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Abstract: 

A review of finite temperature lattice calculations for quantum chro- 

modynamics is given. We show how the thermodynamic quantities can be 

evaluated by Monte Carlo methods, once finite temperature field theory 

has been formulated on a lattice. The existing results for chemical po- 

tential zero and in quenched approximation are discussed. They exhibit 

a clear first order transition for SU(3) lattice QCD and probably a se- 

cond order transition for SU(2) lattice QCD. The chiral and deconfine- 

ment transitions are coinciding in the quenched approximation. 

I. Introduction 

The composite nature of hadrons, as assumed by the quark model or 

quantum chromodynamics (QCD), leads to the immediate conjecture, that 

at sufficiently high temperatures or densities strongly interacting 

matter undergoes a phase transition from a state of interacting hadrons 

to a quark-gluon plasma I) . The phase transition may eventually proceed 

in two distinct steps2) : one, where the quarks and gluons bound in 

hadrons deconfine into massive quarks and gluons and a second transi- 

tion, in which chiral symmetry is restored and the quarks and gluons 

become massless. 

Since, with quantum chormodynamics we hope to have the basic theory 

of strong interactions, we should be able to show that QCD indeed leads 

to a phase diagram for strong-interaction matter like the one depicted 

in fig. I. It is still unclear, however, whether the chiral and decon- 

finement transitions occur at different critical temperatures and if 

so, which one is lower. 

The Monte Carlo evaluation of lattice QCD 3) gives us in principal 

the possibility to cover the whole range of physical temperatures T 

(and chemical potentials ~ ). Because of technical limitations at pre- 

sent only parts of the phase diagram are investigated. There exist de- 

tailed calculations for zero chemical potential 4-11) - in the "quenched 
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approximation, where virtual quark loops are neglected, the essential 

finite temperature work is done. We shall report on these results. For 

# O first, exploratory lattice calculations have been carried out by 

Kogut et al. 12) confirming the general picture. 

The order of a transition and the transition temperature can be de- 

termined in two ways: 

i) the thermodynamic quantities like energy density, specific heat, 

pressure etc. are calculated as a function of temperature. Discon- 

tinuous or singular behaviour of any of these variables is then a 

sign for a transition7) ; 

ii) one calculates order parameters associated with the corresponding 

transition, e.g. the thermal Wilson loop < L > is an order parameter 

for the deconfinement transition in pure Yang-Mills theory 4'5'6) 

<~ > is an order parameter for the chiral transition in QCD 8'9'13'14) 

In the next section, we shall review the relevant equations for finite 

temperature field theory and their application to QCD on the lattice. 

The following section presents the results for the pure Yang-Mills sy- 

stem, i.e. QCD without fermions. The contribution of the fermions and 

the chiral transition are then discussed in section IV. In section V we 
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give a summary and outlook on possible future progress in this field. 

II. QCD for Finite Physical Temperatures on the Lattice 

The formulation of quantum field theory for finite physical tempera- 

tures starts with the definition of the partition function 

Z = Tr e -~(H-~N) , (I) 

--i 
where B is the inverse of the temperature, B = T , ~ the chemical 

potential, H the Hamiltonian of the system and N the particle densi- 

ty (the difference of the quark and antiquark densities). For simplicity 

and because we do not report on non-zero ~ results we omit in the 

following all terms proportional to ~ . The partition function can also 

be written as a Feynman path integral 15) 

B 
Z = f[d~] exp {fdr fd3x ~ (~,i~)} , (2) 

O V 

where ~ is the Lagrangian density, T = it and ~ denotes all kinds 

of classical fields. Because of the trace operation in eq. (I) only 

periodic (antiperiodic) configurations 

~(x,O) = ±~(x,B) (3) 

for Bose (Fermion) fields are to be considered in the functional inte- 

gral. Since the functional-integral formalism does not include normal 

ordering, results obtained from eq. (2) have to be corrected for possi- 

ble ground state contributions. In terms of the Euclidean action 

B 
S = -fd= fdax ~ , (4) 

0 V 

the partition function becomes 

Z(B,V) = /[d~]e -s (5) 

The Euclidean form thus contains a four-dimensional integral - the ac- 

tion, which is asymmetric in the space and temperature directions. 

