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Let R be an Artin algebra. Given two indecomposable modules M,N, 

let Irr(M,N) = rad(M,N)/rad2(M,N) be the bimodule of irreducible maps 

[5] and denote by aMN the length of Irr(M,N) as an End(N)-module, 

' its length as an End(M)-module. Note that in case M is not by aMN 

injective, then aMN is equal to the multiplicity ol N occuring in 

the middle term of the Auslander-Reiten sequence starting with M, whereas 

' is equal to the multiplicity of M if N is not projective, then aMN 

occurring in the middle term of the Auslander-Reiten sequence ending 

with N. The Auslander-Reiten quiver A(R) has as vertices the isomorphism 

classes of the indecomposable R-modules, and there is an arrow [M] + IN] 

v provided Irr(M,N) # o. We endow this arrow with the valuation (aMN,aMN), 

and, in this way we obtain a valuated quiver. We denote the Auslander- 

Reiten translations by A = DTr, A- = TrD. An indecomposable module is 

called stable provided AnM # o,A-nM # o for all n E~. The full sub- 

quiver As(R ) of A(R) consisting of the isomorphism classes of stable 

modules is called the stable Auslander-Reiten-quiver. Any component of 

the stable Auslander-Reiten quiver determines (uniquely) a Cartan matrix, 

and we call it its Cartan class. Also, a module M is called periodic 

provided APM ~ M for some p C ~. 

Theorem. The Cartan class of a component of the stable Auslander- 

Reiten quiver of an Artin algebra containing periodic modules is either 

a Dynkin diagram or A . 

In the case of R being an algebra of finite representation type 

over an algebraically closed field, this is the famous result of 

Riedtmann [5], the extension to arbitrary Artin algebras of finite re- 

presentation type being due to Todorov [9]. Todorov also has considered 
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the general case of components of As(R) containing periodic modules 

and reduced their Cartan classes to Dynkin diagrams or A , A~, B , C , D . 

Thus, our only contribution is the elimination of the possibilities 

A~, B , C , D (lemma 3). Note that the other cases actually do occur. 

We will provide a rather elementary self-contained proof of the 

th,eorem using only the structure theorem for Riedtmann quivers and Auslan- 

de~'s theorem on the existence of indecomposable modules of arbitrarily 

large length in any infinite component of an Auslander-Reiten quiver. It 

was the technique of Todorov which motivated the present presentation: 

her sole use of length functions and inequalities seemed to ask for an 

axiomatic treatment using additive and subadditive functions (copying the 

additivity property of the ordinary length function on Auslander-Reiten 

sequences). This notion of an additive function was introduced by 

Bautista [2]. It was M. Auslander who pointe d out during his visit to Biele- 

feld in June 1979 that the methods of Todorov should furnish an interesting 

combinatorial characterization of the Dynkin diagrams. In fact, such a 

characterization follows from the investigations of Vinberg in [10]: 

namely, the Dynkin diagrams are the only finite Cartan matrices with sub- 

additive functions which are not additive. We will need an extension of this 

result to Cartan matrices which are not necessarily finite and provide a 

di]:ect proof of the general result. In the same way, one also characterizes 

the Cartan matrices with additive functions; in the finite case, this result 

again is due to Vinberg [I0], and also to Berman, Moody and Wonenburger [3]; 

it will be used in a forthcoming paper [4] to deal with binary polyhedral 

groups. 

The authors are indebted to many participants of the Ottawa conference 

1979, in particular P. Gabriel, M.I. Platzeck and I. Reiten, for stimulating 

discussions on this topic and helpful remarks concerning the final form of 

the manuscript. 

I. A characterization of Dynkin diagrams 

Let I be an index set. A Cartan matrix C on 

C : I × I -----+ Z satisfying the following properties 

(I) C.. = 2 for all i E I. 
ii 

(2) C.. < 0 for all i ~ j in I. 
lJ - 

(3) C.. = O if and only if C.. = O. 
z3 31 

I is a function 
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Note that we write C.. instead of C(i,j). The underlying graph of lj 
C has as vertices the elements of I, and edges {i,j} for all pairs 

i ~ j with Cij + O. 

