable host binding protein (A-

protein) in MS2 during inactivation and thus greater ability to maintain infectivity 

(Zhong et al., 2016).  

PDI of bacteria and other eukaryotic cells strongly prevents activating a repair 

processes or inducing expression of antioxidative factors or stress proteins (Bourre 

et al., 2010, Jori et al., 2006). The cell death is primarily a consequence of singlet 

oxygen (and other ROS) mediated damage through a typical multi-target process 

which minimises the risk of both the onset of mutagenic processes and the selection 

of photoresistant cells (Wainwright, 1998, Zeina et al., 2001, Zolfaghari et al., 2009, 

Bourre et al., 2010). Thus, unlike chlorine disinfection, there is almost no chance of 

resistance and both traditional and emerging pathogens will be taking care off with 

the same and absolute efficiency. 

 

(Placeholder5p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 5: Repeated PDI cycles of MS2 in solution. (A), titre of MS2 before and after 
PDI of PDI cycles. Each PDI cycle was subjected to 0.5 µM TMPyP and illuminated at 
32 mW.cm-2 for 30 sec; (B), reductions of log10 PFU/ml of MS2 for each PDI cycle. 
Data are mean ± standard deviation (n = 3). 

 

 

 

4.5 Effect of Rose Bengal and methylene blue in PDI of MS2  

The PDI condition which caused complete inactivation of MS2 with TMPyP in solution 

(0.5 µM photosensitiser, 32 mW.cm-2 and 1 min of illumination, Figure 4.1) was used 

to investigate the PDI of MS2 with Rose Bengal (RB) and methylene blue (MB). This 
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was to compare the extent of PDI of MS2 by these photosensitisers in solution in 

comparison to TMPyP.  Also, other PDI conditions (1 µM and 5 µM of RB and MB, 32 

mW.cm-2 and 466 mW.cm-2 and 5 min of illumination) were used to investigate PDI 

of MS2 in solution. Each PDI light experiment was carried out with two controls, 

these were a dark experiment (D) where the sample had photosensitiser but was not 

exposed to light and a no sensitiser experiment (NS) where photosensitiser was 

absent but the MS2 were exposed to light.   

Our data showed that RB and MB did not cause any detectable inactivation of MS2 

under PDI condition which caused complete inactivation of MS2 with TMPyP in 

solution (0.5 µM photosensitiser, 32 mW.cm-2 and 1 min of illumination) (Figure 4.6). 

Even at higher concentrations of 1 µM and 5 µM each of RB and MB, no inactivation 

of MS2 was observed for samples illuminated at 32 mW.cm-2 for 5 min (Figure 4.6).  

However, when illuminated at 466 mW.cm-2 for 5min, reductions of 3 log PFU/ml of 

MS2 and complete inactivation were observed for samples treated with 1 µM and 5 

µM of methylene blue respectively (Figure 4.6). At this light intensity and 5 min 

illumination, only reduction of 1 log PFU/ml MS2 was observed for sample treated 

with 5 µM Rose Bengal and no inactivation was observed for sample treated with 1 

µM Rose Bengal (Figure 4.6).  

The photosensitisers TMPyP, RB and MB are all soluble in water and have their 

absorption peaks within visible light range (Figure 3.13). This means that our source 

of light for PDI which generates only visible light can excite these photosensitisers to 

generate singlet oxygen and other ROS in solution and ultimately inactivate MS2 and 

other microorganisms.  We have confirmed that the photosensitisers do generate 

singlet oxygen (Figure 3.14). Many studies have been reported that TMPyP, RB and 
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MB can cause PDI of viruses in solution (Casteel et al., 2004, Wainwright, 2004, Cho 

et al., 2010).  However, our data (Figure 4.6) indicated that TMPyP is the most 

efficient in the PDI of MS2. This may be due to differences in the net charges of the 

photosensitisers used. In solution, TMPyP will have net charge of +4, methylene blue 

+1 and Rose Bengal -2. Attraction between MS2 (negatively charged) and TMPyP will 

be greater and thus there will be better proximity of MS2 to singlet oxygen 

generated by TMPyP. This is in agreement with many reports that tetra and tri 

cationic photosensitisers causes rapid and high rates of inactivation of 

microorganisms during PDI (Costa et al., 2008, Alves et al., 2009).  
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Figure 4. 6: MS2 phage PDI in solution using TMPyP, Rose Bengal and methylene 
blue. (A), PDI using 0.5 µM of photosensitisers each and illuminated at 32 mW cm-2; 
(B), PDI using different light intensities. Samples with 1 µM and 5 µM 
photosensitisers were illuminated at 32 mW cm-2 which is a low (L) light intensity. 
Also, samples with same concentrations of the photosensitisers were illuminated at 
466 mW cm-2 which is a high (H) light intensity. The dark controls were treated with 
the concentration of photosensitiser shown but not illuminated whilst no 
photosensitiser controls (NS) were illuminated without photosensitiser present. 
Data are mean ± standard deviation (n = 3). 
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4.6 Changes to MS2 capsid proteins induced by singlet oxygen during 

PDI 

In order to investigate intra and inter changes induced by singlet oxygen to capsid 

proteins of MS2 during PDI, SDS-PAGE plus western blotting and native agarose gel 

electrophoresis of PDI-treated MS2 samples were carried out. Antibodies raised 

against the MS2 were able to detect all PDI-treated samples of MS2 and the dark 

experiment samples (Figure 4.7). Bands corresponding to 13.7 KDa of MS2 coat 

proteins were detected for all samples. However, some samples exposed to light 

(Figure 4.7 lanes 5-10) had additional bands. These bands were ≈ 27 KDa that are 

likely to correspond to dimers of MS2 coat protein. 

(Placeholder6p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 7: Western blot of MS2 after PDI. Phage were illuminated at 32 mW.cm-2 

with 1 µM TMPyP in solution. NS = no sensitiser; D = dark experiment. After 
separation on SDS-PAGE and blotting to nitrocellulose paper, detection was 
performed using rabbit anti MS2 IgG at 1:500 dilution and secondary goat anti-rabbit 
HRP conjugate at 1:1000 dilution. 

 

We also used native agarose gel electrophoresis of MS2 as it allowed visualisation of 

the PDI MS2 in its native form without reducing agents or heat-treatment. Stained 

material was observed in the well of light experiment samples treated with 50 µM 

of TMPyP, even at 1 min of PDI (Figure 4.8). This material is suggested to be MS2 

particles aggregate that is retained within the wells. Complete retention of material 

within the well was observed for 60 min PDI -treated MS2 (Figure 4.8A).  

(Placeholder7p. This image has been removed by the author of this thesis 

for copyright reasons) 
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Figure 4. 8: Native agarose gel electrophoresis of PDI treated MS2. Phage were 
illuminated at 32 mW cm-2; (A), Native gel of MS2 PDI sample with 50 µM TMPyP in 
solution. The gels were stained with Instant Blue. NS = No sensitiser; D = dark 
experiment. (B), Gel of PDI treated MS2 with 1-50 µM TMPyP in solution for 60 min. 
NS= No sensitizer.  

 

The formation of aggregates was proportional to the PDI time. Lower concentrations 

of TMPyP resulted in the formation of smaller aggregates of MS2 that could not be 

retained by the well but seemed to be restricted by the gel matrix (Figure 4.8B). The 

formation of aggregates was further confirmed by TEM and dynamic light scattering 

(Figure 4.9).  

 

(Placeholder8p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 9: TEM and DLS analysis of PDI treated MS2. (A) TEM images of PDI treated 
MS2, illuminated at 32 mW.cm-2 in 50 µM TMPyP solution. Untreated, PDI treated 
for 1 to 60 min and dark treated MS2 in 50 µM TMPyP solution are shown. The red 
arrows indicate large MS2 aggregates. (B) DLS analysis of PDI treated MS2 in 50 µM 
TMPyP solution, illuminated at at 32 mW cm-2. (C) Average MS2 particle sizes of PDI 
treated MS2. Dark, treated with TMPyP but illuminated. Data are mean ± standard 
deviation (n = 3). 

 

As shown in the figures 4.7 – 4.9 above, our data suggests that 1 min PDI-treatment 

of MS2 with 1 µM of TMPyP did not result to large changes to the viral particles. The 

observed cross-link/aggregation of PDI treated MS2 samples was seen with 

prolonged PDI treatment for 10 to 60 min (Figures 4.7 - 4.9). By using anti MS2 

polyclonal antibodies for the western blots, monomers and dimers of MS2 coat 

protein were observed of 10 – 60 min PDI samples (Figure 4.7). Aggregation of the 

MS2 particles was seen and was proportional to the time of PDI and concentration 
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of TMPyP. This was shown by agarose native gel electrophoresis, TEM and DLS 

(Figures 4.8 and 4.9). Physical, chemical and biological consequences of singlet 

oxygen mediated oxidation of proteins could be effects such as enzyme inactivation, 

protein peroxide formation, side chain product formation and backbone 

fragmentation, formation of cross links and aggregates (Davies, 2003). In contrast to 

the very few reports of backbone fragmentation, there is considerable evidence for 

formation of high-molecular-weight aggregates (dimers and higher species) of 

proteins oxidised by singlet oxygen (Davies, 2003, Agon et al., 2006, Pattison et al., 

2012). There are conflicting reports on the exact causes of cross-links and aggregates 

formed during singlet oxygen mediated oxidation of proteins. Some of the 

aggregates may be form by radical-radical termination reactions of tyrosine-derived 

phenoxyl radicals to give di- tyrosine (Davies, 2003, Pattison et al., 2012, Shen et al., 

2000b, Shen et al., 2000a). However, other reports stated that di-tyrosine is not 

usually generated and is not implicated in the formation of cross links during singlet 

oxygen oxidation of proteins (Davies, 2003, Shen et al., 2000b). It has also been 

reported that aggregates and crosslinks may arise from secondary or dark reactions, 

independent of continuing formation of singlet oxygen (Davies, 2003). Histidine has 

been often implicated in the formation of crosslinks and aggregates of singlet oxygen 

oxidised protein. It has been proposed that products of histidine oxidation by singlet 

oxygen can react with lysine, cysteine or other histidine residues to give crosslinks. 

Some studies suggested histidine may be very important in aggregate formation as 

proteins that lack histidine residues do not generally form cross links (Davies, 2003, 

Shen et al., 2000a). This does not agree with our data as we observed formation of 

dimers of MS2 coat protein for PDI samples of 10 – 60 min (Figure 4.7) although MS2 
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coat protein does not contain histidine in its amino acid sequence. Therefore, 

dimerisation of coat protein is most probably as a result of di-tyrosine formation. 

Aggregation of MS2 particles of PDI samples (Figures 4.8 and 4.9) may also be due 

di-tyrosine formation and or secondary reactions. However, the presence of 

histidine residues in the A-protein (see Figures 1.14 and 2.1), which is part of capsid 

of MS2, may also contribute to formation of viral particle aggregates during PDI. 

4.7 Detecting changes induced in A-protein of MS2 by singlet oxygen  

After analysis of the coat protein as a target of PDI, we turned our attention to the 

A-protein (see Figure 1.14).  

 

 

 

 

 

 

 

(Placeholder9p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 1.14: MS2 capsid showing the coat protein 13.7 KDa (178 copies) labelled blue 
and the A-protein 44 KDa (one copy) labelled red. The A- protein is shown slightly 
tilted from the surface of the coat protein and (as inset) projecting into the capsid 
lumen. The α-helix domain of the A-protein is attached to the RNA inside the capsid, 
while the β-sheet domain is surface-exposed and is believed to recognise and bind 
to the host bacteria pilus during infection. The model was created by docking the 
MS2 A-protein [PDB-5tc1] onto the MS2 capsid [PDB-2MS2] using PyMOL version 
1.7rc1. This figure was repeated here for clarity. 
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Changes to the antigenic regions (Figure 4.10 A) caused by oxidation could result in 

loss of antigenicity and may correspond to the rate of PDI. In order to detect such 

antigenic changes, sequence-specific antibodies Ab1, Ab2, Ab3 and Ab4 were raised 

against 4 predicted epitopes of A-protein.  Each of the sequence-specific antibodies 

was able to detect A-protein at ≈ 44 KDa in the untreated or dark treated MS2 (Figure 

4.10).   