To obtain a momentum cutUoff in the theory and to perform the x- T 

integrations in eq. (4) we introduce a lattice 16) . It is an asymmetric 

one, with N O sites and spacing a ° for all spatial directions and 

N B sites and spacing a~ for the thermal direction. Moreover, the 

lattice must be periodic in the thermal direction. Though it is not re- 

quired, one usually takes periodic boundary conditions in the spatial 

directions too. Volume and temperature are then given by 

V : (Noao) s = (6) , ~ : N~a B T -I 
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Only the choice of asymmetric lattices allows for independent varia- 

tions of volume and temperature. This is necessary for two reasons: 

i) the integration boundaries in the action integral are different for 

thermal and spatial directions and 

ii) at fixed N O and N B , i.e. for a lattice with a fixed number of 

points, one wants to take partial derivatives with respect to V 

and ~ , because the energy density is given by 

I ~inZ V e = - V ~B (7) 

and the pressure by 

I ~inZ I (8) 
P - ~ ~V 

In the actual calculations 7) these derivatives are replaced by deriva- 

tives with respect to a o and the asymmetry variable ~ = a /a~ . Then 

one obtains e.g. instead of eq. (7) 

_ ~2 ~inZ I 
e NSN^a 4 3~ (9) 

o l~ o a o 

Let us now go from the general case to QCD. The corresponding La- 

grangian density is 

~ _ 41 F a~V F~a + ~(i~- g~a~a)~ =~M(A)+~F(A'~'~) , (10) 

with 

F a = D A a - ~)A~ - g fa A b A c 
~ bc ~ v 

The f a b c  a r e  t h e  SU(N c )  s t r u c t u r e  f u n c t i o n s ,  

stant and the colour indices a,b,c run from I 

(11) 

g the coupling con- 

to N2 _ I . On the 
c 

lattice the functional integration variables A , the gauge fields, are 

substituted by link variables 

= x+ 
Uxy exp {-i(x-y) ~ A (x 2-~)} , (12) 

where x and y denote adjacent sites on the lattice and A = A a I , 
m a 

the I a are the generators of the SU(N c) group. The spinor fields are 

attached to the sites of the lattice, they become site variables <bS, 

~S . The partition function can then be written as 

Z = S n dU f [I d~ d~ exp {-sG(u)- sF(u,~,~)} , (13) 
links sites 

where in thermal direction the bosonic integration variables U obey 

periodic boundary conditions and the spinor fields ~,~ antiperiodic 

boundary conditions. The action sG(u) describes the pure Yang-Mills 

part, sF(u,~,~) the fermionic part of the full QCD action. There are 

now many possibilities for the dependence of the action on the lattice 
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variables. They only requirement to be satisfied is, that in the con- 

tinuum limit, where 

N O, N B ~ ~ ; a O, a B ~ O 

with V and B fixed, one has to recover the correct classical con- 

tinuum action. The most widely used action for the pure gauge field part 

is the one of Wilson 16)- 

sG(u) = 2N c [K G ~. (I-N I-- Re Tr Uij Ujk Ukl Uli) 
{Po} c 

G 7, (I- I 
+ K8 {P~} N~C Re Tr Uij Ujk Ukl Uli) ] (14) 

Here the sum {Po} runs over all plaquettes with only spatial links, 

the sum {P~} over all plaquettes with two spatial and two temporal 

links. 

As a consequence of the asymmetry of the lattice spacings two coup- 

ling constants go and gB appear in the action 17) , namely via 

K G I I G = I 
o = L-Ygo ~- ; K~ g~ ~ (15) 

One needs two of them for a ° • a B (~ • I) , because then independent 

variations in a ° and a~ or ~ can be compensated by changing go 

and g~ correspondingly, such that physically measurable quantities 

remain the same. So, go and g~ become functions of a o and 5 . 