Of course, the easiest way to write down those Cartan matrices we will be 

interested in, is to start with the underlying graph and add to the edges 

pairs of numbers o (W]iJt'~Jil) o in case Ci=C:ij g + I, the "valuation". 
i j 

The Cartan matrix C will be called connected in case the underlying 

graph is connected. In particular, we are interested in the Dynkin diagrams 

An o--o~o ... o~o~o E 6 o~4~o 

B n (Io~o ... o~o-o E 7 o4~o~)--o 

(2,1) ~:~ 
Ca ~ ... o4~ E 8 o4 ~-o-o-o 

Dn 4 ... 044 F 4 o ~ 4  
c~ (~,~) 

G 2 o 4  

the Euclidean diagrams 

n 

n 

o ~  . . . o ~  
n 

g6 o-o~o 

~7 o~o~-o~o-o 

g8 04-~-0-0-044 

'A'I l o ~  AI2 o 4  

0 ~  . . , 0 ~  
n 

(2,1) 

~n ~ . . . .  ( ~  

~ 0 , 2 )  F41 o~--o~:~ 

F42 o~--o4~ 

(t3) 
G2 ] 0"-o--o 

G,i) 
G22 o--o--o 

and the following infinite diagrams 

A o-<>-o ... o-o .,. 

B c ~ o ~ o  . . ° o~o  . . .  
0o  

C ~ . . .  o - - o  . . .  
co  

( ~  

. . .  o~o  . . .  D 
co  

o / 

. . . .  o - - o~o  . . . .  
o0  
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Let C be a Cartan matrix on I. By a subadditive function for C 

we will mean a function ~ : I --+~ = {1,2,3,...} satisfying 

Z d.C.. > o for all j C I. Again, we write d. instead of d(i). 
iEI i zj - i 

Such a function is called additive provided we even have Z d.C.. = o 
i lj 

iEI 

for all j E I. (In case I is finite, an additive function is also 

called a null root [2]. Note that in case I is infinite, the 

existence of a subadditive function immediately implies that for fixed j, 

all but a finite number of C.. are zero.) 
z] 

Lemma I. Let C be a Euclidean diagram. Then any subadditive 

function for C is additive. 

Proof: Let C t be the transpose of C, thus C~. = C.. for all 
l J  3z 

i,j E I. With C also C t is a Euclidean diagram. Now for every 

Euclidean diagram, there is an additive funtion h, see the table below. 

Given the Euclidean diagram C, let us denote by ~ a fixed additive 

function for C t, thus ~C t = o. Let d be a subadditive function for C. 

Then (dC)8 t = d(C~ t) = o. By assumption, the components of dC are ~ o, 

those of 8 are > o. Therefore the equality (dC)~ t = o implies that 

all components of dC are zero, which means that d is additive. 

In the tables below, we have listed for every Euclidean diagram C an 

additive function h for C. 

[Note that any other additive function for C is an integral multiple of 

this h. Namely, given a second additive function h' for C, we can form 

a non-trivial linear combination of h and h' which vanishes for some 

i E I. However, it is well-known (and easy to see) that the Cartan matrices 

of Dynkin diagrams are regular. Thus the linear combination has to be the 

zero function, and therefore h' is a ~-multiple of h. Since h i = 1 for 

some i E I, we see that h' even has to be an H-multiple of h.] 