(Placeholder10p. This image has been removed by the author of this thesis 

for copyright reasons) 

(Placeholder11p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 10: Western blot of PDI MS2 samples using sequence-specific antibodies to 
detect A-protein. (A), MS2 A-protein sequence; highlighted segments show epitopes 
1 to 4 to which antibodies were raised.  1 µM of TMPyP and illumination at 32 mW 
cm-2 were used for PDI of MS2 and the following antibodies were used for immune 
detection after PDI: (B), Ab1; (C), Ab2; (D), Ab3; (E), Ab4. NS; no sensitiser; D, dark 
experiment and L1 to L60 denotes 1 min to 60 min of illumination. (F), shows blocking 
of the antigenic recognition by incubation of each antibody with its cognate peptide. 
Data are mean ± standard deviation (n = 3). 

 

We propose that if oxidative damage to specific targets on the protein antigenicity 

is altered, then the ability for the antibodies to detect A-protein should be lost. Pre-

treatment of these sequence-specific antibodies with their cognate peptides blocked 

antibody-binding thereby confirming the specificity of binding (Figure 4.10 E). The 

PDI of MS2 phage was performed with 1 µM TMPyP for all samples but at different 

times of illumination; 1 - 60 min (Figure 4.10).  Ab1 and Ab3 did not detect A-protein 

for MS2 phage samples after 10 min of PDI (Figure 4.10 A and 4.10 C). However, both 

were able to detect A-protein for MS2 phage after 1 - 10 min of PDI (Figure 4.10 A 

and 4.10 C). Ab2 and Ab 4 failed to detect MS2 A-protein after even 1 min of PDI 
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(Figure 4.10 B and 4.10 D).  Photosensitiser alone in the dark (D) or light alone (NS) 

did not cause any loss of antigenicity as all the 4 sequence-specific antibodies were 

able to A-protein in these samples (Figure 4.10).  

We showed that, at a minimum concentration of 0.2 µM TMPyP in solution, MS2 was 

inactivated within 1 min of illumination at 32 mW.cm-2. The primary steps of viral 

infections involve recognition and attachment of the virion to the host cell receptor. 

Changes to host receptor recognition sites on the virus capsid could inhibit 

attachment to host receptor thereby resulting in MS2 inability to infect the host cell.  

The MS2 capsid comprises 178 copies of a 13 KDa coat protein and 1 copy of a 44 

KDa host recognition and attachment protein known as the A-protein (Dai et al., 

2017, Koning et al., 2016). We hypothesised these two proteins to be potential 

targets for singlet oxygen generated by TMPyP in solution because of the short life 

and high reactivity of singlet oxygen.  However, PDI of MS2 phage is very fast and as 

suggested by other reports (Costa et al., 2014, Hotze et al., 2009), this points to the 

fact that inactivation of its host recognition protein (A-protein) and not effects on its 

coat protein is likely responsible for its inactivation. 

The A-protein of MS2 has two domains; an α-helical domain (amino acids 140-225, 

269-313, and 375-393) with a bundle of six α-helices and a β-sheet domain (amino 

acids 1-139, 226-268 and 314-374) with six anti-parallel β-strands sandwiched 

between an N-terminal loop and helix-loop-helix motif (Dai et al., 2017). It is believed 

that interactions that occurred between helix-loop-helix motifs of one side of the β-

sheet domain may be responsible for the attachment of MS2 through its A-protein 

to the bacterial F-pilus (Dai et al., 2017). Sequence-specific antibodies made against 

four selected antigenic regions of the A-protein were used. The antibodies were 
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specific as pre-treatment with their respective peptides blocked their binding to A 

protein.  The antigenic sites of any given protein antigen are usually hydrophylic and 

surface and solvent accessible regions. Therefore, we assumed that the four selected 

antigenic determinant sites would be accessible to singlet oxygen during PDI of MS2. 

Oxidation could cause damage to these sites leading to loss of their antigenicity. 

However, we believe that the rate of damage caused and loss of antigenicity may 

vary according to their amino acid composition. Our data show that the sequence-

specific antibodies against antigenic sites 1 and 3 failed to detect the A-protein after 

10 min PDI (Figure 10, A, C) whilst sequence-specific antibodies against antigenic 

sites 2 and 4 did not detect A-protein even after 1 min PDI (Figure 10, B, D). This rate 

of loss of antigenicity of site 2 and site 4 corresponds to the rate of PDI we observed 

in previous work. It is possible that antigenic site 2 (which is within α-helix domain 

of A-protein) and antigenic site 4 (which is within β-sheet domain of A-protein) are 

specific regions of the A-protein responsible for MS2 attachment to the bacterial 

pilus and especially for the delivery of its genome inside the host. Antigenic site 1 

has one tyrosine as the last amino acid of its sequence whilst site 2   has one histidine. 

Site 4 has a tryptophan and two tyrosine. The amino acids tyrosine, histidine and 

tryptophan in addition to methionine and cysteine are the most sensitive to 

oxidation by singlet oxygen. At physiological pH, (the pH condition of our 

experiments), bimolecular rate constants of these amino acids with singlet oxygen 

are around 107 k (M-1 S-1) (Davies, 2003, Wilkinson et al., 1995). The positions of 

histidine and tryptophan, almost at the middle of antigenic sites 2 and 4 respectively 

are likely to contribute to their fast rate of antigenicity loss, unlike tyrosine which is 

the last amino acid of the sequence residue in site 1. The two tyrosines in site 4 might 
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also be a contributory factor to its fast rate of loss of antigenicity. The impact of 

change to the chemical structure of sites 2 and 4 caused by histidine and tryptophan 

oxidation are likely more than that of tyrosine of antigenic determinant site 1. This 

might be especially so as singlet oxygen oxidation of histidine and tryptophan leads 

to ring opening while it lead to ring closure in tyrosine (Davies, 2003). 

4.8 PDI of model viruses: MS2 vs phage Qβ, MNV and BEV 

In many studies aimed at PDI of human viruses, bacteriophage MS2 is often used as 

a model because of its similarity to a number of human viruses, e.g. enteroviruses. 

However, some experts believed that use of phage as model organisms in 

photoinactivation experiments does not accurately model inactivation of human 

viruses under all experimental conditions. So, in order to fully understand PDI of 

human viruses, there is need to study them directly (Silverman et al., 2013). Whilst 

the ideal situation would be to study the human pathogen directly, using animal 

viruses that are closely related to human viruses to study these viruses is more 

attractive because of health and safety reasons. Also, some human viruses e.g. 

human norovirus presently is difficult to be replicated in the laboratory whilst the 

closely related murine norovirus can be grown. There are many studies that have 

investigated PDI of viruses but in most cases no comparison was made between the 

extents of PDI among other viruses. After exhaustive investigation of MS2 PDI, we 

decided to use PDI conditions used on MS2 to investigate PDI of other model phage 

and mammalian viruses (bacteriophage Qβ, bovine enterovirus and murine 

norovirus).  

Our data showed that when PDI condition (0.5 µM TMPyP, 32 mW cm-2 and 1 min of 

illumination) which caused complete inactivation (reductions of 9.6 log PFU/ml) of 
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MS2 with TMPyP in solution (Figure 4.1) was used for PDI of bacteriophage Qβ (very 

similar to MS2), a reduction of only 2 log PFU/ml of phage Qβ was observed (Figure 

4.11).  Complete inactivation (reductions of 10.4 log PFU/ml) of phage Qβ was 

observed after 8 min of PDI (Figure 4.11). Both native gel agarose electrophoresis 

(Figure 4.12 A) and TEM (Figure 4.12 B) confirmed that the PDI does not cause 

aggregation of phage Qβ particles even after 60 min of PDI. This is unlike MS2 where 

complete aggregation was observed after 60 min of PDI. 

 

 

 

 

 

 

 

 

 

(Placeholder12p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 11: Bacteriophage Qβ PDI in solution. Phage were illuminated at 32 mW 
cm-2. The dark controls were treated with the concentration of photosensitiser 
shown but not illuminated whilst no photosensitiser controls (NS) were illuminated 
without photosensitiser present. Data are mean ± standard deviation (n = 3). 
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Figure 4. 12: Native agarose gel electrophoresis and TEM of PDI treated phage Qβ. 
Phage were illuminated at 32 mW cm-2. (A), Native gel of phage Qβ PDI sample with 
50 µM TMPyP in solution. The gel was stained with Instant Blue.  NS = No sensitiser; 
D = dark experiment; (B), TEM images of PDI treated phage Qβ with 50 µM TMPyP 
solution. Untreated, PDI treated for 1, 10, 30 and 60 min and dark sample are shown. 
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For PDI of BEV 2 with TMPyP in solution, we observed (data not shown) that the PDI 

condition which caused complete inactivation (reductions of 9.6 log PFU/ml) of MS2 

(Figure 4.1) and reductions of 2 log PFU/ml of phage Qβ (Figure 4.11) did not cause 

any inactivation of BEV. In fact, even 1 µM TMPyP in solution and 30 min of 

illumination did not cause any significant inactivation of the BEV 2 (Figure 4.13 A). 

For PDI at higher concentration of TMPyP 5, 10 and 50 µM, reductions of 0.7, 1.5 and 

2.6 log PFU/ml of BEV 2 were observed respectively after 30 min illumination (Figure 

4.13 A).  After 120 min of PDI, 5 and 2 log reductions of PFU/ml of BEV were observed 

for 10 µM and 5 µM of TMPyP respectively (Figure 4.13 B). Both native gel agarose 

electrophoresis (Figure 4.14 A) and TEM (Figure 4.14 B) confirmed that the PDI did 

not cause aggregation of BEV particles even after 60 min of PDI  

(Placeholder13p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 13: BEV 2 PDI in solution. The BEV 2 samples were illuminated at 32 mW 
cm-2. (A), PDI using different concentrations (1 µM to 50 µM) of TMPyP; (B), PDI using 
5 and 10 µM TMPyP in solution from 30 to 120 min. The dark controls were treated 
with the concentration of photosensitiser shown but not illuminated whilst no 
photosensitiser controls (NS) were illuminated without photosensitiser present. 
Data are mean ± standard deviation (n = 3). 
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Figure 4. 14: Native agarose gel electrophoresis and TEM of PDI treated BEV 2. The 
BEV 2 samples were illuminated at 32 mW cm-2. (A), Native gel of BEV PDI sample 
with TMPyP in solution. The gel was stained with Instant blue. NS = No sensitiser; D 
= dark experiment; (B), TEM images of PDI treated BEV with 50 µM TMPyP solution. 
Untreated, PDI treated for 30 and 60 min and dark sample are shown. 
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For PDI of MNV with TMPyP, we observed (data not shown) that the PDI condition 

which caused complete inactivation (Figure 4.1) and reductions of 2 log PFU/ml of 

phage Qβ (Figure 4.11) did not cause any inactivation of MNV. For PDI using 5, and 

10 µM of TMPyP, reductions of 2 and 3 log TCID50/ml of MNV were observed 

respectively after 20 min of illumination (Figure 4.15). Antibodies raised against VP1 

(major capsid protein) of MNV were able to detect all PDI-treated samples of MNV 

including the dark experiment samples (Figure 4.15). Bands corresponding to 60 KDa 

of MNV VP1 were detected for all samples PDI. However, like MS2, samples exposed 

to light produced additional bands on SDS-PAGE (Figure 4.16). These bands at ≈ 180 

KDa are likely to correspond to trimers of MNV VPI. We did not perform native gel 

agarose electrophoresis and TEM for PDI MNV samples because the samples were 

not ultra-pure.   