For ~ = I , i.e. a o = a B = a , there is, of course, only one coupling 

constant 

g(a) = go(ao,1 ) = gB(ao,1 ) ; K G -2 o,B(~= I) = g (16) 

Choosing Wilson fermions 16) , the fermionic part of the action is 

, (17) 

(for one quark flavour) 

sF = ~ ~n Qnm ~m 
n,m 

where 
3 

F _ K F 
Qnm = 11 - K~ Mo,nm o ~= I M, nm 

= - 8 ^ + (I + ¥u) U + M ,nm (I YD) Unm n,m-~ nm 8n,m+g 

(18) 

(19) 

In the last three equations colour and spinor indices have been sup- 

pressed. Because of the antiperiodic boundary conditions for fermion 

variables in temperature direction at the upper boundary 8n,m± ~ has 

to be replaced by -6n,m± $ . Notice that, as S G , also the fermionic 

part S F depends on two different coupling constants (here called 

hopping parameters) K F and F o K~ for asymmetric lattice spacings: 
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KF 4 F _ ~E k~(ao,[) (2Oi o = ~ ko(ao'~) ; K~ 3 

For ~ = I we have 

K F o,~(~= i) = k(a) , (21) 

which is the usual hopping parameter 16) 

The integral in eq. (13) over the fermionic degrees of freedom O,~ 

can be performed and yields 18) 

Z = S H dUe -SG(U) detQ (22) 
links 

Evaluating formula (9) leads then to two terms for the energy density 14) 

e = s G + e F (23) 
t 

with 

S 4 
e a - 

o 

2Nc~2 
N~o N B 

~I~ G 

+-~CF 

-i e-S G 
Z SII dU det Q x 

I 
Z (I -~- Re Tr UUUU) 

{Po} c 

I 
(I -~-- Re Tr UUUU) } 

{PB} c 

for the gauge field contribution, and 

2Nc~2 e_S G 
F 4 Z -I SH dU detQ x ea - 

o N3O NB 

~K~ 3 ~K~ I) 
x { -~ Z Tr(M Q-I) + -~ Tr(M ° Q- } 

~=I 

for the fermion contribution. 

(24) 

(25) 

Compared to the pure Yang-Mills theory the computational problem in- 
-i G 

troduced by the fermions is to determine detQ and Q ; e.g. in e 

the only influence of the fermions is contained in the factor detQ , 

which essentially renormalizes g . Since the calculation of the deter- 

minant of Q presents the most serious difficulties, one usually takes 

the socalled quenched approximation 19) , which consists in setting in 

all equations 

detQ ~ I (26) 

This approximation corresponds to the neglect of all virtual quark 

loops. The results, which we show in the following, were all obtained 

using eq. (26). 
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III. Results for the Yang-Mills System 

The Monte Carlo evaluation of the above formulae has to be carried 

out on a spatial lattice as large as possible - one would like to come 

close to the thermodynamic limit V ~ ~ (N o ~ ~) . In the cases report- 

ed here, ~ = I , i.e. a ° = a~ = a was used. For the Yang-Mills system 

the only parameter is then the coupling constant g . In the continuum 

limit, g and the lattice spacing a are related by the renormaliza- 

tion group equation (RGE) 

llNcg2 
24~ 2 51 in } (27) 

a A L = exp {- liNcg 2 121 48~ 2 ' 

where A L is the lattice scale parameter. All physical units on the 
-i 

lattice are appropriate powers of a or A L . The lattice scale para- 

meter can be expressed in conventional units (MeV), once a known physic- 

al quantity (usually the string tension 3)) is measured on the lattice. 

At fixed g2 , the temperature is then obtained from 

T = I / (N~a(g2)) (28) 

The thermodynamic average of a quantity X is given by 

<X > = fn dUe -S(U) X(U) / fn dUe -S(U) , 

S(U) = S G(U) + in detQ(U) 

(29) 

(30) 

For the pure Yang-Mills case or for full QCD in quenched approximation 

S is equal to S G 

The calculation of the energy density e G from eq. (24) essentially 

requires the determination of plaquette averages 

I 
= 1 ~ Re <Tr UUUU > 

c 
because for ~ = I we have 

eGa4 = 6N c { g-2 (T O_~) 

-2 I ~ga (Pa - 
~ ~=I Psym) 

, (31) 

(Ps- Psym ) } (32) 

The Po,~ denote the averages of spatial and thermal plaquettes, Psym 

is the average plaquette value on a large symmetric (N o = N B) lattice. 