Type diagram h 

~fl I 02:6 

A 1 2  o - -o  

'~' (1.'0 (2 t ) 
o - x y ~  . . .  0--02-0 

n 

n 

o ~ o ~  . . . o ~  
n 

n 
o" 

21  

I1 

1 1 . . . 1 1  

1 2 . . . 2 1  

2 2 . . . 2 1  

1 
12 . . . 2 2  
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n 

{1.21 
F41 o~o~o-~o~ 

F42 o--o~-~o~ 

(I 31  
G2 I o~-o~ 

G22 

l .21 12.-  

1 I 
12-- -21  

l 
2 

12321 
2 

1234321 
3 

12345642 

12321 

]2342 

121 

123 

Given two Cartan matrices C on I and C T on I', then we call 

C' smaller than C provided I' c_ I and IC!.113 - < ]Cij for all i,j 

in I'. 

Lemma 2. Let C, C' be two different Cartan matrlces, with C' 

smaller than C. Let d be a subadditive function for C. Then dlI' 

is a subadditive function for C' which is not additive. 

Proof: Let j E I', then 

2d. > Y diiCij, 
J - iEl 

i~j 

> Z diiCij I > Z Ic~j[ 
- iEl' - iEl 'di 

i#j i#j 

shows that d[C' is subadditive, again. If I' is a proper subset of I, 

choose j E I', i E I~I' which are neighbors, then 

Y diiCij I > Z I i£I' i£I 'diicij ' 

i#j i#j 

thus dIC' is not additive. If Jc~j i < Icij I for some i,j in I', 

then 

Z diJCij [ > I ' I ifl' iEl 'diICij ' 

i#j i#j 

thus again, diC' is not additive. 
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or 

Lemma 3. Every subadditive function for any one of 

D is additive and bounded. 

A~, B , C 

Proof: Consider first A~. We may assume I = ~, with edges 

{i,i+l}. Given d : ~ ÷~, there is some i E ~, where d takes its 

minimum. But the subadditivity means 2d i ~ di_l+di+1, which combined 

with di_ 1 ~ di, di+ I ~ d i gives di_ 1 = d i = di+ I. By induction, we 

see that d is constant. 

In writing down a subadditive function d, we will use the valued 

graph and attach to each vertex i the numbers d i. In case B , 

do--(1'2) dl - d2 - d3 ... 

we obtain from d a subaddtive function on A~, namely 

... d 2 - -  d I -  do-- dl-- d 2 .... 

In case C , we obtain from 

( 2 , 1 )  
d o d l - - d  2 

a subadditive function on A~, namely 

- -  d 3 ... 

• .. d 2 -  dl-- 2do-- dl-- d 2 .... 

In case D , we obtain from 

d 

° ~  d _ _  

d o , 

d 2 -  d 3 -.. 

co 

a subadditive function on A, namely 

"'" d 2 - -  d l - -  d o o+d , - -  

In all three cases, the obtained function on A 

thus d is additive and bounded. 

d l - - - -  d 2 . . . .  

h a s  t o  be c o n s t a n t ,  
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Theorem. Let C be a connected Cartan matrix and d a sub- 

additive function for C. 

(a) C is either a Dynkin diasram, a Euclidean diagram or one of 

A~, A , B , C , D . 

(b) I~ d is not additive, then C is a Dynkin diagram or A . 

(c) If d is unbounded, then C is A . 

Proof: If C is neither a D~kindiagram nor one of A , A , B , 

C , D , then there exists a Euclidean diagram C' which is smaller 

than C (an easy verification). 

Now if C' ~ C, then dlC' cannot be additive, according to lemma 2. 

This is a contradiction, since dlC' must be additive, according to 

lemma I. This proves (a). If d is not additive, then Euclidean 

diagrams and Am, B , C and D ° cannot occur according to lemma 1 

and lemma 3, this proves (b). If d is unbounded, then I has to 

be infinite, and only A m remains according to lemma 3. 