(Placeholder14p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 15: MNV PDI in solution. The MNV samples were illuminated at 32 mW cm-

2. The dark controls were treated with the concentration of photosensitiser shown 
but not illuminated whilst no photosensitiser controls (NS) were illuminated without 
photosensitiser present. Data are mean ± standard deviation (n = 3). 
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Figure 4. 16: Western blot of MNV after PDI with TMPyP. The MNV samples were 
illuminated at 32 mW cm-2. NS = no sensitiser; D = dark experiment. After separation 
on SDS-PAGE and blotting to nitrocellulose paper, detection was performed using 
rabbit anti MNV VP1 IgG at 1:100 dilution and secondary goat anti-rabbit HRP 
conjugate at 1:1000 dilution. 

 

 The model viruses used in this work have similarities to each other which include 

being lytic, non-enveloped, icosahedral capsids, 27-30 nm in diameter with positive 

sense and single stranded RNAs as their genome. Bacteriophages MS2 and Qβ are 

also similar to the extent of using the same host bacteria to replicate. However, 

despite these similarities, the PDI data presented here has shown that the rate and 

extent of inactivation varies among these viruses. The rate and extent of PDI among 

these viruses was in the order MS2 > phage Qβ > MNV > BEV. In section 4.7, we have 

demonstrated that A-protein (host attachment protein) of MS2 is the target of PDI. 

We observed that PDI mediated change to the A-protein varies according to the 

amino acid sequence from one epitope of the protein to another. Those epitopes of 

the A-protein that had amino acid histidine, tryptophan and tyrosine in their 
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sequence lost antigenicity more quickly as compared to those regions that lacked 

these amino acids. The rate of antigenicity loss correlates to the rate of PDI of MS2 

we observed. This data confirms many reports that amongst the amino acids, 

tryptophan, histidine, methionine, cysteine and tyrosine are the most susceptible to 

singlet oxygen under physiological pH conditions (Davies, 2003, Gracanin et al., 2007, 

Wilkinson et al., 1995). However, all of these studies were performed by examining 

proteins, peptides and or amino acids directly. There are no reports of how amino 

acid composition of capsid proteins, including host attachment proteins, of viruses 

affect the extent of PDI.  The host attachment protein in MS2 phage is A-protein 

which is just one copy. Similarly, only one copy of A2-protein is present in phage Qβ. 

In BEV 2, it is the host attachment sites, 60 in all which are analogous to canyons in 

poliovirus across the 3 surface capsid proteins (VP1, VP2 and VP3) that mediate 

attachement. In MNV, it is the P2 subdomain of the VP1 that is responsible. There 

are potentially 90 host attachment sites formed from the P2 subdomains of the 180 

copies of the VP1 that form the capsid of MNV. We observed from the compositions 

of these host attachment proteins/sites (Table 1.6) that presence of the most 

sensitive amino acid residues correlated to the extent of PDI of these viruses. The A-

protein of MS2 has 44 sensitive amino acids (His, Trp, Tyr, Met, Cys) (Table 1.6) whilst 

the A2-protein of phage Qβ, P2 domain of MNV and host attachment sites of BEV 

have 28, 9 and 1 of these amino acids respectively (Table 1.6). However, in addition 

to their amino acid composition, surface accessibility and hydrophilicity of the host 

attachment proteins could also affect the sensitivity of PDI. This is because singlet 

oxygen and other ROS generated in solution can only attack those parts of proteins 

that are solvent accessible.  
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The lack of aggregation of viral particles observed after PDI of phage Qβ and BEV 

might be due to surface properties such as the net surface charge which is a function 

of the amino acid compositions of the capsid proteins of viruses. However, amino 

acid residues such as histidine and tyrosine are known to crosslink proteins when 

oxidised by singlet oxygen. Also in some instances, secondary dark reactions have 

been implicated in the formation of protein crosslink (Davies, 2003, Shen et al., 

2000b, Shen et al., 2000a).  

Table 4. 1: Most susceptible amino acid to single oxygen of the host attachment 
proteins/sites of model viruses.    

 

4.9 RNA infectivity of PDI treated MNV  

In order to assess the effect of PDI on the viral genome, the RNA of MNV PDI samples 

were extracted and purified using Direct-Zol Miniprep Plus kits. Purified RNA was 

then transfected into BHK-21 cells using Lipofectin reagent according to the 

recommended protocol.  After transfection, the titre of each sample was determined 

Amino acids  

most 

susceptible  to 
1O2* 

k  (M-1 S-1) MS2 A- 

protein 

(x1) 

Phage Qβ 

A2-

protein 

(x1) 

MNV P2 

domain 

(x180) 

(x90) 

BEV host 

attachment 

sites (x60)  

H (Histidine) 3.2  x 107 5 1 0 0 

Y (Tyrosine) 0.8 x 107 16 14 6 1 

W (Tryptophan) 3 x 107  12 5 1 0 

M (Methionine) 1.6 x 107 8 2 1 0 

C (Cysteine) 8.9 x 106 3 6 1 0 

Total  44 28 9 1 
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and compared to the titre of the original MNV samples from which RNA was 

extracted.  

Our data showed that the process of extraction and purification of RNA and 

transfection efficiency caused loss of about 3 log TCID50/ml of MNV (Figure 4.17). 

The titres before RNA extraction/purification of MNV PDI samples for dark and no 

sensitiser controls were 7.3 and 7.33 log TCID50/ml respectively (Figure 4.15), whilst 

the titres of recovered MNV RNA transfection were 4.5 and 5.25 log TCID50/ml 

respectively (Figure 4.17). We observed a significant decrease in RNA infectivity after 

20 min of PDI for samples treated with 5 and 10 µM of TMPyP (Figure 4.17). About 1 

and 3 log TCID50/ml decrease in RNA infectivity were observed for samples treated 

with 5 and 10 µM of TMPyP respectively after 20 min of illumination (Figure 4.17). 

This correlates to MNV PDI we observed. For PDI using 5 and 10 µM of TMPyP, 

reductions of 2 and 3 log TCID50/ml of MNV were observed respectively after 20 min 

of illumination (Figure 4.15). 

 

 

 

 

(Placeholder15p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 4. 17: RNA infectivity of MNV subjected to PDI with TMPyP. The MNV samples 
were illuminated at 32 mW cm-2. The dark controls were treated with the 
concentration of photosensitiser shown but not illuminated whilst no 
photosensitiser controls (NS) were illuminated without photosensitiser present. 
Data are mean ± standard deviation (n = 3). 
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It has been established that singlet oxygen is the most likely ROS to be implicated in 

viral PDI (Costa et al., 2013, Silverman et al., 2013). All ROS have a short-life and high 

reactivity, thereby causing damage only to molecules close to the point of generation 

(Costa et al., 2013). So capsid proteins, including host recognition proteins, are the 

immediate targets of singlet oxygen oxidation in non-enveloped viruses such as our 

model viruses. However, although virus capsids serve to protect the genome, they 

may contain pores that are permeable to small molecules like singlet oxygen thereby 

oxidising the genome simultaneously alongside the capsid proteins. The assembled 

MS2 capsid has 32 pores, of 2 nm in diameter which may be permeable to small 

molecules (Dedeo et al., 2010). Furthermore, under physiological conditions, the 

capsids of non-enveloped viruses can undergo a constant movement that suggests a 

dynamic state, referred to as “capsid breathing”. These include picornaviruses, 

nodaviruses, tombusviruses, sobemoviruses and others (Pulli et al., 1998). Although 

the permeability of viral capsids to singlet oxygen molecules has not been directly 

shown, it has been suggested that access to the viral genome could result in 

oxidation-induced damage to it.  

RNA transfection of the viral PDI samples could be the most plausible method to 

assess how PDI affects the infectivity of RNA. We are not able to transfect RNA of 

the PDI samples of bacteriophages MS2 and Qβ. However, there is a report that used 

qRT-PCR and suggested that inactivation of MS2 by singlet oxygen is mostly 

attributed to degradation RNA genome thereby making it nonreplicable (Wigginton 

et al., 2012). This does not agree with our findings in section 4.6 and 4.7 as well as 

other studies that suggested that inactivation of MS2 by singlet oxygen is mostly 
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attributed to damage to A-protein (host attachment) of MS2(Costa et al., 2014, 

Hotze et al., 2009)  

 

 4.10 Conclusion 

The data presented in this chapter show that the concentration of TMPyP (and Rose 

Bengal and methylene blue), time of illumination and light intensity all affect the rate 

and extent of PDI of MS2. The photosensitiser TMPyP is the most efficient in 

facilitating PDI of MS2 compared to the other photosensitisers tested, Rose Bengal 

and methylene blue. The order of rate and extent of PDI of MS2 by these 

photosensitisers in solution was TMPyP >>> methylene blue > Rose Bengal. This is 

likely to be related to the net charge on these photosensitisers as it has been 

established that cationic photosensitisers are generally more efficient in the PDI of 

microorganisms including viruses. The net charge for TMPyP is +4, +1 for methylene 

blue and -2 for Rose Bengal.  It has also been shown here that PDI of MS2 with TMPyP 

in solution does not drive the evolution of a PDI resistant MS2 population indicating 

that resistance to PDI is unlikely to emerge. High efficiency and complete 

photodynamic inactivation of TMPyP at 0.2 µM made it the photosensitiser of our 

choice to attach onto chitosan nanofiber/polymeric membrane for water 

disinfection; this discussed in Chapter 5. Only low concentration of TMPyP on solid 

supports should be needed for the device to efficiently disinfect water. In this 

chapter, visible cold light was used and the fluence rate (radiant exposure) used for 

most PDI experiments was 32 mW cm-2. This light intensity is only about 3% of bright 

mid-day time sunlight under clear sky conditions in Sub-Saharan Africa and about 

10% of mid-day time sunlight during summer in Northern Europe. However, it 
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allowed a graded PDI response to be observed and the fact that even 5 mW cm-2 has 

been shown to cause inactivation of MS2 with TMPyP in solution is an indication that 

ultimately, sunlight could be used as source of light for this disinfection system.  

Even though PDI of MS2 with TMPyP in solution can cause aggregation of viral 

particles, the aggregation of the MS2 particles was not attributable to MS2 

inactivation. Our data suggested that a minimum concentration of 0.2 µM of TMPyP 

inactivates MS2 under 1 min illumination at 32 mW cm-2. However, complete MS2 

particle aggregation was only observed after 60 min of PDI. Although, formation of 

dimers of MS2 coat protein was observed after 10 min PDI. The cause of aggregation 

of MS2 particles may be due to either and or cumulative effects of formation of di-

tyrosine from tyrosine residues that are present in coat proteins and A-protein, 

histidine residues present in A-protein and secondary dark reaction. Either way, 

multimerization of MS2 particles should also compromise infectivity. Sequence-

specific antibodies for antigenic sites 2 and 4 on the A-protein of MS2 did not detect 

the epitopes after 1 min of PDI. This loss of antigenicity corresponds to the rate of 

PDI of MS2 we observed. We believe that histidine and tryptophan being most 

sensitive amino acids to singlet oxygen and their position almost in the middle of the 

sequence of these antigenic sites on the A-protein is probably responsible for the 

fast rate of antigenicity loss. We propose that A-protein of MS2 is the main target of 

PDI and that site 4 may be one of specific regions of the A-protein responsible for 

MS2 attachment to the bacterial pilus and delivery of its genome into the host. So, 

inactivation of MS2 is mostly to due to loss of binding and attachment property of 

A-protein to the host bacteria pilus.  However, because MS2 has 32 pores on its 

capsid and we have observed decrease in RNA infectivity of MNV PDI samples, it is 
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also possible that singlet oxygen mediated oxidation of MS2 genome contributes to 

its inactivation.  