Subtraction of P in eq. (32) just takes away the vacuum contribu- 
sym 

tion, since a large symmetric lattice simulates a zero temperature 
-2 

system. The derivatives of go,~ with respect to ~ are known con- 

stants in the limit g2 ~ 0 20). 

What is the expected behaviour as a function of temperature of the 

gauge field energy density? Below the critical temperature T c one 
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expects to find the energy density of a gas of hadrons. For a pure Yang- 

Mills system these hadrons must be glueballs and their exitations. At 

T c a phase transition - the deconfining transition - should occur, sig- 

nalled by a discontinuity for a first order transition or a singularity 

in the specific heat for a second order transition. For large tempera- 

tures e G should approach the energy density of a gas of free gluons, 

which is given by the Stefan-Boltzmann law 

G ~2 
ESB = 3--O 2(N~- I) T 4 (33) 

As can be seen in figs. 2 and 3 these expectations are in fact borne 

out by actual Monte Carlo simulations of the Yang-Mills system 6'7) 

E'/E'SB 

10 

05 

o , I-- b 
I I I I I 

~o 20 30 50 ~oo mo 200 300 5oo 

T/AL 
G G 

Figure 2 : The ratio e /eSB for the pure SU(3) Yang-Mills system cal- 

culated on a 103 × 3 lattice versus temperature from ref.7. 

Obviously, both for SU(2) and SU(3) , there is a phase transition, pro- 

bably of second order for SU(2). First results 6) " for SU(3) suggest a 

first order transition in that case. However, to confirm this assump- 

tion a more accurate and detailed investigation of the transition re- 

gion is necessary. To this end one evaluates the thermal Wilson loop L 

N B 
1 

L = ~-- Tr ~ U~ 
c ~=I x;~,T+I 

It is related to the free energy F 
q 

<L > N e -~Fq (35) 

(34) 

of an isolated colour charge 4) 
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Figure 3 : The quantity 

A N~,=3 
N=9 [] N~=6, 

36o s6o ' 76o 
T/A L 

e~/T 4 for the pure SU(3) Yang-Mills system 

calculated on lattices with N o = 9 , N B = 3,4 6); e~ con- 

tains o n l y  t h e  m a i n  c o n t r i b u t i o n  t o  e G , w h i c h  i s  p r o p o r -  
--2 

tional to g . The horizontal line is the Stefan-Boltzmann 

result. 

On an infinite lattice < L> vanishes in the confined phase, is non-zero 

above the deconfinement temperature and therefore an order parameter for 

the deconfinement transition. If we have a first order transition, then 

2 where two different states of there must be a critical coupling gc ' 

the lattice exist, one of them having a non-zero < L >-value. We can 

make use of the Monte Carlo (MC) (Metropolis) method itself to obtain 

these distinct states. A normal MC calculation would start with either 

a completely ordered state of the lattice, i.e. all links being equal to 

the unit matrix (that corresponds to g2 ~ 0 , high temperature) or a 

random (hot) configuration of links (corresponding to g2 ~ ~ , low tem- 

perature). During the MC procedure the lattice will thermalize, i.e. 

reach its thermal equilibrium. At the critical coupling the ordered 

start will then lead to the non-zero < L >-value, the hot start to a 

close to zero <L >-value. If the spatial volume V of the lattice is 

too small, there will be flips between the two phases, but when the 

spatial volume is large enough the two distinct states will persist for 

a large number of iterations. This enables one to determine the critical 

coupling gc (and with eq. (28) T c ) with great accuracy. In fig. 4 such 

a search for the first order transition in SU(3) Yang-Mills theory on 

an 83 × 3 lattice is shown I0) . At 6/g 2 = 5.5531 clearly two coexis- 

tent states are found. The energy densities of the two states are of 

course also different; the complete energy density as a function of 
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Figure 4 : 

The average ~ over 50 

successive iterations of 

the order parameter L 

for the SU(3) Yang-Mills 

system, as a function of 

the total number of itera- 

tions after ordered (x) 

and random (o) starts, cal- 

culated on an 8 3 × 3 lat- 

tice I0) for various values 

of the coupling 6/g 2 ; 

also shown is the associat- 

ed temperature, using the 

RGE, eq. (27). 
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temperature is shown in fig. 5. 
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Figure 5 : The energy density eG/T ~ 

as function of temperature, calculated on an 83x3 

for the SU(3) Yang-Mills system 

lattice IO) . 

