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Shared genetic etiology between alcohol dependence and
major depressive disorder
Jerome C. Fooa,*, Fabian Streita,*, Jens Treutleina, Stephan Ripkex,q,y,
Stephanie H. Witta, Jana Strohmaiera, Franziska Degenhardtc,d,
Andreas J. Forstnerc,d,r,s, Per Hoffmannc,d,r,v, Michael Soykaf,g, Norbert Dahmenj,
Norbert Scherbaumk, Norbert Wodarzl, Stefanie Heilmann-Heimbachc,d,
Stefan Hermsc,d,r, Sven Cichonc,t,u, Ulrich Preussm,n, Wolfgang Gaebelp,
Major Depressive Disorder Working Group of the Psychiatric Genomics
Consortium, Monika Ridingerw, Sabine Hoffmannb, Thomas G. Schulzea,†,o,z,h,
Wolfgang Maiere, Peter Zillg, Bertram Müller-Myhsoki, Marcus Isingi, Susanne Lucaei,
Markus M. Nöthenc,d, Karl Mannb, Falk Kieferb, Marcella Rietschela and Josef Franka

The clinical comorbidity of alcohol dependence (AD) and
major depressive disorder (MDD) is well established,
whereas genetic factors influencing co-occurrence remain
unclear. A recent study using polygenic risk scores (PRS)
calculated based on the first-wave Psychiatric Genomics
Consortium MDD meta-analysis (PGC-MDD1) suggests a
modest shared genetic contribution to MDD and AD. Using a
(∼10 fold) larger discovery sample, we calculated PRS
based on the second wave (PGC-MDD2) of results, in a
severe AD case–control target sample. We found significant
associations between AD disease status and MDD-PRS
derived from both PGC-MDD2 (most informative
P-threshold= 1.0, P= 0.00063, R2= 0.533%) and PGC-
MDD1 (P-threshold= 0.2, P= 0.00014, R2= 0.663%) meta-
analyses; the larger discovery sample did not yield
additional predictive power. In contrast, calculating PRS in a
MDD target sample yielded increased power when using
PGC-MDD2 (P-threshold= 1.0, P= 0.000038, R2= 1.34%)
versus PGC-MDD1 (P-threshold= 1.0, P= 0.0013,
R2= 0.81%). Furthermore, when calculating PGC-MDD2
PRS in a subsample of patients with AD recruited explicitly
excluding comorbid MDD, significant associations were still
found (n= 331; P-threshold= 1.0, P= 0.042, R2= 0.398%).
Meanwhile, in the subset of patients in which MDD was not
the explicit exclusion criteria, PRS predicted more variance
(n= 999; P-threshold= 1.0, P= 0.0003, R2= 0.693%). Our
findings replicate the reported genetic overlap between AD
and MDD and also suggest the need for improved, rigorous
phenotyping to identify true shared cross-disorder genetic

factors. Larger target samples are needed to reduce
noise and take advantage of increasing discovery
sample size. Psychiatr Genet 28:66–70 Copyright © 2018
The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
The co-occurrence of alcohol dependence (AD) and

major depressive disorder (MDD) has been well estab-

lished, and epidemiological assessments of AD and

MDD have linked AD to higher risk of depression and

vice versa (Woodruff et al., 1973; Kessler et al., 1996;
Swendsen and Merikangas, 2000; Crum et al., 2008;

Foulds et al., 2015). Formal genetic studies indicate that

AD and MDD share common genetic factors (Winokur

and Coryell, 1991; Maier et al., 1994; Kendler et al., 1995;
Prescott et al., 2000; Nurnberger et al., 2002; Lyons et al.,
2006). Genome-wide association studies (GWAS) have

the ability to identify genetic loci associated with com-

plex disorders [e.g. AD (Treutlein et al., 2009; Kapoor
et al., 2014; Zuo et al., 2014; Gelernter et al., 2014) and
MDD (Ripke et al., 2013; Wray and Sullivan, 2017)] and

allow the study of genetic risk shared between complex

genetic disorders (Wray et al., 2014). So far, however, only
limited support for specific genes contributing to the two

illnesses on the level of individual genetic variation has

been found (Edwards et al., 2012).

The polygenic risk score (PRS) approach is a statistical

method that enables the assessment of additive effects of

multiple common genome-wide genetic variations on risk

for a disorder, and is well suited to characterize shared

genetic etiology of complex disorders (Purcell et al.,
2009). A recent study (Andersen et al., 2017) used this

approach to examine the genetic overlap between AD

and MDD. They calculated MDD-PRS based on the

results of the first-wave meta-analysis of the MDD

Working Group of the Psychiatric Genomics Consortium

(PGC) (PGC-MDD1: cases, n= 9240; controls, n= 9519)

GWAS (Ripke et al., 2013), finding associations with

increased risk for AD in four independent AD-GWAS

data sets (cases ranged from 317 to 2135), explaining from

0.18 to 2.6% of the variance in AD (Nagelkerke’s R2).