Capsid proteins especially host attachment proteins are immediate targets of singlet 

oxygen oxidation in non-enveloped viruses such our model viruses. This is because 

all ROS have a short-life and high reactivity, thereby causing damage only to 

molecules close to the point of generation. The amino acid compositions and surface 

and solvent accessibility of the host attachment proteins of viruses can affect the 

extent of PDI. Therefore, the extent of PDI of our model viruses with TMPyP in 

solution in the order MS2 > phage Qβ > MNV > BEV can be attributable to the 

availabilty of most sensitive amino acids to singlet oxygen at their host attachment 

sites as well as solvent accessibility of these amino acids.   
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Chapter 5: Functionalisation of chitosan nanofiber and chitosan 

membrane with TMPyP for water disinfection 

5.1 Overview  

The photosensitiser TMPyP was immobilised onto chitosan nanofiber and chitosan 

membrane since in our preliminary investigation (Chapter 4) it was shown to result 

in rapid photodynamic inactivation (PDI) of MS2 and other model viruses when used 

in solution. Attaching TMPyP onto chitosan nanofiber mats and chitosan gel 

membranes would make it suitable for use in water disinfection during wastewater 

treatment and without releasing TMPyP into the water during treatment. Also, 

TMPyP-functionalised chitosan nanofibers and membranes could be re-used, 

reducing the cost and providing an environmental-friendly technology for water 

disinfection. In this study, chitosan nanofiber and chitosan gel membrane were 

chosen as the solid support to attach TMPyP for water disinfection because of the 

physico-chemical properties including ease of fabrication, presence of reactive 

amine group, a rigid and hydrophilic D-glucosamine structure and biocompatibility.  

Chitosan is also biodegradable, cheap and readily available. However, direct coupling 

of TMPyP onto chitosan nanofiber and membrane is not easily possible because the 

functional groups are not chemically compatible, so the nanofibers and membranes 

were first modified with pyromelitic dianhydride (PMA) to introduce carboxyl groups 

and facilitate electrostatic adsorption of the highly basic TMPyP. In addition, PMA 

should be able to crosslink closely adjacent –NH2 groups and stabilise the chitosan 

nanofibers and membranes. The chitosan nanofiber mat/membrane-TMPyP 

composite produced was then tested for photodynamic inactivation of MS2 and E. 

coli BL21. Both stationary and flowing water models were employed during PDI 
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experiments in order to mimic what would be the set-up in waste water treatment 

plants. 

In this chapter, data are presented on successful modification and functionalisation 

of chitosan nanofiber mats and chitosan gel membranes with TMPyP. Also, data on 

PDI of MS2 phage and E. coli BL21 using TMPyP functionalised chitosan nanofibers 

and membranes (CM-T) are shown.  

5.2 Production, modification and TMPyP functionalisation of chitosan 

polymeric membrane 

5.2.1 Production of chitosan membrane 

Chitosan membranes were produced as described by Krajewska (1990, 1991). A 

solution of 1% (w/v) chitosan in 1% (v/v) acetic acid was made and then 

homogenised by shaking at 300 rpm and 60 oC for 30 min. The homogenised viscous 

chitosan solution was then cast into 4.5 cm diameter petri dishes, filling to depth of 

3 mm. The petri dishes were placed in a hot air incubator set at 60 oC for 24 h to dry 

into a translucent chitosan membrane. The thickness of membranes after drying was 

50-100 μm. The chitosan membranes were then neutralised by treatment with 0.5% 

(w/w) of sodium triphosphate in 2M NaOH for 30 min. After neutralisation, the 

membranes were washed in distilled H2O (dH2O) until the solution was not alkaline 

and then air dried to give a translucent brittle polymeric chitosan membrane (Figure 

5.1).  
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Figure 5. 1: Image of chitosan gel membrane. The diameter (d) of the membrane is 
4.5 cm. 

 

5.2.2 Modification of chitosan membrane using anhydrides 

Direct adsorption of TMPyP onto chitosan membrane was not possible because the 

net charge of chitosan membrane is positive whilst TMPyP is a tetra cationic 

porphyrin. Therefore, the chitosan membranes were first modified by pyromellitic 

dianhydride (PMA) in order to introduce carboxyl groups and allow adsorption of the 

highly basic TMPyP.  

Each membrane was immersed in 1% (w/v) pyromellitic dianhydride (PMA) in 20% 

(v/v) DMSO contained in a closed bottle and then placed on a 3D rocking platform 

set at 30 rpm for 24 h at room temperature. Two controls were used i.e. one with 

PMA replaced with succinic anhydride and the other was treated in DMSO only. The 

membranes were then washed in dH2O several times and blow dried. The reaction 

scheme of PMA with chitosan amines is shown in Figure 5.2. The PMA modifies 

primary amine groups on the chitosan membranes and generates three free carboxyl 

groups (Figure 5.2 A). The fourth carboxyl group becomes linked in a peptide bond 

to the amine (Figure 5.2 A). 
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It is also likely that one or more of the three free carboxyl groups could form peptide 

bonds with two or more units of chitosan polymer, thereby crosslinking the chitosan 

units together (Figure 5.2 B).  

 

Figure 5. 2: Reaction scheme for modification of chitosan nanofiber mats and 
chitosan membranes. (A), Primary amine group of chitosan subunit formed a peptide 
bond (highlighted in blue) with pyromelitic dianhydride (PMA) to generate three free 
carboxyl groups (highlighted that will facilitate adsorption of the highly basic 
photosensitiser-TMPyP; (B), PMA crosslinking 2 subunits of chitosan. The schemes 
were prepared by ChemDraw Pro 13.0. 

 

5.2.3 Midland blotting and scanning electron microscopy of PMA 

modified chitosan membrane 

Midland blotting and SEM were used to characterise the membranes. The Midland 

blotting (Rushworth et al., 2014) was used to detect free amine groups in order to 

check complete modification of amine to carboxyl groups. To detect free amine 

groups, PMA modified membranes and non-modified controls were incubated in the 

presence of NHS-biotin (4 mg/ml in PBS containing 20% (v/v) DMSO) for 30 min in 

order to attach biotin to the free amine groups. After three washes in water followed 
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by drying in argon, the membranes were then incubated with HRP-streptavidin 

conjugate (1 μg/ml in PBS) for 30 minutes. Then, the membranes were incubated in 

the presence of an appropriate HRP-conjugated secondary antibody (1:1000 in PBS) 

for 1 hour to detect bound HRP-streptavidin. After the addition of the HRP-

conjugated reagent, membranes were washed three times for 5 minutes each in PBS, 

once in PBS containing 0.1% (v/v) Tween-20 to aid removal of non-specifically bound 

HRP-conjugated secondary antibody, with a final wash in PBS. The membranes were 

dried in argon in between incubations and after washing steps. Finally, ECL reagent 

was pipetted carefully onto the membranes and chemiluminescence detected after 

1 minute using a G-BOX Gel Imaging System. The SEM was undertaken to analyse the 

physical properties of PMA modified chitosan membranes as compared to 

unmodified chitosan membranes. 

5.2.4 TMPyP functionalisation of chitosan membrane  

PMA modified membrane and the 2 control samples (DMSO treated but unmodified 

membrane and unmodified membrane) were treated with TMPyP. Each membrane 

was immersed in 10 ml of 200 µM TMPyP contained in a closed Nunclon petri dish 

(d. 4.5 cm) and then placed on a 3D rocking platform set at 30 rpm for 30 min at 

room temperature.  After the staining, each membrane was washed thoroughly in 

dH2O under mechanical agitation until no TMPyP was detected in washing solution 

using A422, the membranes were then allowed to dry and stored in the dark at room 

temperature.  

5. 2.5 PDI of MS2 using TMPyP functionalised chitosan membrane 

TMPyP functionalised chitosan membranes (CM-T) were used to investigate 

inactivation of MS2 by PDI. In addition to the stationary PDI model (Figure 5.3), we 
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also used a flowing water model to investigate PDI of MS2 using CM-T (Figure 5.4). 

A peristaltic pump was used to pump 10 ml MS2 sample (108 PFU/ml) at 0.33 ml/min 

into a   PDI chamber containing CM-T while being illuminated with our source of light 

at 32 mW cm-2 (Figure 5.4). For the MS2 PDI stationary model, CM-T was immersed 

in 10 ml MS2 sample (109 PFU/ml) in a Nunclon petri dish (d. 4.5 cm) and was shaken 

intermittently while being exposed to light of 32 mW cm-2 (Figure 5.3). The different 

time of illuminations used were 30 min to 90 min. Each PDI light experiment (CM-T: 

Light) was carried out with two controls. These were a dark experiment (CM-T: Dark) 

and a membrane with no TMPyP present but exposed to light (CM only: Light).  All 

experiments were triplicated using same set of TMPyP functionalised chitosan 

membranes (CM-T) and chitosan membranes without TMPyP (CM). Double layer 

agar plaque assay was used to carry out viability test and to determine the extent of 

PDI in MS2.  
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Figure 5. 3: Stationary water PDI setup with TMPyP functionalised chitosan 
membranes (CM-T). CM-T was immersed in 10 ml MS2 sample (109 PFU/ml) in a 
Nunclon petri dish (diameter 4.5 cm) and was shaken intermittently while being 
exposed to light of 32 mW cm-2. 
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Figure 5. 4: A schematic (A) and image (B) of flowing water PDI setup with TMPyP 
functionalised chitosan membranes (CM-T). Peristaltic pump was used to pump MS2 
sample (109 PFU/ml) into PDI chamber while being illuminated with light sources. 

 

5. 2.5 PDI of E. coli BL21 using TMPyP functionalised chitosan 

membrane 

TMPyP functionalised chitosan membranes (CM-T) were used to investigate 

inactivation of E.coli BL21 by PDI. The MS2 PDI stationary model conditions were 

used. The 3 h log phase bacteria culture was washed 3 times with 1 X PBS.  The 50 

ml 3 h log phase bacteria culture grown Tryptic Soy Broth (TSB) was first centrifuged 

at 1500 x g rpm for 10 min. After the centrifugation the supernatant was discarded 

and the bacteria cell pellet was resuspended in 50 ml PBS. It was then centrifuged at 

1500 x g rpm for 10 min. The supernatant was discarded and resuspended in 50 ml 
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PBS. This washing step was done 3 times. After the washing, 10 ml each of bacteria 

cells was used for the PDI. CM-T was immersed in 10 ml of washed E.coli BL21 (107 

CFU/ml) in a Nunclon Petri dish (4.5 cm diameter) and was shaken with a shaker 

intermittently while being exposed to light of 32 mW cm-2  for 90 min. PDI light 

experiment (CM-T: Light) i.e. TMPyP functionalised chitosan membrane and exposed 

to light were carried out with two controls; dark experiment (CM-T: Dark) i.e. TMPyP 

functionalised chitosan membrane and not exposed to light and no sensitiser 

experiment (CM: only) i.e. chitosan membrane without TMPyP but exposed to light.  

All experiments were triplicated using same set of TMPyP functionalised chitosan 

membranes (CM-T) and chitosan membranes without TMPyP (CM). Serial dilution 

and spread plate method were used to determine CFU/ml and the extent of PDI in 

E.coli BL21. 

5.3 Results 

5.3.1 SEM and characteristics of modified chitosan membrane 

It has been reported that the photosensitiser-5,10,15,20-tetrakis (p-hydroxyphenyl) 

porphyrin (p-TAPP) could be immobilised onto chitosan membrane for water 

disinfection applications (Bonnett et al., 2006). In that study, p-TAPP was attached 

onto chitosan membrane by adsorption without prior modification of the 

membrane. The p-TAPP-chitosan composite was shown to have photomicrobicidal 

activity against E.coli (Bonnett et al., 2006). However, in our case, direct adsorption 

of TMPyP onto chitosan membrane was not possible because the net charge of 

chitosan membrane is positive whilst TMPyP is a tetra cationic porphyrin. Therefore, 

the chitosan membranes were first modified by PMA in order to introduce carboxyl 

groups and allow adsorption of the highly basic TMPyP.  
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The scanning electron microscopy images of dried modified chitosan membrane 

showed uniform contraction, compactness and folding of the membrane (Figure 

5.5). The membranes modified with succinic anhydride became soluble in water 

while being washed in dH2O (result not shown). Control experiments using succinic 

anhydride to modify the membrane amine group drastically affected its solubility 

and the whole membrane dissolved in water during the washing steps in H2O. In 

contrast, membranes modified with PMA remained intact while in water and 

became denser and more compact compared to unmodified membranes under both 

wet and dried condition as shown using SEM (Figure 5.5).  