In table I the results for the deconfinement temperature as obtained 

from calculations on lattices with different N~ are compared IO) . 

Table I: The deconfinement temperature 

N~ 

2 

3 

4 

6/g~ Tc[A L] Tc[/g] 

5.11 ± 0.O1 

5.55 ± O.O1 

5.70 ± 0.O1 

78±I 

86±I 

76±I 

O.519 ± O.O15 

+ O.O5O 
O.519 

- 0.030 

The deviations, when T c is expressed in units of A L via eqs. (27) 

and (28), can be explained by higher order terms in the renormalization 

group relation, without any violation of general scaling behaviour. In- 

deed, when T c is given in units of /~ 21) (a is the string tension) 

no measurable deviations remain and 

T = (O.519 ± 0.050) /o ~ 208 ± 20 MeV , (36) 
C 

which is agreeing well with the value obtained in the SU(2) case 7) 

Since for SU(3) we have a first order transition, we can calculate 
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the latent heat - the difference in energy density between the two states 

at the transition. In fig. 6 we show AeG/T~ , which is a dimensionless 

quantity and should scale. 

m 

4 

2 

0 

0 0 { 

I I l = 

2 3 4 N p  

Figure 6 : The latent heat AeG/T~ as function of temperature lattice 

size N B from ref. 10. 

In fact, the result IO) is independent of N B ahd therefore of gc (see 

table 1 ) :  

AeG/T ~ = 3.75 ± 0.25 , (37) 
C 

De G = 8 7 5  ± 8 0  M e V / f m  3 ( 3 8 )  

The error in the last equation does not include the error in T 
c 

IV. The Contribution of the Fermions in the Quenched Approximation 

F 
Evaluating eq. (25) for the fermion contribution e 

density at ~ = I requires the derivatives ~K~,B/~ 

the ~-dependence of k a and k~ in eq. (20), we obtain 

~K__ ~=I = - ! k _ 3 k 
4 ' ~[ E= I 4 

Also, at ~ = I the matrix Q from eq. (18) simplifies to 

Q = lJ- kM 

to the energy 

If we neglect 

(39) 

(40) 

Where 
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3 
M = ~ M 

~=0 
(41) 

The inverse of Q is then readily computed via a hopping parameter ex- 
13,22,23) 

pansion (HPE) 

co 

Q-I = ~ k I M 1 (42) 

i=0 

Insertion of the last equation into eq. (25) leads then - in quenched 

approximation - to a HPE for the fermion energy density 

eF a~ 3 ~ k I+I x 
4N~N~ i=0 

3 
MI>_ I x { <Tr M O ~ ~. <Tr M MI> } (43) 

v = 1 

Note, that because of the approximation in eq. (39), on a symmetric 

lattice (N o = N~) e F is zero, i.e. no additional vacuum correction 

has to be introduced. As a consequence of the Kronecker deltas in eq. 

(19), only closed loops of length 1+I contribute to < Tr M M 1 > . On 

an infinite lattice 1+I = 2n and the first non-vanishing loop has 

length 4 , it is proportional to a plaquette. For N~ = 2,3 however, 

the loop can be closed in temperature direction already with length 

2,3 because of the (anti)periodic boundary conditions. The loop is then 
14) 

proportional to the thermal Wilson loop < L > 

The size of the hopping parameter k(a) has to be determined by a 

separate calculation, either by requiring that the pion mass is zero 23) , 

or by determining the convergence radius of the HPE for <~> 8) . Taking 

Susskind fermions instead of Wilson fermions, where the bare quark mass 

is the parameter corresponding to the hopping parameter, involves a com- 

parable problem: one must compute the results for finite quark mass and 

then extrapolate to zero quark mass 9) . 