Remarks. For any Euclidean diagram, we have seen in the table of 

lemma 1 an additive function. Restricting these functions to proper 

subdiagrams, we obtain for all Dynkin diagrams subadditive functions 

which then cannot be additive. Thus, the Dynkin diagrams are the only 

Cartan matrices on a finite index set for which there exist subadditive 

functions which are not additive. This characterization of the Dynkin 

diagrams is due to Vinberg [IO]. Also, there are the obvious additive 

A ~ functions on ~, B , C~, D (see lemma 3), and for A , there are both 

additive functions, and subadditive functions which are not additive, for 

example 

I-2-3-4-5... 

2-4-5-6-7... 

Finally, there are no additive functions for a Dynkln diagram C (since C 

is a regular matrix). Thus, the Euclidean diagrams are the only Cartan 

matrices on finite index sets with additive functions. This oharacteri- 

zation of the Euclidean diagrams is due to Vinberg [IO] and Berman-Moody- 

Wonenburger [3]. 
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2. The application 

For a quiver F = (Fo,F I) with F ° the set of vertices and F 1 

the set of arrows, we always will assume that it does not have loops 

or double arrows. If x is a vertex, we denote by x + the set of 

endpoints of arrows with starting point x, and by x the set of 
+ 

starting points of arrows with endpoint x. In case the sets x and 

x- are finite for all x, we will call the quiver locally finite. 

A Riedtmann quiver A = (A ,AI,~) is given by a quiver (Ao,A;), 
o 

together with an injective function T : g' -+ A defined on a subset 
o o 

(~x) + A' of g satisfying = x . Given an arrow ~ : y -+ x, there 
o o 

is a unique arrow ~x--+ y and this arrow will be denoted by o~. 

A Riedtmann quiver is called stable provided T is defined on all of 

g and is also surjective. Of course, any Riedtmann quiver has a 
o 

unique maximal stable Riedtmann subquiver. (These concepts have been 

introduced in [5], there, a Riedtmann quiver is called "Darstellungs- 

kScher".) A vertex x of a Riedtmann quiver A will be called periodic 

provided TP(x) = x for some p C ~. We will be interested in stable 

Riedtmann quivers containing periodic elements. 

An important example of a Riedtmann quiver is the following: let 

F be an oriented tree (a quiver with underlying graph a tree), and de- 

fine ~F as follows: its vertices are the elements of ~ x Fo, and given 

an arrow ~ : x --+ y, there are arrows (n,~) : (n,x) --+ (n,y) and 

o(n,~) : (n+l,y) --+ (n,x) for all n C ~. Finally, let ~(n,~) = (n+l,~). 

Note that in this way, we obtain a stable Riedtmann quiver. 

Given a quiver (F ,FI), a function a : F 1 -+~ × ~ will be called 
o 

a valuation, and F = (F ,F ,a) a valued quiver. The image of ~ : x --+ y 
ol 

will be denoted by (a ,a' ), or also (axy,a~y). If F is a valued quiver, 

we can associate with it a Cartan-matrix C = C(F) on the index set F o 

as follows: for x E Fo, let Cxx 2 for x + y in Fo, let Cxy =-axy yx' 

where a = o = a' in case there is no arrow with starting point x 
xy xy 

and endpoint y. In case we deal with a valued oriented tree F, then 

(Fo,FI) and C together determine the valuation. 

A valued Riedtmann quiver A = (Ao,Al,'~,a) is given by a Riedtmann 

= a v 
quiver (go,Ai,T) and a valuation a for (Ao,A I) such that ao~ 
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a' = a for all e : y ÷ x with x E A'. A typical example is again 
G ~  ~ o 

the following: let (£o,Fl,a) be a valued oriented tree, and define 

on ~(Fo,F I) a valuation by a(n,a ) = a s = a'o(n,a) and a'(n,~) = a'~ = 

ao(n,e). This valued Riedtmann quiver is denoted by ~(£o,Fl,a). 

Proposition. Let F,F' be valued oriented trees. Then ~F and 

~F' are isomorphic if and only if the Cartan matrices C(F) and C(£') 

are isomorphic. Given any stable valued Riedtmann quiver A, there is 

a valued oriented tree F and a group G of automorphisms of ~F such 

that A is isomorphic to ~F/G. 