(Placeholder16p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 5. 5: Images of PMA modified and unmodified chitosan membranes: (A1), 
unmodified chitosan membrane; (A2), (A3), SEM images of unmodified chitosan 
membrane; (B1), PMA modified chitosan membrane; (B2), (B3), SEM images of PMA 
modified chitosan membrane (Majiya et al., 2017). 

 

It was expected that chitosan modification with acid anhydride derivatives might 

increase their solubility in water as observed with succinic anhydride to modify the 

chitosan membrane. This was in agreement with a previous study (Tangpasuthadol 

et al., 2003) which reported that such modification with succinic anhydride could 

increase the hydrophilicity and hygroscopic property of the chitosan in film or 

powdered forms. However, unlike succinic anhydride PMA is a bis-anhydride with 

anhydride groups either side of an aromatic ring. Typically, a PMA anhydride group 

will react with one amine group, with the other anhydride then being subjected to 

water attack. It is also likely that carboxyl-anhydride PMA molecules were able to 
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form peptide bonds with two or more units of chitosan polymer, thereby crosslinking 

the chitosan units together. This could account for the compactness and insolubility 

in water of chitosan membranes modified with PMA (Figure 5.5). By comparison, 

chitosan membranes prepared as described by Krajeswka (1990, 1991) are brittle in 

nature (Bonnett et al., 2006). Previous studies have reported reinforcing the chitosan 

membranes with nylon to overcome the brittleness before functionalisation with 

photosensitisers (Bonnett et al., 2006). However, modification with PMA improved 

the mechanical strength of the membranes and therefore, there was no need for 

membrane reinforcement.    

5.3.2 Midland blot of modified chitosan membrane 

The Midland blotting was performed to analyse the chemical properties of PMA 

modified chitosan membranes as compared to unmodified chitosan membranes. 

Unmodified chitosan membranes have free amino groups at position 6 of the 

chitosan monomer while modified membranes have free carboxyl groups. 

Chemiluminescence was detected for unmodified membranes as they possess amino 

groups (and therefore became tagged by NHS-biotin, allowing subsequent labelling 

with streptavidin-peroxidase) while it was not detected for modified membrane as 

they have free carboxyl groups (Figure 5.6). The two controls; unmodified chitosan 

membrane but treated in DMSO and unmodified chitosan membrane showed 

chemiluminescence after Midland blotting thereby confirming the presence of free 

amino groups whilst PMA modified chitosan membrane did not show 

chemiluminescence after Midland blotting (Figure 5.6). The absence of 

chemiluminescence for the modified membranes shows that PMA modification was 

successful.   
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(Placeholder17p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 5. 6: Images of chitosan membranes to confirm amine modification: (A1), PMA 
modified chitosan membrane; (A2), unmodified chitosan membrane but treated in 
DMSO; (A3), unmodified chitosan membrane; (B1), chemiluminescence not detected 
for PMA modified chitosan membrane; (B2), (B3), chemiluminescence detected for 
unmodified chitosan membranes (Majiya et al., 2017).  

 

5.3.3 Adsorption of TMPyP onto modified chitosan membrane 

PMA modified membrane and the 2 control samples (DMSO treated but unmodified 

membrane and unmodified membrane) were treated TMPyP. We observed that only 

PMA modified membrane retained the TMPyP after vigorous washing in dH2O 

(Figure 5.7).  It is clear that most of the amino groups, which gave net positive charge 

to the chitosan membranes, had been modified to introduce carboxyl groups 

thereby allowing efficient adsorption of the cationic TMPyP.  

(Placeholder18p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 5. 7: Chitosan membranes functionalised with TMPyP. (A1), PMA modified 
membrane; (A2), 20% (v/v) DMSO treated but unmodified membrane; (A3), 
unmodified membrane. The corresponding samples after staining with TMPyP and 
washing in H2O are shown in B1-B3 respectively (Majiya et al., 2017).  

 

It is important to note that TMPyP attachment onto the PMA treated chitosan 

membranes is electrostatic and the dye could be released into medium of high ionic 

strength. We carried out all our PDI investigations in 1 X PBS comprising 10 mM 

Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl, and 2.7 mM KCl and there was no release 

of TMPyP into the solution as monitored by spectrophotometry. In practice, most 

potential drinking water from the environment, freshwater streams or lakes will 
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have low ionic strength. Within our study, monitoring the release of TMPyP from the 

chitosan membrane and washing to zero absorbance after staining of the 

membranes with TMPyP was important as even 0.2 µM of TMPyP could achieve 

complete inactivation of MS2 phage in solution within few minutes. This is shown 

from preliminary PDI investigations using TMPyP in solution in Chapter 4. The 

absorbance measurements at 422 nm the peak absorbance of TMPyP, of the solution 

before and after treatment of the membrane with TMPyP and wash solutions were 

determined. The concentration of TMPyP bound to the membrane could be 

calculated through absorbance measurement and it is the difference between the 

absorbance of TMPyP before staining of the membrane and absorbance of TMPyP 

contained in staining solution and wash solutions after staining of the membrane. 

However, there was no significant difference in the absorbance of staining solution 

before and after staining of the membranes and so, we were not able to determine 

the amount of TMPyP bound to each membrane. This is because only small amount 

of TMPyP was adsorbed onto the chitosan membrane due its low surface area to 

volume ratio and non-fibrous nature.   Another way to quantify the concentration of 

TMPyP bound to the membrane is to unbind TMPyP from the membrane in high salt 

solution and then measure it.  

5.3.4 PDI of MS2 phage using TMPyP functionalised chitosan 

membranes 

TMPyP functionalised chitosan membranes (CM-T) were used to investigate 

inactivation of MS2 by PDI. Our data showed that for the stationary model of PDI of 

MS2 using CM-T, reductions of 3 and 7 log PFU/ml of MS2 were observed for 30 and 

60 min of illumination respectively (Figure 5.8 A). Complete inactivation (reduction 
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of 9.6 log PFU/ml) of MS2 was observed with CM-T after 90 min illumination with 

the light at 32 mW cm-2 (Figure 5.8 A). For the flowing water model, complete 

inactivation of MS2 (reduction of 8.8 log PFU/ml) was observed for sample passed 

twice over the surface of CM-T at 0.33 ml/min while being illuminated with light of 

32 mW cm-2 (Figure 5.8 B). Reduction of approximately 3 log PFU/ml were observed 

for sample passed once under the same conditions (Figure 5.8 B).  

(Placeholder19p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 5. 8: PDI of MS2 using TMPyP functionalised chitosan membrane. CM, 
chitosan membrane; CM-T, TMPyP functionalised CM. MS2 were exposed to PDI in 
a static model (data part A) or a flowing model (data part B) where MS2 suspension 
at 108 PFU/ml were passed over CM or CM-T at 0.33 ml/min under light 32 mW cm-

2 dark conditions. CM-T (Light, A), was passed over the surface of CM-T once while 
CM-T (Light, B) was passed over twice during the PDI. Data are mean ± standard 
deviation (n = 3) (Majiya et al., 2017). ( 

 

The same light intensity at 32 mW cm-2 was chosen and used as in our PDI studies in 

solution. This was to allow comparison between rate and extent of PDI with TMPyP 

in solution and while attached onto chitosan membrane. This light intensity is low 

and it is just about 3% of bright midday sunlight under clear sky conditions in sub-

Saharan Africa. Subsequent PDI investigation will be employ much higher light 

intensities. However, use of real world light intensities would just give complete 

inactivation and reveal little detail of the inactivation rates. It is also clear that the 

PDI capacity of CM-T at low light intensity mean it could also be used in the UK and 

other northern European countries. In these nations the key advantage would be 

reduction in energy use for water treatment.  The rate of PDI with TMPyP attached 

onto chitosan membrane was slower as compared to TMPyP in solution (as shown 

), complete inactivation. 
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in Chapter 4).  This is expected as proximity of unattached TMPyP in solution to the 

microorganism will be greater as compared with attached TMPyP. However, the 

ultimate aim was achieved as CM-T can cause PDI of MS2 under flow conditions and 

re-use (Figure 5.9) with no apparent detectable decline in its PDI capacity and 

efficiency.  

 

Figure 5. 9: Dried re-used TMPyP functionalised chitosan membranes (CM-T) for the 
PDI of MS2. The duration of PDI and number of re-uses (X) of the membranes are 
shown. The membranes became flattened and expanded to about 4.5 cm diameter 
while in PDI solution. 

  

5.3.5 PDI of E. coli BL21 using TMPyP functionalised chitosan 

membranes 

TMPyP functionalised chitosan membranes (CM-T) were used to investigate 

inactivation of E.coli BL21 by PDI. For the photodynamic inactivation of E.coli using 

CM-T under the same stationary model used for MS2, reductions of only 3 log 

CFU/ml of the bacteria was observed after 90 min of illumination (Figure 5.10). The 
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data also show that washing of the cells lead to reduction of about 1 log CFU/ml of 

the bacteria and the actual photodynamic inactivation was about 2 log reductions 

under these conditions (Figure 5.10).  

(Placeholder20p. This image has been removed by the author of this thesis 

for copyright reasons) 

Figure 5. 10: PDI of E. coli BL21 using TMPyP functionalised chitosan membrane. CM, 
chitosan membrane; CM-T, TMPyP functionalised CM. PDI light experiments were 
illuminated at 32 mW cm-2 for 90 min. CM-T (Dark), was not exposed to light; CM 
only (Light), was exposed to light; DP (direct plating), was washed but not treated 
either with CM-T or light; NW (cells not washed), was not treated either with CM-T 
or light. Data are mean ± standard deviation (n = 3) (Majiya et al., 2017). 

 

The cells were washed to prevent interference of bacteria media (TSB) on the PDI of 

the bacteria. The organic component of the TSB could in principle compete with the 

bacterial components in quenching the singlet oxygen and other ROS generated 

during PDI. This would reduce singlet oxygen mediated damage and reduce the 

effectiveness of PDI.  It is also important to realise that greater illumination time and 

intensity could increase bacterial killing. However, the use of MS2 photodynamic 

inactivation (stationary model) conditions for the E.coli experiment allowed direct 

comparison of the two types of organism.  TMPyP in solution can bind to bacterial 

cell membranes in addition to ROS generated in solution. However the only 

possibility for PDI with TMPyP immobilised on chitosan membranes is direct cell 

damage by ROSs generated close to the support surface. The reduction in colony 

count of the bacteria after the PDI can be observed clearly when bacteria agar plates 

were compared (Figure 5.11). 
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Figure 5. 11: PDI of E. coli BL21 using TMPyP functionalised chitosan membrane. PDI 
light experiments were illuminated at 32 mW cm-2 for 90 min. Chitosan-TMPyP 
(Dark), was not exposed to light; DP, direct plating, was washed but not treated 
either with CM-T or light; NW, cells not washed and not treated either with CM-T or 
light.  

 

5.8 PMA Modified and TMPyP functionalised chitosan nanofiber 

We were able to successfully functionalised chitosan polymeric membranes with 

TMPyP which is our photosensitiser of choice. Also, TMPyP functionalised chitosan 

membrane (CM-T) have been shown to inactivates MS2 and BL21 E. coli. However, 

chitosan polymeric membranes are non-fibrous and have a low surface area to 

volume ratio. This means, hypothetically that only small amount of TMPyP could be 

adsorbed onto the membranes. If a solid support such as a nanofiber mesh was 

utilised, this would provide a much higher surface area to volume ratio and more 

TMPyP could be immobilised. This, in turn would lead to more singlet oxygen 

generation during PDI and improve the PDI. Since we have established a protocol for 
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the modification and TMPyP functionalisation of polymeric chitosan membranes, 

chitosan electrospun nanofibers (Figure 5.12) were also tested as a solid support for 

attaching TMPyP for water disinfection.  The chitosan/polyethylene oxide (PEO) 

(60:40 weight ratio) electrospun nanofiber was a gift from Dr A. M. Afifi, University 

of Malay, Kuala Lumpur. Electrospun nanofibers are usually fragile and lack the 

mechanical strength to withstand rigorous physical processes such as wastewater 

treatment and disinfection applications. However, chitosan/PEO (60:40 weight ratio) 

electrospun nanofiber is robust, fibrous and have a high surface area to volume ratio 

(5.12).  