In fig. 7 the fermion energy density eF/T ~ for one quark flavour 
F 

and SU(2) is shown as a function of temperature. The energy density e 

approaches the value of the free theory - the Stefan-Boltzmann limit on 

a lattice of the same size (indicated by a dashed line) - after a sudden 

jump at around the same temperature, where (see fig. 2) the gluon energy 

density s G has presumably a second order transition. That this indeed 

must happen - at least in the quenched approximation - is clear from the 

expansion in eq. (43), since the first non-vanishing term is proportional 

to < L > , which stays an order parameter in the quenched approximation, 
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Figure 7 : The fermionic contribution e F to the energy density of 

SU(2) lattice QCD divided by the fourth power of temperature 

as a function of temperature, calculated on an 83 x 3 lattice 

with a 46th order hopping parameter expansion for massless 

quarks 8) . The dashed line is the Stefan-Boltzmann result on a 

lattice of the same size. 

and since the fourth order term, which is proportionalG to Pa-P~ , be- 

haves at the transition essentially like e . For a first order tran- 

sition like in SU(3) the coincidence becomes even more obvious, as can 

be seen from fig. 8. Kogut et al. 11) estimate for the latent heat of 

the total system and four flavours 

A(e G+ e F) = 1.50 ± 0.5 GeV/fm 3 (44) 

Finally let us comment on the problem of chiral symmetry restoration. 

This question is in the case of Wilson fermions particularly complex, 

since chiral symmetry is by construction broken on the lattice. Even a 

system of non-interacting massless fermions leads to a non-zero <~>SB " 

To study chiral symmetry restoration, one would therefore first have to 

show that <~> , after subtraction of an adequate term, exhibits scal- 

ing behaviour and then check at what T it leads to a vanishing expecta- 

tion value indicating chiral symmetry. A first step in the right direc- 

tion consists in simply considering 13) 
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< ~ > -  <~e> 
SB 

as an order parameter of chiral symmetry for Wilson fermions. 

(45) 

Figure 8 
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E / T  4 
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oGluon Internal Energy 

I 

I 
I 

60 80 I00 120 
T/A L 

: The gluon and fermion energy densities EG/T ~ and eF/T ~ 

for 4 Susskind fermions versus temperature, calculated on an 

83 × 4 lattice from ref. 11. 

In fig. 9 this quantity is shown for SU(2) as function of temperature 8) 

At the transition (T c ~ 40 A L) , expression (45) is still finite, 

suggesting T c < Tch (the chiral transition temperature) . The same re- 

sult was found by Kogut et al.9) for SU(2) Susskind fermions. However, 

the impression, that T c and Tch are different for SU(2) may be due 

to the second order nature of the transition and of course the approxi- 

mations in the calculation. A clear picture is found for SU(3) 9) . As can 

be seen in fig. 10 both the order parameter <L> for the deconfinement 

transition and the order parameter <~ > for Susskind fermions and the 

chiral transition change their behaviour drastically at the same criti- 
G F 

cal coupling. Like in the case of e and e also the first order de- 

confinement and chiral transitions must coincide in the quenched appro- 

ximation, because 

<~> = <Tr (colour + spin) Q-I> (46) 
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and the corresponding hopping parameter expansion contains a term pro- 

portional to < L> . 

V. Summary and Outlook 

In summarizing the results of Monte Carlo evaluations of lattice QCD 

in the quenched approximation and for chemical potential D = 0 , one 

finds for SU(3) 

i) a first order deconfinement transition at T = 208 ± 20 MeV for 
C 

both the pure gauge field and the fermion contributions 

ii) the latent heat at the transition is 

Ae G = 875 ± 80 MeV/fm 3 

or 

A(e G+ e F) ~ 1.5 ± 0.5 GeV/fm 3 for Nf = 4 

iii) the chiral transition temperature is the same as the deconfinement 

temperature. 