In case A is isomorphic to ~F/G for some valued oriented tree F, 

we call C(F) the Cartan class of &; it is uniquely determined by A. 

The proof of the proposition follows immediately from the correspon- 

ding result on Riedtmann quivers without valuations [5]. Namely, if 

g = (Ao,Ai,T,a) is a valued Riedtmann quiver, and (AO,AI,T) = ~(Fo,FI)/G 

for some oriented tree (Fo,FI), then using the projection from ~(£o,F I) 

onto (Ao,gl,r), the valuation a of & gives rise to a valuation on 

~(Po,Fl), also denoted by a, in such a way that ~(£o,F I) becomes a 

valued Riedtmann quiver. The canonical embedding of (Fo,F]) into 

~(Fo,FI) given by x ~+ (o,x) endows (F F 1) with a valuation, again 
o ~ 

denoted by a, and clearly (Ao,&1,~,a) = ~(Fo,Fl,a)/G. If x is a sink 

in (Fo,FI) , denote by Ox(Fo,Fl,a) the full valued subquiver of 

(Fo,Fl,a) with vertices (o,y) for y # x, and (l,x). It is obvious 

that the Cartan matrices C(Fo,FI,a) and C(Ox(Fo,Fl,a)) are isomorphic. 

This shows the unicity of the Cartan matrix associated to ~(Fo,F|,a). 

If A = (Ao,Ai,T,a) is a valued Riedtmann quiver, a subadditive 

function ~ for A is, by definition, a function ~ : A --+~ satis- 
o 

fying 

~(x) + £(~x) >_ X ~,(y)ay x , 
yEx- 

for all x E A'. Such a function is called additive, provided we always 
o 

have equality (for all x E Ao). 
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Theorem. Let & = (go,Ai,T,a) be a stable valued Riedtmann quiver 

which is connected, and contains a periodic vertex. Assume there is a 

subadditive function ~ for A. 

(a) The Cartan class of A is either a Dynkin diagram, a Eucli- 

A ~ dean diagram, or one of A , ~, B , C , D . 

(b) If ~ is not additive, then the Cartan class of A is a 

Dynkin diagram, or A . 

(c) If ~ is unbounded, then the Cartan class of A is A . 

Proof: First note that the existence of a subadditive function 

implies that A is locally finite. 

Let us show that any vertex of A has to be periodic. For, let x 

be periodic, Say TPx = x. Now, 

T p (x +) (T p (x)) + + = = x shows that T p induces a permutation 

on the finite set x +, and therefore r pm the identity on x +, for some 

m 61N. Thus any y 6 x + also is periodic. Similarly, any y 6 x- is 

periodic. But in this way, using in addition T, we can reach any other 

vertex of A, since we assume that A is connected. 

Let A be a quotient of 2F, with F a valuated oriented tree with 

Cartan matrix C. We can assume that F = {O}XF is embedded into F~T, 

and denote the corresponding map F ---+ ~F ----+ A just by u ~-+ ~. 

By definition of C, we have 

C 
uv 

2 

-a~~ 
uv 

= 

-a ' ~~ 
VU 

0 

in case 

U = V 

U ~ V 

V -----> U 

otherwise 

Assume now there is given a subadditive function £ for A. We 

consider first the case where there exists a fixed number p with 

TPx = x for all vertices x of A. For example, this clearly is true 

in case F is finite. From ~ we obviously obtain a T-invariant sub- 

additive function d for A, by 

p-| 

d(x) = ~ £ (TIx) , 
i=O 
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and d is additive if and only if Z is. Namely, TPx = x 

d(x) = d(~x), thus 

p-} . P 
2d(x )  = d ( x )  + d ( z x )  = [ £ ( ~ l x )  + ~ £ ( r l x )  

i=o i=l 

p--] . 