 

Figure 5. 12: Macro (A) and SEM (B) images of chitosan/polyethylene oxide (60:40 
weight ratio) electrospun nanofiber mat. The material was a generous gift from Dr 
A. M. Afifi, University of Malay, Kuala Lumpur. 

 

The blend of chitosan and PEO in the nanofiber was necessary as pure chitosan 

cannot form fibres.   Chitosan in the nanofiber provided the mechanical strength 

while the PEO and surfactants allow electrospinning or yielding fibres with diameters 

ranging from 40 nm to 240 nm (Kriegel et al., 2009).   Several blend of chitosan and 

PEO could be electrospun and higher chitosan content led to the thinner nanofibers. 
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It has been shown that increasing the chitosan/PEO ratio from 50:50 to 90:10 led to 

a decrease in fibre diameter from 123 to 63 nm (Pakravan et al., 2011).  The 

electrospinability of pure chitosan is limited mainly because of its polycationic nature 

in solution, rigid chemical structure and specific inter and intra molecular 

interactions (Pakravan et al., 2011). 

As with the polymeric chitosan membrane used earlier, direct adsorption of TMPyP 

onto chitosan/PEO nanofibers was not possible because the net charge of the 

nanofiber is positive and will not bind TMPyP, which is tetra cationic. The 

chitosan/PEO nanofibers were first modified by pyromellitic dianhydride (PMA) in 

order to introduce carboxyl groups and allow adsorption of the highly basic TMPyP. 

Therefore, the chitosan/PEO composite nanofibers were treated with PMA as 

previously described (Section 5.2.2)    

Fourier-transform infrared spectroscopy (FTIR) was used to assess the success of the 

PMA modification of chitosan/PEO nanofiber.  The FTIR transmission spectra were 

measured at room temperature on the unmodified chitosan/PEO nanofiber mat and 

modified chitosan/PEO nanofiber mat using a Perkin Elmer 65 FTIR-ATR instrument. 

A total of 128 scans were accumulated for signal averaging of each IR spectra 

measurement to ensure a high signal to noise ratio with a 4 cm-1 resolution. The 

spectra of the samples were recorded over a wavenumber range of 500-4000 cm-1. 

Unmodified chitosan/PEO nanofibers have free amino groups at position 6 of the 

chitosan monomer while PMA modified chitosan/PEO nanofiber should have free 

carboxyl groups. Our FTIR data of unmodified chitosan/PEO nanofiber (CPN) and 

PMA modified chitosan/PEO nanofiber (PMA-CPN) showed that the modification 

was successful. Primary amine peak was observed in unmodified chitosan/PEO 
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nanofiber (Figure 5.13). While we could not observe any primary amine peak in PMA 

modified chitosan/PEO nanofiber (Figure 5.13). However, carboxylic acid peak was 

observed in PMA modified chitosan/PEO but was not observed in unmodified 

chitosan/PEO nanofiber. It was reported by Pakravan et al., (2011) that the FTIR 

spectra obtained at room temperature for chitosan/PEO nanofibers at various 

chitosan/PEO contents have an amine (NH2) stretch with strong peak observed at 

1555 cm-1.  This confirmed the amine stretch that we observed in the unmodified   

chitosan/PEO nanofiber and lack of it in the PMA chitosan/PEO nanofiber (Figure 

5.13).  
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Figure 5. 13: FTIR data of unmodified chitosan/PEO electrospun nanofiber (CPN) and 
PMA modified chitosan/PEO electrospun nanofiber (PMA-CPN). (A), primary amine 
peak; (B) Carboxylic acid peak. 
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PMA modified chitosan/PEO nanofiber (PMA-CPN) and unmodified chitosan/PEO 

nanofiber (CPN) were incubated in TMPyP. Each nanofiber mat (1 cm square 100 μM 

thick) was immersed in 2 ml 0.25 mM TMPyP contained in a closed bottle (Figure 

5.14) and from here, subsequent steps for TMPyP functionalisation of the nanofibers 

were as previously described in Section 5.2.4.   

 

Figure 5. 14: Chitosan/PEO nanofiber functionalisation with TMPyP. (A), PMA 
modified chitosan/PEO nanofiber (PMA-CPN) and unmodified chitosan/PEO 
nanofiber (CPN) 30 min incubation in TMPyP; (B), PMA-CPN and CPN after washing 
in water. 

 

We observed that only the PMA modified chitosan/PEO nanofiber retained the 

TMPyP after vigorous washing in dH2O (Figure 5.14).  It is evident that most of the 

amino groups which gave net positive charge to the chitosan had been modified 

allowing efficient adsorption of the cationic TMPyP. We monitored the release of 

TMPyP from the nanofiber and washed in dH2O to zero absorbance after staining of 

the membranes with TMPyP. This is very important as even 0.2 µM of TMPyP can 

achieve complete inactivation of MS2 phage in solution within few minutes. As 

expected, we observed that much more TMPyP could be bound by PMA modified 
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chitosan/PEO nanofiber (PMA-CPN) as compared to chitosan membrane. 

Absorbance at 422 nm (the peak absorbance of TMPyP) of reaction solution before 

and after staining of the nanofiber with TMPyP and wash solutions was determined. 

The concentration, expressed as percentage of TMPyP bound onto the nanofiber 

was calculated as difference between the absorbance of TMPyP before staining and 

absorbance of TMPyP within reaction solution and wash solutions after staining. Our 

data showed that 1 cm2 of the nanofiber with thickness of 100 μm could take up 

around 83% of TMPyP from a 2 ml solution of 0.25 mM TMPyP (Figure 5.14).  

 

5.9 PDI of MS2 phage using TMPyP functionalised chitosan/PEO 

nanofiber 

TMPyP functionalised chitosan/PEO nanofibers (CPN-T) were used to investigate 

inactivation of MS2 by PDI. Initially, the stationary model was used as previously 

described in Section 5.2.5. The CPN-T was pre-wet and immersed in 1 ml MS2 (109 

PFU/ml) for the PDI.  

Our data showed reductions of 2 and 5 log PFU/ml of MS2 were observed for 1 and 

4 min illumination respectively (Figure 5.15). Complete inactivation (reduction of 9.6 

log PFU/ml) of MS2 was observed with CPN-T after 6 min illumination with the light 

at 32 mW cm-2 (Figure 5.15). The same light intensity at 32 mW cm-2 was chosen and 

used as in our PDI studies in solution and with CM-T. This was to allow comparison 

between rate and extent of PDI with TMPyP in solution and while attached onto 

chitosan membrane and nanofiber mats. The rate of PDI of MS2 could be increased 

by using much higher light intensities, although it is clear that the efficient PDI shown 

by CPN-T at low light intensity means it could also be used in the UK and other 
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northern European countries. The rate of PDI with TMPyP attached onto chitosan 

nanofiber was slower as compared to TMPyP in solution (as shown in chapter 4). 

However, it was faster than PDI with CM-T. This was expected as the proximity of 

unattached TMPyP in solution to the microorganism will be greater as compared 

with attached TMPyP. The PDI with CPN-T was faster than with CM-T because the 

nanofiber has a much higher surface area to volume ratio. So, more TMPyP could be 

attached thereby generating more ROS to inactivate MS2. Each CPN-T was re-used 

at least 3 times for the PDI investigation of MS2 with no detectable decline in its PDI 

capacity and efficiency, and it is likely that many cycles of use could be realised.   

 

 

Figure 5. 15: PDI of MS2 using TMPyP functionalised chitosan/PEO nanofibers. CPN, 
chitosan/PEO nanofiber; CPN-T, TMPyP functionalised CPN. PDI light experiments 
were illuminated at 32 mW cm-2 while CPN-T (Dark) was not exposed to light.  

 

 

, complete inactivation. 
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5.10 conclusion 

The data presented in this chapter has shown that TMPyP attached onto chitosan 

membrane (CM-T) and chitosan/PEO nanofibers (CPN-T) can inactivate MS2 and E. 

coli BL21. This means TMPyP functionalised chitosan nanofiber/membrane could be 

used as a simple, cheap, environmentally friendly device for water disinfection.  

Both chitosan membrane (CM-T) and chitosan/PEO nanofiber (CPN-T) have a 

number of merits. Both use chitosan which is non-toxic, biodegradable, wettable, 

cheap and readily available. It also shows good mechanical strength to withstand the 

wear and tear of the water disinfection process. We described a method of 

modifying chitosan nanofiner/membrane without affecting its solubility in water 

using pyromelitic dianhydride (PMA). The PMA modified chitosan nanofibers and 

membranes could also be used to adsorb positively charged dyes and heavy metals 

from contaminated water thereby remediating the water totally although this 

feature has not been explored in this study. CM-T and CPN-T have been re-used 

several times for the same purpose with no detectable decline in their PDI capacity 

and efficiency and this would ultimately reduce cost.  Furthermore, the flowing 

water model for PDI mimic something close to the process in water treatment plants, 

although much more development is needed to arrive at pilot scale testing. Overall, 

chitosan/PEO nanofiber is better than chitosan membrane as solid support for 

attaching TMPyP for water disinfection because the nanofiber had a much higher 

surface area to volume ratio. 

The fact that CM-T and CPN-T were able to photodynamic inactivate MS2 and E. coli 

while using light intensity of 32 mW cm-2 which is low compared to daytime sun 

brightness, is an indication that this research can lead way to simple sunlight driven 
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water disinfection system that could be used as a zero man-made energy input 

system to produce clean and safe drinking water in both developed and developing 

countries. 
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Chapter 6 General discussion  

6.1 Overview 

It was first proposed in 1994 that the photodynamic effect using immobilised 

photosensitisers might be used for water disinfection. This would be especially 

effective in developing nations, where contaminated surface water is a major 

problem and bright solar irradiation is available for free (Bonnett et al., 1994). It is 

around 23 years now and no successful disinfection of water using the photodynamic 

effect of a photosensitiser during wastewater treatment has been reported in either 

developed or developing countries.  This is in spite of ongoing worldwide research 

into the possibility of using this technology during wastewater treatment. Common 

issues which have held back this area have been finding the right solid supports, 

coupling chemistries and photosensitisers with appropriate properties suitable for 

sustainable usage in water disinfection. The motivation behind the research includes 

reduction of energy and chemical usage to the bare minimum. Sunlight can be used 

as the source of light for the photodynamic effect and photosensitisers could be 

attached on to solid supports so that after phototreatment of water the supported 

photosensitiser is not released into the water and disinfection systems could be re-

used for water disinfection making it cheap and environmentally friendly.  

The ultimate aim of this work was to develop a sunlight-driven water bioremediation 

system. In this study, we chose the photosensitiser - 5, 10, 15, 20-tetrakis (1-methyl-

4-pyridinio) porphyrin tetra p-toluene sulfonate (TMPyP) since preliminary studies 

with TMPyP in solution showed it caused a rapid  photodynamic inactivation (PDI) of 

our model viral organisms (bacteriophages MS2 and Qβ, murine norovirus and 

bovine enterovirus). Native gel electrophoresis, SDS-PAGE and western blotting, 
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TEM and DLS were used to analyse pre- and post-PDI samples of our viruses. This 

was to observe inter capsid and intra capsid proteins changes due to singlet oxygen 

mediated oxidation. In addition, in order to identify targets and unravel the actual 

mechanism of ROS mediated inactivation, sequence specific antibodies against 

predicted target sequence in the A-protein were made. The target sequences 

selected were all candidate sites for involvement of A-protein binding to the 

bacterial pilus.  Also, Attempt were made to select mutants MS2 resistant to singlet 

oxygen mediated inactivation. Finally, the RNA of MNV PDI samples was extracted 

and transfected in order to know whether RNA infectivity itself was affected by the 

PDI.  