Mentioned as a limitation was the small size of the MDD

discovery sample used, proposing that increased sample

sizes would improve MDD-PRS predictive ability.

Here, we sought to substantiate the findings of Andersen

et al. (2017) in an independent sample of patients having

severe AD while calculating MDD-PRS based on the

much larger PGC-MDD2 discovery sample (n= 59 265

cases, n= 112 092 controls; Wray and Sullivan, 2017). For

context, we also calculated PRS using an MDD target

sample. Furthermore, we examined whether any asso-

ciation would be observed using a subset of this AD

sample whose patients had been recruited explicitly

excluding comorbid MDD.

Materials and methods
Target samples

The target sample comprised 1333 male patients with

German ancestry having severe AD requiring hospitali-

zation and 1307 population-based controls, previously

described in Treutlein et al. (2009) and Frank et al. (2012)

[i.e. the German Study on the Genetics of Addiction

(Alcoholism), GESGA]. Controls overlapping between

the GESGA sample and PGC-MDD discovery samples

were removed before analysis. In summary, all patients

fulfilled the AD DSM-IV criteria and were recruited from

consecutive admissions to psychiatry and addiction

medicine departments of psychiatric hospitals partici-

pating in the German addiction research network.

A subset of the cases (PREDICT subsample; Mann et al.,
2009) comprising 332 patients with AD was recruited

explicitly excluding comorbid MDD.

The MDD target sample comprised cases (n= 597) from

the Bonn/Mannheim (BoMa) MDD study and German

population-based controls (n= 1292), described pre-

viously (Rietschel et al., 2010; Ripke et al., 2013).

All participants provided written informed consent, and

procedures used were approved by the respective local

ethics committees and in accordance with the

Declaration of Helsinki.

Discovery samples

The PGC-MDD2 discovery sample comprised 59 265

cases and 112 092 controls (leave-one-out meta-analysis

omitting the BoMa-MDD sample included in the original

PGC-MDD2 (Wray and Sullivan, 2017) meta-analysis).

The PGC-MDD1 discovery sample comprised 8148

cases and 7955 controls (leave-one-out meta-analysis

omitting the BoMa-MDD and RADIANT-German

samples included in the original PGC-MDD1 (Ripke

et al., 2013) meta-analysis which had overlapping controls

with the GESGA sample). The PGC-MDD1 data set is a

subset of the PGC-MDD2 data set.

Genotyping and quality control

Detailed information on genotyping and QC is available in

Frank et al. (2012). In summary, filtering for uncommon

SNPs (minor allele frequency< 0.1), individual missing-

ness (>0.01), low-quality genotyping (missingness > 0.02),

and Hardy–Weinberg equilibrium (1.0× 10-6) was per-

formed. After QC and excluding overlapping samples, the

final GESGA sample comprised 1330 cases and 1051

controls (n= 382001 SNPs). Of these cases, 331 were from

the PREDICT study and 999 were not. Additional minor

allele frequency filtering was performed for each sub-

sample (PREDICT: n= 381453 SNPs; non-PREDICT:

n= 381914 SNPs). After QC and removing overlap, the

BoMa-MDD sample comprised 586 cases and 1062 con-

trols (n= 3523389 SNPs).

Polygenic risk score calculation

PRSs were calculated using PRSice v1.25 (Euesden et al.,
2015). We calculated MDD-PRS in the GESGA sample

using the PGC-MDD2 results following previously

published methods (Ripke et al., 2014).
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In summary, linkage disequilibrium (LD) clumping was

carried out, retaining the variant with the smallest P value

from each LD block and discarding all variants with r2

greater than or equal to 0.1 located within 500 kb around

that variant. The major histocompatibility complex of

chromosome 6 was excluded, as frequently done when

calculating PRS owing to long-range LD, making linkage

equilibrium difficult to contain (Euesden et al., 2015).
PRS were calculated at a range of P value thresholds

(P= 5× 10− 8, 1× 10− 6, 1× 10− 4, 0.001, 0.01, 0.05, 0.1,

0.2, 0.5, 1.0).

Regression analyses were performed on AD case–control

status with the first 10 principal components as covari-

ates. The proportion of variance in case–control status

explained by MDD-PRS was assessed by Nagelkerke’s

pseudo R2 derived from the difference between the full

regression model (PRS+ covariates) and the null model

(only covariates) (Purcell et al., 2009; Power et al., 2015).
For comparison, we calculated MDD-PRS in the GESGA
sample using the PGC-MDD1 discovery sample.

For context, we further analyzed the association of the

MDD-PRS with MDD phenotype using the same para-

meters in the BoMa-MDD target sample, using both

PGC-MDD1 and PGC-MDD2 results, serving as a

positive control.