~(T(TIX))] 
i=o 

p--1 

_> I I i - '% (y) a' 
i=0 y6(r x) y,Tix 

p-I 
I _ Z(T~z) a'" 

i i 
i=0 z6x r z,T x 

p--] 

I_ ~ ~(Tlz) a' Z,X 
z6x i=O 

shows that 

= ~ d(z)a~ 
ZEX-- ~X 

where we have written y E(zlx) - = z1(x -) 

that a'.. = a' for all x,z. Thus 
TIz~TIx Z~X 

funtion for g which is additve iff £ 

composed map F ---+ A > ~ , given by 

Note that u is the disjoint union of 

thus 

2d(u) > ~ d(z) a '  
- zEfi- z,fi 

i 
in the form y = T z, and used 

d is a T-invariant subadditive 

is additive. We consider now the 

u e-+ d(u). 

{v I v ff u-} and {TV [ V 6 U+}, 

= ~ d(~) a' + ~ d(9) a' 
vEu- vu vCu + T~,fi 

= ~ - d(~) a' + ~ + d(~) a~~ 
vEu ~G vCu uv 

=- ~ d(~) C t -- ~ d(@) C t 
V~U- vu vEu + vu 

= - ~ d (~) C t 
VH 

V~=U 
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This shows that we obtain in this way a subadditive function for C t, which 

is additive or unbounded iff ~ is additive, or unbounded, respectively. 

Thus, the existence of a subadditive function ~ on A implies that C 

has to be a Dynkin or Euclidean diagram or one of A , Am, B , C , D . 

In case ~ is additive, C must be Dynkin or A , and in case ~ is un- 

bonded, C must be of the form A . 

Finally, consider the case where we only have for every vertex x 

of A a number p(x) depending on x with TP(X)(x) = x. In particular, 

F is infinite. Choosing a finite subdiagram F' of F, and A' the 

stable Riedtmann quiver generated by F', we see that F' has to be a 

Dynkindiagram or a Euclidean diagram. As a consequence, F only can be 

one of A , A m, B , C , or D . 

We claim that for F of type A , A , B , C , or D , any auto- 

morphism group G of ~F containing an element g with 

g(n,x) = (n+p,x) for some (n,x) 6 ~F and some p ~ |, must contain 

a translation (an automorphism of the form (m,y) e -+ (m+q,y) for all 

(m,y) E ZF). Namely, in the cases A , B , C , we use the following 

numbering 

o o o o--- ... 
o ! 2 3 

of  t he  v e r t i c e s  of  F. Any a u t o m o r p h i s m  of  ~F maps a s u b s e t  of  t he  

form ~ × { x }  i n t o  i t s e l f  ( t h i s  i s  c l e a r  f o r  x = O, s i n c e  

×{0}  = { ( n , x )  I [ ( n , x ) + l  = t} ,  and f o l i o w s  by i n d u c t i o n  f o r  t he  r e m a i n i n g  

x ) .  I f  now g ( n , x )  = (n+p ,x )  f o r  some ( n , x ) ,  t h e n  a l s o  a l l  n e i g h b o u r s  

(m,y) o f  ( n , x )  w i l l  s a t i s f y  g (m,y )  = (m+p ,y ) .  S i m i l a r l y ,  f o r  D , 

u se  t he  number ing  

O o~___~ o-- ... 

O'o~| 2 3 

Then the subsets ~X {O,O'}, and ~X{x} with x ~ I are mapped into them- 

selves by any automorphism. If g(n,x) = (n+p,x) for some (n,x), then 

also g(m,y) = (m+p,y) for all neighbours with y L I. If (m,O) is a 

neighbour of (n,l), and g(n,l) = (n+p,l), then we only can conclude that 

g2(m,O) = (m+2p,O), however this then implies that g2 is a translation. 