Chitosan nanofiber and polymeric membranes were used as solid supports for 

attaching TMPyP. However, the chitosan nanofibers mats and membranes were first 

modified with pyromelitic dianhydride to introduce carboxyl groups and facilitate 

adsorption of the highly basic TMPyP. The TMPyP functionalised chitosan 

nanofiber/membrane produced were then used for PDI of bacteriophage MS2 and 

E. coli BL21. Both stationary and flowing water models were employed during the 

PDI experiments. The TMPyP functionalised chitosan nanofiber mats and 

membranes was shown to cause PDI of MS2 and E. coli BL21 in aqueous solution. 

In this chapter key results are discussed highlighting the implications, impacts and 

future prospects of this work as well as challenges encountered along the way.  

6.2 Specific findings within this report 

In this work, we observed that PDI of MS2 with TMPyP in solution caused inter and 

intra capsid protein changes. We observed aggregation of MS2 particles through 

native agarose gel electrophoresis and confirmed this by TEM and DLS. No 
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aggregation of phage Qβ and BEV was observed. We also observed crosslinking of 

MS2 coat protein through western blotting after PDI. Also, crosslink of the major 

capsid protein VP1 (formation of trimers) within MNV was observed. Complete MS2 

particle aggregation was observed after 60 min of PDI. Formation of dimers of MS2 

coat protein was observed after 10 min PDI. However, because there was no 

correlations between MS2 particle aggregation or crosslinking of its coat protein and 

complete inactivation of MS2 within 1 min of PDI, we turned our focus to the host 

bacteria attachment protein, the A-protein which is also part of MS2 capsid. Using 

sequence specific antibodies, generated against peptides corresponding to regions 

of the MS2 A-protein, we were able to show that A-protein is the key target of PDI 

in MS2.  Changes to epitopes caused by ROS mediated   oxidation should result in a 

switch in antigenicity from a native, and detectable state to a non-native state and 

correlates with the rate of PDI. Sequence-specific antibodies for antigenic sites 2 and 

4 on the A-protein of MS2 did not detect these after 1 min of PDI. This rate of loss of 

antigenicity corresponds to the rate of PDI of MS2 we observed previously. Histidine 

and tryptophan are the most sensitive amino acids to singlet oxygen and their 

position almost in the middle of the sequence of these antigenic sites on the A-

protein is probably responsible for the fast rate of antigenicity loss. This approach 

provides a novel approach to evaluate the effect of ROS caused by PDI, on different 

regions of viral target proteins.  

Several studies have been reported on PDI of viruses in solution. Many of the PDI 

studies have revealed that the rate and extent of PDI of viruses is dose dependent.  

In most of the PDI studies, much of the work was focused on inactivation kinetics 
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with little emphasis on the molecular targets of the PDI and its mechanism from a 

biological perspective.   

Changes to viral proteins as result of PDI have been measured by SDS-PAGE and 

infrared (IR) spectroscopy (Costa et al., 2014). However, these methods are not 

specific to PDI-mediated effects.  The use of SDS-PAGE is limited to overall effects on 

viral proteins but cannot give detail of the domains affected. In addition, the reaction 

of singlet oxygen with proteins results in multiple effects including oxidation of side 

chains, backbone fragmentation, dimerisation and/or aggregation, unfolding or 

conformational changes. These effects can result in enzymatic inactivation and 

alterations in cellular handling and turnover. Owing to the presence of reducing 

agents in SDS-PAGE as well as heat-treatment of proteins, there is significant 

reduction in assay sensitivity. Similarly, IR spectroscopy cannot detect changes 

induced by PDI on specific protein residues but only give an overall effect on 

proteins. Matrix assisted laser desorption ionization (MALDI) and electrospray 

ionisation (ESI) mass spectrometry have also been applied to the evaluation of site-

specific protein damage due to singlet oxygen oxidation (Rule Wigginton et al., 

2010).  

In most viral PDI investigations, one or two model viruses were used and no 

comparisons were made with other viruses. After exhaustive PDI investigation of 

MS2, we also used PDI to investigate other model viruses-bacteriophage Qβ, bovine 

enterovirus and murine norovirus. Bacteriophage Qβ is very similar to MS2 and it 

was chosen to see how difference in amino acid composition of the virus attachment 

protein affected the rate of PDI. BEV and MNV are good models for eukaryotic 

viruses especially enteric viruses that are known to cause viral waterborne diseases 



193 
 

  
 

and importantly are viruses which infect eukaryotic, and specifically mammalian 

cells. The model viruses have some similarities which include being lytic, non-

enveloped, icosahedral capsid, 27-30 nm in diameter, positive sense and single 

stranded RNA as their genome.  Although these model viruses are similar to great 

extent, the PDI data showed that the inactivation varied among them. The rate and 

extent of PDI among these viruses was in the order MS2 > phage Qβ > MNV > BEV. 

This may be because of the amino acid compositions, surface accessibility and 

hydrophilicity of their host attachment proteins. This is because ROS) generated in 

solution can only attack those parts of proteins that are solvent accessible. This can 

possibly lead way in classifying viruses into; very sensitive, mildly sensitive and less 

sensitive to PDI based on amino acid compositions and solvent accessibility of their 

host attachment proteins/sites. 

6.3 Photosensitisers as water disinfectants and supplements 

We used 3 photosensitisers (TMPyP, Rose Bengal and methylene blue) for PDI of our 

model viruses in solution and we found out that TMPyP was the most efficient. 

TMPyP is a porphyrin, Rose Bengal is a xanthene dye and methylene blue is a 

phenothiazinium dye (DeRosa and Crutchley, 2002).  These photosensitisers have 

the following required properties of a good photosensitiser;  

High absorption coefficient in the visible spectra; the emission spectra of light source 

we used in this work was 400 nm – 786 nm and the absorption peaks for TMPyP, 

Rose Bengal and methylene blue were at 422 nm, 550 nm and 666 nm respectively. 

Also, sunlight could as well be used to excite these photosensitisers. A typical solar 

spectrum (solar AM1.5) is 300- 1400 nm (Loeb et al., 2016) with a peak at 500 – 600 

nm (Jemli et al., 2002).     
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A triple state of appropriate energy (ET ≥ 95 kJ mol-1); this allows for efficient energy 

transfer to ground state oxygen in the water which can then be converted to singlet 

oxygen. The ET of methylene blue and Rose Bengal are 133.9 kJ mol-1 and 175 kJ mol-

1 respectively (Loeb et al., 2016, DeRosa and Crutchley, 2002).   

High quantum yield of the triple state (ФT > 0.4) and long triplet state lifetimes (ƬT > 

1 μs); the efficiency of the photosensitiser is dependent on the photophysical 

properties of its lowest excited triple state. The Ф∆ (quantum yield) of methylene 

blue and Rose Bengal in aqueous solution are 0.52  and 0.76 respectively (DeRosa 

and Crutchley, 2002). The singlet oxygen Ф∆ (which is directly proportional to triple 

state energy and quantum yield of the triple state of the photosensitiser) of TMPYP 

is 0.74  in PBS (Lei et al., 2010).  

Many photosensitisers including these 3 photosensitisers are highly coloured organic 

compounds that are soluble in water. Even though photoactive antimicrobials are 

not generally toxic molecules, there are health and safety concerns for ingesting 

these photosensitisers in water (Wainwright et al., 2017). Therefore, a successful 

photodynamic water disinfection system will   require attachment of the 

photosensitiser onto a solid support to prevent release into water during and after 

treatment. This is also a practical consideration anyway, since contamination with 

free photosensitiser would be unacceptable to the consumer. Also, the 

photosensitiser functionalised solid support can be reutilised thereby reducing the 

cost of the treatment.  However, even though there are many photosensitisers that 

have been shown to be efficient in PDI of microorganisms in solution, only a few have 

been successfully attached onto solid supports that could ultimately be used for 

water disinfection. This may be due to difficulties in finding appropriate solid 
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supports and efficient photosensitisers with the right functional groups and coupling 

chemistries. At the moment, successfully photosensitiser functionalised solid 

supports are either too fragile for disinfection of large volumes of water or too costly 

and therefore not suitable for world’s poorest regions. These include rural areas in 

the sub-Saharan and south east-Asia where conventional centralised wastewater 

treatment is usually lacking. In this work, we are not able to attach TMPyP onto 

chitosan nanofiber mats and membranes covalently because of the lack of 

appropriate functional groups. Although, parallel research within the Millner group 

is close to synthesising TMPyP analogous with pendant reactive groups such as 

alkynes, amines (Mrs K Chowdhury- personal communication).  Covalent 

photosensitiser coupling would be preferable to electrostatic adsorption that we 

used to attach TMPyP onto chitosan nanofibers and membranes in this work, since 

covalent coupling would not be affected by ionic strength and pH of the water. 

However, in practice since most application will be for freshwater sterilisation this 

will not be a problem. The TMPyP functionalised chitosan nanofibers and 

membranes we fabricated showed photodynamic inactivation capacity against MS2 

and E. coli BL21.  However, we observed substantial differences in the rate of PDI of 

MS2 with TMPyP in solution and when immobilised. The rate of PDI with TMPyP 

attached onto chitosan nanofibers and membranes was slower compared to TMPyP 

in solution.  This was in agreement with other reports of photosensitisers attached 

onto solid supports (Henke et al., 2013, Suchanek et al., 2014, Bonnett et al., 2006, 

Carvalho et al., 2010). This was expected as the proximity to the microorganism of 

TMPyP in solution will be far greater as compared with immobilised TMPyP and 

because the singlet oxygen generated has limited diffusion path length in water, 200 



196 
 

  
 

nm – 400 nm, corresponding to a lifetime of ~ 3 µs (Loeb et al., 2016).  These are 

some of the problems delaying the first successful application of PDI for water 

disinfection. However, using photosensitisers that are nontoxic, readily available, 

cheap, medicinal and nutritious might not require attachment onto solid support for 

water disinfection application. The types of photosensitisers that will suit these 

descriptions will be of natural origin especially plants. The attractiveness of 

phytochemical compounds (plant extracts) that may be used relies on the fact that 

they are natural and economical alternatives to chemically synthesised 

antimicrobials and also because most of the compounds of plant origin are Generally 

Recognised As Safe (GRAS) (Randazzo et al., 2016). Recently, there are several 

reports about the potential use of natural photosensitisers such as chlorophyllin, 

alpha-terthienyl, hypericin and curcumin to control foodborne pathogens and 

spoilage microorganisms (Randazzo et al., 2016, Luksiene and Brovko, 2013, Astuti 

et al., 2016).  Chlorophyll is the most abundant biological pigment that is commonly 

found in plants, bacteria, bryophytes and algae. Chlorophyll plays a vital role in 

photosynthesis in these organisms (Arof and Ping, 2017, Guo et al., 2017, Ballottari 

et al., 2013). Chlorophylls are natural pigments and therefore safe, environmental 

friendly, easily available and cheap. It has also been shown to be an excellent dietary 

supplement because it has nutritional and medicinal benefits. Chlorophyll can be 

easily extracted from the leaves of many plants (Arof and Ping, 2017). Curcumin is a 

phenolic compound extracted from turmeric rhizomes (Curcuma longa) and 

approved by the EU as a food additive (E100) (Randazzo et al., 2016). It has been 

consumed for medicinal purposes for many centuries (Gupta et al., 2012). It is also 

is inexpensive, well tolerated and as food supplement in several countries (Gupta et 
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al., 2012). It has been shown that curcumin has antioxidant, anti-inflammatory, 

anticancer, antiatherosclerosis, hepato and neuroprotective properties (Gupta et al., 

2012, Penha et al., 2017).  Finally, several papers have reported that curcumin has  

promising photoxicity against bacteria (including multiresistant), fungi and viruses 

that could be an advantage for food sterilisation and disinfection applications (Penha 

et al., 2017, Randazzo et al., 2016, Yang et al., 2016). 