To examine whether existing AD/MDD comorbidity

might be driving association, we conducted several

additional analyses. Using the PGC-MDD2 results as the

discovery sample, we analyzed PRS separately in

PREDICT subsample cases (n= 331) and non-PREDICT
cases (n= 999).

Results
Tables S1-3 show P value thresholds, significance (P
values), R2, and number of informative SNPs, which were

included at each P value threshold for each PRS analysis.

We found significant associations between AD disease sta-

tus and MDD-PRS derived from both PGC-MDD2 (most

informative P-threshold=1.0, P=0.00063, R2=0.533%;

Fig. 1a) and PGC-MDD1 (P-threshold=0.2, P=0.00014,

R2=0.663%; Fig. 1b) meta-analyses; the larger discovery

sample did not yield additional predictive power.

In contrast, calculating PRS in a MDD target sample yielded

increased power when using PGC-MDD2 (P-threshold=1.0,

P=0.000038, R2=1.34%; Fig. 1c) versus PGC-MDD1

(P-threshold=1.0, P=0.0013, R2=0.81%; Fig. 1d).

When calculating PGC-MDD2 PRS in the PREDICT
subsample (excluding comorbid MDD), significant

associations were still found (P-threshold= 1.0, P= 0.042,

R2= 0.398%). Meanwhile, PRS in non-PREDICT cases

(i.e. not explicitly excluding MDD comorbidity) pre-

dicted more variance (P-threshold= 1.0, P= 0.0003,

R2= 0.693%; Fig. 1e, inset).

Discussion
Our analysis confirms the contribution of shared genetic

risk for AD and MDD long suggested by formal genetics

studies that was only recently detected using a molecular

approach in Andersen et al. (2017).

Determining shared genetic etiology in comorbid dis-

orders is necessarily faced with the problem of ‘enrich-

ment’ of the comorbid disorders in both discovery and

target samples. Our analysis of the PREDICT sample

alone revealed that even in AD cases expressly excluding

comorbid MDD, genetic overlap is observed; a higher

proportion of explained variance was observed using only

non-PREDICT cases. These findings are consistent with

those of Andersen et al. (2017), who showed that sig-

nificant genetic overlap remained when calculating PRS

in the AD-GWAS data sets after adjusting for MDD

status, and also when using a MDD GWAS data set

without comorbid MDD-AD cases (Andersen et al.,
2017). These results suggest that although PGC-MDD-

GWAS samples are likely to contain individuals with AD,

these are not fully responsible for the associations

observed. For our current analysis, comorbidity informa-

tion with AD in the PGC-MDD2 discovery sample was

not available, nor was MDD status in the full GESGA

sample; it should be noted that the possibility of

enrichment nevertheless remains. Moreover, these find-

ings underscore the need for rigorous phenotyping and

improved characterization of samples, and in particular

detailed assessment of disease comorbidity, symptoma-

tology, and severity, all of which will be vital in the effort

to understand shared genetic risk of complex diseases.

Interestingly, our use of a substantially larger discovery

sample did not demonstrate increased predictive power

in the AD sample. One reason for this is that the effect

itself is modest in size and less robust against noise. In

contrast, the larger discovery sample did yield increased

predictive power in the MDD sample; the effects were

much stronger. One consideration with respect to our

findings is that patients in our AD sample were all males,

whereas the discovery sample in addition contained

females, potentially affecting predictability. Meanwhile,

the MDD target sample contained both males and

female patients. However, additional analysis using male-

only MDD-PRS, and statistically controlling for sex in

the MDD-BoMa samples, did not indicate a substantial

influence of sex on our results (see Supplementary

Material, Supplemental digital content 1, http://links.lww.
com/PG/A204).

Another recent study using a polygenic approach has

shown that the level and risk of AD and MDD comor-

bidity may be linked to neuropsychiatric traits and brain

volumes (Zhou et al., 2017). Further research is needed to

decipher this pleiotropy and to assess causality. Although

not possible here owing to the relatively small size of the

target sample, the application of techniques to dissect
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pleiotropy, such as BUHMBOX (Han et al., 2016) or

Mendelian randomization (Davey Smith and Hemani,

2014), will lead to better understanding of this disease

comorbidity. Another approach which can be utilized

with larger target samples is LD score regression to

estimate genetic correlation across diseases and sub-

groups (Bulik-Sullivan et al., 2015).

Ongoing increases in discovery sample size will lead to

continued increases in the ability to explain variance in

mental disorders, augmenting the ability to further dis-

sect the shared pathophysiology reflected in the genetic

overlap between comorbid diseases. Larger target sam-

ples are needed to reduce noise and take advantage of

increasing discovery sample size.

Our findings replicate the genetic overlap between AD

and MDD and suggest the need for improved, rigorous

phenotyping to identify true shared cross-disorder

genetic factors. Once assessed, future efforts in the

field will be able to take advantage of symptomatology

and precise comorbidity information to inform analyses.

Importantly, this will also lead to both improved patient

stratification and corresponding personalization of care in

clinical settings.
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