Finally consider the case A 

• .. 0 O O 0 O-- ... , 
-2  -1 0 I 2 
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where we may assume that g(n,O) = (n+p,O), for some n,p. If (m,l) is a 

neighbour of (n,O), then either g(m,l) = (m+p,l), and then g is a 

translation, or else g(m,l) = (m+p, -l), and then at least g2 is a 

translation. 

As a consequence, we see that in all cases there is a fixed number q 

with Tq(z) = z for all vertices z in A, thus we are in the previous 

case, and the theorem is proved. 

An immediate consequence of this result is the theorem stated in 

the introduction: Note that the Auslander-Reiten quiver is always locally 

finite. Consider a component C of As(R) containing a periodic module, 

and let ~ be the ordinary length function, it clearly is subadditive. 

Note that % is additive on C if and only if C is even a component 

of the complete Auslander-Reiten quiver A(R). We may assume that R is 

connected. Now, if ~ is not additive on C, then the Cartan class 

of C can only be a Dynkin diagram or A , by part (b). If, on the 

other hand, ~ is additive, then R cannot be of finite representation 

type, since there exists a component of the Auslander-Reiten quiver with- 

out projective modules, namely C. But then % cannot be bounded on C, 

by a theorem of Auslander []], see also [7]. Thus, we can apply (c) 

and see that the Cartan class of C is A m- 

As a first application, we obtain Riedtmann's theorem [5], and its 

generalisation to arbitrary Artin algebras due to Todorov [9]: 

Corollary I. Let R be an Artin algebra of finite representation 

type. Let C be a connected component of A (R). Then the Cartan class 
s 

of C is a Dynkin diagram. 

Proof: We only have to exclude the case A . But this case is 

impossible since for any automorphism group G, ~A /G has infinitely 

many points. 

As a second application, we can describe completely those components 

of the Auslander-Reiten quiver which contain a periodic module but no 

projective ones. 

Corollary 2. Let R be an Artin algebra and C a connected com- 

ponent of A(R) which contains only periodic modules. Then C is a 

quasi-serial component (in the sense of [6]). 
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Proof: Since we deal with a component of 

function is additive. Thus, the Cartan class is 

that C is quasi-serial. 

A(R), the ordinary length 

A . But this then implies 

3. Example 

We have seen that a component of the Auslander-Reiten quiver with 

only periodic modules is quasi-serial. Let us exhibit the example of a 

component with stable part of Cartan class A containing periodic modules 

which is not quasi-serial. 

Consider the Artin algebra R defined by the following quiver with relations 

a 

6 1 ~  _ YB~ = 62~i 

~(y '  = o 

and its component C containing the simple module corresponding to the 

vertex d. Then C has the following form (We denote any module by its 

composition factors in a suggestive way, the dotted lines have to be 

identified in order to form a cylinder): 

a G ~ 
d b e b c 

/ \ / ,,, / ",, / ",, 
~ b~e e / b c  ~¢b 

,,',, / / a  / \ / , ,  
, t~ b.e.b ~/6 • 
, b b~'e" bc e bld" ', 

i / \  \ / \ / \ :  
e b I~ e c b ' e ' b ) ~  e / b  

: \ / ,  / ' ~  / , ~ / ' ,  
, ~,~,~ "~,~,a ~ °~.~,G , 

i e ' l : : i  e ~ b e bc~" I ~ e b  i 
'... ~ \ \ ~ ,, .,. J' \ , . '  

be 

\ 
cl 

/ 

\ 
eo 

c 
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Further examples can be built by using suitable regular enlarge- 

ments and regular co-enlargements of tame quivers, see [8]. 

Remark. Note that the example above gives an algebra with infinite- 

ly many indecomposables which are both preprojective and preinjective in 

the sense of Auslander and Smal~. Namely, in C all modules containing 

the composition factor corresponding to the vertex a are preprojective, 

those containing the composition factor corresponding to the vertex c 

are preinjective. 
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