6.4 Available solar energy and water disinfection capacity of PDI  

Our source of light for the PDI of model viruses in this work was visible cold light (400 

nm – 786 nm) and the light intensity used for most of the PDI experiments was 32 

mW cm-2. This light intensity is only about 3% of bright mid-day time sunlight under 

clear sky conditions in the Sub-Saharan Africa and about 10% of mid-day time 

sunlight during summer in the Northern Europe. Such a relatively low intensity was 

intentionally used to provide a graded response, since high intensity would tend to 

yield totally dead organisms and reveal little detail of the PDI process. In this work, 

we have shown that 5 mW cm-2 can cause inactivation of MS2 with TMPyP in solution 

and light intensity affected the rate of inactivation of MS2 in flux dependent manner. 

This was true at least for light intensities from 5 mW cm-2 to 20 mW cm-2. However, 

in reality, even though intensity of solar irradiation varies from place to place, 

position of the sun in the sky, different altitude/latitude and sky conditions,   it 

present us with much wider spectrum (300 – 1200 nm) including UV, visible and near 

infra-red regions (Jemli et al., 2002, Gueymard et al., 2002, Loeb et al., 2016). This 

means that several photosensitisers could be excited, including photosensitisers that 

have multiple absorption peaks and or absorption peak in either of these regions. 

Furthermore, on a clear sky condition, about 8% of solar irradiation constitutes UV 
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radiation (< 400 nm) (Jemli et al., 2002). This has already been exploited in solar 

disinfection (SODIS) of water especially in remote and infrastructure deficient areas. 

SODIS involves exposing water to direct sunlight for at least 6 h. it is believed that 

microbial inactivation results from exposure to UV radiation (320 – 400 nm) with a 

minor contribution from heating (Loeb et al., 2016, Davies et al., 2009). Several 

studies have been reported for SODIS in polyethylene terephthalate (PET) bottles for 

inactivations of E. coli (Dejung et al., 2007, Dunlop et al., 2011, Fisher et al., 2012) 

and a few reported for inactivation of MS2 (Fisher et al., 2012, Carratalà et al., 2016) 

and C. parvum oocysts (Gómez-Couso et al., 2009). It is believed that the inactivation 

rate, especially for MS2, depends on organic matter and dissolved oxygen 

concentrations which promotes the generation of ROS under radiation. However, 

although SODIS is very cheap and simple and should be suitable for world’s poorest 

regions for water disinfection, it has limitations such as unpredictable UV radiation 

intensity available, requirement for pre-filtration, and long exposure time to ensure 

safely sterilised water. The amount and proportion of UV radiation in the solar 

spectrum depends on latitude and cloud coverage (Hunter, 2009). Hypothetically, it 

could be suggested that when other PDI conditions remained the same as we did in 

this work but use sunlight instead as source of light, we should expect higher rate of 

inactivations of the model viruses and bacteria than what we observed in the 

laboratory. This means in real life situation, sunlight driven photodynamic 

disinfection of water is feasible with shorter duration illumination because of 

synergistic effects of UV radiation and photosensitisation. 



199 
 

  
 

6. 5 Model organisms for photodynamic disinfection of water  

Waterborne pathogens can be broadly divided into bacteria, viruses, protozoa and 

helminths. The development of effective photodynamic disinfection systems that 

will be universal for the inactivation of waterborne pathogens will be required to be 

tested against the most resistant organisms from each of these groups. WHO 

guidelines for evaluating household water treatment options recommended 

Cryptosporidium pervum oocysts, E. coli and bacteriophage MS2  as model organisms 

for the diversity of organisms responsible for waterborne diseases (WHO, 2011a). 

There are several reports about effectiveness of PDI against bacteria and viruses but 

very few PDI investigations were reported on protozoa and helminths because they 

can be filter out relatively easily. (Loeb et al., 2016). E. coli is usually used as model 

for bacteria in many PDI investigations. E. coli is a coliform and gram-negative 

bacterium belonging to the family Enterobacteriaceae and is used as a marker for 

sewage contamination, as it is taken as surrogate for the presence of other 

pathogenic faecal organisms. Several other bacteria have been used as models in PDI 

studies. However, in most cases preferences were given to gram negative bacteria 

since gram positive bacteria, including those resistant to antibiotics, are easily 

inactivated by PDI as compared to gram negative bacteria. This is due to differences 

in the structure of their cell wall and membranes. Gram negative bacteria have an 

additional outer membrane apart from the cytoplasmic (inner) membrane, giving 

them extra protection against antimicrobial agents including ROS produced during 

photosensitisation. MS2 has been used as a viral model organism in several studies 

aimed at photoinactivation and chemical disinfection of human viruses because of 

its similarity in size and morphology to some  human viruses (Kohn and Nelson, 2007, 
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Zhong et al., 2016). Also, it is non-pathogenic to humans and easy to propagate. 

However, some researchers have the opinion that to use phage as model organisms 

in photoinactivation experiments may not accurately reflect inactivation  of human 

viruses (Silverman et al., 2013). Use of animal viruses that are closely related to 

human viruses to study PDI is attractive because of health and safety reasons. Also, 

some human viruses e.g. human norovirus is presently difficult to propagate in the 

laboratory whilst the closely related murine norovirus can be propagated easily 

(Taube et al., 2010, Orchard et al., 2016, Katpally et al., 2010). We used four model 

viruses in this work; these are bacteriophages MS2 and Qβ, bovine enterovirus 2 

(BEV 2) and murine norovirus (MNV). These viruses are non-enveloped, have 

icosahedral capsids and positive single stranded RNA as their genome.  Positive 

single stranded RNA viruses are the largest group of viral pathogens (Koonin et al., 

2015, Heil et al., 2004, Dent et al., 2013, Harrison et al., 1978). We observed that 

MS2 is very sensitive to PDI especially when photosensitiser- TMPyP was used in 

solution.  This agreed with several reports that showed that singlet oxygen is 

exceptionally effective against MS2 (Loeb et al., 2016). Although the model viruses 

used in this work are similar to a great extent, the rate and extent of PDI varies 

among these viruses even under the same PDI conditions. The rate and extent of PDI 

among these viruses was in the order; MS2 > phage Qβ > MNV > BEV. It is suggested 

that there is need to establish the PDI kinetics for a wider range of waterborne 

viruses. Cryptosporidium pervum oocysts and eggs of Ascaris lumbricoides could be 

used as PDI models for waterborne protozoa and helminths. To date, the rate and 

extent of PDI for Cryptosporidium pervum oocysts has not been explicitly published 

(Loeb et al., 2016).  
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6. 6 Water quality suitable for PDI of waterborne microorganisms 

The source of water and its characteristics can determine the efficiency, 

performance and cost of conventional disinfection methods. Synergistic effect of 2 

or more disinfection methods coupled with pre-treatment of water is the best way 

to efficiently inactivate resistant waterborne pathogens. This should apply to PDI 

too. Most reports concerning the prospects of using PDI for water disinfection report 

work under laboratory conditions where the effect of co-pollutants was not usually 

tested. In this work we observed that 0.1% (w/v) of humic acid gave 100 % protection 

to MS2 under the PDI conditions we used, although higher light intensity may reduce 

this. A plausible explanations for this include the humic acid quenching the ROS 

generated, or shielding the virus from direct effect of singlet oxygen mediated 

damage. It is very possible also that because at this concentration of humic acid gave 

dark brown colour to the PDI solution and light transmittance through the solution 

was drastically reduced, in turn reducing ROS production. At higher light intensity 

and longer duration of illumination, inactivation may be observed. This is because 

humic acid as well as greater excitation of the photosensitiser (TMPyP) and other 

soluble organic pollutants in waste waters could also act as photosensitisers when 

exposed to the full spectrum of sunlight (Kohn et al., 2007, Silverman et al., 2013). 

Natural organic matter (NOM) in water is the main causes of UV attenuation and ROS 

scavenging, especially hydroxyl radicals (Haag and Hoigne, 1986). However, singlet 

oxygen seem to be preferentially quenched by interaction with water and therefore 

concentration of NOM may in reality have negligible impact (Haag and Hoigne, 1986, 

Loeb et al., 2016). Comparative studies involving 4 solar driven disinfection 

technologies, including  photocatalysis, photosensitiser (PDI), UV-C light-emitting 
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diodes (LED) and upconversion, showed that there were near identical percentage 

reductions in treatment capacity with decreasing water quality for all systems with 

the striking exception of singlet oxygen generating photosensitisers (Loeb et al., 

2016). Typically, NOM concentrations of ~10-5 M are found in clear surface water 

and tap water (Leenheer and Croué, 2003). Ground water or borehole well water is 

very clear while some surface water may have high turbidity, colour and particulate 

matter. Ground water can have a dissolved organic carbon (DOC) concentration as 

low as 0.1 mg-C/L while surface waters tend to have higher DOC in the range of 2-10 

mg-CL/L (Osterloh, 2008).  However, it seems that it is turbidity, colour and 

particulate matter contents of water rather than its DOC which does not cause water 

colouration that most affects the treatment capacity of PDI.  

6.7 Further work 

Although there are several studies reporting the effectiveness of PDI of 

microorganisms in solution, it has not been successfully used for water disinfection 

during waste water treatment anywhere in the world. This may be due to difficulties 

in finding the right solid supports and coupling chemistry to attach the most effective 

photosensitisers. Also, there seems to be more interest in the synthesis and 

photochemistry of the photosensitisers and inactivation kinetics of some selected 

bacteria and few viruses.  No inactivation kinetics have been reported for oocysts of 

C. parvum which is known to cause outbreak of the waterborne disease, 

Cryptosporidiosis, even in developed nations where chlorination of drinking water is 

standard practice and prescribed by law. Also, presently within this field there are 

no standards for PDI parameters and conditions and so there is a wide variation of 
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inactivation kinetics reported in different studies even for the same organisms and 

photosensitisers.  

We have demonstrated in this our work that photosensitisers whether in solution or 

attached onto solid supports could cause inactivation of model viruses and E. coli 

BL21. However, due to time constraints, we are not able to validate our findings by 

using the immobilised photosensitisers on either membrane or nanofiber mats to 

treat wastewater under solar irradiation. Testing these materials under real life 

situations will be the next action in the course of developing a cheap and efficient 

sunlight driven water disinfection system. Even though positive sense RNA viruses 

are the largest group of human pathogens, there is a need to study other viruses, 

both in the same group and in other classes of viruses, such as the DNA and 

enveloped viruses. This is very important because of viral diversity. There is also a 

need to establish inactivation kinetics for other common pathogens.  

Several studies revealed that the rate of PDI in microorganisms depends on the 

concentration of photosensitiser and duration of PDI in a dose dependent manner.   

However, there are few investigations of how other factors such as light source, 

intensity, co-pollutants and model organism itself could affect PDI. In most of the PDI 

studies, much of the work has been focused on the quantitative aspects of the 

inactivation with little emphasis on the molecular targets of the PDI in 

microorganisms. It is the complete elucidation and understanding of targets and 

mechanisms of PDI in microorganisms that will provide a basis to improve the design 

and operation of photodynamic water disinfection as well as engineering new 

systems. However, despite the difficulties faced in producing photodynamic 
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disinfection materials; it has many attractions for dealing with persistent, resistant 

and emerging water pathogens.   
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8. 1: TEM of PDI MS2 
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8.2 Western blot of PDI MS2 samples using sequence-specific 

antibodies to detect A-protein 
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Western blot of PDI MS2 samples using sequence-specific antibodies to detect A-

protein.  1 µM of TMPyP and illumination at 32 mW cm-2 were used for PDI of MS2 

and the following antibodies were used for immune detection after PDI: (A), Ab1; 
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(B), Ab2; (C), Ab3; (D), Ab4. NS, no sensitiser; D, dark experiment and L1 to L60 

denotes 1 min to 60 min of illumination. 