For SU(2) the deconfinement transition is probably of second order, the 

critical temperature has about the same value as for SU(3). 

The removal of the quenched approximation, i.e. the introduction of 

virtual quark loops into the calculation may change the above results 

considerably. First, exploratory calculations indicate 24'25), that with 

decreasing quark mass the first order transition is replaced by a second 

order transition, which may even eventually disappear, when the quark 

mass becomes zero. Also, because the thermal Wilson loop < L> is no 

longer an order parameter in the full theory, the conclusion from the 

HPE, that the chiral and deconfinement transitions should coincide, if 

they are of first order, is no longer true. Should these questions be 

settled, the next step would be the investigation of the phase diagram 

(fig. I) for non-zero chemical potential. There is a lot of work still 

to be done. 

References 

E.V. Shuryak, Phys. Reports 61 (1980) 71; 
D.J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 
43; 
H. Satz, Proc. 5th High energy heavy ion study, Berkeley/Cal. 1981. 

G. Baym, Proc. of the Bielefeld Workshop 1982, H. Satz and J. Jacob 
eds., World Scientific, Singapore, 1982. 

M. Creutz, Phys. Rev. D21 (1980) 2308; Phys. Rev. Lett. 45 (1980) 313. 

L. McLerran and B. Svetitsky, Phys. Lett. 98B (1981) 195~ 



56 

J. Kuti, J. Pol6nyi and K. Szlach~nyi, Phys. Lett. 98B (1981) 199; 
J. Engels, F. Karsch, I. Montvay and H. Satz, Phys. Lett. IOIB (1981) 
89. 

5) K. Kajantie, C. Montonen and E. Pietarinen, Z. Phys. C9 (1981) 253. 

6) I. Montvay and E. Pietarinen, Phys. Lett. 11OB (1982) 148; 115B 
(1982) 151. 

7 J. Engels, F. Karsch, I. Montvay and H. Satz, Nucl. Phys. B205 [FS5] 
(1982) 545. 

8) J. Engels and F. Karsch, Phys. Lett. 125B (1983) 481. 

9) J. Kogut et al., Phys. Rev. Lett. 50 (1983) 393. 

10) T. ~elik, J. Engels and H. Satz, Phys. Lett. 125B (1983) 411; 129B 
(1983) 323. 

11) J. Kogut et al., Phys. Rev. Lett. 51 (1983) 869. 

12) J. Kogut et al., Illinois preprint ILL-(TH)-83-10, April 1983. 

13) C.B. Lang and H. Nicolai, Nucl. Phys. B2OO [FS4] (1982) 135. 

14) J. Engels, F. Karsch and H. Satz, Phys. Lett. 113B (1982) 398. 

15) C. Bernard, Phys. Rev. D9 (1974) 3312. 

16) K. Wilson, Phys. Rev. DIO (1974) 2445; in "New Phenomena in Sub- 
nuclear Physics", ed. A. Zichichi, Plenum Press, New York 1977 
(Erice 1975) 

17) A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B193 (1981) 210. 

18) T. Matthews and A. Salam, Nuovo Cim. 12 (1954) 563; 2 (1955) 120. 

19) H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1981) 1792; 
E. Marinari, G. Parisi and C. Rebbi, Phys. Rev. Lett. 47 (1981) 1795; 
D. Weingarten, Phys. Lett. IO9B (1982) 57. 

20) F. Karsch, Nucl. Phys. B205 [FS5] (1982) 285. 

21) F. Gutbrod, P. Hasenfratz, Z. Kunszt and I. Montvay, CERN preprint 
TH 3591, May 1983. 

22) A. Hasenfratz and P. Hasenfratz, Phys. Lett. IO4B (1981) 489. 

23) A. Hasenfratz, P. Hasenfratz, Z. Kunszt and C.B. Lang, Phys. Lett. 
11OB (1982) 289. 

24) P. Hasenfratz, F. Karsch and I.O. Stamatescu, CERN preprint TH 3636 
(1983). 

25) T. ~elik, J. Engels and H. Satz, Bielefeld preprint BI-TP 83/15, 
August 1983 (Phys. Lett. in press). 


